JP2001182983A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2001182983A
JP2001182983A JP36657399A JP36657399A JP2001182983A JP 2001182983 A JP2001182983 A JP 2001182983A JP 36657399 A JP36657399 A JP 36657399A JP 36657399 A JP36657399 A JP 36657399A JP 2001182983 A JP2001182983 A JP 2001182983A
Authority
JP
Japan
Prior art keywords
ratio
pressure
outdoor unit
unit
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36657399A
Other languages
Japanese (ja)
Inventor
Junji Matsue
準治 松栄
Yoshihito Tajima
祥人 田島
Keiji Wada
圭司 和田
Kazuo Kumehara
一夫 粂原
Akira Shindo
章 進藤
Takami Azuma
孝美 東
Ryota Hirata
亮太 平田
Yoshihiro Nakamura
由浩 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP36657399A priority Critical patent/JP2001182983A/en
Publication of JP2001182983A publication Critical patent/JP2001182983A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner in which the r.p.m. or the pressure of an outdoor unit under operation can be balanced. SOLUTION: The air conditioner comprises a plurality of outdoor units 1 coupled in parallel through inter-unit piping extended from load machines 3a, 3b. The air conditioner further comprises means for controlling the number of operating outdoor units 1 depending on the air conditioning load, and means for operating the ratio of the rated r.p.m. of each outdoor unit 1 operating under control of operating number to the actual r.p.m., comparing the highest ratio with the lowest ratio and arranging the ratio of respective outdoor units when the difference between the highest ratio and the lowest ratio exceeds a predetermined value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数台の室外機を
備えた空気調和装置に係り、夫々の室外機の運転制御に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a plurality of outdoor units, and to an operation control of each outdoor unit.

【0002】[0002]

【従来の技術】一般に、複数台の室外機を負荷機から延
びるユニット間配管に並列につないだ空気調和装置が知
られている。この種のものでは、室内機(負荷機)での
設定温度と実際に吸い込む空気の温度との温度差、或い
は設定温度と実際に吹き出す空気との温度差から空調負
荷を推定すると共に、運転中の夫々の室外機が負担すべ
き空調負荷を計算する、集中制御装置が備えられてい
る。この集中制御装置は、常時空調負荷を監視すると共
に、各室外機の圧縮機の回転数と冷媒圧力とが一定にな
るように、空調負荷を各室外機に分担している。
2. Description of the Related Art In general, there is known an air conditioner in which a plurality of outdoor units are connected in parallel to interunit piping extending from a load unit. In this type, the air conditioning load is estimated from the temperature difference between the set temperature in the indoor unit (load unit) and the temperature of the air actually sucked in or the temperature difference between the set temperature and the air actually blown out. A centralized control device is provided for calculating the air conditioning load to be borne by each of the outdoor units. This centralized control device constantly monitors the air conditioning load and shares the air conditioning load with each outdoor unit so that the rotational speed of the compressor of each outdoor unit and the refrigerant pressure are constant.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
構成では、集中制御装置が、分担すべき空調負荷を、各
室外機に指示するのみで、各室外機の圧縮機の回転数や
冷媒圧力を直接制御しておらず、各室外機では、分担さ
れた空調負荷に応じて、独自に圧縮機の回転数や冷媒圧
力を制御している。
However, in the conventional configuration, the centralized control device only instructs each outdoor unit on the air-conditioning load to be shared, and controls the rotational speed of the compressor and the refrigerant pressure of each outdoor unit. Rather than controlling directly, each outdoor unit independently controls the number of revolutions of the compressor and the refrigerant pressure according to the shared air conditioning load.

【0004】このため、例えば、各室外機の設置場所に
よって、日当たりの善し悪しが生じて外気温度が異なっ
たり、風通しの善し悪しが生じて通風性が異なったりし
て、運転環境が異なる場合、分担された空調負荷に対
し、各室外機間で、圧縮機の回転数の差や、冷媒圧力の
圧力差が生じる。この結果、回転数或いは圧力が低い室
外機に冷媒が溜まりこみ、装置の運転が不安定になる可
能性が高くなるという問題がある。
[0004] For this reason, for example, depending on the installation location of each outdoor unit, if the operating environment is different due to a difference in the outside air temperature due to the quality of the sun or a difference in the air permeability due to a variation in the ventilation due to the poor ventilation. A difference in the number of rotations of the compressor and a difference in refrigerant pressure are generated between the outdoor units with respect to the air conditioning load. As a result, there is a problem that refrigerant is likely to accumulate in the outdoor unit having a low rotation speed or a low pressure and the operation of the apparatus becomes unstable.

【0005】そこで、本発明の目的は、上述した従来の
技術が有する課題を解消し、運転中の室外機の回転数或
いは圧力のバランスを保つことができる空気調和装置を
提供することにある。
It is an object of the present invention to provide an air conditioner capable of solving the above-mentioned problems of the prior art and maintaining the balance of the number of revolutions or pressure of the outdoor unit during operation.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
複数台の室外機を負荷機から延びるユニット間配管に並
列につないだ空気調和装置において、空調負荷に応じて
前記室外機の運転台数を制御する手段と、台数制御され
て運転している各室外機の定格回転数に対する実回転数
の比率を演算し、この比率のうちの最高比率と最低比率
とを比較し、最高比率と最低比率との偏差が規定値を越
えた時に、各室外機の前記比率を揃える手段と、を備え
たことを特徴とする。
According to the first aspect of the present invention,
In an air conditioner in which a plurality of outdoor units are connected in parallel to piping between units extending from a load unit, means for controlling the number of the outdoor units to be operated according to the air conditioning load, Calculate the ratio of the actual rotation speed to the rated rotation speed of the unit, compare the maximum ratio and the minimum ratio of this ratio, and when the deviation between the maximum ratio and the minimum ratio exceeds the specified value, Means for making the ratio uniform.

【0007】請求項1記載の発明では、運転台数を制御
し、この運転されている室外機の定格回転数に対する実
回転数の比率を演算し、この比率のうちの最高比率と最
低比率とを比較し、最高比率と最低比率との偏差が規定
値を越えた時に、各室外機の前記比率を揃える手段を備
えているので、この比率を演算するのに必要な数値であ
る各室外機の実回転数が揃えられる。実回転数が揃えら
れることによって、各室外機からユニット間配管に流入
出する冷媒の圧力が揃えられ、運転のバランスが保持さ
れ、冷媒が特定の室外機に溜まり込むことを防止でき
る。
According to the first aspect of the present invention, the number of operating units is controlled, and the ratio of the actual rotational speed to the rated rotational speed of the outdoor unit being operated is calculated. In comparison, when the deviation between the highest ratio and the lowest ratio exceeds a specified value, a means for equalizing the ratio of each outdoor unit is provided, so that each outdoor unit is a numerical value necessary to calculate this ratio. The actual rotation speeds are aligned. By making the actual rotational speeds uniform, the pressures of the refrigerant flowing into and out of the unit-to-unit piping from each outdoor unit are made uniform, the operation balance is maintained, and the refrigerant can be prevented from accumulating in a specific outdoor unit.

【0008】請求項2記載の発明は、複数台の室外機を
負荷機から延びるユニット間配管に並列につないだ空気
調和装置において、空調負荷に応じて前記室外機の運転
台数を制御する手段と、台数制御されて運転している各
室外機の冷媒圧力を計測し、この冷媒圧力のうちの最高
圧力と最低圧力とを比較し、最高圧力と最低圧力との偏
差が規定値を越えた時に、各室外機の前記圧力を揃える
手段と、を備えたことを特徴とする。
According to a second aspect of the present invention, there is provided an air conditioner in which a plurality of outdoor units are connected in parallel to an inter-unit pipe extending from a load unit, a means for controlling the number of the outdoor units to be operated according to an air conditioning load. The refrigerant pressure of each outdoor unit that is controlled and operated is measured, and the maximum pressure and the minimum pressure among the refrigerant pressures are compared, and when the deviation between the maximum pressure and the minimum pressure exceeds a specified value, Means for equalizing the pressure of each outdoor unit.

【0009】請求項2記載の発明では、運転台数を制御
し、この運転されている室外機の冷媒圧力を計測し、こ
の冷媒圧力のうちの最高圧力と最低圧力とを比較し、最
高圧力と最低圧力との偏差が規定値を越えた時に、各室
外機の前記圧力を揃える手段を備えているので、各室外
機からユニット間配管に流入出する冷媒の圧力が揃えら
れ、運転のバランスが保持され、冷媒が特定の室外機に
溜まり込むことを防止できる。
According to the second aspect of the present invention, the number of operating units is controlled, the refrigerant pressure of the outdoor unit being operated is measured, and the maximum pressure and the minimum pressure of the refrigerant pressure are compared to determine the maximum pressure and the maximum pressure. When the deviation from the minimum pressure exceeds a specified value, a means for equalizing the pressure of each outdoor unit is provided, so that the pressure of the refrigerant flowing into and out of the unit-to-unit piping from each outdoor unit is equalized, and the balance of operation is improved. Thus, the refrigerant can be prevented from accumulating in the specific outdoor unit.

【0010】請求項3記載の発明は、請求項2記載の発
明において、暖房運転モードにおいては低圧側の冷媒圧
力を計測することを特徴とする。
A third aspect of the present invention is characterized in that, in the second aspect of the invention, the refrigerant pressure on the low pressure side is measured in the heating operation mode.

【0011】請求項4記載の発明は、請求項2記載の発
明において、冷房運転モードにおいては高圧側の冷媒圧
力を計測することを特徴とする。
According to a fourth aspect of the present invention, in the second aspect of the present invention, the refrigerant pressure on the high pressure side is measured in the cooling operation mode.

【0012】請求項3、4記載の発明では、暖房運転時
に低圧側の冷媒圧力を計測するので、この冷媒圧力を計
測する圧力センサ等の計測器は、冷房運転時では、高圧
側の冷媒圧力を計測することになる。従って、暖房運転
時、冷房運転時を問わず、各室外機において、1つの計
測器で冷媒圧力が検出可能であり、複数の計測器を設け
る必要が無く、コストを低減できる。
According to the third and fourth aspects of the present invention, the refrigerant pressure on the low pressure side is measured during the heating operation. Therefore, a measuring device such as a pressure sensor for measuring the refrigerant pressure is required to perform the refrigerant pressure measurement on the high pressure side during the cooling operation. Will be measured. Therefore, regardless of the heating operation and the cooling operation, the refrigerant pressure can be detected by one measuring device in each outdoor unit, and it is not necessary to provide a plurality of measuring devices, and the cost can be reduced.

【0013】請求項5記載の発明は、複数台の室外機を
負荷機から延びるユニット間配管に並列につないだ空気
調和装置において、空調負荷に応じて前記室外機の運転
台数を制御する手段と、台数制御されて運転している各
室外機の定格回転数に対する実回転数の比率を演算し、
この比率のうちの最高比率と最低比率とを比較し、最高
比率と最低比率との偏差が規定値を越えた時に、各室外
機の前記比率を揃える手段と、台数制御されて運転して
いる各室外機の冷媒圧力を計測し、この冷媒圧力のうち
の最高圧力と最低圧力とを比較し、最高圧力と最低圧力
との偏差が規定値を越えた時に、各室外機の前記圧力を
揃える手段と、を備えたことを特徴とする。
According to a fifth aspect of the present invention, there is provided an air conditioner in which a plurality of outdoor units are connected in parallel to an inter-unit pipe extending from a load unit, a means for controlling the number of operating outdoor units in accordance with an air conditioning load. Calculates the ratio of the actual rotation speed to the rated rotation speed of each outdoor unit that is controlled and operated,
The maximum ratio and the minimum ratio of the ratios are compared, and when the deviation between the maximum ratio and the minimum ratio exceeds a specified value, a means for equalizing the ratio of each outdoor unit and the number of the outdoor units are controlled to operate. Measure the refrigerant pressure of each outdoor unit, compare the maximum pressure and the minimum pressure of this refrigerant pressure, when the deviation between the maximum pressure and the minimum pressure exceeds a specified value, align the pressure of each outdoor unit Means.

【0014】請求項5記載の発明では、運転台数を制御
し、この運転されている室外機の定格回転数に対する実
回転数の比率を演算し、この比率のうちの最高比率と最
低比率とを比較し、最高比率と最低比率との偏差が規定
値を越えた時に、各室外機の前記比率を揃える手段を備
え、運転されている室外機の冷媒圧力を計測し、この冷
媒圧力のうちの最高圧力と最低圧力とを比較し、最高圧
力と最低圧力との偏差が規定値を越えた時に、各室外機
の前記圧力を揃える手段を備えているので、比率を演算
するのに必要な数値である各室外機の実回転数が揃えら
れると共に、例えば、実回転数が同じであって、配管等
の不具合によって冷媒圧力が異なる場合でも、冷媒圧力
を揃える手段によって、各室外機からユニット間配管に
流入出する冷媒の圧力が揃えられ、運転のバランスが保
持される。
According to the fifth aspect of the present invention, the number of operating units is controlled, the ratio of the actual rotational speed to the rated rotational speed of the outdoor unit being operated is calculated, and the highest ratio and the lowest ratio of the ratios are calculated. In comparison, when the deviation between the highest ratio and the lowest ratio exceeds a specified value, a means for equalizing the ratio of each outdoor unit is provided, and the refrigerant pressure of the outdoor unit being operated is measured. The maximum pressure and the minimum pressure are compared, and when the deviation between the maximum pressure and the minimum pressure exceeds a specified value, there is provided a means for equalizing the pressure of each outdoor unit. Even when the actual rotation speeds of the outdoor units are the same, for example, even when the actual rotation speeds are the same and the refrigerant pressures are different due to problems such as piping, the means for equalizing the refrigerant pressures allows the units to be connected from each outdoor unit to the unit. Of the refrigerant flowing into and out of the piping Force is justified, the balance of the operation is maintained.

【0015】請求項6記載の発明は、請求項1又は5記
載の発明において、前記比率を揃える手段は、各室外機
の前記比率に基づいて、各室外機の個別負荷率を算出
し、各室外機の定格容量に個別負荷率を乗じ、この乗じ
た値に基づいて運転制御中の運転室外機の余剰負荷を算
出し、各室外機の定格総容量から前記余剰負荷を減算し
て、全室外機の全体負荷率を求め、この全体負荷率に基
づいて、運転制御中の運転室外機の目標回転数を算出
し、この目標回転数に一致させるように運転室外機の実
回転数を揃えて前記比率を揃えることを特徴とする。
According to a sixth aspect of the present invention, in the first or fifth aspect, the means for equalizing the ratios calculates an individual load factor of each outdoor unit based on the ratio of each outdoor unit. Multiply the rated capacity of the outdoor unit by the individual load factor, calculate the surplus load of the outdoor unit under operation control based on the multiplied value, subtract the surplus load from the rated total capacity of each outdoor unit, The overall load factor of the outdoor unit is obtained, and based on the overall load factor, the target rotational speed of the outdoor unit under operation control is calculated, and the actual rotational speeds of the outdoor unit are aligned to match the target rotational speed. The ratios are made uniform.

【0016】請求項6記載の発明では、運転中の各室外
機の圧縮機の実回転数を、算出した目標回転数に揃える
ので、運転中の各室外機に係る負荷が均一化され、冷媒
圧力が一定になり、各室外機での運転のバランスが保持
される。
According to the present invention, since the actual rotation speed of the compressor of each outdoor unit during operation is made equal to the calculated target rotation speed, the load on each outdoor unit during operation is equalized, and the refrigerant The pressure becomes constant, and the balance of operation in each outdoor unit is maintained.

【0017】[0017]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0018】図1において、1a,1bは室外機を示
し、3a,3bは室内機を示している。室外機1aは、
アキュームレータ10aと、ガスエンジン駆動による圧
縮機11aと、オイルセパレータ12aと、四方弁13
aと、室外熱交換器14aと、室外電動式膨脹弁15a
とで構成されている。なお、17aは室外熱交換器14
aのファンを示している。室外機1bについては、以下
の構成を含めて、室外機1aと同じであるので、説明を
省略する。
In FIG. 1, 1a and 1b denote outdoor units, and 3a and 3b denote indoor units. The outdoor unit 1a
Accumulator 10a, compressor 11a driven by gas engine, oil separator 12a, four-way valve 13
a, an outdoor heat exchanger 14a, and an outdoor electric expansion valve 15a
It is composed of 17a is the outdoor heat exchanger 14.
The fan of a is shown. The outdoor unit 1b is the same as the outdoor unit 1a, including the following configuration, and a description thereof will be omitted.

【0019】また、室内機3aは、室内熱交換器34a
と、室内電動式膨脹弁35a(以下「室内メカ弁35
a」という。)とで構成されている。なお、室内機3b
については、以下の構成を含めて、室内機3aと同じで
あるので、説明を省略する。この室内機3a,3bから
は、ガス管5及び液管7からなるユニット間配管が延び
出し、このユニット間配管には、室外機1a,1bが並
列に接続されている。
The indoor unit 3a includes an indoor heat exchanger 34a.
And an indoor electric expansion valve 35a (hereinafter referred to as “indoor mechanical valve 35”).
a ". ). The indoor unit 3b
Is the same as that of the indoor unit 3a, including the following configuration, and a description thereof will be omitted. From the indoor units 3a and 3b, inter-unit pipes including the gas pipe 5 and the liquid pipe 7 extend, and the outdoor units 1a and 1b are connected in parallel to the inter-unit pipes.

【0020】オイルセパレータ12aは、圧縮機11a
から吐出される冷媒中の潤滑油を分離するものであり、
ここで分離された潤滑油は常時オイル戻し管21aと強
制オイル戻し管22aとを通じて圧縮機11aに戻され
る。常時オイル戻し管21aにはキャピラリーチューブ
24aが設けられ、このキャピラリーチューブ24aに
よって圧縮機11aに戻されるオイルに流路抵抗がかけ
られる。この常時オイル戻し管21aはオイルセパレー
タ12aの中程につながれ、これがつながれた位置より
もオイルセパレータ12a内のオイルの油面が上回る限
りにおいて、この常時オイル戻し管21aを通じてオイ
ルが常時圧縮機11aの吸込管に戻される。強制オイル
戻し管22aには開閉弁23a,25aが設けられる。
この強制オイル戻し管22aは、オイルセパレータ12
aの底部につながれ、開閉弁23a,25aを開くこと
によってオイルセパレータ12a内のオイルが強制的に
圧縮機11aの吸込管に戻される。
The oil separator 12a includes a compressor 11a
To separate the lubricating oil in the refrigerant discharged from the
The lubricating oil separated here is always returned to the compressor 11a through the oil return pipe 21a and the forced oil return pipe 22a. A capillary tube 24a is always provided in the oil return pipe 21a, and a flow path resistance is applied to oil returned to the compressor 11a by the capillary tube 24a. This constant oil return pipe 21a is connected in the middle of the oil separator 12a, and as long as the oil level of the oil in the oil separator 12a is higher than the position where the oil return pipe 21a is connected, the oil is constantly supplied to the compressor 11a through the constant oil return pipe 21a. It is returned to the suction pipe. On-off valves 23a and 25a are provided in the forced oil return pipe 22a.
The forced oil return pipe 22a is connected to the oil separator 12
The oil in the oil separator 12a is forcibly returned to the suction pipe of the compressor 11a by opening the on-off valves 23a and 25a.

【0021】室外機1a,1bの強制オイル戻し管22
a,22bどうしは、バランス管51によりつながれ
る。このバランス管51は、第3の補助管53aを通じ
て、オイルセパレータ12aとチェッキ弁18aとの間
につながれ、第3の補助管53aには第3の開閉弁55
aが設けられる。
The forced oil return pipe 22 of the outdoor units 1a and 1b
a and 22b are connected by a balance tube 51. The balance pipe 51 is connected between the oil separator 12a and the check valve 18a through a third auxiliary pipe 53a. The third auxiliary pipe 53a has a third opening / closing valve 55a.
a is provided.

【0022】第3の開閉弁55aが開き、四方弁13a
が図示の位置に切り替わると、バランス管51は室外熱
交換器14aに連通する。
The third on-off valve 55a is opened, and the four-way valve 13a is opened.
Is switched to the illustrated position, the balance pipe 51 communicates with the outdoor heat exchanger 14a.

【0023】上記構成の空気調和装置において、本実施
形態では、圧縮機11a,11bがそれぞれガスエンジ
ン100a,100bで駆動される。この圧縮機11
a,11bの本体からは、軸101a,101bが導出
され、この軸101a,101bに図示を省略したプー
リが連結され、プーリVベルト102a,102bを介
してガスエンジン100a,100bの出力軸が連結さ
れている。
In the air conditioner having the above configuration, in the present embodiment, the compressors 11a and 11b are driven by the gas engines 100a and 100b, respectively. This compressor 11
The shafts 101a and 101b are led out from the main bodies of the motors a and 11b. Pulleys (not shown) are connected to the shafts 101a and 101b, and the output shafts of the gas engines 100a and 100b are connected via pulley V belts 102a and 102b. Have been.

【0024】上記構成において、冷房運転時には、圧縮
機11a,11bからの冷媒が、図1に実線矢印で示す
ように、オイルセパレータ12a,12b、四方弁13
a,13b、室外熱交換器14a,14b、室外電動式
膨脹弁15a,15bを経て液管7に流出し、それぞれ
の室内機3a,3bに入り、室内電動式膨脹弁35a,
35b、室内熱交換器34a,34bの順に流れてガス
管5に流出し、さらに四方弁13a,13b、アキュー
ムレータ10a,10bを経て圧縮機11a,11bに
戻される。
In the above configuration, during the cooling operation, the refrigerant from the compressors 11a and 11b receives the oil separators 12a and 12b and the four-way valve 13 as indicated by solid arrows in FIG.
a, 13b, the outdoor heat exchangers 14a, 14b, and the outdoor electric expansion valves 15a, 15b, flow out to the liquid pipe 7, enter the indoor units 3a, 3b, and enter the indoor electric expansion valves 35a, 35b.
35b, flows in the order of the indoor heat exchangers 34a, 34b, flows out to the gas pipe 5, and is returned to the compressors 11a, 11b via the four-way valves 13a, 13b and the accumulators 10a, 10b.

【0025】また、暖房運転時には、圧縮機11a,1
1bからの冷媒が、図1に点線矢印で示すように、オイ
ルセパレータ12a,12b、四方弁13a,13bを
経てガス管5に流出し、それぞれの室内機3a,3bに
入り、室内熱交換器34a,34b、室内電動式膨脹弁
35a,35bの順に流れて液管7に流出し、さらに室
外電動式膨脹弁15a,15b、室外熱交換器14a,
14b、四方弁13a,13b、並びにアキュームレー
タ10a,10bを経て圧縮機11a,11bに戻され
る。
In the heating operation, the compressors 11a, 1
As shown by the dotted arrow in FIG. 1, the refrigerant from 1b flows through the oil separators 12a and 12b and the four-way valves 13a and 13b into the gas pipe 5, enters the indoor units 3a and 3b, and enters the indoor heat exchanger. 34a, 34b, the indoor electric expansion valves 35a, 35b flow in order, and flow out to the liquid pipe 7. Further, the outdoor electric expansion valves 15a, 15b, the outdoor heat exchanger 14a,
14b, the four-way valves 13a and 13b, and the accumulators 10a and 10b return to the compressors 11a and 11b.

【0026】この実施の形態では、いずれか特定の室外
機1a、1bが常に連続して運転されることがないよう
に、室外機1a、1bの運転台数が制御される。この運
転台数の制御は、いわゆるローテンション制御であっ
て、室外機1a、1bを統括的にコントロールする集中
制御装置16が司っている。
In this embodiment, the number of operating outdoor units 1a and 1b is controlled so that any one of the outdoor units 1a and 1b is not always operated continuously. The control of the number of operating units is a so-called low tension control, and is controlled by a centralized control device 16 that controls the outdoor units 1a and 1b in an integrated manner.

【0027】この集中制御装置16は、図2に示すよう
に、中央処理装置107を備え、この中央処理装置10
7には、各室外機1a、1bの累積運転時間を積算する
ためのタイマ109が接続されている。各室外機1a、
1bの定格容量と、後述する目標回転数とを記憶するメ
モリ111とが接続されている。
As shown in FIG. 2, the central control unit 16 includes a central processing unit 107, and the central processing unit 10
7 is connected to a timer 109 for accumulating the cumulative operation time of each of the outdoor units 1a and 1b. Each outdoor unit 1a,
A memory 111 for storing a rated capacity 1b and a target rotation speed described later is connected.

【0028】この実施の形態では、図1に示すように、
各室外機1の圧縮機11a、11bには、圧縮機11
a、11bの回転数を検出する回転数センサ119a、
119bが設けられている。また、暖房運転時に、低圧
側の冷媒圧力を検出し、冷房運転時に、高圧側の冷媒圧
力を検出する圧力センサ117a、117bとが設けら
れている。これらのセンサ117a、117b、119
a、119bは、図2に示すように、検出したデータ
を、制御線115a〜115nを介して集中制御装置1
6に送っている。ここで、例えば、室外ユニット1aの
定格容量は、7.46kW(10HP)であり、室外ユ
ニット1bの定格容量は、14.92kW(20HP)
などのようである。又、前述のタイマ109、センサ1
17a、117b、119a、119bは、室外機1
a、或いは1bに装備されて、積算した累積運転時間の
データを、制御線を介して集中制御装置16に送ること
も可能である。
In this embodiment, as shown in FIG.
The compressors 11a and 11b of each outdoor unit 1 include a compressor 11
a, a rotation speed sensor 119a for detecting the rotation speed of 11b,
119b is provided. Further, pressure sensors 117a and 117b are provided for detecting the low-pressure side refrigerant pressure during the heating operation and detecting the high-pressure side refrigerant pressure during the cooling operation. These sensors 117a, 117b, 119
a and 119b transmit the detected data to the central control device 1 via the control lines 115a to 115n, as shown in FIG.
Send to 6. Here, for example, the rated capacity of the outdoor unit 1a is 7.46 kW (10 HP), and the rated capacity of the outdoor unit 1b is 14.92 kW (20 HP).
And so on. Also, the timer 109 and the sensor 1
17a, 117b, 119a and 119b are the outdoor units 1
It is also possible to send data of the accumulated cumulative operation time to the centralized control device 16 via a control line, provided in a or 1b.

【0029】室外ユニット1a、1bの起動の順番は、
まず、タイマ109で積算された累積運転時間が少ない
ものが優先して起動される。累積運転時間が等しい場合
は、メモリ111に記憶された定格容量が小さいものが
優先して起動される。
The starting order of the outdoor units 1a and 1b is as follows.
First, the one with the shortest cumulative operation time accumulated by the timer 109 is started with priority. If the cumulative operation times are equal, the one with the smaller rated capacity stored in the memory 111 is started with priority.

【0030】このローテーション制御実行後、集中制御
装置16によって、空調負荷に応じて、各圧縮機11
a、11bの実回転数が後述する目標回転数と同一にな
るように各室外機1に負荷が振り分けられ、定常負荷分
担制御が実行される。
After the execution of the rotation control, the central control unit 16 controls each compressor 11 according to the air conditioning load.
Loads are distributed to the outdoor units 1 so that the actual rotation speeds of the a and 11b become the same as a target rotation speed described later, and the steady load sharing control is executed.

【0031】この定常負荷分担制御は、室外機1が設置
された周囲の環境の違いによって、各室外機1の運転状
況が異なり、圧縮機11a、11bの回転数や冷媒圧力
などが各室外機1間で異なる場合であっても、常に各室
外機1の圧縮機11a、11bの回転数や冷媒圧力を一
定に保つ制御である。
In this steady load sharing control, the operation status of each outdoor unit 1 differs depending on the surrounding environment where the outdoor unit 1 is installed, and the rotational speed of the compressors 11a and 11b, the refrigerant pressure, etc. The control is such that the rotational speeds and the refrigerant pressures of the compressors 11a and 11b of each outdoor unit 1 are always kept constant even if they differ from each other.

【0032】すなわち、この定常負荷分担制御は、各室
外機1の実回転数を揃える回転数均衡制御と、冷媒圧力
を揃える圧力均衡制御とを行うもので、この実施の形態
では、回転数均衡制御を優先して実行し、その後圧力均
衡制御が実行される。
In other words, the steady load sharing control performs a speed balance control for equalizing the actual speeds of the outdoor units 1 and a pressure balance control for equalizing the refrigerant pressure. In this embodiment, the speed balance control is performed. The control is executed with priority, and then the pressure balance control is executed.

【0033】一般的に圧縮機の回転数が同一であれば、
各室外機1の一定の場所の冷媒圧力、この実施の形態で
は、暖房運転時に低圧側になる室外熱交換器と四方弁と
の間に設けられた圧力センサ117a、117bが検出
する冷媒圧力は同一になるはずである。しかし、管路の
めずまり等の不具合によって、圧縮機11a、11bの
回転数が同一であっても、検出される冷媒圧力が違って
くる可能性がある。このため、この実施の形態では、圧
縮機11a、11bの回転数を揃える回転数均衡制御を
実行後、更に、冷媒圧力を揃える圧力均衡制御をする。
Generally, if the number of rotations of the compressor is the same,
The refrigerant pressure at a fixed location of each outdoor unit 1, in this embodiment, the refrigerant pressure detected by the pressure sensors 117 a and 117 b provided between the outdoor heat exchanger that is on the low pressure side during the heating operation and the four-way valve is Should be identical. However, even if the rotation speeds of the compressors 11a and 11b are the same, the detected refrigerant pressure may be different due to a problem such as a clogged pipe. For this reason, in this embodiment, after performing the rotation speed balance control for equalizing the rotation speeds of the compressors 11a and 11b, the pressure balance control for further equalizing the refrigerant pressure is performed.

【0034】まず、回転数均衡制御について詳述する。First, the rotational speed balance control will be described in detail.

【0035】この回転数均衡制御では、集中制御装置1
6が、制御に必要な数値、各室外機1の負荷率Uload
(i)、定格総容量Qall、余剰負荷QT、装置の
負荷率Usys、目標回転数Ne(i)を演算して求め、
後述する条件が成立したときに、各室外機1の圧縮機1
1a、11bの実回転数を目標回転数に合わせる制御が
行われる。
In this rotational speed balancing control, the central control device 1
6 is a numerical value required for control, the load factor U load of each outdoor unit 1
(I) calculating and calculating the rated total capacity Q all , the surplus load Q T , the load factor U sys of the device, and the target rotation speed Ne (i);
When the condition described later is satisfied, the compressor 1 of each outdoor unit 1
Control is performed to adjust the actual rotation speeds of 1a and 11b to the target rotation speed.

【0036】集中制御装置16は、まず、各室外機1の
負荷率Uload(i)を演算式数1に基づいて演算する。
この演算式数1は、室外機1がn台存在した時に、i番
目の室外機を対象に記述されたものである。この数1に
おいて、Nc(i)は室外機(i)の実回転数(rp
m)であり、NR(i)は室外機(i)の定格回転数
(rpm)であり、HP(i)は室外機(i)の高圧後
件部であり、±の内、+が冷房時であり−が暖房時であ
る。Bwは室内吹出差温平均である。
The central control unit 16 first calculates the load factor U load (i) of each outdoor unit 1 based on the equation (1).
The arithmetic expression 1 is described for the i-th outdoor unit when n outdoor units 1 exist. In this equation 1, N c (i) is the actual number of revolutions (rp) of the outdoor unit (i).
a m), an N R (i) is the rated speed of the outdoor unit (i) (rpm), H P (i) is the pressure after the matter of the outdoor unit (i), among the ±, + Represents the time of cooling and − represents the time of heating. Bw is the average temperature difference between the indoor outlets.

【0037】この負荷率Uload(i)は、定格回転数に
対する実回転数の比率に、若干の修正を加えて演算され
たものである。この若干の修正とは、室外機(i)の高
圧後件部HP(i)の加減と、室内吹出差温平均Bwの
加算を指している。
The load factor U load (i) is calculated by slightly modifying the ratio of the actual speed to the rated speed. This slight modification and refers acceleration and high pressure after matter portion H P (i) of the outdoor unit (i), the sum of the indoor discharge difference temperature average Bw.

【0038】室外機(i)の高圧後件部HP(i)は、
定格回転数に対する実回転数の比率が、エンジン側から
みた負荷率であるのに対し、この負荷率に圧縮機11
a、11bからみた修正をするものであって、H
P(i)は室外機(i)の高圧後件部は、定格回転数に
対する実回転数の比率に対して実際の圧縮機11a、1
1bの高圧側圧力と、室外機制御装置(図示せず)に記
憶されているマップ圧力とを比較し、この比較の結果に
よって予め決められている修正値である。マップ圧力
は、定格回転数に対する実回転数の比率に対し、標準圧
力が決められたものである。
The high-pressure consequent H P (i) of the outdoor unit (i) is as follows:
While the ratio of the actual rotation speed to the rated rotation speed is the load factor viewed from the engine side, this load factor
a and 11b to be corrected.
P (i) indicates that the high-pressure consequent part of the outdoor unit (i) indicates that the actual compressor 11a, 1
The high pressure side pressure 1b is compared with a map pressure stored in an outdoor unit control device (not shown), and is a correction value determined in advance by the result of the comparison. For the map pressure, a standard pressure is determined for the ratio of the actual rotation speed to the rated rotation speed.

【0039】また、集中制御装置16は、装置の定格容
量の総和である定格総容量Qallを演算式数2に基づい
て演算する。Q(i)は運転中の室外機(i)の定格容
量(kW)である。
The central control unit 16 calculates a rated total capacity Q all , which is the sum of the rated capacities of the devices, based on equation (2). Q (i) is the rated capacity (kW) of the outdoor unit (i) during operation.

【0040】次に、この定格総容量Qall、前記負荷
率Uload(i)等から装置の余剰負荷QTを演算式数3
に基づいて演算する。この余剰負荷QTは、運転中の室
外機(i)の定格容量(kW)に負荷率Uload(i)を
乗じ、この乗じて得た値の総和を、定格総容量Qall
から、減算したものである。
Next, from the rated total capacity Qall and the load factor U load (i), etc., the surplus load Q T of the apparatus is calculated by the equation (3).
Is calculated based on The surplus load Q T is obtained by multiplying the rated capacity (kW) of the outdoor unit (i) during operation by the load factor U load (i), and summing the values obtained by the multiplication to obtain the rated total capacity Qall.
Is subtracted from.

【0041】さらに、集中制御装置16は、装置の負荷
率Usysを演算式数4に基づいて演算する。この装置の
負荷率Usysは、定格総容量Qallに対する、定格総
容量Qallから余剰負荷QTを減算した容量の比率で
ある。
Further, the centralized control device 16 calculates the load factor U sys of the device based on equation (4). The load factor U sys of this device is a ratio of the capacity obtained by subtracting the surplus load Q T from the rated total capacity Qall to the rated total capacity Qall.

【0042】そして、集中制御装置16は、目標回転数
e(i)を演算式数5から演算する。
Then, the centralized control device 16 calculates the target rotational speed N e (i) from equation (5).

【0043】この実施の形態では、台数制御(ローテー
ション制御)がされた後、回転数均衡制御が、以下の条
件が成立した場合に実行される。
In this embodiment, after the number control (rotation control) is performed, the rotational speed balancing control is executed when the following conditions are satisfied.

【0044】運転中の各室外機において、定格回転数に
対する実回転数の比率である相当回転数が算出され、こ
の相当回転数の最大値と最小値との差が200rpmを
越えたときに実行される。各室外機1の圧縮機11a、
11bの実回転数が目標回転数に揃えられる。この後、
圧力均衡制御が実行される。
In each of the running outdoor units, an equivalent rotation speed, which is a ratio of the actual rotation speed to the rated rotation speed, is calculated, and is executed when the difference between the maximum value and the minimum value of the equivalent rotation speed exceeds 200 rpm. Is done. Compressor 11a of each outdoor unit 1,
The actual rotation speed of 11b is set to the target rotation speed. After this,
Pressure balance control is performed.

【0045】次に、圧力均衡制御について詳述する。Next, the pressure balance control will be described in detail.

【0046】回転数均衡制御を実行後、例えば、前述し
たように管路のめずまり等の不具合によって、圧縮機1
1a、11bの回転数が同一であっても、検出される冷
媒圧力が違ってくる可能性があるので、この圧力均衡制
御によって冷媒圧力が揃えられる。
After the execution of the rotational speed balance control, for example, as described above, when the compressor 1
Even if the rotation speeds of 1a and 11b are the same, the detected refrigerant pressure may be different, so that the refrigerant pressure is made uniform by this pressure balance control.

【0047】この圧力均衡制御は、各室外機1の四方弁
13a、13bと室外熱交換器14a、14bとの間の
管路に設けられた圧力センサ117a、117bによっ
て検出される冷媒圧力が以下の条件になった場合に、数
6に示す演算式に基づいて、微調整回転数Δrpmを演
算し、圧縮機11a、11bの回転数を微調整して冷媒
圧力を揃える制御である。
In this pressure balance control, the refrigerant pressure detected by pressure sensors 117a and 117b provided in the pipeline between the four-way valves 13a and 13b of each outdoor unit 1 and the outdoor heat exchangers 14a and 14b is as follows. When the condition is satisfied, the control is performed to calculate the fine adjustment rotation speed Δrpm based on the arithmetic expression shown in Expression 6 and finely adjust the rotation speeds of the compressors 11a and 11b to equalize the refrigerant pressure.

【0048】冷房モードでは、圧力センサ117a、1
17bが検出する運転中の室外機1間での、高圧側の冷
媒圧力の最高圧力と最低圧力との圧力差が0.4MPa
を越えたときに圧力均衡制御が実行される。
In the cooling mode, the pressure sensors 117a,
The pressure difference between the highest pressure and the lowest pressure of the refrigerant pressure on the high pressure side between the operating outdoor units 1 detected by 17b is 0.4 MPa.
Is exceeded, pressure balance control is executed.

【0049】暖房モードでは、圧力センサ117a、1
17bが検出する運転中の室外機1間での、低圧側の冷
媒圧力の最高圧力と最低圧力との圧力差が0.4MPa
を越えたときに圧力均衡制御が実行される。
In the heating mode, the pressure sensors 117a,
The pressure difference between the maximum pressure and the minimum pressure of the low-pressure side refrigerant pressure between the outdoor units 1 in operation detected by 17b is 0.4 MPa.
Is exceeded, pressure balance control is executed.

【0050】この実施の形態では以下の効果を奏す。This embodiment has the following effects.

【0051】室外機1の運転台数を空調負荷に応じて制
御し、この運転されている室外機1の定格回転数に対す
る実回転数の比率である相当回転数を演算し、この相当
回転数のうちの最高回転数と最低回転数とを比較し、最
高回転数と最低回転数との差が200rpmを越えた時
に、回転数均衡制御が実行される。この回転数均衡制御
では、各室外機1の負荷率Uload(i)、定格総容量Q
all、余剰負荷QT、装置の負荷率Usys、目標回転数Ne
(i)が集中制御装置16によって演算され、各室外機
1の圧縮機11a、11bの実回転数が目標回転数に揃
えられので、各室外機1からユニット間配管に流入出す
る冷媒の圧力が揃えられ、運転のバランスが保持され、
冷媒が特定の室外機1に溜まり込むことを防止できる。
The number of operating outdoor units 1 is controlled in accordance with the air-conditioning load, and an equivalent rotation speed, which is a ratio of the actual rotation speed to the rated rotation speed of the outdoor unit 1 being operated, is calculated. The highest rotation speed and the lowest rotation speed are compared, and when the difference between the highest rotation speed and the lowest rotation speed exceeds 200 rpm, the rotation speed balance control is executed. In this rotational speed balancing control, the load factor U load (i) of each outdoor unit 1 and the rated total capacity Q
all , excess load Q T , device load factor U sys , target speed N e
(I) is calculated by the centralized control device 16, and the actual rotation speeds of the compressors 11a and 11b of each outdoor unit 1 are made equal to the target rotation speeds. Therefore, the pressure of the refrigerant flowing into and out of the unit-to-unit piping from each outdoor unit 1 Are aligned, driving balance is maintained,
Refrigerant can be prevented from accumulating in the specific outdoor unit 1.

【0052】さらに、回転数均衡制御実行後、圧縮機1
1a、11bの実回転数が目標回転数に揃えられても、
冷媒圧力が揃わない室外機1があることを想定して、圧
力均衡制御が実行される。この制御では、運転されてい
る室外機1の冷媒圧力を暖房運転時では、低圧側にな
り、冷房運転時では高圧側になる圧力センサ117a、
117bで計測し、この冷媒圧力のうちの最高圧力と最
低圧力とを比較し、最高圧力と最低圧力との偏差が0.
4MPaを越えた時に、各室外機1の圧力を揃えるため
に、演算式数6で演算した微調整回転数Δrpmをに基
づいて、各圧縮機11a、11bの回転数を微調整する
ので、各室外機1からユニット間配管に流入出する冷媒
の圧力が揃えられ、運転のバランスが保持され、冷媒が
特定の室外機1に溜まり込むことを防止できる。
Further, after execution of the rotational speed balance control, the compressor 1
Even if the actual rotation speeds of 1a and 11b are aligned with the target rotation speed,
Pressure equilibrium control is performed on the assumption that there is an outdoor unit 1 in which the refrigerant pressures are not uniform. In this control, the pressure sensor 117a that sets the refrigerant pressure of the operated outdoor unit 1 to the low pressure side during the heating operation and to the high pressure side during the cooling operation,
117b, the maximum pressure and the minimum pressure of the refrigerant pressure are compared, and the deviation between the maximum pressure and the minimum pressure is 0.1.
When the pressure exceeds 4 MPa, the rotational speeds of the compressors 11a and 11b are finely adjusted based on the fine adjustment rotational speed Δrpm calculated by Expression 6 in order to equalize the pressures of the outdoor units 1. The pressure of the refrigerant flowing into and out of the unit-to-unit piping from the outdoor unit 1 is made uniform, the operation balance is maintained, and the refrigerant can be prevented from accumulating in the specific outdoor unit 1.

【0053】暖房運転時に低圧側の冷媒圧力を計測し、
この冷媒圧力を計測する圧力センサ117a、117b
は、冷房運転時では、高圧側の冷媒圧力を計測すること
になる。従って、暖房運転時、冷房運転時を問わず、各
室外機1a、1bにおいて、1つの圧力センサ117
a、117bで冷媒圧力が検出可能であり、複数の計測
器を設ける必要が無く、コストを低減できる。
During the heating operation, the refrigerant pressure on the low pressure side is measured,
Pressure sensors 117a and 117b for measuring the refrigerant pressure
In the cooling operation, the refrigerant pressure on the high pressure side is measured. Therefore, regardless of the heating operation or the cooling operation, each of the outdoor units 1a and 1b has one pressure sensor 117.
The refrigerant pressure can be detected at a and 117b, and there is no need to provide a plurality of measuring instruments, so that the cost can be reduced.

【0054】この実施の形態では、これら回転数均衡制
御、圧力均衡制御は、集中制御装置16の制御方法を変
更すれば、一般的な空気調和装置の構成をそのまま利用
して、実現できる。このため、装置の開発時間を短縮す
ることできる。
In this embodiment, the rotational speed balance control and the pressure balance control can be realized by using the configuration of a general air conditioner as it is by changing the control method of the central control device 16. For this reason, the development time of the device can be reduced.

【0055】以上、一実施形態に基づいて本発明を説明
したが、本発明はこれに限定されるものではない。
The present invention has been described based on one embodiment, but the present invention is not limited to this.

【0056】[0056]

【発明の効果】並列に配置した室外機の間での回転数、
冷媒圧力を揃える手段を設けたので、回転数、冷媒圧力
のアンバランスの発生が防止でき、冷媒が特定の室外機
に溜まり込むことを防止できる。現在生産している駆動
源にガスエンジンを用いる空気調和装置の資産を生かし
た制御が適用できるため、開発の期間を短縮することが
できる。
The number of rotations between the outdoor units arranged in parallel,
Since the means for equalizing the refrigerant pressure is provided, it is possible to prevent the occurrence of imbalance in the number of revolutions and the refrigerant pressure, and to prevent the refrigerant from accumulating in a specific outdoor unit. Since the control utilizing the property of the air conditioner using the gas engine can be applied to the drive source currently being produced, the development period can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による空気調和装置の一例を示す回路図
である。
FIG. 1 is a circuit diagram showing an example of an air conditioner according to the present invention.

【図2】集中制御装置を説明するブロック図である。FIG. 2 is a block diagram illustrating a centralized control device.

【符号の説明】[Explanation of symbols]

1、1a、1b 室外機 3a、3b 室内機(負荷機) 16 集中制御装置 117a、117b 圧力センサ 119a、119b 回転数センサ 1, 1a, 1b Outdoor unit 3a, 3b Indoor unit (load unit) 16 Centralized control device 117a, 117b Pressure sensor 119a, 119b Rotation speed sensor

フロントページの続き (72)発明者 和田 圭司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 粂原 一夫 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 進藤 章 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 東 孝美 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 平田 亮太 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 中村 由浩 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3L060 AA01 AA08 CC16 CC19 DD02 DD03 EE02 EE09 Continued on the front page (72) Inventor Keiji Wada 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kazuo Kumehara 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Inside Sanyo Electric Co., Ltd. (72) Akira Shindo 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture Inside Sanyo Electric Co., Ltd. (72) Takami Higashi 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Ryota Hirata, Inventor 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Pref. Sanyo Electric Co., Ltd. No.5-5 Sanyo Electric Co., Ltd. F-term (reference) 3L060 AA01 AA08 CC16 CC19 DD02 DD03 EE02 EE09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数台の室外機を負荷機から延びるユニ
ット間配管に並列につないだ空気調和装置において、 空調負荷に応じて前記室外機の運転台数を制御する手段
と、 台数制御されて運転している各室外機の定格回転数に対
する実回転数の比率を演算し、この比率のうちの最高比
率と最低比率とを比較し、最高比率と最低比率との偏差
が規定値を越えた時に、各室外機の前記比率を揃える手
段と、 を備えたことを特徴とする空気調和装置。
1. An air conditioner in which a plurality of outdoor units are connected in parallel to an inter-unit pipe extending from a load unit, a means for controlling the number of the outdoor units to be operated according to an air conditioning load, and a number controlled operation Calculate the ratio of the actual rotation speed to the rated rotation speed of each outdoor unit, compare the highest ratio and the lowest ratio of this ratio, and when the deviation between the highest ratio and the lowest ratio exceeds the specified value. And means for equalizing the ratio of each outdoor unit.
【請求項2】 複数台の室外機を負荷機から延びるユニ
ット間配管に並列につないだ空気調和装置において、 空調負荷に応じて前記室外機の運転台数を制御する手段
と、 台数制御されて運転している各室外機の冷媒圧力を計測
し、この冷媒圧力のうちの最高圧力と最低圧力とを比較
し、最高圧力と最低圧力との偏差が規定値を越えた時
に、各室外機の前記圧力を揃える手段と、 を備えたことを特徴とする空気調和装置。
2. An air conditioner in which a plurality of outdoor units are connected in parallel to an inter-unit pipe extending from a load unit, a means for controlling the number of the outdoor units to be operated according to an air conditioning load, and a number controlled operation. The refrigerant pressure of each outdoor unit is measured, and the maximum pressure and the minimum pressure among the refrigerant pressures are compared, and when the deviation between the maximum pressure and the minimum pressure exceeds a specified value, the outdoor unit An air conditioner comprising: means for equalizing pressure; and
【請求項3】 暖房運転モードにおいては低圧側の冷媒
圧力を計測することを特徴とする請求項2記載の空気調
和装置。
3. The air conditioner according to claim 2, wherein the refrigerant pressure on the low pressure side is measured in the heating operation mode.
【請求項4】 冷房運転モードにおいては高圧側の冷媒
圧力を計測することを特徴とする請求項2記載の空気調
和装置。
4. The air conditioner according to claim 2, wherein in the cooling operation mode, the refrigerant pressure on the high pressure side is measured.
【請求項5】 複数台の室外機を負荷機から延びるユニ
ット間配管に並列につないだ空気調和装置において、 空調負荷に応じて前記室外機の運転台数を制御する手段
と、 台数制御されて運転している各室外機の定格回転数に対
する実回転数の比率を演算し、この比率のうちの最高比
率と最低比率とを比較し、最高比率と最低比率との偏差
が規定値を越えた時に、各室外機の前記比率を揃える手
段と、 台数制御されて運転している各室外機の冷媒圧力を計測
し、この冷媒圧力のうちの最高圧力と最低圧力とを比較
し、最高圧力と最低圧力との偏差が規定値を越えた時
に、各室外機の前記圧力を揃える手段と、 を備えたことを特徴とする空気調和装置。
5. An air conditioner in which a plurality of outdoor units are connected in parallel to an inter-unit pipe extending from a load unit, a means for controlling the number of the outdoor units to be operated in accordance with an air-conditioning load, and a controlled number of the outdoor units. Calculate the ratio of the actual rotation speed to the rated rotation speed of each outdoor unit, compare the highest ratio and the lowest ratio of this ratio, and when the deviation between the highest ratio and the lowest ratio exceeds the specified value. Means for equalizing the ratio of each outdoor unit, measuring the refrigerant pressure of each outdoor unit that is controlled in number and operating, comparing the highest pressure and the lowest pressure of this refrigerant pressure, Means for equalizing the pressure of each outdoor unit when the deviation from the pressure exceeds a specified value.
【請求項6】 前記比率を揃える手段は、 各室外機の前記比率に基づいて、各室外機の個別負荷率
を算出し、 各室外機の定格容量に個別負荷率を乗じ、この乗じた値
に基づいて運転制御中の運転室外機の余剰負荷を算出
し、 各室外機の定格総容量から前記余剰負荷を減算して、全
室外機の全体負荷率を求め、この全体負荷率に基づい
て、運転制御中の運転室外機の目標回転数を算出し、こ
の目標回転数に一致させるように運転室外機の実回転数
を揃えて前記比率を揃えることを特徴とする請求項1又
は5記載の空気調和装置。
6. The means for equalizing the ratio, calculates an individual load factor of each outdoor unit based on the ratio of each outdoor unit, multiplies the rated capacity of each outdoor unit by the individual load factor, and multiplies the multiplied value by the multiplied value. Calculate the surplus load of the outdoor unit under operation control based on the above, subtract the surplus load from the rated total capacity of each outdoor unit, obtain the overall load ratio of all the outdoor units, based on this overall load ratio 6. The method according to claim 1, wherein a target rotation speed of the outside cab unit under operation control is calculated, and the actual rotation speed of the outside cab unit is made uniform so as to match the target rotation speed, and the ratio is made uniform. Air conditioner.
JP36657399A 1999-12-24 1999-12-24 Air conditioner Withdrawn JP2001182983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36657399A JP2001182983A (en) 1999-12-24 1999-12-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36657399A JP2001182983A (en) 1999-12-24 1999-12-24 Air conditioner

Publications (1)

Publication Number Publication Date
JP2001182983A true JP2001182983A (en) 2001-07-06

Family

ID=18487124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36657399A Withdrawn JP2001182983A (en) 1999-12-24 1999-12-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP2001182983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083424A (en) * 2011-09-30 2013-05-09 Fujitsu General Ltd Air conditioning apparatus
CN114517957A (en) * 2022-01-27 2022-05-20 青岛海尔空调电子有限公司 Multi-split air conditioner control method and multi-split air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083424A (en) * 2011-09-30 2013-05-09 Fujitsu General Ltd Air conditioning apparatus
CN114517957A (en) * 2022-01-27 2022-05-20 青岛海尔空调电子有限公司 Multi-split air conditioner control method and multi-split air conditioner
CN114517957B (en) * 2022-01-27 2024-04-19 青岛海尔空调电子有限公司 Multi-split control method and multi-split

Similar Documents

Publication Publication Date Title
JP4619303B2 (en) Air conditioner
EP0410570B1 (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
KR100516381B1 (en) Freezer
US6109533A (en) Air conditioner and refrigerant heater outlet temperature control method
US8215122B2 (en) Air conditioner and method of controlling the same
US20030213254A1 (en) Air conditioner and control method thereof
JP2001193984A (en) Air conditioning apparatus
JP2008070067A (en) Device and method for determining number of operating refrigerators
JP2006292213A (en) Air conditioner
KR100790203B1 (en) Air conditioner equipped with a plurality of outdoor units
JPH0821675A (en) Air conditioner and refrigerant quantity-determining method therefor
JP5471059B2 (en) Air conditioner
JP5436375B2 (en) Air conditioner
CN111121219A (en) Air-cooled module machine loading and unloading control mode
JP2001263755A (en) Air-conditioning device
US20050155361A1 (en) Air conditioning system and method for controlling the same
JPH0343848Y2 (en)
JP2001182983A (en) Air conditioner
JP2001182991A (en) Air conditioner
JPH07198187A (en) Air conditioner
JP3745357B2 (en) Air conditioning system
JP3834905B2 (en) Multi-room air conditioner
JPH0719624A (en) Air conditioning apparatus
JP2925715B2 (en) Refrigeration equipment
JP3883725B2 (en) Method of operating air conditioner and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051013