JP2001183082A - Heat accumulating member - Google Patents

Heat accumulating member

Info

Publication number
JP2001183082A
JP2001183082A JP37092599A JP37092599A JP2001183082A JP 2001183082 A JP2001183082 A JP 2001183082A JP 37092599 A JP37092599 A JP 37092599A JP 37092599 A JP37092599 A JP 37092599A JP 2001183082 A JP2001183082 A JP 2001183082A
Authority
JP
Japan
Prior art keywords
heat storage
heat
duct
cross
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37092599A
Other languages
Japanese (ja)
Inventor
Hisashi Fujita
尚志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP37092599A priority Critical patent/JP2001183082A/en
Publication of JP2001183082A publication Critical patent/JP2001183082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-accumulating member capable of reducing a pressure loss when a thermal medium flows while a heat exchanging efficiency is being kept high after filling latent heat accumulating material in a container in its high density. SOLUTION: A plurality of heat accumulating plates 5 having latent heat accumulating materials formed into a rectangular shape are oppositely arranged to each other with a predetermined clearance (s) being applied within a duct 3 having a rectangular cross section with its both ends being released and flowing thermal medium being flowed therein. A flow passage for the flowing thermal medium is formed between each of the heat accumulating plates 5 along a duct longitudinal direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液相・固相間の可
逆的相変化によって蓄熱する潜熱蓄熱材を、流動性熱媒
の流路を有するように容器内に充填させて構成される蓄
熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is constructed by filling a latent heat storage material for storing heat by reversible phase change between a liquid phase and a solid phase into a container so as to have a flow path of a fluid heat medium. Regarding heat storage.

【0002】[0002]

【従来の技術】近年、安価な深夜電力を利用して夜間に
空調機を稼働し、この空調機によって加熱・冷却された
空調空気を蓄熱体に当接させて熱(冷熱を含む)を蓄
え、昼間に該熱を蓄熱体から放熱して空調空気を加熱・
冷却することで、昼間の空調機のピーク熱負荷を軽減す
る空調システムが利用されている。
2. Description of the Related Art In recent years, an air conditioner is operated at night using inexpensive late-night power, and conditioned air heated and cooled by the air conditioner is brought into contact with a heat storage body to store heat (including cold heat). Heat the conditioned air during the daytime by radiating the heat from the heat storage
An air conditioning system that reduces the peak heat load of the air conditioner during the day by cooling is used.

【0003】この蓄熱体としては、入口開口と出口開口
とを有する容器の中に、多数の球状の蓄熱材が互いに当
接した状態で高密度に充填されたものが使用されている
(特開平7−229690号公報参照)。この蓄熱体
は、その入口開口から熱媒たる空調空気を流入させ、蓄
熱材同士の間の隙間に空調空気を通過させて両者間で熱
交換させ、その後、この空調空気を出口開口から流出さ
せるものである。そして、この隙間は複雑に入り組んだ
経路となっているため、前記蓄熱体は熱交換効率は良
い。
[0003] As this heat storage element, there is used a container having an inlet opening and an outlet opening in which a large number of spherical heat storage materials are densely packed in contact with each other. 7-229690). The heat storage element allows air-conditioned air serving as a heat medium to flow in from the inlet opening, passes air-conditioned air through a gap between the heat storage materials to cause heat exchange between the two, and then causes the air-conditioned air to flow out from the outlet opening. Things. Since the gap is a complicated and complicated path, the heat storage body has good heat exchange efficiency.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、空調空
気を流通する際の圧力損失が大きく、蓄熱空調システム
全体の総合的なエネルギー効率の悪化を来す。
However, the pressure loss when circulating the conditioned air is large, and the overall energy efficiency of the heat storage air conditioning system as a whole deteriorates.

【0005】本発明はかかる従来の課題に鑑みて成され
たもので、熱交換効率を高く維持しつつ熱媒流通時の圧
力損失を小さくできる、総合的なエネルギー効率に優れ
る蓄熱体を提供することを目的とする。また、熱交換効
率と圧力損失の双方を調整することで総合的なエネルギ
ー効率を良好にすることができる蓄熱体を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and provides a heat storage element which can maintain a high heat exchange efficiency and reduce a pressure loss during the flow of a heat medium and has excellent overall energy efficiency. The purpose is to: It is another object of the present invention to provide a heat storage element that can improve overall energy efficiency by adjusting both heat exchange efficiency and pressure loss.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
めに請求項1に示す発明は、両端が開放されて流動性熱
媒が流される横断面略矩形形状のダクト内に、潜熱蓄熱
材を表面が平滑な矩形形状に保形形成してなる複数の蓄
熱板を互いに所定の間隙を隔てて対向配置して、各蓄熱
板間に流動性熱媒の流路をダクト長方向に沿って形成し
たことを特徴とする。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 provides a latent heat storage material in a duct having a substantially rectangular cross section in which both ends are opened and a fluid heat medium flows. A plurality of heat storage plates formed in a rectangular shape with a smooth surface are opposed to each other with a predetermined gap therebetween, and a flow path for the fluid heat medium is formed between the heat storage plates along the duct length direction. It is characterized by having done.

【0007】上記装置によれば、前記ダクト内に前記熱
媒の真っ直ぐな流路を設けることができるので、蓄熱体
内を通過する際の圧力損失を著しく低減できる。また、
該流路を蓄熱板の両側に設けられるので、熱媒と蓄熱板
との接触面積を大きくできて、前記両者間の熱交換効率
を高く維持することができる。
[0007] According to the above apparatus, since a straight flow path of the heat medium can be provided in the duct, the pressure loss when the heat medium passes through the heat storage body can be significantly reduced. Also,
Since the flow paths are provided on both sides of the heat storage plate, the contact area between the heat medium and the heat storage plate can be increased, and the heat exchange efficiency between the two can be maintained high.

【0008】更には、矩形状に保形した蓄熱板を所定の
間隙を隔てて対向配置しているので、層状に高密度に並
べて蓄熱体単位体積当たりの蓄熱容量を大きくできて、
蓄熱体のコンパクト化が図れる。
Furthermore, since the heat storage plates having a rectangular shape are arranged to face each other with a predetermined gap therebetween, the heat storage capacity per unit volume of the heat storage body can be increased by arranging the heat storage plates in a layered manner at a high density.
The heat storage can be made more compact.

【0009】請求項2に示す発明は、請求項1に記載の
蓄熱体において、前記ダクトはその横断面が拡縮可能に
形成されるとともに、該横断面を拡縮する拡縮手段が設
けられたことを特徴とする。
According to a second aspect of the present invention, in the heat storage element according to the first aspect, the duct is formed so that its cross section can be expanded and contracted, and expansion and contraction means for expanding and contracting the cross section is provided. Features.

【0010】上記装置によれば、前記間隙が固定された
ものであっても前記横断面を拡縮することで、熱媒が通
過する横断面面積が変化するので、単位時間当たりの熱
媒流量を変えずに、蓄熱体内の熱媒流速を自在に調整す
ることができる。このため、該流速の変化に伴う、熱媒
と蓄熱材との対流熱伝達率の変化を介して熱交換効率を
自在に調整することができる。また、該流速の変化によ
って圧力損失も変化するため、前記横断面を拡縮するこ
とで圧力損失も自在に調整することができる。つまり、
前記横断面の拡縮調整によって、熱交換効率と圧力損失
の双方を調整することができて、総合的なエネルギー効
率が最も良くなるように調整可能となる。
According to the above apparatus, even if the gap is fixed, the cross-sectional area through which the heat medium passes changes by expanding and contracting the cross-section, so that the flow rate of the heat medium per unit time can be reduced. The heat medium flow velocity in the heat storage body can be freely adjusted without changing. For this reason, the heat exchange efficiency can be freely adjusted through a change in the convective heat transfer coefficient between the heat medium and the heat storage material due to the change in the flow velocity. Further, since the pressure loss also changes due to the change in the flow velocity, the pressure loss can be freely adjusted by expanding and contracting the cross section. That is,
By adjusting the expansion and contraction of the cross section, both the heat exchange efficiency and the pressure loss can be adjusted, and the adjustment can be performed so that the overall energy efficiency is the best.

【0011】また、前記熱交換効率の変化にしたがって
熱交換速度(単位時間に熱媒と蓄熱板との間で授受され
る熱量)も変化するので、前記横断面の拡縮調整によっ
て、蓄熱時間および放熱時間の調整ができる。
Further, since the heat exchange rate (the amount of heat transferred between the heat medium and the heat storage plate per unit time) also changes in accordance with the change in the heat exchange efficiency, the heat storage time and the heat storage time can be adjusted by adjusting the expansion and contraction of the cross section. The heat radiation time can be adjusted.

【0012】請求項3に示す発明は、請求項2に記載の
蓄熱体において、前記横断面の拡縮が蓄熱板面の法線方
向になされるとともに、該拡縮にしたがって前記間隙が
拡縮することを特徴とする。
According to a third aspect of the present invention, in the heat storage element of the second aspect, the expansion and contraction of the cross section is performed in a direction normal to the surface of the heat storage plate, and the gap expands and contracts in accordance with the expansion and contraction. Features.

【0013】上記装置によれば、横断面の拡縮に伴って
前記間隙が拡縮するので、最も拡がった状態と最も縮ま
った状態の横断面面積差を大きくすることができて、熱
交換効率および圧力損失の調整範囲を更に広くすること
ができる。
According to the above apparatus, the gap expands and contracts with the expansion and contraction of the cross section. Therefore, the difference in the cross sectional area between the most expanded state and the most contracted state can be increased, and the heat exchange efficiency and the pressure can be improved. The loss adjustment range can be further widened.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を添付図
面を参照して詳細に説明する。図1は本発明の蓄熱体の
第一実施形態を示す斜視図、図2は、図1における右方
から視た縦断面図である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing a first embodiment of the heat storage body of the present invention, and FIG. 2 is a longitudinal sectional view as viewed from the right in FIG.

【0015】図1、図2に示すように、第一実施形態の
蓄熱体1は、両端が開放された横断面矩形状のダクト3
と、このダクト3内に設けられた矩形平滑板状の複数の
蓄熱板5とで構成される。そして、前記両端に形成され
た図示しない接続用フランジによって図示しない空調ダ
クトに接続されて使用される。この蓄熱体1の中を流動
性熱媒たる空調空気が通過する際に、この空調空気と蓄
熱板5との間で熱交換が行われる。
As shown in FIGS. 1 and 2, the heat storage body 1 of the first embodiment is a duct 3 having a rectangular cross section and open at both ends.
And a plurality of heat storage plates 5 having a rectangular flat plate shape provided in the duct 3. Then, it is connected to an air-conditioning duct (not shown) by connecting flanges (not shown) formed at both ends and used. When the conditioned air as the fluid heat medium passes through the heat storage body 1, heat exchange is performed between the conditioned air and the heat storage plate 5.

【0016】前記蓄熱板5の幅aは、前記ダクト3横断
面の長辺側の内法と同じ寸法に、その長さはダクト3の
長手方向長さLと同じ寸法に設定される。そして、この
蓄熱板5の両端は、各々図示しない係止具によってダク
ト3内側面に係止固定される。この時、複数の蓄熱板5
は、互いの間に所定の間隙sを隔てて平行に対向配置さ
れるとともに前記ダクト3の軸に沿って平行に配置され
る。そして、前記間隙sには前記空調空気が一方向に真
っ直ぐに流される。このように間隙sによって空調空気
の流路は直線状に形成されているため、空調空気が蓄熱
体1内を通過する際の圧力損失が著しく低減される。ま
た、この流路は各蓄熱板5の両側に形成されるので、空
調空気と蓄熱板5との接触面積を大きくできて両者間の
熱交換効率を高くできる。
The width a of the heat storage plate 5 is set to the same size as the inner dimension of the long side of the duct 3 in cross section, and the length is set to the same size as the length L of the duct 3 in the longitudinal direction. Then, both ends of the heat storage plate 5 are locked and fixed to the inner side surface of the duct 3 by locking members (not shown). At this time, the plurality of heat storage plates 5
Are arranged in parallel with each other with a predetermined gap s therebetween, and are arranged in parallel along the axis of the duct 3. The air-conditioned air flows straight in one direction through the gap s. Since the flow path of the conditioned air is formed in a straight line by the gap s, the pressure loss when the conditioned air passes through the heat storage body 1 is significantly reduced. Further, since these flow paths are formed on both sides of each heat storage plate 5, the contact area between the conditioned air and the heat storage plate 5 can be increased, and the heat exchange efficiency between the two can be increased.

【0017】前記蓄熱板5は、熱伝導に優れる外形直方
体の薄肉厚の容器5aに潜熱蓄熱材5bを充填し閉塞し
たものである。その容器5aの外形は平板状で、表面の
粗度は小さく平滑な面に加工されている。その内部に充
填された潜熱蓄熱材5bは、液相・固相間の可逆的相変
化によって蓄熱する蓄熱材が使用され、熱媒および蓄熱
条件に応じて選択される。本第一実施形態では冷房用の
ためパラフィン系の有機系蓄熱材が使用され、その液相
・固相の相変化温度は15〜16℃、相変化熱量は約1
67J/gに設定されている。なお、この蓄熱材の密度
は800kg/mである。
The heat storage plate 5 is formed by filling a latent heat storage material 5b in a thin rectangular container 5a having a rectangular parallelepiped shape having excellent heat conduction and closing the container. The outer shape of the container 5a is a flat plate, and is processed into a smooth surface with small surface roughness. As the latent heat storage material 5b filled therein, a heat storage material that stores heat by a reversible phase change between a liquid phase and a solid phase is used, and is selected according to a heat medium and heat storage conditions. In the first embodiment, a paraffin-based organic heat storage material is used for cooling, and its liquid phase / solid phase has a phase change temperature of 15 to 16 ° C. and a phase change heat quantity of about 1 ° C.
It is set to 67 J / g. The density of this heat storage material is 800 kg / m 3 .

【0018】また、ダクト3の寸法は、ダクト長L=1
500mm、長辺側内法幅a=800mm、短辺内法幅
b=499mmに設定され、ダクト内容積はVd=0.
60mである。
The dimension of the duct 3 is such that the duct length L = 1.
500 mm, the long side inner width a = 800 mm, the shorter side inner width b = 499 mm, and the duct inner volume is Vd = 0.
60m 3.

【0019】蓄熱板5は、蓄熱板長さL=1500m
m、幅a=800mm、厚みt=20mm(但し、容器
5aの肉厚tv=0.5mmは前記厚みの外数である)
に設定され、互いの間に間隔s=5mmを空けながら1
9枚が配設されている。そして、その蓄熱材5bの全体
積Vsは0.456mで設計蓄熱量Qsは61.1M
Jである。
The heat storage plate 5 has a heat storage plate length L = 1500 m.
m, width a = 800 mm, thickness t = 20 mm (however, the wall thickness tv = 0.5 mm of the container 5a is an outside number of the thickness)
Is set to 1 and 1
Nine are arranged. The total volume Vs of the heat storage material 5b is 0.456 m 3 and the designed heat storage amount Qs is 61.1 M
J.

【0020】また、空調空気は、蓄熱時には空調機で1
0℃まで冷却された後蓄熱体に通され、空調時(以下、
放冷時とも記す)には室内温度の約26℃で通される。
尚、この空調空気は、流速v=8m/秒で流通され、そ
の流量mは0.64m/秒である。
The conditioned air is supplied to the air conditioner at the time of heat storage.
After cooling to 0 ° C, it is passed through a heat storage body and
(Also referred to as cooling)) is passed at room temperature of about 26 ° C.
The conditioned air is circulated at a flow velocity v = 8 m / sec, and the flow rate m is 0.64 m 3 / sec.

【0021】以上の構成の蓄熱体が空調機と接続される
ことで以下の運転状態を達成できることを熱シミュレー
ションによって確認した。なお、この熱シミュレーショ
ンにあっては、前記相変化蓄熱量を144.8J/gと
し、Qsは52.8MJとした。 初期温度約14℃に蓄冷された蓄熱材に26℃の空調
空気(室内空気)を流して、約3時間で前記Qsを吸熱
または放冷できる。 そして、その後空調機にて10℃まで冷却した空調空
気を5.5時間流して初期温度14℃まで蓄冷すること
ができる。 また、上記放冷時、蓄冷時の空調空気の圧力損失も極
小さく、良好なエネルギー効率が達成できる。 尚、上記した蓄熱体の数値は一例であって、当該蓄熱体
の用途などに応じて適宜設定されるものであり、この数
値に限るものではない。
It has been confirmed by a thermal simulation that the following operation state can be achieved by connecting the heat storage body having the above configuration to an air conditioner. In this thermal simulation, the phase change heat storage amount was 144.8 J / g, and Qs was 52.8 MJ. The air-conditioning air (room air) at 26 ° C. is flowed through the heat storage material stored at an initial temperature of about 14 ° C., and the Qs can be absorbed or cooled in about 3 hours. Then, the air-conditioned air cooled to 10 ° C. by the air conditioner is allowed to flow for 5.5 hours to cool the air to the initial temperature of 14 ° C. Further, the pressure loss of the conditioned air during the cooling and the cold storage is extremely small, and good energy efficiency can be achieved. It should be noted that the above numerical values of the heat storage element are merely examples, and are appropriately set according to the use of the heat storage element and the like, and are not limited to these numerical values.

【0022】図3に本発明に係る蓄熱体の第二実施形態
の斜視図を、図4に、図3におけるIV線部位の矢視平断
面図を示す。尚、基本的な構成は前述した第一実施形態
と同じであるため、同一の部材には同一の符号を付すと
ともにその相違点のみを説明する。
FIG. 3 is a perspective view of a heat storage element according to a second embodiment of the present invention, and FIG. 4 is a sectional plan view taken along the line IV in FIG. Since the basic configuration is the same as that of the above-described first embodiment, the same members are denoted by the same reference numerals, and only the differences will be described.

【0023】図3、図4に示すように、第二実施形態に
係る蓄熱体11のダクト13の一方の対向する両側面1
7は、前記流路と平行に複数回折り返されてアコーデオ
ンカーテン状に樹脂等の可撓性材料で形成され、ダクト
13の横断面が、蓄熱板5面の法線方向に拡縮するよう
になっている。また、ダクト13の他方の対向する両側
面18は剛性の高い材料で平板状に形成されて、固定側
板18a及び可動側板18bとされている。
As shown in FIGS. 3 and 4, one opposed side surface 1 of the duct 13 of the heat storage body 11 according to the second embodiment.
Numeral 7 is formed of a flexible material such as resin in the form of an accordion curtain that is bent a plurality of times in parallel with the flow path, and the cross section of the duct 13 expands and contracts in the normal direction of the heat storage plate 5 surface. ing. The other opposite side surfaces 18 of the duct 13 are formed in a flat plate shape from a material having high rigidity, and serve as a fixed side plate 18a and a movable side plate 18b.

【0024】アコーデオンカーテン状の両側面17の折
り返しの山谷17a,17bは、互いに山17aと山1
7a、谷17bと谷17bとが対向しており、互いに対
向する谷17bの内側に前記蓄熱板5の両端が係止固定
される。そして、谷17bの数と同数の蓄熱板5が、そ
の互いの間に所定の間隙sを隔てて対向して互いに平行
に配置され、ダクト13の拡縮にしたがって前記間隙s
も拡縮するようになっている。尚、この間隙sはダクト
13に設けられた拡縮手段によってその拡縮限度範囲内
の任意値に設定可能となっている。
The folded peaks and valleys 17a and 17b of the accordion curtain-shaped side surfaces 17 are mutually connected to the peak 17a and the peak 1a.
7a, the valleys 17b and the valleys 17b face each other, and both ends of the heat storage plate 5 are locked and fixed inside the valleys 17b facing each other. The same number of heat storage plates 5 as the number of the valleys 17b are opposed to each other with a predetermined gap s therebetween and arranged in parallel with each other.
Are also scaled. Note that the gap s can be set to an arbitrary value within the expansion / contraction limit range by the expansion / contraction means provided in the duct 13.

【0025】前記拡縮手段は、ダクト13の可動側板1
8bの正面中央に固定された電動シリンダー19と、こ
の電動シリンダー19の作動反力を受けるフレーム部材
21とからなる。このフレーム部材21は、ダクト13
正面の可動側板より若干大きい矩形プレート部材21a
と、この矩形プレート部材21aの四隅からその法線方
向に延出する4本のアングル部材21bとからなる。
The expanding / contracting means includes a movable side plate 1 of the duct 13.
8b comprises an electric cylinder 19 fixed to the front center and a frame member 21 which receives an operation reaction force of the electric cylinder 19. The frame member 21 is connected to the duct 13
Rectangular plate member 21a slightly larger than the front movable side plate
And four angle members 21b extending in the normal direction from the four corners of the rectangular plate member 21a.

【0026】前記電動シリンダー19はそのシリンダー
本体19b側がダクト13正面の可動側板18bのほぼ
中央に固定され、このシリンダー本体19bに嵌合する
ピストン19aは可動側板18bの法線方向に出没自在
となっていて、その先端がプレート部材21aの中央に
固設されている。
The electric cylinder 19 has its cylinder main body 19b side fixed to substantially the center of the movable side plate 18b in front of the duct 13, and a piston 19a fitted to the cylinder main body 19b is freely retractable in the normal direction of the movable side plate 18b. And its tip is fixed to the center of the plate member 21a.

【0027】前記4本のアングル部材21bはそれぞれ
ダクト13の側方を通り、その各先端は固定側板18a
の背面に向けてL字状に折れ曲がり、当該固定側板18
aの四隅に固設されている。そして、図4、図5に示す
ようにピストン19aの出没量に応じて、前記流路を形
成する間隙sが縮んだり広がったりするようになってい
る。尚、この間隙sの拡縮量は前記電動シリンダー19
によって連続的に調整可能である。
Each of the four angle members 21b passes through the side of the duct 13, and each end thereof is fixed to the fixed side plate 18a.
Of the fixed side plate 18
It is fixed at the four corners of a. As shown in FIGS. 4 and 5, the gap s forming the flow path shrinks or expands in accordance with the amount of the piston 19a protruding and retracting. Note that the amount of expansion and contraction of the gap s depends on the electric cylinder 19.
Can be adjusted continuously.

【0028】前記ダクト13の管長方向両端には、同様
にアコーデオンカーテン状の側板を有して形成された連
結用ダクト(図示せず)が接続され、この連結用ダクト
を介して図示していない空調ダクトに接続される。すな
わち、この連結用ダクトは、空調ダクトと蓄熱体11の
ダクト13との寸法差を吸収し得るフレキシビリティー
を有するものであって、ダクト13側との連結端側が当
該ダクト13の拡縮に応じて追従変形して、ダクト13
との接続部および空調ダクトとの接続部にて空調空気が
漏出しないようになっている。
A connecting duct (not shown), also formed with an accordion curtain-shaped side plate, is connected to both ends of the duct 13 in the pipe length direction, and is not shown via this connecting duct. Connected to air conditioning duct. That is, the connection duct has flexibility to absorb a dimensional difference between the air-conditioning duct and the duct 13 of the heat storage unit 11, and the connection end side with the duct 13 side according to expansion and contraction of the duct 13. The duct 13
The air-conditioning air is prevented from leaking at the connection part with the air-conditioning duct.

【0029】ここで、第二実施形態に係る蓄熱体11の
作用について説明するが、以下の作用によって熱交換効
率、圧力損失を自在に調整することができる。尚、この
蓄熱体11に接続された前記空調機は、単位時間当たり
一定流量の空調空気を送風するものである。
Here, the operation of the heat storage body 11 according to the second embodiment will be described. The heat exchange efficiency and the pressure loss can be freely adjusted by the following operation. The air conditioner connected to the heat storage unit 11 blows conditioned air at a constant flow rate per unit time.

【0030】図4に蓄熱体11が縮んだ状態を示すが、
該縮状態では横断面面積が小さいため、空調空気は前記
間隙sが狭まった流路を高速で流れ、空調空気と蓄熱板
5との対流熱伝達率の向上に伴い熱交換効率は向上す
る。ただし、空調空気の流速は速いため圧力損失は大き
くなる。一方、図5に示す拡状態では上記と逆の状態と
なる。すなわち、横断面面積が大きいため流速が遅く、
対流熱伝達率が低下に伴い熱交換効率は小さくなる。た
だし前記流速の低下に伴い圧力損失は小さくなる。
FIG. 4 shows a state in which the heat storage body 11 is contracted.
Since the cross-sectional area is small in the contracted state, the conditioned air flows at a high speed through the flow path in which the gap s is narrowed, and the heat exchange efficiency is improved as the convective heat transfer coefficient between the conditioned air and the heat storage plate 5 is improved. However, since the flow rate of the conditioned air is high, the pressure loss increases. On the other hand, in the expanded state shown in FIG. 5, the state is opposite to the above. That is, the flow velocity is slow due to the large cross-sectional area,
As the convective heat transfer coefficient decreases, the heat exchange efficiency decreases. However, the pressure loss decreases as the flow velocity decreases.

【0031】また、前記熱交換効率の変化に伴って熱交
換速度も変化する。例えば、図4に示す縮状態では、熱
交換効率が大きくなるにしたがって熱交換速度も大きく
なる。したがい、急速に蓄熱したい場合、若しくは、蓄
熱体11から急速に放熱して急速冷暖房したい場合には
上記縮状態に設定される。
Further, the heat exchange rate changes with the change of the heat exchange efficiency. For example, in the contracted state shown in FIG. 4, the heat exchange rate increases as the heat exchange efficiency increases. Accordingly, when it is desired to rapidly store heat, or when it is desired to rapidly radiate heat from the heat storage body 11 to perform rapid cooling and heating, the contraction state is set.

【0032】尚、一般的な蓄熱体では、急速蓄熱、若し
くは急速冷暖房する際には、単位時間当たりの空調空気
流量を増加する。このため、蓄熱体に接続された空調ダ
クトでの圧力損失が大きくなりエネルギー効率の悪化を
助長する。しかし、本第二実施形態の蓄熱体11は、単
位時間当たりの空調空気の流量を変えずに、急速蓄熱、
若しくは急速冷暖房ができるので、前記空調ダクトの圧
力損失が大きくなることもなく、良好なエネルギー効率
を維持することができる。
In a general heat storage unit, the flow rate of air-conditioned air per unit time is increased during rapid heat storage or rapid cooling and heating. For this reason, the pressure loss in the air conditioning duct connected to the heat storage body increases, which promotes the deterioration of energy efficiency. However, the heat storage body 11 of the second embodiment is capable of rapidly storing heat without changing the flow rate of the conditioned air per unit time.
Alternatively, since rapid cooling and heating can be performed, good energy efficiency can be maintained without increasing the pressure loss of the air conditioning duct.

【0033】一方、図5に示す拡状態では熱交換速度が
小さくなる。したがい、蓄熱体11から徐々に放熱して
徐冷暖房する場合にはこの拡状態に設定される。
On the other hand, in the expanded state shown in FIG. 5, the heat exchange rate is low. Accordingly, when the heat is gradually released from the heat storage body 11 to perform slow cooling and heating, this expanded state is set.

【0034】尚、上記拡縮量は電動シリンダーによって
連続的に調整できるので、熱交換速度を任意の値に調整
することができる。このため、所望の蓄熱時間で蓄熱し
たり、所望の冷暖房速度に設定することが可能である。
The amount of expansion and contraction can be continuously adjusted by an electric cylinder, so that the heat exchange rate can be adjusted to an arbitrary value. Therefore, it is possible to store heat for a desired heat storage time or to set a desired cooling / heating speed.

【0035】以上、本発明の実施形態について説明した
が、本発明は、かかる実施形態に限定されるものではな
く、その要旨を逸脱しない範囲で以下の(a)〜(e)
に示すような種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and the following (a) to (e) are described without departing from the gist thereof.
Various modifications as shown in FIG.

【0036】(a)本第一実施形態においては、冷房用
として冷熱を蓄熱する蓄熱体を開示したが、暖房用とし
てこの蓄熱体に温熱を蓄熱するようにしてもよい。尚、
その場合には、蓄熱材が適宜選定され、その他の諸条件
も適宜設定される。
(A) In the first embodiment, the heat storage element for storing cold heat for cooling is disclosed. However, the heat storage element for heating may store heat. still,
In that case, the heat storage material is appropriately selected, and other conditions are also set as appropriate.

【0037】(b)本第一実施形態においては、熱媒の
圧力損失を低減するために、蓄熱板の表面を平滑にした
が、熱媒の流れを大きく妨げなければこれに限るもので
はない。例えば、前記蓄熱板の外表面に流路方向に沿っ
て縦リブを設けても支障はなく、蓄熱板の剛性を高める
ことができる。
(B) In the first embodiment, the surface of the heat storage plate is smoothed in order to reduce the pressure loss of the heat medium. However, the present invention is not limited to this. . For example, even if a vertical rib is provided on the outer surface of the heat storage plate along the flow path direction, there is no problem, and the rigidity of the heat storage plate can be increased.

【0038】(c)本第一実施形態においては、蓄熱体
入出口に位置する蓄熱板端面を角のある矩形状にしてい
るが、この端面の角を面取しても良い。この面取によっ
て、特に蓄熱体の入口では熱媒がスムースに蓄熱板同士
の間隙に誘導されるので、圧力損失を著しく低減でき
る。この面取形状は、円弧状や直線状など場合に応じて
選択される。
(C) In the first embodiment, the end face of the heat storage plate located at the inlet / outlet of the heat storage body has a rectangular shape with a corner, but the corner of this end face may be chamfered. By this chamfering, the heat medium is smoothly guided to the gap between the heat storage plates particularly at the entrance of the heat storage body, so that the pressure loss can be significantly reduced. This chamfered shape is selected depending on the case such as an arc shape or a straight line shape.

【0039】(d)本第一実施形態においては、蓄熱材
を蓄熱板に保形形成するのに、直方体状の容器を用いた
が、前記蓄熱材が液相に相変化した際に漏出しなければ
これに限るものではない。例えば、容器を用いることな
く、結晶化度40%未満の低結晶性ポリオレフィンに前
記蓄熱材を担持させて、前記蓄熱材の溶出を防止した蓄
熱板を用いても良い。
(D) In the first embodiment, a rectangular parallelepiped container is used to keep the shape of the heat storage material on the heat storage plate. However, when the heat storage material changes to a liquid phase, it leaks out. If not, it is not limited to this. For example, a heat storage plate in which the heat storage material is supported on a low-crystalline polyolefin having a degree of crystallinity of less than 40% to prevent elution of the heat storage material without using a container may be used.

【0040】(e)本第一実施形態においては、冷房用
の蓄熱材としてパラフィン系の有機系蓄熱材を使用した
が、これに限るものではなく、硫酸ナトリウム10水塩
系などの無機系蓄熱材も使用できる。
(E) In the first embodiment, a paraffinic organic heat storage material is used as a heat storage material for cooling. However, the present invention is not limited to this, and an inorganic heat storage material such as sodium sulfate decahydrate is used. Materials can also be used.

【0041】[0041]

【発明の効果】以上説明したように、請求項1に示す発
明によれば、矩形状に保形形成してなる複数の蓄熱板に
よって、ダクト内に真っ直ぐな複数の熱媒流路を設ける
ことができるので、圧力損失を著しく低減するとともに
熱交換効率を高く維持することができて、蓄熱空調シス
テムの総合的なエネルギー効率を著しく向上することが
できる。したがい、前記蓄熱空調システムのランニング
コストを著しく低減することができる。また、蓄熱板を
層状に高密度に並べてダクト単位体積当たりの蓄熱容量
を大きくでき蓄熱体のコンパクト化が図れるので、空間
利用の自由度が増す。
As described above, according to the first aspect of the present invention, a plurality of straight heat medium passages are provided in a duct by a plurality of heat storage plates formed in a rectangular shape. Therefore, the pressure loss can be significantly reduced and the heat exchange efficiency can be kept high, so that the overall energy efficiency of the heat storage air conditioning system can be significantly improved. Accordingly, the running cost of the thermal storage air conditioning system can be significantly reduced. Further, the heat storage plates are arranged in a layered manner at a high density to increase the heat storage capacity per unit volume of the duct, thereby making it possible to make the heat storage body compact, thereby increasing the degree of freedom in space utilization.

【0042】請求項2に示す発明によれば、ダクト横断
面の拡縮調整によって、熱交換効率と圧力損失とを自在
に調整することができる。したがい、総合的な観点から
エネルギー効率が最も良くなるように調整すること可能
となる。また、前記拡縮調整によって熱交換速度の調整
ができるので、蓄熱時間、放熱時間を自在に調整するこ
とができる。したがい、前記蓄熱空調システムに適用し
た際には、急速に蓄熱したり、急速冷暖房から徐冷暖房
まで微妙な冷暖房速度の調整も可能でその利便性が向上
する。
According to the second aspect of the present invention, the heat exchange efficiency and the pressure loss can be freely adjusted by adjusting the expansion and contraction of the cross section of the duct. Therefore, it is possible to adjust the energy efficiency to be the best from a comprehensive viewpoint. In addition, since the heat exchange rate can be adjusted by the expansion and contraction adjustment, the heat storage time and the heat release time can be freely adjusted. Therefore, when applied to the heat storage air conditioning system, heat can be rapidly stored, and the cooling / heating speed can be finely adjusted from rapid cooling / heating to slow cooling / heating, thereby improving the convenience.

【0043】請求項3に示す発明によれば、横断面の拡
縮に伴って前記間隙が拡縮するので、横断面の拡縮差を
大きくすることができて、熱交換速度および圧力損失の
調整範囲を広くすることができる。したがい、前述した
急速に蓄熱する際の蓄熱時間の調整幅、および前記冷暖
房速度の調整幅を広げることができ利便性が向上する。
According to the third aspect of the present invention, since the gap expands and contracts with the expansion and contraction of the cross section, the difference in expansion and contraction of the cross section can be increased, and the adjustment range of the heat exchange rate and the pressure loss can be reduced. Can be wider. Accordingly, the adjustment range of the heat storage time when the heat is rapidly stored and the adjustment range of the cooling and heating speed can be widened, and the convenience is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蓄熱体の第一実施形態を示す斜視図で
ある。
FIG. 1 is a perspective view showing a first embodiment of a heat storage body of the present invention.

【図2】図1における紙面右方から視た縦断面図であ
る。
FIG. 2 is a vertical cross-sectional view as viewed from the right side of FIG. 1;

【図3】本発明の蓄熱体の第二実施形態を示す斜視図で
ある。
FIG. 3 is a perspective view showing a second embodiment of the heat storage body of the present invention.

【図4】図3中に示すIV線部矢視の平断面図で、ダクト
の横断面が縮まった状態を示す図である。
FIG. 4 is a plan sectional view taken along line IV of FIG. 3 and showing a state in which the cross section of the duct is contracted.

【図5】同上、ダクトの横断面が拡がった状態を示す図
である。
FIG. 5 is a diagram showing a state in which the cross section of the duct is expanded.

【符号の説明】[Explanation of symbols]

1,11 蓄熱体 3,13 ダクト 5 蓄熱板 5a 容器 5b 蓄熱材 s 間隙 1,11 heat storage body 3,13 duct 5 heat storage plate 5a container 5b heat storage material s gap

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 両端が開放されて流動性熱媒が流される
横断面略矩形形状のダクト内に、潜熱蓄熱材を表面が平
滑な矩形形状に保形形成してなる複数の蓄熱板を互いに
所定の間隙を隔てて対向配置して、各蓄熱板間に流動性
熱媒の流路をダクト長方向に沿って形成したことを特徴
とする蓄熱体。
1. A plurality of heat storage plates each formed by keeping a latent heat storage material in a rectangular shape with a smooth surface in a duct having a substantially rectangular cross section through which a fluid heat medium flows with both ends opened. A heat storage element characterized in that a flow path of a fluid heat medium is formed between each heat storage plate along a duct length direction so as to face each other with a predetermined gap therebetween.
【請求項2】 前記ダクトはその横断面が拡縮可能に形
成されるとともに、該横断面を拡縮する拡縮手段が設け
られたことを特徴とする請求項1に記載の蓄熱体。
2. The heat storage element according to claim 1, wherein the duct is formed so that its cross section can be expanded and contracted, and expansion and contraction means for expanding and contracting the cross section are provided.
【請求項3】 前記横断面の拡縮が蓄熱板面の法線方向
になされるとともに、該拡縮にしたがって前記間隙が拡
縮することを特徴とする請求項2に記載の蓄熱体。
3. The heat storage element according to claim 2, wherein the expansion and contraction of the cross section is performed in a direction normal to the surface of the heat storage plate, and the gap expands and contracts in accordance with the expansion and contraction.
JP37092599A 1999-12-27 1999-12-27 Heat accumulating member Pending JP2001183082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37092599A JP2001183082A (en) 1999-12-27 1999-12-27 Heat accumulating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37092599A JP2001183082A (en) 1999-12-27 1999-12-27 Heat accumulating member

Publications (1)

Publication Number Publication Date
JP2001183082A true JP2001183082A (en) 2001-07-06

Family

ID=18497834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37092599A Pending JP2001183082A (en) 1999-12-27 1999-12-27 Heat accumulating member

Country Status (1)

Country Link
JP (1) JP2001183082A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130562A (en) * 2001-10-23 2003-05-08 Kansai Electric Power Co Inc:The Hot heat storage apparatus
JP2004277646A (en) * 2003-03-18 2004-10-07 Sekisui Chem Co Ltd Heat-storage microcapsule
JP2013036626A (en) * 2011-08-03 2013-02-21 Toyota Motor Corp Heat storage device
CN117329842A (en) * 2023-09-23 2024-01-02 山东海德智能装备有限公司 Heat recovery type hydraulic tilting converter and process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130562A (en) * 2001-10-23 2003-05-08 Kansai Electric Power Co Inc:The Hot heat storage apparatus
JP2004277646A (en) * 2003-03-18 2004-10-07 Sekisui Chem Co Ltd Heat-storage microcapsule
JP4527946B2 (en) * 2003-03-18 2010-08-18 積水化学工業株式会社 Heat storage microcapsule manufacturing method and heat storage microcapsule
JP2013036626A (en) * 2011-08-03 2013-02-21 Toyota Motor Corp Heat storage device
CN117329842A (en) * 2023-09-23 2024-01-02 山东海德智能装备有限公司 Heat recovery type hydraulic tilting converter and process
CN117329842B (en) * 2023-09-23 2024-04-30 山东海德智能装备有限公司 Heat recovery type hydraulic tilting converter and process

Similar Documents

Publication Publication Date Title
JP5126992B2 (en) Reciprocating magnetic refrigerator
JP5444782B2 (en) Cold storage heat exchanger
KR100737781B1 (en) Rotation type regenerator and magnetic refrigerator using the regenerator
CN104089436B (en) cool-storage type heat exchanger
US20120037342A1 (en) Fluid conditioning arrangements
WO2010092391A1 (en) Fluid conditioning arrangements
WO2008111732A1 (en) Heat exchanger for ventilation system
WO1995016175A1 (en) Thermal storage apparatus
JP2001183082A (en) Heat accumulating member
CN101153758A (en) Cold and heat source for medical purpose or laboratory
GB2467812A (en) Fluid conditioning arrangement
WO2014129621A1 (en) Heat exchanger and vehicle air conditioning device
JP2020017426A (en) Warmer
CN102338430A (en) Air conditioner capable of storing energy
JPS6335843Y2 (en)
KR101819522B1 (en) Magnetic cooling system
JP3858109B2 (en) Heat storage capsule
JP2015045461A (en) Thermal storage device
JP3050499B2 (en) Heat storage structure
CN219494284U (en) Air conditioning system with phase change energy storage function
JPS63318495A (en) Regenerative heat exchanger
JP2006145098A (en) Heat storage type air conditioner
WO2020100847A1 (en) Heat exchanger
JPS6152395B2 (en)
CN106440862A (en) Air exchanging and energy storing device and energy storing apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040922