JP2001189227A - Composite nickel conductor for forming electrode and layered ceramic capacitor - Google Patents

Composite nickel conductor for forming electrode and layered ceramic capacitor

Info

Publication number
JP2001189227A
JP2001189227A JP37220699A JP37220699A JP2001189227A JP 2001189227 A JP2001189227 A JP 2001189227A JP 37220699 A JP37220699 A JP 37220699A JP 37220699 A JP37220699 A JP 37220699A JP 2001189227 A JP2001189227 A JP 2001189227A
Authority
JP
Japan
Prior art keywords
nickel
zirconate
internal electrode
composite conductor
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37220699A
Other languages
Japanese (ja)
Inventor
Akira Sasaki
昭 佐々木
Tetsuji Maruno
哲司 丸野
Koji Tanaka
公二 田中
Kiyoshi Ito
伊藤  潔
Osamu Otani
修 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP37220699A priority Critical patent/JP2001189227A/en
Publication of JP2001189227A publication Critical patent/JP2001189227A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make an internal electrode thin, break of the electrode caused by nickel is excluded by preventing interlayer exfoliation be caused contraction difference in sintering of a dielectric layer and the internal electrode of a layered ceramic capacitor, whose main component is (CaSr/TiZr)O3-based non- reducing dielectric porcelain material, and generation of structural defects which are caused by oxidation of nickel. SOLUTION: Nickel of 99.5-80 wt.% and zirconate of 0.5-20 wt.% are unified in batch in granule, thereby constituting a nickel composite conductor for forming an electrode, of which conductor the internal electrode of a layered ceramic capacitor is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、(CaSr/Ti
Zr)O系の非還元性誘電体磁器材料を主成分とする
積層セラミックコンデンサの内部電極を形成するのに用
いられるニッケル複合導体及びそのニッケル複合導体を
用いて内部電極を形成する積層セラミックコンデンサに
関するものである。
TECHNICAL FIELD The present invention relates to (CaSr / Ti
Zr) Nickel composite conductor used for forming internal electrodes of multilayer ceramic capacitor mainly composed of O 3 -based non-reducing dielectric ceramic material, and multilayer ceramic capacitor forming internal electrodes using the nickel composite conductor It is about.

【0002】[0002]

【従来の技術】ニッケル(Ni)電極はパラジュウム(P
d)電極に比べて酸化膨張が少なく、亀裂等による構造
欠陥に対して有利であるところから、既に、パラジュウ
ムに代えて、(CaSr/TiZr)O系の非還元性誘
電体磁器材料を主成分とする積層セラミックコンデンサ
の内部電極をニッケルにより形成することが提案されて
いる(特開平10−335169号)。
2. Description of the Related Art A nickel (Ni) electrode is a palladium (P) electrode.
d) Since non-reducing dielectric porcelain material of (CaSr / TiZr) O 3 -based is already used instead of palladium because it has less oxidative expansion than electrodes and is advantageous for structural defects such as cracks. It has been proposed that an internal electrode of a multilayer ceramic capacitor as a component is formed of nickel (JP-A-10-335169).

【0003】その積層セラミックコンデンサにおいて
は、誘電体層と内部電極との焼成温度による収縮率の関
係からすると、誘電体層が1000℃以上で収縮を開始
するのに対し、内部電極が500℃の低温で収縮を開始
するため、誘電体層と内部電極との収縮差で相互の層間
剥離が生ずることによる構造欠陥を発生し易い。また、
高温領域における内部電極の焼結に伴って、ニッケル粒
子が球状化し、内部電極の途切れ現象が生ずることから
通電不良や直流破壊電圧の低下を誘発し易い。
In the multilayer ceramic capacitor, the dielectric layer starts shrinking at a temperature of 1000 ° C. or more, while the internal electrode shrinks at a temperature of 500 ° C. in view of the shrinkage rate depending on the firing temperature of the dielectric layer and the internal electrode. Since the shrinkage starts at a low temperature, a structural defect due to mutual delamination due to a difference in shrinkage between the dielectric layer and the internal electrode is likely to occur. Also,
Nickel particles are spheroidized with the sintering of the internal electrode in a high-temperature region, and the internal electrode is interrupted, so that poor current conduction and a decrease in DC breakdown voltage are easily induced.

【0004】それを防止するため、従来、誘電体層と同
組成の粉末を共材としてニッケル粉末と共に樹脂バイン
ダーに混合した電極ペーストにより内部電極を形成し、
誘電体層との収縮差をコントロールすることが行われて
いる。然し、これによってもニッケル粒子の焼結による
球状化を完全に防止することは難しく、内部電極を1.
0μm以下に形成する内部電極の薄膜化に対して課題が
残る。
In order to prevent this, conventionally, an internal electrode is formed by an electrode paste mixed with a resin binder together with nickel powder using a powder having the same composition as the dielectric layer as a common material,
Control of the contraction difference with the dielectric layer has been performed. However, this also makes it difficult to completely prevent the spheroidization of the nickel particles by sintering.
Problems remain with regard to thinning of the internal electrode formed to a thickness of 0 μm or less.

【0005】また、ニッケルの酸化速度はニッケルの比
表面積に依存すると言われており、特に、微粉末のニッ
ケル粉末から内部電極を形成するときにはニッケル粉末
の酸化による構造欠陥が多発することから量産化は難し
い。このニッケルの酸化速度は誘電体層と同組成の粉末
を共材として混合しても、効果は見られない。
Further, it is said that the oxidation rate of nickel depends on the specific surface area of nickel. In particular, when an internal electrode is formed from a fine nickel powder, structural defects due to oxidation of the nickel powder occur frequently, so that mass production is required. Is difficult. This nickel oxidation rate has no effect even if a powder having the same composition as the dielectric layer is mixed as a common material.

【0006】[0006]

【発明が解決しようとする課題】本発明は、(CaSr
/TiZr)O系の非還元性誘電体磁器材料を主成分
とする積層セラミックコンデンサの誘電体層と内部電極
との焼結に伴う収縮差による相互の層間剥離やニッケル
の酸化による構造欠陥が発生するのを防げると共に、ニ
ッケルによる内部電極の途切れ現象が生ずるのを防げて
内部電極の薄膜化に対応可能な電極形成用のニッケル複
合導体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to (CaSr
/ TiZr) O 3 -based non-reducing dielectric ceramic material has a multilayer ceramic capacitor mainly composed of a dielectric layer and internal electrodes, which are mutually delaminated due to shrinkage due to sintering and structural defects caused by oxidation of nickel. It is an object of the present invention to provide a nickel composite conductor for forming an electrode, which can prevent the occurrence of the internal electrode and prevent the internal electrode from being interrupted by nickel and can cope with the thinning of the internal electrode.

【0007】また、本発明は(CaSr/TiZr)O
系の非還元性誘電体磁器材料を主成分とする積層セラミ
ックコンデンサの誘電体層と内部電極との焼結に伴う収
縮差による相互の層間剥離やニッケルの酸化による構造
欠陥の発生を防ぎ、ニッケルによる内部電極の途切れ現
象が生ずるのを防いで、薄膜状の内部電極で高容量なも
のに構成可能な積層セラミックコンデンサを提供するこ
とを目的とする。
Further, the present invention relates to (CaSr / TiZr) O 3
To prevent delamination due to shrinkage due to sintering between dielectric layers and internal electrodes of multilayer ceramic capacitors containing non-reducible dielectric ceramic material as a main component and the occurrence of structural defects due to oxidation of nickel. Accordingly, it is an object of the present invention to provide a multilayer ceramic capacitor which can prevent the internal electrode from being interrupted due to the above, and can be configured to have a high capacity with a thin-film internal electrode.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に係る
電極形成用ニッケル複合導体においては、(CaSr/
TiZr)O系の非還元性誘電体磁器材料を主成分と
する積層セラミックコンデンサの内部電極を形成するも
のとして、99.5〜80wt%のニッケルと0.5〜
20wt%のジルコン酸塩とを粒状に一体化することに
より構成されている。
According to the nickel composite conductor for forming an electrode according to the first aspect of the present invention, (CaSr /
The non-reducing dielectric ceramic material of TiZr) O 3 system as forming an internal electrode of a multilayer ceramic capacitor as a main component, 0.5 and 99.5~80Wt% nickel
It is constituted by integrating 20 wt% of zirconate into particles.

【0009】本発明の請求項2に係る電極形成用ニッケ
ル複合導体においては、ジルコン酸塩をニッケル粒子の
表面に被着させてニッケルとジルコン酸塩とを粒状に一
体化することにより構成されている。
According to a second aspect of the present invention, there is provided a nickel composite conductor for forming an electrode, wherein zirconate is applied to the surface of nickel particles to integrate nickel and zirconate into particles. I have.

【0010】本発明の請求項3に係る電極形成用ニッケ
ル複合導体においては、ニッケルとジルコン酸塩とを混
在させて粒状に一体化することにより構成されている。
The nickel composite conductor for forming an electrode according to the third aspect of the present invention is formed by mixing nickel and zirconate and integrating them in a granular form.

【0011】本発明の請求項4に係る電極形成用ニッケ
ル複合導体においては、ジルコン酸カルシウム,ジルコ
ン酸ストロンチウムの一種または共に含むジルコン酸塩
とニッケルとを粒状に一体化することにより構成されて
いる。
According to a fourth aspect of the present invention, there is provided a nickel composite conductor for forming an electrode, wherein nickel and a zirconate salt containing one or both of calcium zirconate and strontium zirconate are integrated in a granular form. .

【0012】本発明の請求項5に係る積層セラミックコ
ンデンサにおいては、99.5〜80wt%のニッケル
と0.5〜20wt%のジルコン酸塩とを粒状に一体化
したニッケル複合導体により内部電極を形成することに
より構成されている。
In the multilayer ceramic capacitor according to a fifth aspect of the present invention, the internal electrodes are made of a nickel composite conductor in which 99.5 to 80 wt% of nickel and 0.5 to 20 wt% of zirconate are integrated in a granular form. It is constituted by forming.

【0013】本発明の請求項6に係る積層セラミックコ
ンデンサにおいては、(CaSr/TiZr)O系の非
還元性誘電体磁器材料を主成分とするもので、ジルコン
酸塩をニッケル粒子の表面に被着させてニッケルとジル
コン酸塩とを粒状に一体化したニッケル複合導体で内部
電極を形成することにより構成されている。
According to a sixth aspect of the present invention, there is provided a multilayer ceramic capacitor mainly comprising a (CaSr / TiZr) O 3 -based non-reducing dielectric ceramic material, wherein zirconate is applied to the surface of nickel particles. It is constituted by forming an internal electrode with a nickel composite conductor in which nickel and zirconate are integrated in a granular form by being adhered.

【0014】本発明の請求項7に係る積層セラミックコ
ンデンサにおいては、ニッケルとジルコン酸塩とを混在
させて粒状に一体化したニッケル複合導体により内部電
極を形成することにより構成されている。
The multilayer ceramic capacitor according to a seventh aspect of the present invention is configured such that the internal electrodes are formed by a nickel composite conductor in which nickel and zirconate are mixed and integrated in a granular manner.

【0015】本発明の請求項8に係る積層セラミックコ
ンデンサにおいては、ジルコン酸カルシウム,ジルコン
酸ストロンチウムの一種または共に含むジルコン酸塩と
ニッケルとを粒状に一体化したニッケル複合導体により
内部電極を形成することにより構成されている。
In the multilayer ceramic capacitor according to an eighth aspect of the present invention, the internal electrodes are formed by a nickel composite conductor in which nickel and zirconate containing one or both of calcium zirconate and strontium zirconate and nickel are integrated. It is constituted by.

【0016】[0016]

【発明の実施の形態】以下、添付図面を参照して説明す
ると、図示実施の形態は(CaSr/TiZr)O系の
非還元性誘電体磁器材料を主成分とする積層セラミック
コンデンサで、ジルコン酸カルシウムを主材とする誘電
体層とニッケル,ジルコン酸塩の複合導体を主材とする
内部電極とを交互に複数積層させて加圧,焼成したコン
デンサ素子を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the accompanying drawings, the illustrated embodiment is a multilayer ceramic capacitor mainly composed of a (CaSr / TiZr) O 3 -based non-reducing dielectric ceramic material. This shows a capacitor element in which a plurality of dielectric layers mainly composed of calcium acid and internal electrodes mainly composed of a composite conductor of nickel and zirconate are laminated and pressed and fired.

【0017】その内部電極は、99.5〜80wt%の
ニッケルと0.5〜20wt%のジルコン酸カルシウム
(CaZrO)とを粒状に一体化させてニッケル複合導
体とし、このニッケル複合導体を樹脂バインダーに混合
した内部電極ペーストにより形成されている。そのニッ
ケル複合導体では、誘電体層と内部電極との焼結に伴う
収縮差を少なくし、相互の層間剥離やニッケルの酸化に
よる構造欠陥が発生するのを防げると共に、ニッケルに
よる内部電極の途切れ現象が生ずるのを防げて内部電極
の薄膜化に対応できる。
The internal electrodes are 99.5-80 wt% nickel and 0.5-20 wt% calcium zirconate.
(CaZrO 3 ) and a nickel composite conductor by integrating them in a granular form, and formed by an internal electrode paste in which this nickel composite conductor is mixed with a resin binder. The nickel composite conductor reduces the difference in shrinkage due to sintering between the dielectric layer and the internal electrode, prevents the occurrence of structural delamination due to mutual delamination and oxidation of nickel, and the interruption of the internal electrode due to nickel. Can be prevented and the internal electrode can be made thinner.

【0018】茲で、ジルコン酸カルシウムが0.5wt
%以下であると、誘電体層と内部電極との焼結に伴う収
縮差を少なくし、ニッケルの粒状化に対する効果が薄
く、一方、ジルコン酸カルシウムが20wt%以上にな
ると、静電容量が低下してしまうところから、その割合
としては99.5〜80wt%のニッケルと0.5〜2
0wt%のジルコン酸カルシウムが好ましい。
Here, calcium zirconate is 0.5 wt.
% Or less, the difference in shrinkage due to sintering between the dielectric layer and the internal electrode is reduced, and the effect on nickel granulation is small. On the other hand, when the content of calcium zirconate is 20 wt% or more, the capacitance is reduced. From 99.5% to 80% by weight of nickel and 0.5% to 2%.
0 wt% calcium zirconate is preferred.

【0019】そのニッケル複合導体は、粒径5〜10μ
m程度のニッケル粉末と粒径0.5以下のジルコン酸カ
ルシウム粉末を所定の比率で量計し、これらを乾式混合
法によりボールミルで均一に混合した後、プラズマにて
溶融,凝固させて粒状にすることにより一体化できる。
そのプラズマ処理後の粉末は凝集が強いため、この粒子
の凝集を機械的に解いて樹脂バインダーと混合するとよ
い。
The nickel composite conductor has a particle size of 5 to 10 μm.
m and a zirconate powder having a particle size of 0.5 or less are weighed at a predetermined ratio, uniformly mixed by a ball mill by a dry mixing method, and then melted and solidified by plasma to form granules. Can be integrated.
Since the powder after the plasma treatment has strong agglomeration, it is preferable to mechanically dissolve the agglomeration of the particles and mix the particles with the resin binder.

【0020】そのプラズマ処理にては、図1で示すよう
にジルコン酸カルシウムをニッケル粒子に被着するコー
テイングタイプの粒子とし、または、図2で示すように
ジルコン酸カルシウムをニッケル粒子と混在させるドー
プタイプの粒子として作製できる。このいずれのタイプ
のものでも、誘電体層と内部電極との焼結に伴う収縮差
を少なくすることによる同等の効果が得られ、粒子径と
しては0.3μm以下のものが好ましい。
In the plasma treatment, calcium zirconate is coated on nickel particles as shown in FIG. 1 to form coating type particles, or calcium zirconate is mixed with nickel particles as shown in FIG. It can be made as a type of particle. In any of these types, the same effect can be obtained by reducing the difference in shrinkage due to sintering between the dielectric layer and the internal electrode, and the particle size is preferably 0.3 μm or less.

【0021】そのジルコン酸塩としてはジルコン酸カル
シウムに代えて、ジルコン酸ストロンチウム(SrZr
)を、または、いずれも含むものを用いることがで
きる。このいずれのジルコン酸塩でも、ジルコン酸カル
シウムのみのものと同等の効果が得られる。
As the zirconate, instead of calcium zirconate, strontium zirconate (SrZr
O 3 ) or those containing any of O 3 ) can be used. With any of these zirconates, an effect equivalent to that of calcium zirconate alone can be obtained.

【0022】そのニッケル複合導体による内部電極の有
効性を確認するべく、0.5wt%,2.0wt%,
5.0wt%,10.0wt%,20.0wt%のジル
コン酸カルシウムをニッケル粒子に一体化したニッケル
複合導体を含む内部電極ペーストを作製した(実施例1
〜5)。
In order to confirm the effectiveness of the internal electrode using the nickel composite conductor, 0.5 wt%, 2.0 wt%,
An internal electrode paste including a nickel composite conductor in which 5.0 wt%, 10.0 wt%, and 20.0 wt% of calcium zirconate were integrated with nickel particles was prepared (Example 1).
~ 5).

【0023】それと共に、ニッケル粉末のみの内部電極
ペースト(比較例1)、30.0wt%のジルコン酸カ
ルシウムをニッケル粒子に一体化したニッケル複合導体
を含む内部電極ペースト(比較例2)を作製した。ま
た、ニッケル粉末を90wt%,ジルコン酸カルシウム
を10.0wt%混合した内部電極ペースト(従来例)
を作製した。
At the same time, an internal electrode paste containing only nickel powder (Comparative Example 1) and an internal electrode paste containing a nickel composite conductor in which 30.0 wt% of calcium zirconate was integrated with nickel particles (Comparative Example 2) were prepared. . Internal electrode paste containing 90 wt% of nickel powder and 10.0 wt% of calcium zirconate (conventional example)
Was prepared.

【0024】その各試料について、大気中の測定雰囲気
下で熱分析装置により酸化特性を測定した。この酸化特
性としては各試料を常温より700℃まで徐々に加温
し、その時のニッケルの酸化カーブから700℃での酸
化量を求めると共に、常温より700℃までの酸加速度
を求めた。
The oxidation characteristics of each sample were measured by a thermal analyzer under a measurement atmosphere in the atmosphere. As the oxidation characteristics, each sample was gradually heated from room temperature to 700 ° C., and the oxidation amount at 700 ° C. was obtained from the oxidation curve of nickel at that time, and the acid acceleration from room temperature to 700 ° C. was obtained.

【0025】それと共に、上述した各内部電極ペースト
を11.0μm厚みの誘電体シートに印刷し、260層
の誘電体シートを内部電極と交互に積層させて積層誘電
体を得、この各積層誘電体をN/Hの雰囲気下で1
300℃の温度により焼成することにより収縮率を測定
した。その各試料の10例分から各検査項目の平均値を
求めたところ、次の表1で示す通りであった。
At the same time, each of the above-mentioned internal electrode pastes is printed on a dielectric sheet having a thickness of 11.0 μm, and a 260-layer dielectric sheet is alternately laminated with the internal electrodes to obtain a laminated dielectric. The body under N 2 / H 2 atmosphere
The shrinkage was measured by firing at a temperature of 300 ° C. When the average value of each test item was calculated from 10 samples of each sample, it was as shown in Table 1 below.

【0026】[0026]

【表1】 [Table 1]

【0027】その表1で明らかなように、ジルコン酸カ
ルシウムの量が増えるに従い、ニッケルが酸化しずら
く、酸加速度も小さいことが判る。
As is apparent from Table 1, as the amount of calcium zirconate increases, nickel is less liable to be oxidized, and the acid acceleration is smaller.

【0028】また、従来例,比較例1並びに実施例2の
各積層誘電体を800℃,1000℃,1300℃の各
焼成温度時に顕微鏡写真で撮影した。その顕微鏡写真を
図3〜図5で示すように、図3の従来例並びに図4の比
較例1に係る積層誘電体においてはニッケル粒子の成長
が800℃で開始しているのに対し、図5の実施例2に
係る積層誘電体においてはニッケル粒子の成長が800
℃では開始しないで焼結が遅れている状態が判る。
Further, each laminated dielectric of the conventional example, the comparative example 1 and the example 2 was photographed by a micrograph at each firing temperature of 800 ° C., 1000 ° C. and 1300 ° C. As shown in FIGS. 3 to 5, the micrographs show that the growth of nickel particles started at 800 ° C. in the conventional dielectric of FIG. 3 and the laminated dielectric according to Comparative Example 1 of FIG. In the laminated dielectric according to Example 5 of Example 5, the growth of nickel particles was 800.
It can be seen that the sintering is delayed without starting at ℃.

【0029】次に、上述した如く作製した各積層誘電体
について、構造欠陥の発生率,静電容量,直流破壊電
圧,内部電極の厚みを測定したところ、次の表2で示す
通りであった。
Next, the occurrence rate of structural defects, the capacitance, the DC breakdown voltage, and the thickness of the internal electrode were measured for each of the laminated dielectrics manufactured as described above, and the results were as shown in Table 2 below. .

【0030】[0030]

【表2】 [Table 2]

【0031】その表2から明らかなように、ジルコン酸
カルシウムを増やしていくに従い、構造欠陥の発生率が
少なくなり、電極厚みも薄くできることが判る。
As is evident from Table 2, as the amount of calcium zirconate increases, the incidence of structural defects decreases and the thickness of the electrode can be reduced.

【0032】また、従来例,実施例2に係る積層誘電体
を顕微鏡写真で撮影した。その顕微鏡写真を図6,図7
で示すように、図6の従来例に係る積層誘電体において
は内部電極の厚みtが1.5μmであるのに対し、図
7の実施例2に係る積層誘電体においては電極の厚みt
が1.0μmと薄く均一であることが伺える。これ
は、ニッケル粉末の酸化特性並びに内部電極の厚みか
ら、電極の球状化を防止する効果によるところが大き
い。
Further, the laminated dielectrics according to the conventional example and Example 2 were photographed with a microscope photograph. Fig. 6 and Fig. 7
As shown in FIG. 6, the thickness t 1 of the internal electrode is 1.5 μm in the laminated dielectric according to the conventional example of FIG. 6, whereas the thickness t 1 of the electrode in the laminated dielectric according to the second embodiment in FIG.
2 is 1.0 μm, which is thin and uniform. This is largely due to the effect of preventing the electrode from being spheroidized due to the oxidation characteristics of the nickel powder and the thickness of the internal electrode.

【0033】但し、比較例2のようにジルコン酸カルシ
ウムの量を多くすると、ニッケルの量が少ないところか
ら、静電容量が著しく低下してしまう。
However, when the amount of calcium zirconate is increased as in Comparative Example 2, the capacitance is significantly reduced because the amount of nickel is small.

【0034】上述したものの他に、2wt%のジルコン
酸ストロンチウム(実施例6)をニッケル粒子に一体化し
たニッケル複合導体を含む内部電極ペーストにより内部
電極を形成した積層誘電体について、構造欠陥の発生
率,静電容量,直流破壊電圧,内部電極の厚みを測定し
たところ、次の表3で示す通りであった。
In addition to the above, the occurrence of structural defects in a laminated dielectric having an internal electrode formed by an internal electrode paste including a nickel composite conductor in which 2 wt% of strontium zirconate (Example 6) is integrated with nickel particles. The ratio, capacitance, DC breakdown voltage, and thickness of the internal electrode were measured, and the results were as shown in Table 3 below.

【0035】[0035]

【表3】 [Table 3]

【0036】その表3から明らかなように、ジルコン酸
ストロンチウム(実施例6)でも、ジルコン酸カルシウ
ムと同等の効果が得られる。
As is evident from Table 3, strontium zirconate (Example 6) has the same effect as calcium zirconate.

【0037】[0037]

【発明の効果】以上の如く、本発明に係る電極形成用ニ
ッケル複合導体に依れば、99.5〜80wt%のニッ
ケルと0.5〜20wt%のジルコン酸塩とを粒状に一
体化することにより、(CaSr/TiZr)O系の非
還元性誘電体磁器材料を主成分とする積層セラミックコ
ンデンサの誘電体層と内部電極との焼結に伴う収縮差に
よる相互の層間剥離やニッケルの酸化による構造欠陥が
発生するのを防げると共に、ニッケルによる内部電極の
途切れ現象が生ずるのを防げて内部電極の薄膜化に対応
可能な電極形成用の導電性ペーストを作製することがで
きる。
As described above, according to the nickel composite conductor for forming an electrode according to the present invention, 99.5 to 80% by weight of nickel and 0.5 to 20% by weight of zirconate are integrated into particles. Accordingly, mutual delamination due to a shrinkage difference due to sintering of the dielectric layer and the internal electrode of the multilayer ceramic capacitor mainly composed of a (CaSr / TiZr) O 3 -based non-reducing dielectric ceramic material, It is possible to prevent the occurrence of structural defects due to oxidation and to prevent the internal electrode from being interrupted by nickel, thereby producing an electrode-forming conductive paste capable of coping with the thinning of the internal electrode.

【0038】本発明に係る積層セラミックコンデンサに
依れば、99.5〜80wt%のニッケルと0.5〜2
0wt%のジルコン酸塩とを粒状に一体化したニッケル
複合導体により内部電極を形成することにより、(Ca
Sr/TiZr)O系の非還元性誘電体磁器材料を主
成分とする積層セラミックコンデンサの誘電体層と内部
電極との焼結に伴う収縮差による相互の層間剥離やニッ
ケルの酸化による構造欠陥の発生を防ぎ、また、ニッケ
ルによる内部電極の途切れ現象が生ずるのを防ぎ、薄膜
状の内部電極を形成できて高容量なものに構成すること
ができる。
According to the multilayer ceramic capacitor of the present invention, 99.5 to 80% by weight of nickel and 0.5 to 2%
By forming an internal electrode with a nickel composite conductor obtained by integrating 0 wt% zirconate into particles, (Ca
Sr / TiZr) O 3 -based non-reducing dielectric ceramic material as a main component, a multilayer ceramic capacitor mainly composed of a dielectric layer and internal electrodes, mutually delaminated due to shrinkage due to sintering, and structural defects caused by oxidation of nickel. Of the internal electrode can be prevented, and the internal electrode can be prevented from being interrupted by nickel, and a thin film-shaped internal electrode can be formed to achieve a high capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例に係る電極形成用ニッケル複合導
体の構造を模式的に示す説明図である。
FIG. 1 is an explanatory view schematically showing a structure of a nickel composite conductor for forming an electrode according to an example of the present invention.

【図2】本発明の別の例に係る電極形成用ニッケル複合
導体の構造を模式的に示す説明図である。
FIG. 2 is an explanatory view schematically showing a structure of a nickel composite conductor for forming an electrode according to another example of the present invention.

【図3】従来例に係る積層誘電体の焼結状態を800
℃,1000℃,1300℃の各焼成温度時に撮影した
顕微鏡写真である。
FIG. 3 shows a sintering state of a laminated dielectric according to a conventional example of 800.
It is the microscope photograph image | photographed at each baking temperature of 1000 degreeC, 1000 degreeC, and 1300 degreeC.

【図4】比較例1に係る積層誘電体の焼結状態を800
℃,1000℃,1300℃の各焼成温度時に撮影した
顕微鏡写真である。
FIG. 4 shows a sintering state of the laminated dielectric according to Comparative Example 1 of 800.
It is the microscope photograph image | photographed at each baking temperature of 1000 degreeC, 1000 degreeC, and 1300 degreeC.

【図5】本発明の実施例2に係る積層誘電体の焼結状態
を800℃,1000℃,1300℃の各焼成温度時に
撮影した顕微鏡写真である。
FIG. 5 is a micrograph taken at each of the sintering temperatures of 800 ° C., 1000 ° C., and 1300 ° C. in a sintered state of the laminated dielectric according to Example 2 of the present invention.

【図6】従来例に係る積層誘電体を1300℃で焼成し
たときの内部電極の厚さを撮影した顕微鏡写真である。
FIG. 6 is a micrograph showing the thickness of an internal electrode when a laminated dielectric according to a conventional example is fired at 1300 ° C.

【図7】本発明の実施例2に係る積層誘電体を1300
℃で焼成したときの内部電極の厚さを撮影した顕微鏡写
真である。
FIG. 7 shows a laminated dielectric according to the second embodiment of the present invention,
5 is a photomicrograph of the thickness of the internal electrode when fired at ℃.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 公二 秋田県由利郡仁賀保町平沢字前田151 テ ィーディーケイ エムシーシー株式会社内 (72)発明者 伊藤 潔 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 大谷 修 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 5E001 AB03 AC09 AE00 AE01 AE03 AH01 AH09 AJ01 5G301 AA14 AA30 AB20 AD07 AD10 AE02 5G303 AA01 AB11 AB12 BA06 BA09 CA01 CB06 CB32 CB35 CB39 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Koji Tanaka, 151 Maeda, Hirasawa, Nikaho-cho, Yuri-gun, Akita Prefecture Inside TDCMCC Co., Ltd. (72) Inventor Kiyoshi Ito 1-13-1 Nihombashi, Chuo-ku, Tokyo Inside TDK Corporation (72) Osamu Otani Inventor F-term (reference) 1-13-1 Nihonbashi, Chuo-ku, Tokyo 5E001 AB03 AC09 AE00 AE01 AE03 AH01 AH09 AJ01 5G301 AA14 AA30 AB20 AD07 AD10 AE02 5G303 AA01 AB11 AB12 BA06 BA09 CA01 CB06 CB32 CB35 CB39

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 (CaSr/TiZr)O系の非還元性
誘電体磁器材料を主成分とする積層セラミックコンデン
サの内部電極形成用ニッケル複合導体であって、99.
5〜80wt%のニッケルと0.5〜20wt%のジル
コン酸塩とを粒状に一体化したことを特徴とする電極形
成用ニッケル複合導体。
1. A nickel composite conductor for forming an internal electrode of a multilayer ceramic capacitor comprising a (CaSr / TiZr) O 3 -based non-reducing dielectric ceramic material as a main component.
A nickel composite conductor for electrode formation, wherein nickel of 5 to 80 wt% and zirconate of 0.5 to 20 wt% are integrated in a granular form.
【請求項2】 ジルコン酸塩をニッケル粒子の表面に被
着させてニッケルとジルコン酸塩とを粒状に一体化した
ことを特徴とする請求項1に記載の電極形成用ニッケル
複合導体。
2. The nickel composite conductor for forming an electrode according to claim 1, wherein the zirconate is adhered to the surface of the nickel particles to integrate nickel and zirconate in a granular form.
【請求項3】 ニッケルとジルコン酸塩とを混在させて
粒状に一体化したことを特徴とする請求項1に記載の電
極形成用ニッケル複合導体。
3. The nickel composite conductor for electrode formation according to claim 1, wherein nickel and zirconate are mixed and integrated in a granular form.
【請求項4】 ジルコン酸カルシウム,ジルコン酸スト
ロンチウムの一種または共に含むジルコン酸塩とニッケ
ルとを粒状に一体化したことを特徴とする請求項1〜3
のいずれかに記載の電極形成用ニッケル複合導体。
4. The method according to claim 1, wherein zirconate containing one or both of calcium zirconate and strontium zirconate and nickel are integrated in a granular form.
The nickel composite conductor for electrode formation according to any one of the above.
【請求項5】 (CaSr/TiZr)O系の非還元性
誘電体磁器材料を主成分とする積層セラミックコンデン
サにおいて、99.5〜80wt%のニッケルと0.5
〜20wt%のジルコン酸塩とを粒状に一体化したニッ
ケル複合導体により内部電極を形成したことを特徴とす
る積層セラミックコンデンサ。
5. A multilayer ceramic capacitor mainly composed of a (CaSr / TiZr) O 3 -based non-reducing dielectric ceramic material, wherein 99.5 to 80 wt% of nickel and 0.5%
A multilayer ceramic capacitor, wherein an internal electrode is formed of a nickel composite conductor in which 〜20 wt% of zirconate is integrated in a granular form.
【請求項6】 ジルコン酸塩をニッケル粒子の表面に被
着させてニッケルとジルコン酸塩とを粒状に一体化した
ニッケル複合導体により内部電極を形成したことを特徴
とする請求項5に記載の積層セラミックコンデンサ。
6. The internal electrode according to claim 5, wherein the zirconate is applied to the surface of the nickel particles, and the internal electrode is formed by a nickel composite conductor in which nickel and zirconate are integrated in a granular manner. Multilayer ceramic capacitor.
【請求項7】 ニッケルとジルコン酸塩とを混在させて
粒状に一体化したニッケル複合導体により内部電極を形
成したことを特徴とする請求項5に記載の積層セラミッ
クコンデンサ。
7. The multilayer ceramic capacitor according to claim 5, wherein the internal electrode is formed of a nickel composite conductor in which nickel and zirconate are mixed and integrated in a granular form.
【請求項8】 ジルコン酸カルシウム,ジルコン酸スト
ロンチウムの一種または共に含むジルコン酸塩とニッケ
ルとを粒状に一体化したニッケル複合導体により内部電
極を形成したことを特徴とする請求項5〜7に記載の積
層セラミックコンデンサ。
8. The internal electrode is formed of a nickel composite conductor in which zirconate containing one or both of calcium zirconate and strontium zirconate and nickel are integrated in a granular form. Multilayer ceramic capacitors.
JP37220699A 1999-12-28 1999-12-28 Composite nickel conductor for forming electrode and layered ceramic capacitor Pending JP2001189227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37220699A JP2001189227A (en) 1999-12-28 1999-12-28 Composite nickel conductor for forming electrode and layered ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37220699A JP2001189227A (en) 1999-12-28 1999-12-28 Composite nickel conductor for forming electrode and layered ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2001189227A true JP2001189227A (en) 2001-07-10

Family

ID=18500042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37220699A Pending JP2001189227A (en) 1999-12-28 1999-12-28 Composite nickel conductor for forming electrode and layered ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2001189227A (en)

Similar Documents

Publication Publication Date Title
JP4200792B2 (en) Multilayer ceramic capacitor
JP2615977B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP2001240466A (en) Porcelain of dielectrics and electronic parts of laminated ceramics
JPH11124602A (en) Nickel powder and its production
WO2005117041A1 (en) Electronic part, layered ceramic capacitor, and manufacturing method thereof
JP2000232032A (en) Nickel composite conductor for forming electrode and laminated ceramic capacitor
JP2004178866A (en) Conductive composition and ceramic electronic component
TW200302210A (en) Method for making dielectric ceramic ingredient powder and dielectric ceramic ingredient powder
JP4519342B2 (en) Dielectric porcelain and multilayer electronic components
JP2002329634A (en) Laminated electronic component and its manufacturing method
JP2001189227A (en) Composite nickel conductor for forming electrode and layered ceramic capacitor
JP4385726B2 (en) Conductive paste and method for producing multilayer ceramic capacitor using the same
JP3146966B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP4529358B2 (en) Ceramic green sheet
JPH05275271A (en) Multilayer ceramic capacitor
JP3604043B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JP7241943B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2008071513A (en) Conductive paste
JPH07326537A (en) Production of ceramic laminated electronic component
JP2847822B2 (en) Method for manufacturing dielectric porcelain and method for manufacturing multilayer ceramic capacitor
JP2000212609A (en) Nickel powder for internal electrode of laminated ceramic capacitor and its production
JP2523834B2 (en) High dielectric constant dielectric ceramic composition
JP3399389B2 (en) Multilayer ceramic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030617