JP2001192836A - Plasma cvd system - Google Patents

Plasma cvd system

Info

Publication number
JP2001192836A
JP2001192836A JP2000000039A JP2000000039A JP2001192836A JP 2001192836 A JP2001192836 A JP 2001192836A JP 2000000039 A JP2000000039 A JP 2000000039A JP 2000000039 A JP2000000039 A JP 2000000039A JP 2001192836 A JP2001192836 A JP 2001192836A
Authority
JP
Japan
Prior art keywords
substrate
mounting table
vacuum chamber
film
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000000039A
Other languages
Japanese (ja)
Other versions
JP4353601B2 (en
Inventor
Katsuhiko Mori
勝彦 森
Yukinori Hashimoto
征典 橋本
Naoto Tsuji
直人 辻
Michio Ishikawa
道夫 石川
Yasuo Shimizu
康男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000000039A priority Critical patent/JP4353601B2/en
Priority to KR1020000081734A priority patent/KR20010070354A/en
Priority to TW090100136A priority patent/TW508371B/en
Publication of JP2001192836A publication Critical patent/JP2001192836A/en
Application granted granted Critical
Publication of JP4353601B2 publication Critical patent/JP4353601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for preventing the reduction in deposition rate caused by the continuous film deposition on a plurality of substrates in the plasma CVD method using TECS (tetra ethyl ortho silicate), etc., as source gas. SOLUTION: In a plasma CVD system 10, a shower plate 16 and a susceptor 18 are both constituted of an aluminum plate having aluminum oxide film on the surface. As a result, even if the deposition of SiO2 film is continuously applied to a plurality of substrates, temperature distribution in a vacuum chamber 12 becomes more uniform than heretofore. Resultantly, deposition rate does not fall but becomes nearly constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマCVD装置
に関し、特に、液晶表示装置の製造工程において、ガラ
ス基板上にTEOS/O2系プラズマCVD法により、S
iO2膜を成膜するプラズマCVD装置に関する。
The present invention relates to a plasma CVD apparatus BACKGROUND OF THE INVENTION, in particular, in the manufacturing process of the liquid crystal display device, the TEOS / O 2 based plasma CVD method on a glass substrate, S
The present invention relates to a plasma CVD apparatus for forming an iO 2 film.

【0002】[0002]

【従来の技術】大面積のガラス基板に、低温で膜質の良
好な絶縁膜を成膜する方法として、TEOS/O2系プ
ラズマCVD法がある。図5の符号110は、TEOS
/O2系プラズマCVD装置の従来技術のものを示して
おり、真空槽112を有している。真空槽112の外部
には真空排気系123が設けられており、真空排気系1
23を起動すると、真空槽112内部を真空排気するこ
とができるように構成されている。
2. Description of the Related Art As a method of forming an insulating film having good film quality at a low temperature on a large-sized glass substrate, there is a TEOS / O 2 plasma CVD method. Reference numeral 110 in FIG.
1 shows a prior art / O 2 plasma CVD apparatus, which has a vacuum chamber 112. An evacuation system 123 is provided outside the vacuum chamber 112, and the evacuation system 1
When the 23 is activated, the inside of the vacuum chamber 112 can be evacuated.

【0003】真空槽112の天井側には、真空槽112
と電気的に絶縁された状態で電極131が設けられてい
る。他方、真空槽112外には電圧源122が配置され
ており、真空槽112を接地電位に置いた状態で電極1
31に高周波電圧を印加できるように構成されている。
[0003] On the ceiling side of the vacuum tank 112,
The electrode 131 is provided in a state where the electrode 131 is electrically insulated. On the other hand, a voltage source 122 is disposed outside the vacuum chamber 112, and the electrode 1
31 is configured to be able to apply a high-frequency voltage.

【0004】真空槽112内部の底壁上には台座117
が配置され、その表面に載置台118が取り付けられて
いる。載置台118は、その断面図を図6(a)に示すよ
うに、2枚の板状部材153、154と、線状のシース
ヒータ155とを有している。各板状部材153、15
4の表面には、図6(b)に示すように所定パターンの溝
165が形成されている。
A pedestal 117 is provided on the bottom wall inside the vacuum chamber 112.
Are arranged, and the mounting table 118 is attached to the surface thereof. The mounting table 118 has two plate members 153 and 154 and a linear sheath heater 155 as shown in a sectional view of FIG. Each plate member 153, 15
On the surface of No. 4, grooves 165 having a predetermined pattern are formed as shown in FIG.

【0005】各板状部材153、154は、互いに密着
した状態で、それぞれの溝165が互いに重なり合うよ
うに密着配置されている。シースヒータ155は、これ
らの溝165と同じ形状に曲げられており、各板状部材
153、154が密着した状態で、それぞれの表面に形
成された溝165の間に形成される空間内に配置され、
2枚の板状部材153、154の両方と密着している。
The plate members 153 and 154 are arranged in close contact with each other such that the grooves 165 overlap each other in a state of being in close contact with each other. The sheath heater 155 is bent in the same shape as the grooves 165, and is arranged in a space formed between the grooves 165 formed on the respective surfaces in a state where the plate members 153 and 154 are in close contact with each other. ,
It is in close contact with both of the two plate members 153 and 154.

【0006】シースヒータ155は、真空槽112外に
配置された図示しない電源に接続されている。載置台1
18は、板状部材153に基板121を載置した状態
で、その電源を起動してシースヒータ155に通電する
と、その内部に設けられた抵抗発熱体(図示せず)が発熱
し、板状部材153、154全体が均一に加熱され、基
板121を均一に昇温させることができる。
[0006] The sheath heater 155 is connected to a power source (not shown) arranged outside the vacuum chamber 112. Mounting table 1
Reference numeral 18 denotes a state in which the substrate 121 is placed on the plate-like member 153, and when a power source thereof is activated to energize the sheath heater 155, a resistance heating element (not shown) provided therein generates heat, and The entire 153 and 154 are uniformly heated, and the temperature of the substrate 121 can be uniformly increased.

【0007】電極131は、電極本体113と、シャワ
ープレート116とを有している。電極本体113は、
容器状に成形されており、容器底面部分に、ガス導入パ
イプ119の一端が接続されている。ガス導入パイプ1
19の他端には、図示しないガスボンベが接続されてお
り、電極本体113の容器状の空間中にガスを導入でき
るように構成されている。
[0007] The electrode 131 has an electrode body 113 and a shower plate 116. The electrode body 113
It is formed in a container shape, and one end of a gas introduction pipe 119 is connected to a bottom portion of the container. Gas introduction pipe 1
A gas cylinder (not shown) is connected to the other end of 19, so that gas can be introduced into the container-like space of the electrode body 113.

【0008】シャワープレート116は、電極本体11
3の容器開口部を閉塞するように固定され、電極本体1
13とシャワープレート116とで、空間が形成されて
いる。シャワープレート116には、多数の孔115が
形成されており、ガス導入パイプ119から空間内にガ
スが導入されると、この空間はガス貯留室114となっ
て、導入ガスが一旦充満し、次いで、各孔115から真
空槽112内へと吹き出すことができるように構成され
ている。
[0008] The shower plate 116 is
3 so as to close the container opening, and the electrode body 1
13 and the shower plate 116 form a space. A large number of holes 115 are formed in the shower plate 116, and when gas is introduced into the space from the gas introduction pipe 119, this space becomes a gas storage chamber 114, which is once filled with introduced gas, , And can be blown out from each hole 115 into the vacuum chamber 112.

【0009】このような構成のプラズマCVD装置11
0を用い、TEOS/O2系プラズマCVD法で、複数
のガラス基板表面にSiO2膜を形成する場合、先ず、真空
排気系123によって真空槽112内を真空排気すると
ともに、シースヒータ155に通電して、載置台118
を加熱して昇温させる。真空槽112内の圧力が所定圧
力になるとともに、載置台118が所定温度まで昇温さ
れたら、真空状態を維持しながら、真空槽112内に1
枚目の基板121を搬入し、載置台118上に載置す
る。
[0009] The plasma CVD apparatus 11 having such a configuration.
When forming a SiO 2 film on a plurality of glass substrate surfaces by TEOS / O 2 plasma CVD using 0, first, the inside of the vacuum chamber 112 is evacuated by the evacuation system 123 and the sheath heater 155 is energized. And the mounting table 118
Is heated to raise the temperature. When the pressure in the vacuum chamber 112 reaches a predetermined pressure and the mounting table 118 is heated to a predetermined temperature, while maintaining a vacuum state, one
The second substrate 121 is loaded and placed on the mounting table 118.

【0010】基板121が所定温度まで昇温されたら、
ガス貯留室114内に反応性ガスを導入し、シャワープ
レート116から基板121表面に対して吹き付ける。
その状態で電圧源122を起動し、電極131に高周波
の交流電圧を印加すると、放電が生じ、その放電により
プラズマが生じて原料ガスが分解され、基板121の表
面で気相成長することにより、基板121の表面にSiO2
膜が成膜される。所定膜厚のSiO2膜が成膜されたら、高
周波電力の供給と反応性ガス、希釈ガスの導入を停止
し、不図示の搬送系で基板121を真空槽112外へと
搬出する。
When the temperature of the substrate 121 is raised to a predetermined temperature,
A reactive gas is introduced into the gas storage chamber 114 and sprayed from the shower plate 116 onto the surface of the substrate 121.
In this state, when the voltage source 122 is activated and a high-frequency AC voltage is applied to the electrode 131, a discharge is generated, and the discharge generates plasma to decompose the raw material gas, which is vapor-phase grown on the surface of the substrate 121. SiO 2 on the surface of the substrate 121
A film is formed. When the SiO 2 film having a predetermined thickness is formed, the supply of the high-frequency power and the introduction of the reactive gas and the dilution gas are stopped, and the substrate 121 is carried out of the vacuum chamber 112 by a transport system (not shown).

【0011】引き続いて未処理の基板を新たに真空槽1
12内へ搬入し、載置台118上に載置させた後に、上
述した工程と同様の工程を経て、搬入した基板の表面に
所定膜厚のSiO2膜を成膜する。以上の作業を繰り返すこ
とにより、複数の基板の表面にSiO2膜を成膜することが
できる。
Subsequently, an unprocessed substrate is newly added to the vacuum chamber 1.
After being loaded into the mounting table 12 and mounted on the mounting table 118, an SiO 2 film having a predetermined thickness is formed on the surface of the loaded substrate through the same steps as those described above. By repeating the above operation, an SiO 2 film can be formed on the surfaces of a plurality of substrates.

【0012】このようなTEOS/O2系プラズマCV
D法では、反応性ガスがプラズマ中で活性化されるの
で、基板121が比較的低温でも薄膜を形成することが
可能になっている。
Such a TEOS / O 2 plasma CV
In the method D, the reactive gas is activated in the plasma, so that the substrate 121 can form a thin film even at a relatively low temperature.

【0013】そして、真空槽112の容量を大きくし、
大面積の基板を収容できるようにすると、比較的大きな
基板表面にも、プラズマCVD法によって比較的均一な
薄膜を形成することもできる。
Then, the capacity of the vacuum chamber 112 is increased,
When a large-area substrate can be accommodated, a relatively uniform thin film can be formed on a relatively large substrate surface by the plasma CVD method.

【0014】しかしながら、上述の成膜方法では、同一
の真空槽内で、連続して複数の基板に薄膜を成膜する
と、成膜速度が徐々に低下してしまうという問題が生じ
ていた。本発明の発明者等は、各基板ごとの処理時間を
一定にして、複数の基板表面に、同一真空槽内で連続し
てSiO2膜を成膜した場合に、基板の処理枚数と、各基板
に成膜されたSiO2膜の膜厚との関係を調べる実験を行っ
た。図7の曲線(Y)に、その実験結果を示す。図7で横
軸は、基板の処理枚数を示しており、縦軸は、1枚目の
基板の膜厚を1としたときの、各基板表面に形成された
薄膜の膜厚(以下で規格化膜厚と称する。)を示してい
る。
However, in the above-described film forming method, when a thin film is formed on a plurality of substrates continuously in the same vacuum chamber, there has been a problem that the film forming speed is gradually reduced. The inventors of the present invention, in the predetermined processing time for each substrate, the plurality of substrate surface, when depositing the SiO 2 film are continuously in the same vacuum chamber, and the number of processed substrates, each An experiment was conducted to examine the relationship with the thickness of the SiO 2 film formed on the substrate. The experimental result is shown in the curve (Y) of FIG. In FIG. 7, the horizontal axis indicates the number of processed substrates, and the vertical axis indicates the thickness of the thin film formed on each substrate surface when the thickness of the first substrate is 1, (Referred to as an oxide film thickness).

【0015】曲線(Y)に示すように、基板の処理枚数が
増えるごとに成膜速度は低下し、12枚目の基板の規格
化膜厚は約0.85となり、1枚目の基板に成膜された
薄膜の膜厚の85%程度になってしまい、処理枚数が増
えるごとに、成膜速度が低下してしまうことが確かめら
れた。
As shown by the curve (Y), as the number of processed substrates increases, the film formation rate decreases, and the normalized film thickness of the twelfth substrate becomes about 0.85, It was confirmed that the film thickness was about 85% of the film thickness of the formed thin film, and that as the number of processed films increased, the film forming speed was reduced.

【0016】[0016]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたものであり、その
目的は、複数の基板に連続的に絶縁膜を成膜する際に、
処理枚数が増えても、成膜速度の低下が小さくなる技術
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages of the prior art, and its object is to form an insulating film continuously on a plurality of substrates.
It is an object of the present invention to provide a technique in which a decrease in the deposition rate is reduced even when the number of processed films increases.

【0017】[0017]

【課題を解決するための手段】本発明の発明者等は、従
来装置において成膜速度が低下する原因について調べ
た。従来装置では、シャワープレート116はハステロ
イ製の板と、その表面に形成された酸化アルミニウム薄
膜とから成り、他方、載置台118を構成する各板状部
材153、154は、図6(a)に示すように、カーボン
グラファイト板163、164と、それぞれの表面に溶
射法で形成された酸化アルミニウム膜173、174と
から成り、シャワープレート116と、板状部材15
3、154の材質は異なっている。TEOS/O2系プ
ラズマCVD法では、その成膜速度は真空槽内の温度に
よって大きく左右されるが、従来装置では、上述したよ
うにシャワープレートと載置台との材質が異なるため、
シャワープレートの温度変化率と載置台の温度変化率と
は異なる。このため、本発明の発明者等は、処理枚数が
増加して真空槽内の温度が変化する際に、真空槽内の温
度分布が不均一になることが、成膜速度低下の一因であ
るという推測をした。
Means for Solving the Problems The inventors of the present invention have investigated the cause of the decrease in the film forming speed in the conventional apparatus. In the conventional device, the shower plate 116 is made of a plate made of Hastelloy and an aluminum oxide thin film formed on the surface thereof. On the other hand, the plate members 153 and 154 forming the mounting table 118 are shown in FIG. As shown in the figure, the shower plate 116 and the plate-like member 15 are composed of carbon graphite plates 163 and 164 and aluminum oxide films 173 and 174 formed on their respective surfaces by thermal spraying.
3, 154 are different. In the TEOS / O 2 plasma CVD method, the film formation rate is greatly affected by the temperature in the vacuum chamber. However, in the conventional apparatus, since the materials of the shower plate and the mounting table are different as described above,
The temperature change rate of the shower plate is different from the temperature change rate of the mounting table. Therefore, the inventors of the present invention have found that when the number of processed wafers increases and the temperature inside the vacuum chamber changes, the temperature distribution in the vacuum chamber becomes non-uniform, I guessed it was.

【0018】かかる推測のもとに、載置台と、シャワー
プレートの材質を変えて実験を重ねた結果、載置台とシ
ャワープレートの両方を、表面に酸化アルミニウム膜が
成膜されたアルミニウムで構成することにより、基板の
処理枚数が増加しても、各基板ごとの成膜速度がほぼ一
定になることを見いだした。
Based on this assumption, experiments were repeated while changing the material of the mounting table and the shower plate. As a result, both the mounting table and the shower plate were made of aluminum having an aluminum oxide film formed on the surface. As a result, it has been found that even if the number of substrates processed increases, the film forming rate for each substrate becomes substantially constant.

【0019】本発明は、かかる知見に基づいて創作され
たものであり、請求項1記載の発明は、真空槽と、前記
真空槽内に設けられた電極と、前記真空槽内に設けら
れ、基板を載置可能な載置面を有する載置台とを有し、
前記電極は、電極本体と、前記電極本体の、前記載置面
側に設けられたシャワープレートと、該電極本体と、前
記シャワープレートとの間に形成され、内部にガスが導
入できるように構成されたガス貯留室とを備え、前記ガ
ス貯留室に導入された原料ガスを、前記シャワープレー
トに設けられた複数の孔から前記載置台に向けて吹き出
し、前記電極に電圧を印加して放電を生じさせ、該放電
によって前記基板と前記シャワープレートとの間に生じ
たプラズマで前記原料ガスを分解して気相成長させるこ
とにより、基板表面に薄膜を成膜するプラズマCVD装
置であって、前記載置台と前記シャワープレートとは、
アルミニウムで構成され、少なくとも、前記載置台の前
記載置面と、前記シャワープレートの前記載置面と対向
する表面には、酸化アルミニウム膜が成膜されたことを
特徴とする。請求項2記載の発明は、請求項1記載のプ
ラズマCVD装置であって、前記載置台は、その内部に
発熱体を有し、前記基板を載置した状態で、前記基板を
加熱することができるように構成されたことを特徴とす
る。請求項3記載の発明は、請求項2記載のプラズマC
VD装置であって、前記載置台は、前記酸化アルミニウ
ム膜が形成され、前記基板が配置される板状部材を有
し、前記発熱体は、前記板状部材底面下に配置されてい
る。以上のように構成することにより、基板の処理枚数
が増加しても、各基板における成膜速度は、ほとんど低
下せず、ほぼ一定になる。
The present invention has been made based on such knowledge, and the invention according to claim 1 has a vacuum chamber, an electrode provided in the vacuum chamber, and an electrode provided in the vacuum chamber, A mounting table having a mounting surface on which the substrate can be mounted,
The electrode is formed between the electrode main body, the shower plate provided on the placement surface side of the electrode main body, and the electrode main body, and the shower plate, so that gas can be introduced into the inside. A gas storage chamber is provided, and the source gas introduced into the gas storage chamber is blown out from the plurality of holes provided in the shower plate toward the mounting table, and a voltage is applied to the electrode to discharge. A plasma CVD apparatus for forming a thin film on a substrate surface by decomposing the source gas with plasma generated between the substrate and the shower plate by the discharge and performing vapor phase growth. The table and the shower plate,
An aluminum oxide film is formed on at least a surface of the mounting table, the surface being opposed to the mounting surface of the shower plate. According to a second aspect of the present invention, there is provided the plasma CVD apparatus according to the first aspect, wherein the mounting table has a heating element therein and heats the substrate while the substrate is mounted. It is characterized by being constituted so that it can be performed. The invention according to claim 3 provides the plasma C according to claim 2.
In the VD apparatus, the mounting table includes a plate-shaped member on which the aluminum oxide film is formed and the substrate is disposed, and the heating element is disposed below a bottom surface of the plate-shaped member. With the above-described configuration, even when the number of substrates processed increases, the film forming rate on each substrate hardly decreases and becomes substantially constant.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態について図面
を参照して説明する。大面積のガラス基板に、低温で膜
質の良好な絶縁膜を成膜する方法として、TEOS/O
2系プラズマCVD法がある。図1の符号10は、TE
OS/O2系プラズマCVD法を実施する本実施形態の
プラズマCVD装置を示している。このプラズマCVD
装置10は真空槽12を有している。真空槽12の外部
には、真空排気系23が設けられており、真空槽12内
を真空排気することができるように構成されている。
Embodiments of the present invention will be described with reference to the drawings. TEOS / O is used as a method for forming an insulating film with good film quality at a low temperature on a large-area glass substrate.
There is a two- system plasma CVD method. The symbol 10 in FIG.
1 shows a plasma CVD apparatus according to the present embodiment for performing an OS / O 2 plasma CVD method. This plasma CVD
The device 10 has a vacuum chamber 12. A vacuum evacuation system 23 is provided outside the vacuum chamber 12 so that the inside of the vacuum chamber 12 can be evacuated.

【0021】真空槽12の天井側には、真空槽12と電
気的に絶縁された状態で電極31が設けられている。他
方、真空槽12外には電圧源22が配置されており、真
空槽12を接地電位に置いた状態で電極31に高周波電
圧を印加できるように構成されている。
An electrode 31 is provided on the ceiling side of the vacuum chamber 12 while being electrically insulated from the vacuum chamber 12. On the other hand, a voltage source 22 is disposed outside the vacuum chamber 12 so that a high-frequency voltage can be applied to the electrode 31 while the vacuum chamber 12 is set at the ground potential.

【0022】真空槽12内部の底壁上には台座17が配
置され、その表面に載置台18が取り付けられている。
載置台18の表面は平坦にされており、その部分に基板
21を水平に載置できるように構成されている。その状
態の基板21表面は、電極31表面と並行に対向するよ
うになっている。
A pedestal 17 is arranged on a bottom wall inside the vacuum chamber 12, and a mounting table 18 is attached to a surface of the pedestal 17.
The surface of the mounting table 18 is flattened, and is configured so that the substrate 21 can be mounted horizontally on that portion. In this state, the surface of the substrate 21 faces in parallel with the surface of the electrode 31.

【0023】載置台18は、その断面図を図2(a)に示
すように、2枚の板状部材53、54と、線状のシース
ヒータ55とを有している。各板状部材53、54の表
面には、図2(b)に示すように所定パターンの溝65が
形成されている。
The mounting table 18 has two plate members 53 and 54 and a linear sheath heater 55, as shown in FIG. On the surface of each plate member 53, 54, a groove 65 having a predetermined pattern is formed as shown in FIG.

【0024】シースヒータ55は、溝65と同じ形状に
曲げられており、シースヒータ55を溝65に収めた状
態で、各板状部材53、54を互いに密着させると、シ
ースヒータ55が各板状部材53、54の両方の溝65
内に配置され、各板状部材53、54の両方と密着する
ように構成されている。
The sheath heater 55 is bent in the same shape as the groove 65. When the plate members 53 and 54 are brought into close contact with each other while the sheath heater 55 is housed in the groove 65, the sheath heater 55 is , 54 both grooves 65
And is configured to be in close contact with both of the plate members 53 and 54.

【0025】シースヒータ55は、図2(c)に示すよう
に、クロム16%,鉄7%を含むニッケル系合金(商標名
インコネル)からなるチューブ58を有している。チュ
ーブ58内には、線状の抵抗発熱体(NiCr)56が挿
通され、絶縁物(MgO)57が充填されており、絶縁物
57によってチューブ58と抵抗発熱体56が絶縁され
るように構成されている。
As shown in FIG. 2C, the sheath heater 55 has a tube 58 made of a nickel-based alloy (trade name: Inconel) containing 16% chromium and 7% iron. A linear resistance heating element (NiCr) 56 is inserted into the tube 58 and filled with an insulator (MgO) 57, and the tube 58 and the resistance heating element 56 are insulated by the insulation 57. Have been.

【0026】シースヒータ55は、真空槽12外に配置
された図示しない電源に接続されており、板状部材53
上に基板21を載置した状態で、その電源を起動してシ
ースヒータ55に通電すると、抵抗発熱体56が発熱
し、板状部材53、54全体が均一に加熱され、基板2
1を昇温させることができるように構成されている。
The sheath heater 55 is connected to a power source (not shown) arranged outside the vacuum chamber 12,
When the power is turned on and the sheath heater 55 is energized while the substrate 21 is placed on the substrate 21, the resistance heating element 56 generates heat, and the entire plate members 53 and 54 are uniformly heated.
1 can be heated.

【0027】電極31は、電極本体13と、シャワープ
レート16とを有している。電極本体13は、容器状に
成形されており、容器底面部分に、ガス導入パイプ19
の一端が接続されている。ガス導入パイプ19の他端に
は、図示しないガスボンベが接続されており、電極本体
13の容器状の空間中にガスを導入できるように構成さ
れている。
The electrode 31 has an electrode body 13 and a shower plate 16. The electrode body 13 is formed in a container shape, and a gas introduction pipe 19 is
Are connected at one end. A gas cylinder (not shown) is connected to the other end of the gas introduction pipe 19 so that gas can be introduced into the container-like space of the electrode body 13.

【0028】シャワープレート16は、電極本体13の
容器開口部を閉塞するように固定され、電極本体13と
シャワープレート16とで、空間が形成されている。シ
ャワープレート16には、多数の孔15が形成されてお
り、ガス導入パイプ19から空間内にガスが導入される
と、この空間はガス貯留室14となって、導入ガスが一
旦充満し、次いで、各孔15から真空槽12内へと吹き
出すことができるように構成されている。
The shower plate 16 is fixed so as to close the opening of the container of the electrode body 13, and a space is formed by the electrode body 13 and the shower plate 16. A large number of holes 15 are formed in the shower plate 16, and when gas is introduced into the space from the gas introduction pipe 19, this space becomes the gas storage chamber 14, which is once filled with the introduced gas, , And can be blown out from each hole 15 into the vacuum chamber 12.

【0029】このようなプラズマCVD装置10を用
い、TEOS/O2系プラズマCVD法で、複数のガラ
ス基板の表面にSiO2膜を形成する場合、先ず、真空排気
系23によって真空槽12内を真空排気するとともに、
シースヒータ55に通電して、載置台18を加熱して昇
温させる。真空槽12内の圧力が所定圧力になるととも
に、載置台18が所定温度まで昇温されたら、真空状態
を維持しながら、真空槽12内に1枚目の基板21を搬
入し、載置台18上に載置する。
When an SiO 2 film is formed on the surface of a plurality of glass substrates by the TEOS / O 2 plasma CVD method using such a plasma CVD apparatus 10, first, the inside of the vacuum chamber 12 is evacuated by the vacuum exhaust system 23. While evacuating,
By energizing the sheath heater 55, the mounting table 18 is heated and heated. When the pressure in the vacuum chamber 12 reaches a predetermined pressure and the mounting table 18 is heated to a predetermined temperature, the first substrate 21 is loaded into the vacuum chamber 12 while maintaining a vacuum state. Place on top.

【0030】基板21が所定温度まで昇温されたら、ガ
ス貯留室14内に反応性ガスを導入し、シャワープレー
ト16から基板21表面に対して吹き付ける。その状態
で電圧源22を起動し、電極31に高周波の交流電圧を
印加すると、放電が生じ、放電によってプラズマが発生
して原料ガスが分解され、基板21の表面で気相成長す
ることにより、基板21の表面にSiO2膜が成膜される。
When the temperature of the substrate 21 is raised to a predetermined temperature, a reactive gas is introduced into the gas storage chamber 14 and sprayed from the shower plate 16 onto the surface of the substrate 21. In this state, when the voltage source 22 is activated and a high-frequency AC voltage is applied to the electrode 31, a discharge is generated, and the discharge generates plasma to decompose the raw material gas and vapor-phase grow on the surface of the substrate 21. An SiO 2 film is formed on the surface of the substrate 21.

【0031】所定膜厚のSiO2膜が成膜されたら、高周波
電力の供給と原料ガスの導入を停止し、不図示の搬送系
で基板21を真空槽12外へと搬出する。引き続いて未
処理の基板を新たに真空槽12内へ搬入し、載置台18
上に載置させた後に、上述と同様の工程を経て、搬入し
た基板の表面に所定膜厚のSiO2膜を成膜する。以上の作
業を繰り返すことにより、複数の基板の表面にSiO2膜を
成膜することができる。
When the SiO 2 film having a predetermined thickness is formed, the supply of the high-frequency power and the introduction of the source gas are stopped, and the substrate 21 is carried out of the vacuum chamber 12 by a transfer system (not shown). Subsequently, the unprocessed substrate is newly carried into the vacuum chamber 12 and the
After being placed on the substrate, an SiO 2 film having a predetermined thickness is formed on the surface of the loaded substrate through the same steps as described above. By repeating the above operation, an SiO 2 film can be formed on the surfaces of a plurality of substrates.

【0032】本実施形態のプラズマCVD装置10で
は、上述した2枚の板状部材53、54は、その断面図
を図2(a)に示すように、それぞれがアルミニウム板6
3、64と、それぞれの表面に陽極酸化法で成膜された
酸化アルミニウム膜73、74から成る。
In the plasma CVD apparatus 10 of the present embodiment, the two plate members 53 and 54 described above are each made of an aluminum plate 6 as shown in the sectional view of FIG.
3 and 64, and aluminum oxide films 73 and 74 formed on the respective surfaces by anodic oxidation.

【0033】ここで陽極酸化法とは、アルミニウム板と
陰極材料とを電解質水溶液に浸漬した状態で、正電圧を
アルミニウム板に印加し、負電圧を陰極材料に印加する
ことにより、電解質水溶液を電気分解し、電気分解によ
って水溶液内部に酸素を発生させ、その酸素とアルミニ
ウムとの化学反応により、アルミニウム板表面に酸化ア
ルミニウムの薄膜を成膜する方法である。このようにし
て形成された酸化アルミニウム薄膜の表面には多数の孔
が形成されるので、高温の水蒸気に酸化アルミニウム薄
膜を曝して孔を埋め、酸化アルミニウム薄膜の耐食性を
高めている。
Here, the anodic oxidation method means that a positive voltage is applied to the aluminum plate and a negative voltage is applied to the cathode material while the aluminum plate and the cathode material are immersed in the aqueous electrolyte solution, so that the aqueous electrolyte solution is electrically This is a method of decomposing, generating oxygen in an aqueous solution by electrolysis, and forming a thin film of aluminum oxide on the surface of an aluminum plate by a chemical reaction between the oxygen and aluminum. Since a large number of holes are formed on the surface of the aluminum oxide thin film thus formed, the aluminum oxide thin film is exposed to high-temperature steam to fill the holes, thereby enhancing the corrosion resistance of the aluminum oxide thin film.

【0034】また、シャワープレート16は、その断面
図を図3に示すように、載置台18の板状部材53、5
4と同様、複数の孔15が形成されたアルミニウム板6
1と、その全表面に陽極酸化法で成膜された酸化アルミ
ニウム膜62とから成る。
The cross section of the shower plate 16 is, as shown in FIG.
4, an aluminum plate 6 having a plurality of holes 15 formed therein.
1 and an aluminum oxide film 62 formed on the entire surface by anodic oxidation.

【0035】このように、本実施形態のプラズマCVD
装置10では、真空槽12内に配置されたシャワープレ
ート16と載置台18を、ともに表面に酸化アルミニウ
ム膜が形成されたアルミニウムで構成している。
As described above, the plasma CVD of the present embodiment
In the apparatus 10, the shower plate 16 and the mounting table 18 arranged in the vacuum chamber 12 are both made of aluminum having an aluminum oxide film formed on the surface.

【0036】このように熱伝導率の良いアルミニウムを
母材に使うことで、基板の出し入れや成膜前後での温度
変化を少なく抑えているので、シャワープレート116
と載置台118の材質が異なっていた従来に比して、真
空槽内の温度分布が均一になる。このため、真空槽内の
温度分布によって成膜速度が大きく左右されるTEOS
/O2系プラズマCVD法で、複数の基板に連続して成
膜した場合であっても、各基板ごとの成膜速度がほぼ一
定になるようにすることができる。
By using aluminum having a good thermal conductivity as the base material as described above, the temperature change before and after the substrate is removed and before and after the film formation is suppressed to a small extent.
The temperature distribution in the vacuum chamber becomes more uniform than in the related art in which the material of the mounting table 118 is different. For this reason, TEOS whose film formation rate is greatly affected by the temperature distribution in the vacuum chamber
Even when a film is continuously formed on a plurality of substrates by the / O 2 plasma CVD method, the film forming speed for each substrate can be made substantially constant.

【0037】本発明の発明者等は、本実施形態のプラズ
マCVD装置10を用い、各基板ごとの処理時間を一定
にして、複数の基板表面に、同一真空槽内で連続してSi
O2膜を成膜した場合に、基板の処理枚数と、各基板に成
膜されたSiO2膜の膜厚との関係を調べる実験を行った。
図4の曲線(X)に、その実験結果を示す。図4で横軸
は、基板の処理枚数を示しており、縦軸は、1枚目の基
板の膜厚を1としたときの、各基板表面に形成された薄
膜の膜厚(以下で規格化膜厚と称する。)を示している。
The inventors of the present invention use the plasma CVD apparatus 10 of the present embodiment, while keeping the processing time for each substrate constant, and continuously depositing Si on the surfaces of a plurality of substrates in the same vacuum chamber.
When an O 2 film was formed, an experiment was conducted to examine the relationship between the number of processed substrates and the thickness of the SiO 2 film formed on each substrate.
The experimental result is shown in a curve (X) of FIG. In FIG. 4, the horizontal axis indicates the number of processed substrates, and the vertical axis indicates the thickness of the thin film formed on each substrate surface when the thickness of the first substrate is 1, (Referred to as an oxide film thickness).

【0038】曲線(X)に示すように、12枚目の基板の
規格化膜厚は約0.98で、1枚目の基板に成膜された
薄膜の膜厚の98%程度であり、本実施形態のプラズマ
CVD装置10を用いた場合、基板の処理枚数が増えて
も、成膜速度はほとんど低下することがないことが確認
された。
As shown by the curve (X), the normalized thickness of the twelfth substrate is about 0.98, which is about 98% of the thickness of the thin film formed on the first substrate. When the plasma CVD apparatus 10 of the present embodiment was used, it was confirmed that the film formation rate hardly decreased even when the number of substrates processed increased.

【0039】なお、本実施形態では、陽極酸化法で酸化
アルミニウム膜を形成しているが、本発明はこれに限ら
ず、例えば溶射法で成膜しても良い。また、本実施形態
では、載置台18を構成する板状部材53、54の全面
に酸化アルミニウム膜73、74が成膜され、シャワー
プレート16の全表面に酸化アルミニウム膜62が成膜
されているが、本発明はこれに限らず、載置台18につ
いては、少なくとも基板が載置される面に酸化アルミニ
ウム膜が成膜されていればよく、また、シャワープレー
ト16については、少なくとも基板と対向する面に酸化
アルミニウム膜が成膜されていればよい。
In this embodiment, the aluminum oxide film is formed by the anodic oxidation method. However, the present invention is not limited to this, and the aluminum oxide film may be formed by, for example, a thermal spraying method. In the present embodiment, the aluminum oxide films 73 and 74 are formed on the entire surface of the plate members 53 and 54 constituting the mounting table 18, and the aluminum oxide film 62 is formed on the entire surface of the shower plate 16. However, the present invention is not limited to this. The mounting table 18 only needs to have an aluminum oxide film formed on at least the surface on which the substrate is mounted, and the shower plate 16 faces at least the substrate. It is sufficient that an aluminum oxide film is formed on the surface.

【0040】さらに、本実施形態では、載置台18が二
枚の板状部材53、54を有しているものとしている
が、本発明はこれに限らず、例えば1枚の板状部材中
に、シースヒータが埋め込まれているような構成として
もよい。
Further, in the present embodiment, the mounting table 18 has the two plate members 53 and 54, but the present invention is not limited to this. Alternatively, a configuration may be adopted in which a sheath heater is embedded.

【0041】また、本実施形態では、載置台18の内部
にシースヒータ55が設けられており、基板が載置され
た状態で基板を昇温させることができるように構成され
ているが、本発明の載置台はこれに限られるものではな
く、基板を昇温させるように構成されていなくともよ
い。
In this embodiment, the sheath heater 55 is provided inside the mounting table 18 so that the temperature of the substrate can be raised while the substrate is mounted. Is not limited to this, and may not be configured to heat the substrate.

【0042】[0042]

【発明の効果】複数の基板に連続的に成膜した場合で
も、成膜速度をほぼ一定にすることができる。
As described above, even when a film is continuously formed on a plurality of substrates, the film forming speed can be made substantially constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態のプラズマCVD装置を説
明する断面図
FIG. 1 is a cross-sectional view illustrating a plasma CVD apparatus according to an embodiment of the present invention.

【図2】(a):本発明の一実施形態の載置台の構成を説
明する断面図 (b):本発明の一実施形態の板状部材を説明する平面図 (c):本発明の一実施形態のシースヒータを説明する断
面図
2A is a cross-sectional view illustrating a configuration of a mounting table according to an embodiment of the present invention. FIG. 2B is a plan view illustrating a plate member according to an embodiment of the present invention. Sectional drawing explaining the sheath heater of one Embodiment.

【図3】本発明の一実施形態のシャワープレートを説明
する断面図
FIG. 3 is a cross-sectional view illustrating a shower plate according to an embodiment of the present invention.

【図4】本発明の一実施形態のプラズマCVD装置の作
用効果を説明するグラフ
FIG. 4 is a graph illustrating the operation and effect of the plasma CVD apparatus according to one embodiment of the present invention.

【図5】従来のプラズマCVD装置を説明する断面図FIG. 5 is a cross-sectional view illustrating a conventional plasma CVD apparatus.

【図6】(a):従来の載置台の構成を説明する断面図 (b):従来の板状部材を説明する平面図FIG. 6A is a cross-sectional view illustrating a configuration of a conventional mounting table. FIG. 6B is a plan view illustrating a conventional plate-like member.

【図7】従来装置の問題点を説明するグラフFIG. 7 is a graph illustrating a problem of the conventional device.

【符号の説明】[Explanation of symbols]

10……プラズマCVD装置 12……真空槽 1
3……電極本体 14……ガス貯留室 15……孔
16……シャワープレート 18……載置台
31……電極 53、54……板状部材 61……
アルミニウム板62、63、64……酸化アルミニウム
10 Plasma CVD apparatus 12 Vacuum chamber 1
3 ... electrode body 14 ... gas storage chamber 15 ... hole 16 ... shower plate 18 ... mounting table
31 ... electrodes 53, 54 ... plate-like members 61 ...
Aluminum plates 62, 63, 64 ... aluminum oxide film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 直人 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 石川 道夫 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 清水 康男 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 4K030 AA06 AA14 BA44 CA06 CA17 EA05 FA01 KA23 KA30 LA18 5F045 AA08 AB32 AC07 AC11 BB01 EF05 EF11 EH04 EH05 EH08 EK07 EK08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoto Tsuji 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Nippon Makoto Technology Co., Ltd. (72) Inventor Yasuo Shimizu 2500 Hagizono, Chigasaki-shi, Kanagawa F-term (reference) 4K030 AA06 AA14 BA44 CA06 CA17 EA05 FA01 KA23 KA30 LA18 5F045 AA08 AB32 AC07 AC11 BB01 EF05 EF11 EH04 EH05 EH08 EK07 EK08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空槽と、 前記真空槽内に設けられた電極と、 前記真空槽内に設けられ、基板を載置可能な載置面を有
する載置台とを有し、 前記電極は、電極本体と、前記電極本体の、前記載置面
側に設けられたシャワープレートと、該電極本体と、前
記シャワープレートとの間に形成され、内部にガスが導
入できるように構成されたガス貯留室とを備え、 前記ガス貯留室に導入された原料ガスを、前記シャワー
プレートに設けられた複数の孔から前記載置台に向けて
吹き出し、前記電極に電圧を印加して放電を生じさせ、
該放電によって前記基板と前記シャワープレートとの間
に生じたプラズマで前記原料ガスを分解して気相成長さ
せることにより、基板表面に薄膜を成膜するプラズマC
VD装置であって、 前記載置台と前記シャワープレートとは、アルミニウム
で構成され、 少なくとも、前記載置台の前記載置面と、前記シャワー
プレートの前記載置面と対向する表面には、酸化アルミ
ニウム膜が成膜されたことを特徴とするプラズマCVD
装置。
1. A vacuum chamber; an electrode provided in the vacuum chamber; and a mounting table provided in the vacuum chamber, the mounting table having a mounting surface on which a substrate can be mounted. An electrode body, a shower plate provided on the placement surface side of the electrode body, and a gas storage formed between the electrode body and the shower plate, and configured to allow a gas to be introduced therein. A raw material gas introduced into the gas storage chamber is blown out from the plurality of holes provided in the shower plate toward the mounting table, and a voltage is applied to the electrode to cause discharge,
Plasma C for forming a thin film on the surface of the substrate by decomposing the source gas with plasma generated between the substrate and the shower plate by the discharge and performing vapor phase growth.
A VD apparatus, wherein the mounting table and the shower plate are made of aluminum, and at least a surface of the mounting table and a surface facing the mounting surface of the shower plate include aluminum oxide. Plasma CVD characterized by forming a film
apparatus.
【請求項2】前記載置台は、その内部に発熱体を有し、
前記基板を載置した状態で、前記基板を加熱することが
できるように構成されたことを特徴とする請求項1記載
のプラズマCVD装置。
2. The mounting table according to claim 1, further comprising a heating element therein.
2. The plasma CVD apparatus according to claim 1, wherein the substrate can be heated while the substrate is mounted.
【請求項3】前記載置台は、前記酸化アルミニウム膜が
形成され、前記基板が配置される板状部材を有し、 前記発熱体は、前記板状部材底面下に配置された請求項
2記載のプラズマCVD装置。
3. The mounting table according to claim 2, further comprising a plate-shaped member on which the aluminum oxide film is formed and on which the substrate is disposed, wherein the heating element is disposed below a bottom surface of the plate-shaped member. Plasma CVD apparatus.
JP2000000039A 2000-01-04 2000-01-04 Plasma CVD equipment Expired - Fee Related JP4353601B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000000039A JP4353601B2 (en) 2000-01-04 2000-01-04 Plasma CVD equipment
KR1020000081734A KR20010070354A (en) 2000-01-04 2000-12-26 Plasma cvd device
TW090100136A TW508371B (en) 2000-01-04 2001-01-03 Plasma CVD device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000000039A JP4353601B2 (en) 2000-01-04 2000-01-04 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JP2001192836A true JP2001192836A (en) 2001-07-17
JP4353601B2 JP4353601B2 (en) 2009-10-28

Family

ID=18529459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000000039A Expired - Fee Related JP4353601B2 (en) 2000-01-04 2000-01-04 Plasma CVD equipment

Country Status (3)

Country Link
JP (1) JP4353601B2 (en)
KR (1) KR20010070354A (en)
TW (1) TW508371B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436047B1 (en) * 2001-11-29 2004-06-12 주식회사 하이닉스반도체 Apparatus for atomic layer deposition with source supply and method for atomic layer deposition by using the same
KR100478744B1 (en) * 2002-05-02 2005-03-28 주성엔지니어링(주) suscetpor and manufacturing method the same
JP2007231420A (en) * 2006-02-06 2007-09-13 Hamilton Sundstrand Corp Component having improved resistance to crack and coating process therefor
JP2011139068A (en) * 2001-08-23 2011-07-14 Applied Materials Inc Process for controlling thin film uniformity, and products produced thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272350B (en) * 2009-01-14 2014-12-24 株式会社爱发科 Plasma cvd apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139068A (en) * 2001-08-23 2011-07-14 Applied Materials Inc Process for controlling thin film uniformity, and products produced thereby
JP2014209641A (en) * 2001-08-23 2014-11-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method of controlling thin film uniformity and product produced by that method
KR100436047B1 (en) * 2001-11-29 2004-06-12 주식회사 하이닉스반도체 Apparatus for atomic layer deposition with source supply and method for atomic layer deposition by using the same
KR100478744B1 (en) * 2002-05-02 2005-03-28 주성엔지니어링(주) suscetpor and manufacturing method the same
JP2007231420A (en) * 2006-02-06 2007-09-13 Hamilton Sundstrand Corp Component having improved resistance to crack and coating process therefor
US8182931B2 (en) 2006-02-06 2012-05-22 Hamilton Sundstrand Corporation Coated fatigue critical components

Also Published As

Publication number Publication date
TW508371B (en) 2002-11-01
JP4353601B2 (en) 2009-10-28
KR20010070354A (en) 2001-07-25

Similar Documents

Publication Publication Date Title
KR100597880B1 (en) Method and apparatus for enhanced chamber cleaning
TWI281706B (en) Improved deposition repeatability of PECVD films
TWI583823B (en) Vertical heat treatment apparatus, method of operating vertical heat treatment apparatus, and storage medium
KR20060100302A (en) Anodized substrate support
TW201624589A (en) Methods and systems to enhance process uniformity
JPH09111455A (en) Formation of thin film and device therefor
JP2011049570A (en) Substrate processing apparatus, and semiconductor device manufacturing method
JP4185483B2 (en) Plasma processing equipment
JP3970815B2 (en) Semiconductor device manufacturing equipment
JP2001267297A (en) Plasma treatment system
JP2001192836A (en) Plasma cvd system
JP5105898B2 (en) Silicon thin film deposition method
KR102224586B1 (en) Coating material for processing chambers
JP2001135626A (en) Plasma cvd device, and plasma cvd film formation method
JP4456218B2 (en) Plasma processing equipment
JP2001298020A (en) Ceramic heater and film forming/processing device
JP4782316B2 (en) Processing method and plasma apparatus
JP4850762B2 (en) Deposition method
JP4890313B2 (en) Plasma CVD equipment
JP4481921B2 (en) Plasma process method and plasma process apparatus
JP2010225751A (en) Device for growing atomic layer
JPH1088372A (en) Surface treating device and surface treating method
JP4406172B2 (en) Substrate processing method
JP2008010579A (en) Semiconductor device manufacturing apparatus
JP2010219344A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090629

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Ref document number: 4353601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees