JP2001196321A - Gas-cooled vertical wafer processing device - Google Patents

Gas-cooled vertical wafer processing device

Info

Publication number
JP2001196321A
JP2001196321A JP2000001698A JP2000001698A JP2001196321A JP 2001196321 A JP2001196321 A JP 2001196321A JP 2000001698 A JP2000001698 A JP 2000001698A JP 2000001698 A JP2000001698 A JP 2000001698A JP 2001196321 A JP2001196321 A JP 2001196321A
Authority
JP
Japan
Prior art keywords
gas
furnace
quartz tube
wafer processing
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000001698A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakane
斉 中根
Yoshihiro Suzuki
義浩 鈴木
Satoshi Oka
敏 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohkura Electric Co Ltd
Original Assignee
Ohkura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohkura Electric Co Ltd filed Critical Ohkura Electric Co Ltd
Priority to JP2000001698A priority Critical patent/JP2001196321A/en
Publication of JP2001196321A publication Critical patent/JP2001196321A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas-cooled vertical wafer processing device which is capable of quickly cooling down a processing tube and wafers by circulating gas inside the processing device. SOLUTION: An oven 1 is provided with a vertical quartz tube 5 which is located at its center and into which wafers 9 are loaded, and a manifold 21 is provided outside the oven 1. Cooling nozzles 11 are extended from the manifold 21 penetrating through the peripheral wall of the oven 1 so as to confront the overall length of the peripheral wall of the quartz tube 5. An exhaust vent 13 is bored in the top wall of the oven 1. The one end of a duct 29 is connected to the exhaust vent 13, and the other end of the duct 29 is connected to the manifold 21 through the intermediary of a heat exchanger 17 and a fan 19 which are both located outside the oven 1 to form a circuit. Gas is circulated between the heat exchanger 17 and the oven 1 by the fan 19, low-temperature gas is made to blow against the overall peripheral wall of the quartz tube 5 from the cooing nozzles 11 to cool down the tube 5 and the wafers 9, and heat is collected from high-temperature gas that returns from the oven 1 by the heat exchanger 17 to turn the returning high-temperature gas to low-temperature cooling gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス冷却式縦型ウ
ェーハ処理装置に関し、とくに高速降温が可能なガス冷
却式縦型ウェーハ処理装置に関する。
[0001] The present invention relates to a gas-cooled vertical wafer processing apparatus, and more particularly to a gas-cooled vertical wafer processing apparatus capable of rapidly lowering the temperature.

【0002】[0002]

【従来の技術】半導体ウェーハの最近の熱処理装置で
は、スループットの向上のために処理時間の短縮が求め
られ、そのために高速昇・降温が必要になっている。成
膜工程についても薄膜化の傾向が進み、処理時間の短縮
が市場の要求となってきている。
2. Description of the Related Art In recent heat treatment apparatuses for semiconductor wafers, it is required to shorten the processing time in order to improve the throughput, and therefore, it is necessary to rapidly raise and lower the temperature. Also in the film forming process, the tendency of thinning has progressed, and shortening of the processing time has become a demand in the market.

【0003】昇温については、ヒータに大きな電力を供
給することで100℃/分程度の高速昇温が達成されてい
る。他方、降温については、自然空冷では数℃/分が普
通であり、強制冷却で数10℃/分程度の降温速度が得ら
れている。
[0003] As for the temperature rise, a high-speed temperature rise of about 100 ° C / min is achieved by supplying a large electric power to the heater. On the other hand, with respect to the temperature drop, several deg. C / min is normal in natural air cooling, and a temperature drop rate of about several tens deg. C / min is obtained by forced cooling.

【0004】従来の強制冷却は、熱処理用の炉の内部
へ、例えば当該炉が設置された部室の室内空気などの周
囲空気を導入して熱処理炉のヒータを空冷し、炉の排気
孔から炉外へ排気するのが一般的である。
In the conventional forced cooling, for example, ambient air such as room air in a room where the furnace is installed is introduced into a furnace for heat treatment to air-cool a heater of the heat treatment furnace, and the furnace is exhausted through an exhaust hole of the furnace. It is common to exhaust air outside.

【0005】[0005]

【発明が解決しようとする課題】炉設置室の室内空気
(以下、室内空気という。)で炉のヒータを急速に冷却
する場合には、大量の室内空気を炉内に導入する必要が
ある。炉内へ大量の室内空気を導入する方式には、その
設置室内に一時的な減圧状態を招き、他の製造装置等と
の圧カバランスを崩し、結果的に製品の品質低下を起こ
す問題点がある。
When the heater of a furnace is rapidly cooled by room air in a furnace installation room (hereinafter referred to as room air), a large amount of room air needs to be introduced into the furnace. The method that introduces a large amount of room air into the furnace causes a temporary decompression state in the installation room, which breaks the pressure balance with other manufacturing equipment, etc., and consequently lowers product quality. There is.

【0006】また、炉設置室がクリーンルームであるか
又は炉設置室がクリーンルームと連通しているときは、
室内空気による炉内冷却が、炉設置室の室内と炉ヒータ
部とを空間的に接続することとなる。そのため、炉内ヒ
ータ部で生じるパーティクルをクリーンルーム室内に飛
散させ、装置やウェーハの表面をそのパーティクルで汚
染する問題点がある。
When the furnace installation room is a clean room or the furnace installation room is in communication with the clean room,
Cooling in the furnace by room air spatially connects the furnace installation room and the furnace heater section. Therefore, there is a problem that particles generated in the heater section in the furnace are scattered in the clean room room, and the surfaces of the apparatus and the wafer are contaminated with the particles.

【0007】従って、本発明の目的は、これらの問題点
を解決するために、ガスの循環により高速降温を行うガ
ス冷却式縦型ウェーハ処理装置を提供するにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a gas-cooled vertical wafer processing apparatus in which the temperature is reduced at a high speed by circulating gas in order to solve these problems.

【0008】[0008]

【課題を解決するための手段】図1の実施例を参照する
に、本発明によるガス冷却式縦型ウェーハ処理装置は、
ウェーハ9装填用の縦長石英チューブ5を中央に有する
炉1、炉1外のマニホルド21から炉1の周壁を貫通して
延び石英チューブ5の全長の周壁に向け開口する複数の
冷却ノズル11、炉1の頂壁に開口する排気口13、及び炉
1外の熱交換器17と送風装置19とを介して前記排気口13
をマニホルド21に接続するガス管路29を備え、送風装置
19により熱交換器17と炉1との間にガスを循環させ、熱
交換器17からの低温ガスを冷却ノズル11により石英チュ
ーブ5全長の周壁に吹付けて石英チューブ5及びウェー
ハ9を冷却し、炉1からの戻り高温ガスを熱交換器17で
の収熱により低温ガスとしてなるものである。
Referring to the embodiment of FIG. 1, a gas-cooled vertical wafer processing apparatus according to the present invention comprises:
A furnace 1 having a vertically long quartz tube 5 for loading a wafer 9 at the center, a plurality of cooling nozzles 11 extending from a manifold 21 outside the furnace 1 through the peripheral wall of the furnace 1 and opening toward a full-length peripheral wall of the quartz tube 5, a furnace. Exhaust port 13 opening on the top wall of the furnace 1 and the exhaust port 13 through a heat exchanger 17 and a blower 19 outside the furnace 1.
A gas line 29 connecting the manifold to the manifold 21;
The gas is circulated between the heat exchanger 17 and the furnace 1 by 19, and the low-temperature gas from the heat exchanger 17 is blown by the cooling nozzle 11 onto the entire peripheral wall of the quartz tube 5 to cool the quartz tube 5 and the wafer 9. The high-temperature gas returned from the furnace 1 is converted into a low-temperature gas by collecting heat in the heat exchanger 17.

【0009】[0009]

【発明の実施の形態】図1及び2に示す実施例を参照し
て、ウェーハ処理装置内での炉内ガスの循環により高速
降温を可能にした本発明のガス冷却式縦型ウェーハ処理
装置の作用を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the embodiment shown in FIGS. 1 and 2, a gas-cooled vertical wafer processing apparatus according to the present invention, which enables high-speed temperature reduction by circulating furnace gas in a wafer processing apparatus. The operation will be described.

【0010】図2に要部を示すガス冷却式縦型ウェーハ
処理装置のハウジング23の下部に昇降可能なボートロー
ダ25が設けられる。石英ボート7が載置されたボートロ
ーダ25を同図に点線で示される下方位置に降下させた時
に、移載機(図示せず)などによりウェーハ9を石英ボ
ート7に載置する。ウェーハ9を保持する石英ボート7
をボートローダ25により上昇させて炉1内の石英チュー
ブ5に嵌入させる。炉1により熱処理されたウェーハ9
は、石英ボート7及びボートローダ25と共に前記点線位
置へ下降し、移載機などにより次段階の処理装置へ移送
される。クリーンファン・ユニット27は、下降した石英
ボート7上の複数のウェーハ9を等温に保つなどの機能
を果たす。
A vertically movable boat loader 25 is provided below the housing 23 of the gas-cooled vertical wafer processing apparatus whose main part is shown in FIG. When the boat loader 25 on which the quartz boat 7 is placed is lowered to a lower position indicated by a dotted line in FIG. 3, the wafer 9 is placed on the quartz boat 7 by a transfer machine (not shown). Quartz boat 7 holding wafer 9
Is raised by the boat loader 25 and fitted into the quartz tube 5 in the furnace 1. Wafer 9 heat-treated by furnace 1
Together with the quartz boat 7 and the boat loader 25 move down to the dotted line position, and are transferred to the next-stage processing apparatus by a transfer machine or the like. The clean fan unit 27 performs a function of keeping the plurality of wafers 9 on the lowered quartz boat 7 at a constant temperature.

【0011】図1の例では、炉1内で石英チューブ5を
囲む位置に設けたヒータ装置3が、石英チューブ5及び
その中に保持されたウェーハを加熱して処理する。処理
後のウェーハ9は、所定の安全な温度へ冷却された後、
前記のように石英チューブ5が図2に点線で示す下方位
置へ降下する。本発明はその降下前のウェーハ9の高速
降温に関するものである。
In the example shown in FIG. 1, a heater device 3 provided in the furnace 1 at a position surrounding the quartz tube 5 heats and processes the quartz tube 5 and the wafer held therein. After the processed wafer 9 is cooled to a predetermined safe temperature,
As described above, the quartz tube 5 is lowered to the lower position shown by the dotted line in FIG. The present invention relates to a rapid temperature drop of the wafer 9 before the drop.

【0012】図1において、熱交換器17で冷やされた冷
却ガスが、送風機19によってマニホルド21及び冷却ノズ
ル11を介して、石英チューブ5の全長の周壁に向けて吹
付けられる。冷却ガスの温度を熱交換器17によって調節
し、風量を送風機19によって調節し、吹付け位置と広さ
を冷却ノズル11の数と配置で調節することにより、石英
チューブ5及びウェーハ9を高速降温させるか又は所要
の降温速度で冷却することができる。
In FIG. 1, a cooling gas cooled by a heat exchanger 17 is blown by a blower 19 through a manifold 21 and a cooling nozzle 11 toward the entire peripheral wall of the quartz tube 5. The temperature of the cooling gas is adjusted by the heat exchanger 17, the air volume is adjusted by the blower 19, and the spray position and the size are adjusted by the number and arrangement of the cooling nozzles 11, whereby the quartz tube 5 and the wafer 9 are rapidly cooled. Or cooled at the required cooling rate.

【0013】本発明者は、実験により本発明の装置が数
10℃/分の降温性能を与え得ることを確認した。
The present inventor has found that experiments have shown that
It was confirmed that a temperature lowering performance of 10 ° C./min could be provided.

【0014】石英チューブ5を冷やすことにより温度上
昇したガスは、炉1内を上昇し、炉1の頂壁に開口する
排気孔13に接続されたガス管路29により、熱交換器17へ
戻る。熱交換器17で冷却水に集熱されて冷却されたガス
は、以上説明した径路で、炉1の内部と熱交換器17とよ
りなる循環路を流れることにより、石英チューブ5の熱
を熱交換器17の熱源、例えば冷却水源へ移すことにより
石英チューブ5及びそれに装填されたウェーハ9を冷却
する。なお図2では、冷却用のガスに関連する器具類及
び管路の図示を省略している。
The gas whose temperature has risen by cooling the quartz tube 5 rises in the furnace 1 and returns to the heat exchanger 17 through a gas pipe 29 connected to an exhaust hole 13 opened in the top wall of the furnace 1. . The gas collected and cooled by the cooling water in the heat exchanger 17 flows through the circulation path including the inside of the furnace 1 and the heat exchanger 17 through the above-described path, thereby transferring the heat of the quartz tube 5 to the heat. The quartz tube 5 and the wafer 9 loaded therein are cooled by transferring to a heat source of the exchanger 17, for example, a cooling water source. In FIG. 2, the illustration of instruments and pipes related to the cooling gas is omitted.

【0015】本発明のガス冷却式縦型ウェーハ処理装置
は、冷却用のガスを前記炉1の内部と熱交換器17とより
なる循環路に流して冷却するので、炉1の設置室の室内
空気を使用しない。よって、従来技術における室内空気
の使用に起因する一時的減圧状態に伴う他の製造装置等
との圧カバランスの崩れ、製品の品質低下、炉内発生パ
ーティクルのクリーンルーム中への飛散等の問題を解決
することができる。
In the gas-cooled vertical wafer processing apparatus of the present invention, cooling gas is cooled by flowing the gas for cooling through the circulation path including the inside of the furnace 1 and the heat exchanger 17. Do not use air. Therefore, problems such as the imbalance in pressure with other manufacturing equipment due to the temporary decompression state due to the use of indoor air in the prior art, the deterioration of product quality, and the scattering of particles generated in the furnace into the clean room are caused. Can be solved.

【0016】こうして、本発明の目的である「冷却ガス
の循環により高速降温を行うガス冷却式縦型ウェーハ処
理装置」の提供が達成される。
In this manner, the object of the present invention is to provide a "gas-cooled vertical wafer processing apparatus capable of rapidly lowering the temperature by circulating a cooling gas".

【0017】[0017]

【実施例】図1の実施例では、炉1の周壁と石英チュー
ブ5との間にヒータ装置3を設け、冷却ノズル11が、炉
1の周壁及びヒータ装置3の両者を貫通して石英チュー
ブ5に臨むものとなっている。このような構造の冷却ノ
ズル11は、石英チューブ5の高速降温には有利である
が、本発明はこの例に限定されない。
In the embodiment shown in FIG. 1, a heater device 3 is provided between the peripheral wall of the furnace 1 and the quartz tube 5, and a cooling nozzle 11 penetrates both the peripheral wall of the furnace 1 and the heater device 3 to form a quartz tube. 5 is facing. The cooling nozzle 11 having such a structure is advantageous for high-speed cooling of the quartz tube 5, but the present invention is not limited to this example.

【0018】さらに図1の実施例では、ガス管路29に送
風機19の吐出側と炉1頂壁の排気口13の出口側とを弁31
付き分岐管路33により接続し、弁31の開度の調節により
炉1内への低温ガス流量を制御している。すなわち、同
図の弁31は流量制御部15を構成する。この構成を用いれ
ば、熱交換器17への冷却水の供給量及び送風機19の吐出
風量を一定に保ったままで、炉1への冷却用のガスの流
量を制御することができる。
Further, in the embodiment shown in FIG. 1, the discharge side of the blower 19 and the outlet side of the exhaust port 13 on the top wall of the furnace 1 are connected to the gas line 29 by the valve 31.
The low-temperature gas flow into the furnace 1 is controlled by adjusting the opening of the valve 31. That is, the valve 31 in FIG. With this configuration, the flow rate of the cooling gas to the furnace 1 can be controlled while keeping the supply amount of the cooling water to the heat exchanger 17 and the discharge air amount of the blower 19 constant.

【0019】冷却用のガスとしては、空気を使うことが
できるが、冷却効率が高い窒素やアルゴンなどのガスを
使ってもよい。
As the cooling gas, air can be used, but a gas such as nitrogen or argon having high cooling efficiency may be used.

【0020】[0020]

【発明の効果】以上詳細に説明したように、本発明のガ
ス冷却式縦型ウェーハ処理装置は、ウェーハ処理装置内
を循環する冷却ガスにより高速降温を行うので、次の顕
著な効果を奏する。
As described in detail above, the gas-cooled vertical wafer processing apparatus of the present invention performs the high-speed cooling by the cooling gas circulating in the wafer processing apparatus, and thus has the following remarkable effects.

【0021】(イ)外部からの空気を必要とせず、他の
装置に外乱を与えることなしに、高速降温を行うことが
できる。 (ロ)冷却ガスが空気以外の高価なガスであっても、操
作時に排気することがないため消費量は少なく経済的で
あり、効率的に冷却ガスを使用することができる。 (ハ)施設の排熱気孔との接続工事を必要としない。
(A) It is possible to perform high-speed temperature reduction without requiring external air and without disturbing other devices. (B) Even if the cooling gas is an expensive gas other than air, it is not exhausted at the time of operation, so the consumption is small and economical, and the cooling gas can be used efficiently. (C) There is no need for connection work with the exhaust holes of the facility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明によるガス冷却式縦型ウェーハ処理
装置の要部のブロック図である。
FIG. 1 is a block diagram of a main part of a gas-cooled vertical wafer processing apparatus according to the present invention.

【図2】は、図1の装置で使われるボートローダの説明
図である。
FIG. 2 is an explanatory diagram of a boat loader used in the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1…炉 3…ヒータ装置 5…石英チュ−ブ 7…石英ボート 9…ウェーハ 11…冷却ノズル 13…排気孔 15…流量制御部 17…熱交換器 19…送風装置 21…マニホルド 23…ハウジング 25…ボートローダ 27…クリーンファン・ユニッ
ト 29…ガス管路 31…弁 33…分岐管路
DESCRIPTION OF SYMBOLS 1 ... Furnace 3 ... Heater device 5 ... Quartz tube 7 ... Quartz boat 9 ... Wafer 11 ... Cooling nozzle 13 ... Exhaust hole 15 ... Flow control unit 17 ... Heat exchanger 19 ... Blower 21 ... Manifold 23 ... Housing 25 ... Boat loader 27… Clean fan unit 29… Gas line 31… Valve 33… Branch line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 敏 東京都杉並区成田西三丁目20番8号 大倉 電気株式会社内 Fターム(参考) 5F045 BB08 DP19 DQ05 EB02 EJ04 EJ10 EK06 EM10  ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Satoshi Oka 3-20-8 Narita Nishi, Suginami-ku, Tokyo Okura Electric Co., Ltd. F term (reference) 5F045 BB08 DP19 DQ05 EB02 EJ04 EJ10 EK06 EM10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ウェーハ装填用の縦長石英チューブを中央
に有する炉、炉外のマニホルドから前記炉の周壁を貫通
して延び前記石英チューブ全長の周壁に向け開口する複
数の冷却ノズル、前記炉の頂壁に開口する排気口、及び
炉外の熱交換器と送風装置とを介して前記排気口をマニ
ホルドに接続するガス管路を備え、前記送風装置により
前記熱交換器と炉との間にガスを循環させ、前記熱交換
器からの低温ガスを前記冷却ノズルにより前記石英チュ
ーブ全長の周壁に吹付けて石英チューブ及びウェーハを
冷却し、炉からの戻り高温ガスを前記熱交換器での収熱
により低温ガスとしてなるガス冷却式縦型ウェーハ処理
装置。
1. A furnace having a vertically elongated quartz tube for loading a wafer at a center thereof, a plurality of cooling nozzles extending from a manifold outside the furnace through a peripheral wall of the furnace and opening toward a peripheral wall of the entire length of the quartz tube; An exhaust port opening on the top wall, and a gas pipe connecting the exhaust port to a manifold via a heat exchanger and a blower outside the furnace, and the blower is provided between the heat exchanger and the furnace. The gas is circulated, the low-temperature gas from the heat exchanger is sprayed on the peripheral wall of the entire length of the quartz tube by the cooling nozzle to cool the quartz tube and the wafer, and the high-temperature gas returned from the furnace is collected in the heat exchanger. A gas-cooled vertical wafer processing system that generates low-temperature gas by heat.
【請求項2】請求項1のウェーハ処理装置において、前
記ガス管路の前記送風機の吐出側と炉頂壁開口の出口側
とを弁付き分岐管路により接続し、前記弁の開度の調節
により炉内への低温ガス流量を制御してなるガス冷却式
縦型ウェーハ処理装置。
2. The wafer processing apparatus according to claim 1, wherein the discharge side of the blower of the gas line and the outlet side of the opening of the furnace top wall are connected by a branch line with a valve, and the degree of opening of the valve is adjusted. A gas-cooled vertical wafer processing system that controls the flow rate of low-temperature gas into the furnace by using
【請求項3】請求項1又は2のウェーハ処理装置におい
て、前記ガスを窒素又はアルゴンとしてなるガス冷却式
縦型ウェーハ処理装置。
3. A gas-cooled vertical wafer processing apparatus according to claim 1, wherein said gas is nitrogen or argon.
【請求項4】請求項1−3の何れかのウェーハ処理装置
において、前記炉の周壁と前記石英チューブとの間にヒ
ータ装置を設け、前記冷却ノズルを前記炉外のマニホル
ドから前記炉周壁及びヒータ装置を貫通して前記石英チ
ューブ全長の周壁に望ませてなるガス冷却式縦型ウェー
ハ処理装置。
4. A wafer processing apparatus according to claim 1, wherein a heater device is provided between the peripheral wall of the furnace and the quartz tube, and the cooling nozzle is moved from a manifold outside the furnace to the peripheral wall of the furnace. A gas-cooled vertical wafer processing apparatus desirably penetrating a heater device and surrounding the entire length of the quartz tube.
【請求項5】請求項1−4の何れかのウェーハ処理装置
において、前記石英チューブに対するウェーハの搬入・
搬出を前記石英チューブ内へ下方から昇降可能な石英ボ
ートにより行ってなるガス冷却式縦型ウェーハ処理装
置。
5. A wafer processing apparatus according to claim 1, wherein a wafer is loaded into said quartz tube.
A gas-cooled vertical wafer processing apparatus, which is carried out by a quartz boat that can be lifted and lowered from below into the quartz tube.
JP2000001698A 2000-01-07 2000-01-07 Gas-cooled vertical wafer processing device Pending JP2001196321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001698A JP2001196321A (en) 2000-01-07 2000-01-07 Gas-cooled vertical wafer processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001698A JP2001196321A (en) 2000-01-07 2000-01-07 Gas-cooled vertical wafer processing device

Publications (1)

Publication Number Publication Date
JP2001196321A true JP2001196321A (en) 2001-07-19

Family

ID=18530896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001698A Pending JP2001196321A (en) 2000-01-07 2000-01-07 Gas-cooled vertical wafer processing device

Country Status (1)

Country Link
JP (1) JP2001196321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040033A1 (en) * 2005-09-30 2007-04-12 Sharp Kabushiki Kaisha Cooling system, operation method for the cooling system, and plasma processing system using the cooling system
JP2008288615A (en) * 2003-03-07 2008-11-27 Tokyo Electron Ltd Substrate processing apparatus and temperature controlling device
JP2009512785A (en) * 2005-10-24 2009-03-26 シデル パルティシパション A cooled device for plasma depositing a barrier layer on a vessel
KR20150086832A (en) * 2014-01-20 2015-07-29 주식회사 풍산 Cooling device for processing semiconductor susbstrate
CN114709150A (en) * 2022-03-30 2022-07-05 江苏晟驰微电子有限公司 Gallium diffusion equipment and process for manufacturing high-voltage protection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288615A (en) * 2003-03-07 2008-11-27 Tokyo Electron Ltd Substrate processing apparatus and temperature controlling device
WO2007040033A1 (en) * 2005-09-30 2007-04-12 Sharp Kabushiki Kaisha Cooling system, operation method for the cooling system, and plasma processing system using the cooling system
JPWO2007040033A1 (en) * 2005-09-30 2009-04-16 シャープ株式会社 Cooling system, operating method thereof, and plasma processing system using the cooling system
JP2009512785A (en) * 2005-10-24 2009-03-26 シデル パルティシパション A cooled device for plasma depositing a barrier layer on a vessel
KR20150086832A (en) * 2014-01-20 2015-07-29 주식회사 풍산 Cooling device for processing semiconductor susbstrate
KR101576056B1 (en) 2014-01-20 2015-12-21 주식회사 풍산 Cooling device for processing semiconductor susbstrate
CN114709150A (en) * 2022-03-30 2022-07-05 江苏晟驰微电子有限公司 Gallium diffusion equipment and process for manufacturing high-voltage protection device

Similar Documents

Publication Publication Date Title
US6380518B2 (en) Heat treatment apparatus and substrate processing system
KR102009597B1 (en) Substrate processing apparatus and substrate processing method
TWI389212B (en) Heat treatment device, heat treatment method, and storage medium
JP2007095879A (en) Substrate processing equipment
JP4355441B2 (en) Heat treatment apparatus, heat treatment method, and semiconductor device manufacturing method
KR20080041112A (en) Substrate processing apparatus and manufacturing method for a semiconductor device
JP2001196321A (en) Gas-cooled vertical wafer processing device
EP0454054B1 (en) Lamp annealing apparatus and lamp annealing method
KR100559820B1 (en) Thermal treatment apparatus and thermal treatment method
JP3402713B2 (en) Heat treatment equipment
JP2004119888A (en) Semiconductor manufacturing apparatus
JPH07135182A (en) Heat-treating device
TW202301586A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP2003282452A (en) Apparatus and method for heat treatment
CN108335998B (en) Substrate processing apparatus and method for cooling substrate
JPH07115066A (en) Semiconductor heat treatment device
JP4485646B2 (en) Substrate mounting table
JP2005534545A5 (en)
JP5224679B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
JP2005197471A (en) Substrate processing equipment and temperature control method
JP2002110576A (en) Heat treating apparatus and heat treating method
JP3332955B2 (en) Forced air cooling system for heat treatment furnace
JP4042812B2 (en) Semiconductor manufacturing equipment
JP2010153480A (en) Process of fabricating semiconductor device
JP4203252B2 (en) Semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804