JP2001188605A - Method for interpolating curve - Google Patents

Method for interpolating curve

Info

Publication number
JP2001188605A
JP2001188605A JP37466999A JP37466999A JP2001188605A JP 2001188605 A JP2001188605 A JP 2001188605A JP 37466999 A JP37466999 A JP 37466999A JP 37466999 A JP37466999 A JP 37466999A JP 2001188605 A JP2001188605 A JP 2001188605A
Authority
JP
Japan
Prior art keywords
curve
curvature
partial
interpolation method
interpolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37466999A
Other languages
Japanese (ja)
Other versions
JP2001188605A5 (en
Inventor
Hiroshi Sano
弘 佐野
Mitsunori Kawabe
満徳 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP37466999A priority Critical patent/JP2001188605A/en
Publication of JP2001188605A publication Critical patent/JP2001188605A/en
Publication of JP2001188605A5 publication Critical patent/JP2001188605A5/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the processing speed by reducing the number of calculations for finding out a curvature and reducing the whole calculation throughput in order to solve such a conventional problem that much throughput is required, much processing time is required and necessary processing can not be completed within a fixed time because the whole curve is divided into plural fine curves and the curvatures of respective fine curves are found out. SOLUTION: In the curve interpolation method for a motion controller for controlling the moving loci of various machines, plural substitutive points (A, C, D, E, B) of one of plural partial curves constituting the whole curve are set up (step 403), and when a curve of all the substitutive points in the partial curve is included in a curvature change allowance range (YES in step 404), the partial curve is divided into plural straight lines corresponding to a curvature value (step 405) and interpolation processing similar to straight interpolation is executed (steps 407-409). When the curve of the substitutive points is not included in the curvature change allowance range (NO in the step 404), divided curves are newly generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば工作機械や産業
用ロボットなどの制御を行うモーション制御装置におけ
る曲線補間を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for performing curve interpolation in a motion control device for controlling, for example, a machine tool or an industrial robot.

【0002】[0002]

【従来の技術】モーションを制御する装置の一つである
NC(Numerical Control) 装置を用いて、スプライン(s
pline)曲線や非一様有理化Bスプライン[Non-Uniform
Ratio-nal B Spline 以下、単に『NURBS』と称呼
する]曲線などの自由曲線形状の軌跡データを基に曲線
補間を実行する場合、現状では通常、以下のような処理
が行われる。まず、読み込んだ曲線データを解析して微
小曲線に分割する。各微小曲線の曲率半径、及びその曲
率半径により求められる曲率限界速度(その曲率で描か
れる曲線形状の軌跡上の移動を忠実に再現できる最大速
度)を計算する。同時に、曲率が極大(曲率半径が極
小)となる微小曲線を探索しておく。軌跡上を移動する
速度に関しては、この曲率限界速度を基準にして、指定
されている加速度(通常は機械の最大加減速度)の範囲
内で加減速が出来るように速度が決定される。すなわ
ち、NCプログラムに記載されている指令速度が、各点
の曲率限界速度に比べて十分大きい際には、曲線極大点
が速度が極小になる点であり、この点に向けて、指定さ
れている加速度の範囲内で、ある位置からこの曲率極大
点までの直線距離を目安にして各点の一の速度を求め
て、減速していくという加減速制御が行われる。
2. Description of the Related Art Spline (s) is controlled using an NC (Numerical Control) device which is one of devices for controlling motion.
pline) Curves and non-uniform rationalized B-splines [Non-Uniform
Ratio-nal B Spline, hereinafter simply referred to as “NURBS”] When performing curve interpolation based on trajectory data of a free curve shape such as a curve, the following processing is usually performed at present. First, the read curve data is analyzed and divided into minute curves. The radius of curvature of each micro-curve and the limit speed of curvature determined by the radius of curvature (the maximum speed at which the movement on the locus of the curve drawn with the curvature can be faithfully reproduced) are calculated. At the same time, a minute curve having a maximum curvature (a minimum curvature radius) is searched for. With respect to the speed of moving on the trajectory, the speed is determined on the basis of the curvature limit speed so that acceleration / deceleration can be performed within a specified acceleration (usually the maximum acceleration / deceleration of the machine). That is, when the command speed described in the NC program is sufficiently higher than the curvature limit speed of each point, the curve maximum point is a point where the speed becomes minimum. Acceleration / deceleration control is performed in which the speed of each point is determined and decelerated using the linear distance from a certain position to this curvature maximum point as a guide within the range of the acceleration.

【0003】[0003]

【発明が解決しようとする課題】ところが従来の曲線補
間方法では、曲線全体を微小曲線に分割し、各微小曲線
について曲率を求めている。この曲率を求める計算は、
非常に処理量が多くなる。従って微小な曲線全てについ
て曲率計算をすると、膨大な処理時間を要することとな
り、特にオンラインで軌跡制御を行う場合、一定時間内
に必要な処理を終了することができず、これにより、速
度が上げられないことにつながり、最悪の場合は、軌跡
移動が中断して(工作機械を用いた切削作業の場合、停
止することによりワークにマークが付くことになる)、
指令どおりの軌跡を実現できなくなるという可能性も生
じることになる。そこで本発明の目的は、曲率計算の回
数を減らすことにより、全体の処理量を減少させ、処理
速度を向上させることにより、高速な曲線補間を実現で
きるモーション制御装置による曲線補間方法を提供する
ことである。
However, in the conventional curve interpolation method, the entire curve is divided into minute curves, and the curvature is obtained for each minute curve. The calculation for this curvature is
Extremely high throughput. Therefore, if the curvature is calculated for all the minute curves, a huge amount of processing time is required. Particularly, when performing trajectory control online, the required processing cannot be completed within a certain time, thereby increasing the speed. In the worst case, the trajectory movement is interrupted (in the case of cutting work using a machine tool, the work is marked by stopping it).
There is also a possibility that the trajectory as instructed cannot be realized. Accordingly, an object of the present invention is to provide a curve interpolation method by a motion control device capable of realizing high-speed curve interpolation by reducing the number of curvature calculations, thereby reducing the overall processing amount and improving the processing speed. It is.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明の請求項1の発明は、各種機械の移動軌跡を制
御するモーション制御装置の曲線補間方法において、曲
線全体を構成する部分曲線ついて、1つの部分曲線の代
表点を複数個選定し、前記部分曲線の前記代表点の曲率
を求め、前記部分曲線内の全ての前記代表点の曲線が曲
率変化許容範囲内に入っていれば、曲率値に応じた長さ
の直線に分割して、直線補間と同様の補間処理を行うこ
とを特徴とする曲線補間方法である。このような請求項
1の発明によれば、曲線補間形状解析の処理速度が向上
することができると共に、曲率が一定範囲内に収まる曲
線を直線に分割して置き換えることにより、直線補間と
同様の処理をすることができ、従来の直線補間に帰着す
ることができるという特段の効果を奏する。従来直線補
間で採用していた加減速演算処理をそのまま利用するこ
とが可能となる。さらに、曲線補間と直線補間との繋ぎ
についても、従来と同じ繋ぎ処理を利用することができ
るようになり、従来の装置を活用することもできる。
In order to achieve the above object, a first aspect of the present invention relates to a curve interpolation method for a motion control device for controlling the movement trajectory of various machines, wherein a partial curve constituting the entire curve is provided. Then, a plurality of representative points of one partial curve are selected, the curvature of the representative point of the partial curve is obtained, and if the curves of all the representative points in the partial curve are within the allowable curvature change range, This is a curve interpolation method characterized by dividing the image into straight lines having a length corresponding to the curvature value and performing an interpolation process similar to the linear interpolation. According to the first aspect of the present invention, the processing speed of the curve interpolation shape analysis can be improved, and a curve whose curvature falls within a certain range is divided into straight lines and replaced, thereby achieving the same effect as linear interpolation. Processing can be performed, resulting in a special effect that can be reduced to conventional linear interpolation. The acceleration / deceleration calculation processing conventionally used in linear interpolation can be used as it is. Furthermore, the same connection processing as in the past can be used for the connection between the curve interpolation and the linear interpolation, and the conventional device can be used.

【0005】本発明の請求項2の発明は、請求項1に記
載の曲線補間方法において、前記部分曲線の前記代表点
の少なくとも1点の曲率が前記曲率変化許容範囲内に入
っていない場合は、前記部分曲線を前記代表点で分割
し、分割した曲線を新たに部分曲線と定義して補間処理
を行うことを特徴とする請求項1に記載の曲線補間方法
である。このようにして請求項2の発明によれば、許容
範囲を逸脱する代表点についても、自在に新たに部分曲
線と定義付けて、補間処理がなされるという顕著な効果
を発揮できる。
According to a second aspect of the present invention, there is provided the curve interpolation method according to the first aspect, wherein the curvature of at least one of the representative points of the partial curve is not within the curvature change allowable range. 2. The method according to claim 1, wherein the partial curve is divided at the representative point, and the divided curve is newly defined as a partial curve to perform an interpolation process. In this way, according to the second aspect of the present invention, a remarkable effect that interpolation processing is performed on a representative point that deviates from the allowable range can be freely defined as a new partial curve.

【0006】本発明の請求項3の発明は、請求項2に記
載の曲線補間方法において、全ての前記部分曲線が前記
曲率変化許容範囲内に入るまで、部分曲線分割処理を行
うことを特徴とする請求項2に記載の曲線補間方法であ
る。
According to a third aspect of the present invention, in the curve interpolation method according to the second aspect, a partial curve division process is performed until all of the partial curves fall within the curvature change allowable range. A curve interpolation method according to claim 2.

【0007】本発明の請求項4の発明は、請求項3に記
載の曲線補間方法において、前記部分曲線の前記代表点
の個数の変更が可能なことを特徴とする請求項3に記載
の曲線補間方法である。この請求項4の発明によれば、
部分曲線の前記代表点の個数の変更が可能なことから、
全体的に滑らかな形状のときには個数を減らし、複雑な
形状の場合には増やすなど、形曲線状に応じた補間を実
行することができるとともに、制御装置の処理性能や要
求精度に対応することができる。
According to a fourth aspect of the present invention, in the curve interpolation method according to the third aspect, the number of the representative points of the partial curve can be changed. This is an interpolation method. According to the invention of claim 4,
Because the number of the representative points of the partial curve can be changed,
It is possible to perform interpolation according to the shape of the curve, such as reducing the number when the shape is smooth overall and increasing it when the shape is complex, and also to respond to the processing performance and required accuracy of the control device. it can.

【0008】本発明の請求項5の発明は、請求項3に記
載の曲線補間方法において、前記曲率変化許容範囲の変
更が可能なことを特徴とする請求項3に記載の曲線補間
方法である。
According to a fifth aspect of the present invention, there is provided the curve interpolation method according to the third aspect, wherein the curvature change allowable range can be changed. .

【0009】本発明の請求項6の発明は、請求項3に記
載の曲線補間方法において、前記曲率と分割する直線の
長さの対応関係を変更することが可能なことを特徴とす
る請求項3に記載の曲線補間方法である。しただって本
発明の請求項5及び請求項6によれば、曲率変化許容範
囲、及び曲率と分割する直線と長さの対応関係を変更す
ることが可能なことから、制御装置の処理能力や要求精
度に応じた曲線補間を実行することが可能となる。
According to a sixth aspect of the present invention, in the curve interpolation method according to the third aspect, it is possible to change a correspondence relationship between the curvature and the length of a straight line to be divided. 3 is a curve interpolation method. Therefore, according to the fifth and sixth aspects of the present invention, it is possible to change the allowable range of curvature change and the correspondence between the curvature and the dividing straight line and the length. Curve interpolation according to the accuracy can be executed.

【0010】本発明の請求項7の発明は、請求項1ない
し請求項6のいずれかの項に記載の曲線補間方法におい
て、コンピュータに実行させるプログラムを記録し、前
記コンピュータが読み取り可能な記録媒体に収納させた
操作手順に従って曲線の補間処理を行うことを特徴とす
る請求項1ないし請求項6のいずれかの項に記載の曲線
補間方法である。かくして請求項7の発明によれば、従
来の回路装置の適用も可能にし、曲線補間の性能向上は
勿論、経済性についても優れた効果を保つ。
According to a seventh aspect of the present invention, in the curve interpolation method according to any one of the first to sixth aspects, a computer-readable recording medium for recording a program to be executed by a computer. The curve interpolation method according to any one of claims 1 to 6, wherein the curve interpolation processing is performed in accordance with the operation procedure stored in the method. Thus, according to the invention of claim 7, it is possible to apply the conventional circuit device, and it is possible to improve the performance of the curve interpolation as well as to keep an excellent effect on economy.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態について図面
を参照して説明する。図1は、本発明の一実施の形態と
してNC制御装置を例に取り、曲線補間を実行する際の
処理を行う回路構成を示すブロック図である。図1にお
いて、1はNCデータ読み込み部、2は曲率計算部、3
は曲率判定部、4は部分曲線生成部、5は直線分割部、
6は加減速演算部、7は制御データ出力部、8は制御指
令としての入力データ、9は次段のサーボ装置を制御す
る制御出力データ、10は本発明になるNC制御装置、11
は制御出力データで制御されるサーボ装置である。この
NC制御装置を使って、NURBS曲線形式で入力され
た指令軌跡に対する処理概要について説明する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a circuit configuration for performing processing when performing curve interpolation, taking an NC control device as an embodiment of the present invention. In FIG. 1, 1 is an NC data reading unit, 2 is a curvature calculating unit, 3
Is a curvature determining unit, 4 is a partial curve generating unit, 5 is a straight line dividing unit,
6 is an acceleration / deceleration calculation unit, 7 is a control data output unit, 8 is input data as a control command, 9 is control output data for controlling the next-stage servo device, 10 is an NC control device according to the present invention, 11
Is a servo device controlled by control output data. An outline of processing for a command trajectory input in a NURBS curve format using this NC control device will be described.

【0012】NC制御装置の曲線補間動作は、次の通り
となる。先ず、NCデータ読み込み部1で、NC装置の
内部メモリにあるNCプログラムを読み込む。NURB
S曲線補間であることを示すコマンドに加えて、階数、
ノットデータ、制御点、ウェイトで表現されるNURB
S曲線形式のNCデータ、及び移動目標速度をこの部分
で読み込む。図2は、部分曲線における曲率判定を説明
するための曲線例を示す図である。次に、曲率計算部2
では、部分曲線毎に代表点の曲率(曲率半径)を計算す
る。図2は部分曲線A−Bを4等分し、分割点3点
(C,D,E)、及び始点(A)、終点(B)の5点を
代表点として、曲率を計算している例を示している。こ
こで始点は、1つ前の部分曲線の終点と同じ点であるた
め、最初の部分曲線以外は曲率計算をする必要はない。
The curve interpolation operation of the NC control device is as follows. First, the NC data reading unit 1 reads an NC program stored in the internal memory of the NC device. NURB
In addition to the command indicating S-curve interpolation,
NURB expressed by knot data, control points, and weights
The NC data in the S-curve format and the moving target speed are read in this part. FIG. 2 is a diagram illustrating an example of a curve for explaining the curvature determination in the partial curve. Next, the curvature calculation unit 2
Then, the curvature (radius of curvature) of the representative point is calculated for each partial curve. FIG. 2 divides the partial curve AB into four equal parts, and calculates the curvature using three division points (C, D, and E), and five points of the start point (A) and the end point (B) as representative points. An example is shown. Here, since the start point is the same point as the end point of the previous partial curve, it is not necessary to calculate the curvature except for the first partial curve.

【0013】各点の曲率を計算した後、曲率判定部3に
おいて、各点の曲率が指定された範囲内に収まっている
か否かを判定する。ここで、曲率許容範囲が3mmであっ
たとすると、この部分曲線代表点の曲率の最大値と最小
値の差は2.1mmであるため、代表5点全ての曲率が範
囲内に入っていることになり、この部分曲線を曲率に応
じた長さに分割することになる。このとき使用する曲率
値は、曲率値が接近しているため、これを誤差範囲と考
えられ、代表点より生産される曲率半径のうち最も小さ
いもの、始点の曲率、代表点の曲率の平均などが考えら
れる。
After calculating the curvature of each point, the curvature determining section 3 determines whether the curvature of each point falls within a specified range. Here, assuming that the allowable range of curvature is 3 mm, the difference between the maximum value and the minimum value of the curvature of the partial curve representative point is 2.1 mm, so that the curvatures of all five representative points are within the range. , And this partial curve is divided into lengths according to the curvature. The curvature value used at this time is considered to be an error range because the curvature values are close to each other, and the curvature radius produced from the representative point is the smallest, the curvature of the starting point, the average of the curvature of the representative point, and the like. Can be considered.

【0014】図3(a),(b) は、曲線を直線に分割する様
子を示した説明図である。図3(a)からも分かるよう
に、曲線を複数の直線に分割、近似するため、誤差(ト
レランス)が生じることになる。この誤差は、曲線と分
割する直線の長さとの関係により調整することができ
る。この誤差は、曲率と分割する直線の長さとの関係に
より調整することがでる。同じ曲線でも、分割する直線
の長さを小さくすれば、図3(b) の拡大図に示すように
誤差は小さくなる。しかし、当然のことながら直線数は
増えることになり、処理速度は下がることになる。
FIGS. 3A and 3B are illustrations showing how a curve is divided into straight lines. As can be seen from FIG. 3A, an error (tolerance) occurs because the curve is divided and approximated to a plurality of straight lines. This error can be adjusted by the relationship between the curve and the length of the straight line to be divided. This error can be adjusted by the relationship between the curvature and the length of the straight line to be divided. Even for the same curve, if the length of the divided straight line is reduced, the error is reduced as shown in the enlarged view of FIG. However, of course, the number of straight lines increases, and the processing speed decreases.

【0015】曲率に応じた長さの直線とは、曲率半径が
小さい(曲率が大きい)ときには短い直線で、曲率半径
が大きい(曲率が小さい)ときには長い直線ということ
になる。曲率と近似する直線の長さをうまく関連づける
ことにより、近似による誤差を曲率による影響で巧妙に
吸収することができる。図2の例において、曲率許容範
囲が2mmであった場合は、部分曲線A−Bの代表点の曲
率の値は前述の通り2.1mmであり、曲率許容範囲内に
入っていないことになるため、部分曲線生成部4で部分
曲線A−Bを分割し、新たにA−C、C−D、D−E、
E−Bという4つの部分曲線を生成し、各々の部分曲線
について、上述と同様の代表点の曲率計算、曲率判定処
理を繰り返す。これを全ての部分曲線が直線として近似
できるか、あるいは代表点の曲率が許容範囲内に入るま
で繰り返し行う。
A straight line having a length corresponding to the curvature is a short straight line when the radius of curvature is small (large curvature), and a long straight line when the radius of curvature is large (small curvature). By properly associating the curvature with the length of the straight line to be approximated, errors due to the approximation can be subtly absorbed by the influence of the curvature. In the example of FIG. 2, when the allowable curvature is 2 mm, the value of the curvature at the representative point of the partial curve AB is 2.1 mm as described above, which is outside the allowable curvature. Therefore, the partial curve AB is divided by the partial curve generation unit 4, and AC, CD, DE,
Four partial curves EB are generated, and for each partial curve, the same curvature calculation and curvature determination processing of the representative point as described above are repeated. This is repeated until all the partial curves can be approximated as straight lines, or the curvature of the representative point falls within the allowable range.

【0016】図4は、本発明による曲線補間の実行の操
作手順を示したフローチャートである。すなわち、図4
は以上の説明を流れ図で表しており、部分曲線における
代表点の数は図2では始点、終点を含め5点としいる
が、曲線形状の複雑さと必要な処理速度により決定する
必要がある。数が少ないと、代表点以外の部分で曲率が
急激に変化するような曲線では、これが制御上で現れて
来ずに、加工機械に必要以上の付加を与えたり、軌跡誤
差を生じる結果にもなりかねない。逆に、数を増やし過
ぎると、上述の複雑形状の曲線に対応しやすくなるが、
曲率計算の量が増えることになり、処理時間が増大する
ことに繋がる。かくしてこれまでの説明から本発明は、
新たな部分曲線の生成と、それら部分曲線が曲率許容範
囲内に入るまでの演算の繰り返し、システム性能や要求
精度に応じた許容曲率半径の変更、代表点の個数の変
更、分割直線の長さの調整等全てが自由自在に操作可能
である。
FIG. 4 is a flowchart showing an operation procedure for executing curve interpolation according to the present invention. That is, FIG.
Represents the above description in the form of a flowchart. In FIG. 2, the number of representative points in the partial curve is five including the starting point and the ending point. If the number is small, the curve where the curvature changes abruptly at the part other than the representative point does not appear on the control, it may give unnecessarily additional to the processing machine or cause a trajectory error. It could be. Conversely, if the number is increased too much, it becomes easier to cope with the curve of the complicated shape described above,
The amount of curvature calculation increases, which leads to an increase in processing time. Thus, from the above description, the present invention
Generation of new partial curves, repetition of calculation until those partial curves fall within the allowable range of curvature, change of allowable radius of curvature according to system performance and required accuracy, change of number of representative points, length of division straight line All adjustments can be performed freely.

【0017】[0017]

【発明の効果】以上述べたように、本発明の請求項1の
発明によれば、曲線補間形状解析の処理速度が向上する
ことができると共に、曲率が一定範囲内に収まる曲線を
直線に分割して置き換えることにより、直線補間と同様
の処理をすることができ、従来の直線補間に帰着するこ
とができるという特段の効果を奏する。従来直線補間で
採用していた加減速演算処理をそのまま利用することが
可能となる。さらに、曲線補間と直線補間との繋ぎにつ
いても、従来と同じ繋ぎ処理を利用することができるよ
うになり、従来の装置を活用することもできる。また請
求項2の発明によれば、許容範囲を逸脱する代表点につ
いても、自在に新たに部分曲線と定義付けて、補間処理
がなされるという顕著な効果を発揮できる。さらに請求
項4の発明によれば、部分曲線の前記代表点の個数の変
更が可能なことから、全体的に滑らかな形状のときには
個数を減らし、複雑な形状の場合には増やすなど、形曲
線状に応じた補間を実行することができるとともに、制
御装置の処理性能や要求精度に対応することができる。
さらにまた本発明の請求項5及び請求項6の発明によれ
ば、曲率変化許容範囲、及び曲率と分割する直線と長さ
の対応関係を変更することが可能なことから、制御装置
の処理能力や要求精度に応じた曲線補間を実行すること
が可能となる。なお請求項7の発明によれば、従来の回
路装置の適用も可能にし、曲線補間の性能向上は勿論、
経済性についても優れた効果を保つ。
As described above, according to the first aspect of the present invention, the processing speed of the curve interpolation shape analysis can be improved, and the curve whose curvature falls within a certain range is divided into straight lines. By performing the replacement, the same processing as that of the linear interpolation can be performed, and the special effect that the conventional linear interpolation can be achieved is achieved. The acceleration / deceleration calculation processing conventionally used in linear interpolation can be used as it is. Furthermore, the same connection processing as in the past can be used for the connection between the curve interpolation and the linear interpolation, and the conventional device can be used. Further, according to the second aspect of the present invention, a remarkable effect that interpolation processing is performed for a representative point that deviates from the allowable range can be freely defined as a new partial curve. Further, according to the invention of claim 4, since the number of the representative points of the partial curve can be changed, the number of the representative points is reduced when the shape is entirely smooth, and increased when the shape is complicated, and so on. It is possible to execute interpolation according to the state, and to cope with the processing performance and required accuracy of the control device.
Further, according to the fifth and sixth aspects of the present invention, the allowable range of curvature change and the correspondence between the curvature and the dividing straight line and the length can be changed. It is possible to execute curve interpolation according to the required accuracy. According to the invention of claim 7, the application of the conventional circuit device is enabled, and the performance of the curve interpolation is of course improved.
It keeps an excellent effect on economy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態としてNC制御装置を例
に取り、曲線補間を実行する際の処理を行う回路構成を
示すブロック図
FIG. 1 is a block diagram showing a circuit configuration for performing processing when executing a curve interpolation, taking an NC control device as an embodiment of the present invention as an example;

【図2】本発明の一実施の形態での部分曲線における曲
率判定を説明するための曲線例を示す図
FIG. 2 is a diagram illustrating an example of a curve for explaining a curvature determination in a partial curve according to an embodiment of the present invention.

【図3】図3は曲線を直線に分割する様子を示し、(a)
は曲線の一部が曲率許容範囲を超えた場合の説明図 (b) は(a) の曲率許容範囲を超えた部分を拡大した説明
FIG. 3 shows how a curve is divided into straight lines, and (a)
Is an explanatory diagram when a part of the curve exceeds the allowable curvature range.

【図4】本発明による曲線補間の実行の操作手順を示し
たフローチャート
FIG. 4 is a flowchart showing an operation procedure for executing curve interpolation according to the present invention;

【符号の説明】[Explanation of symbols]

1 NCデータ読み込み部 2 曲率計算部 3 曲率判定部 4 部分曲線生成部 5 直線分割部 6 加減速演算部 7 制御データ出力部 8 入力データ 9 制御出力データ 10 本発明になるNC制御装置 11 サーボ装置 REFERENCE SIGNS LIST 1 NC data reading unit 2 Curvature calculation unit 3 Curvature determination unit 4 Partial curve generation unit 5 Linear division unit 6 Acceleration / deceleration calculation unit 7 Control data output unit 8 Input data 9 Control output data 10 NC control device 11 according to the present invention 11 Servo device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 各種機械の移動軌跡を制御するモーショ
ン制御装置の曲線補間方法において、 曲線全体を構成する部分曲線ついて、1つの部分曲線の
代表点を複数個選定し、 前記部分曲線の前記代表点の曲率を求め、 前記部分曲線内の全ての前記代表点の曲線が曲率変化許
容範囲内に入っていれば、 曲率値に応じた長さの直線に分割して、直線補間と同様
の補間処理を行うことを特徴とする曲線補間方法。
1. A curve interpolation method of a motion control device for controlling a movement trajectory of various machines, wherein a plurality of representative points of one partial curve are selected for a partial curve constituting an entire curve, and the representative of the partial curve is selected. If the curvature of the point is found, and if the curves of all the representative points in the partial curve are within the allowable range of curvature change, the curve is divided into straight lines having a length corresponding to the curvature value, and interpolation similar to linear interpolation is performed. A curve interpolation method characterized by performing processing.
【請求項2】 請求項1に記載の曲線補間方法におい
て、 前記部分曲線の前記代表点の少なくとも1点の曲率が前
記曲率変化許容範囲内に入っていない場合は、 前記部分曲線を前記代表点で分割し、 分割した曲線を新たに部分曲線と定義して補間処理を行
うことを特徴とする請求項1に記載の曲線補間方法。
2. The curve interpolation method according to claim 1, wherein the curvature of at least one of the representative points of the partial curve does not fall within the curvature change allowable range. 2. The curve interpolation method according to claim 1, wherein the interpolation process is performed by defining the divided curve as a new partial curve.
【請求項3】 請求項2に記載の曲線補間方法におい
て、 全ての前記部分曲線が前記曲率変化許容範囲内に入るま
で、部分曲線分割処理を行うことを特徴とする請求項2
に記載の曲線補間方法。
3. The curve interpolation method according to claim 2, wherein partial curve division processing is performed until all of said partial curves fall within said curvature change allowable range.
Curve interpolation method described in 1.
【請求項4】 請求項3に記載の曲線補間方法におい
て、 前記部分曲線の前記代表点の個数の変更が可能なことを
特徴とする請求項3に記載の曲線補間方法。
4. The curve interpolation method according to claim 3, wherein the number of the representative points of the partial curve can be changed.
【請求項5】 請求項3に記載の曲線補間方法におい
て、 前記曲率変化許容範囲の変更が可能なことを特徴とする
請求項3に記載の曲線補間方法。
5. The curve interpolation method according to claim 3, wherein the curvature change allowable range can be changed.
【請求項6】 請求項3に記載の曲線補間方法におい
て、 前記曲率と分割する直線の長さの対応関係を変更するこ
とが可能なことを特徴とする請求項3に記載の曲線補間
方法。
6. The curve interpolation method according to claim 3, wherein the correspondence between the curvature and the length of a straight line to be divided can be changed.
【請求項7】 請求項1ないし請求項6のいずれかの項
に記載の曲線補間方法において、 コンピュータに実行させるプログラムを記録し、前記コ
ンピュータが読み取り可能な記録媒体に収納させた操作
手順に従って曲線の補間処理を行うことを特徴とする請
求項1ないし請求項6のいずれかの項に記載の曲線補間
方法。
7. The curve interpolation method according to claim 1, wherein a program to be executed by a computer is recorded, and the program is executed according to an operation procedure stored in a recording medium readable by the computer. 7. The curve interpolation method according to claim 1, wherein the interpolation processing is performed.
JP37466999A 1999-12-28 1999-12-28 Method for interpolating curve Pending JP2001188605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37466999A JP2001188605A (en) 1999-12-28 1999-12-28 Method for interpolating curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37466999A JP2001188605A (en) 1999-12-28 1999-12-28 Method for interpolating curve

Publications (2)

Publication Number Publication Date
JP2001188605A true JP2001188605A (en) 2001-07-10
JP2001188605A5 JP2001188605A5 (en) 2007-01-11

Family

ID=18504236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37466999A Pending JP2001188605A (en) 1999-12-28 1999-12-28 Method for interpolating curve

Country Status (1)

Country Link
JP (1) JP2001188605A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145929A (en) * 2004-11-22 2006-06-08 Seiko Epson Corp Plastic lens half color tinting method and machine
JP2011036985A (en) * 2009-08-18 2011-02-24 Matsuura Machinery Corp Cam system
CN102540978A (en) * 2010-12-09 2012-07-04 中国科学院沈阳计算技术研究所有限公司 High-speed processing-oriented surface quality preferred spline real-time interpolation method
WO2013031492A1 (en) * 2011-08-29 2013-03-07 株式会社 アマダ Program generation device and method
CN103901815A (en) * 2012-12-25 2014-07-02 安川电机(沈阳)有限公司 Value control apparatus and value control method
CN106647637A (en) * 2015-11-03 2017-05-10 中国科学院沈阳计算技术研究所有限公司 Trigonometric function acceleration and deceleration control method for high-quality machining
JP2019093520A (en) * 2017-11-27 2019-06-20 スキューズ株式会社 Finger mechanism, robot hand, and control method of robot hand
CN116580126A (en) * 2023-05-24 2023-08-11 杭州行至云起科技有限公司 Custom lamp effect configuration method and system based on key frame

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145929A (en) * 2004-11-22 2006-06-08 Seiko Epson Corp Plastic lens half color tinting method and machine
JP2011036985A (en) * 2009-08-18 2011-02-24 Matsuura Machinery Corp Cam system
CN102540978A (en) * 2010-12-09 2012-07-04 中国科学院沈阳计算技术研究所有限公司 High-speed processing-oriented surface quality preferred spline real-time interpolation method
WO2013031492A1 (en) * 2011-08-29 2013-03-07 株式会社 アマダ Program generation device and method
CN103901815A (en) * 2012-12-25 2014-07-02 安川电机(沈阳)有限公司 Value control apparatus and value control method
CN103901815B (en) * 2012-12-25 2017-02-08 安川电机(沈阳)有限公司 Value control apparatus and value control method
CN106647637A (en) * 2015-11-03 2017-05-10 中国科学院沈阳计算技术研究所有限公司 Trigonometric function acceleration and deceleration control method for high-quality machining
JP2019093520A (en) * 2017-11-27 2019-06-20 スキューズ株式会社 Finger mechanism, robot hand, and control method of robot hand
US10661450B2 (en) 2017-11-27 2020-05-26 Squse Inc. Finger mechanism, robot hand and robot hand controlling method
CN116580126A (en) * 2023-05-24 2023-08-11 杭州行至云起科技有限公司 Custom lamp effect configuration method and system based on key frame
CN116580126B (en) * 2023-05-24 2023-11-07 杭州行至云起科技有限公司 Custom lamp effect configuration method and system based on key frame

Similar Documents

Publication Publication Date Title
CN110874082B (en) Method, apparatus and storage medium for determining cutting path of workpiece corner
JP2012093975A (en) Machining time prediction device of numerical control machine tool
JP2001188605A (en) Method for interpolating curve
JP2002222008A (en) Numerically controlled curved surface processing device
JP6321605B2 (en) Numerical control device for speed control by curvature and curvature variation
JP2008117032A (en) Working control device and its program
JP2006227701A (en) Circular machining command creation device, method and program
JP4085418B2 (en) Curve interpolation acceleration / deceleration control method
US10579044B2 (en) Computer readable information recording medium, evaluation method, and control device
JP3513100B2 (en) Control device
JP2000163114A (en) Intra-interpolation curve acceleration and deceleration processing method
JP2001188605A5 (en) Curve interpolation method and NC controller
JPH07210225A (en) Numerical controller
JPH0695294B2 (en) Trajectory interpolation method for industrial robot
JP2985138B2 (en) Speed control device and numerical control feed speed control method
CN114237152B (en) Flexible speed planning and displacement compensation method for laser cutting
CN116795044B (en) Speed planning method, device, machine tool control system and storage medium
JP7460750B2 (en) numerical control device
JP2521449B2 (en) Trajectory control device
JP2001154719A (en) Method for interpolating free curve
JP2001166807A (en) Method for commanding working by numerical controller
WO2024084706A1 (en) Machining instruction correction device and machining instruction correction method
WO2022202656A1 (en) Numerical control device and numerical control program
JP2925414B2 (en) Speed control method and apparatus for numerically controlled machine tool
JP3562576B2 (en) Curve interpolation method for numerical controller

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090408