JP2001181884A - Titanium manufacturing device - Google Patents

Titanium manufacturing device

Info

Publication number
JP2001181884A
JP2001181884A JP37207699A JP37207699A JP2001181884A JP 2001181884 A JP2001181884 A JP 2001181884A JP 37207699 A JP37207699 A JP 37207699A JP 37207699 A JP37207699 A JP 37207699A JP 2001181884 A JP2001181884 A JP 2001181884A
Authority
JP
Japan
Prior art keywords
titanium
nickel
electrolytic
electrode
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37207699A
Other languages
Japanese (ja)
Inventor
Hidekazu Fukazawa
英一 深澤
Akishi Yamashita
晃史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP37207699A priority Critical patent/JP2001181884A/en
Publication of JP2001181884A publication Critical patent/JP2001181884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a more inexpensive titanium manufacturing device by which the elution of the impurities resulting from the material consituting an electrolytic vessel is prevented, and the quality of the formed high-purity titanium is not adversely affected. SOLUTION: An electrode is put in an electrolytic bath held in the electrolytic vessel, raw titanium is introduced to surround the electrode, a voltage is applied with the electrode as a cathode and the raw titanium as an anode, and the raw titanium is refine in this titanium manufacturing device. The vessel is formed of clad steel with the side in contact with the bath being a nickel material of 99.0-99.8% nickel purity or titanium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融塩電解容器を
構成する金属からの汚染を防止して高純度チタンを得る
ためのチタンの製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing titanium for obtaining high-purity titanium by preventing contamination of a metal constituting a molten salt electrolytic vessel.

【0002】[0002]

【従来の技術】近年、半導体製造用材料として高純度チ
タンの利用が一般化しているが、その代表的な例とし
て、半導体デバイスにおける層間の膜バリア材をスパッ
タリングで構成するのに用いられるチタンターゲットが
ある。このチタンターゲット等の半導体向けチタンは信
頼性向上のために、ナトリウム、カリウム、リチウム等
のアルカリ金属、ウラン、トリウム等の放射性金属、
鉄、クロム、ニッケル等の重金属及び酸素といった不純
物を極力低減させる必要がある。因みに、最近の64M
DRAMで要求されるチタンターゲットは、99.99
5%〔=4N5(フォーナインファイブ)、但しガス成
分を除く〕以上の高純度品が要求される。
2. Description of the Related Art In recent years, the use of high-purity titanium as a material for semiconductor manufacturing has become popular. A typical example is a titanium target used for forming a film barrier material between layers in a semiconductor device by sputtering. There is. Titanium for semiconductors such as this titanium target is used to improve reliability, such as alkali metals such as sodium, potassium and lithium, radioactive metals such as uranium and thorium,
It is necessary to minimize impurities such as heavy metals such as iron, chromium and nickel and oxygen. By the way, recent 64M
The titanium target required for DRAM is 99.99.
A high purity product of 5% [= 4N5 (Four Nine Five), excluding gas components] or more is required.

【0003】上記のような高純度のチタンを製造する方
法として、溶融塩電解精製法が知られている。この溶融
塩電解精製法は、電解浴を収容した電解容器内の周辺部
に原料チタンを入れると共に中心部にチタン棒の電極を
入れ、このチタン棒電極を陰極、原料チタンを陽極とし
て電圧を印加し、チタン棒電極に精製チタンを析出、生
成させるものである。同法によれば、特に鉄、クロム、
ニッケル等の重金属及び酸素といった不純物を大幅に低
減でき、高純度チタンの製造方法として有用である。
[0003] As a method for producing high purity titanium as described above, a molten salt electrorefining method is known. In this molten salt electrorefining method, a raw material titanium is put in a peripheral portion of an electrolytic vessel containing an electrolytic bath and a titanium rod electrode is put in a central portion, and a voltage is applied using the titanium rod electrode as a cathode and the raw material titanium as an anode. Then, purified titanium is deposited and generated on a titanium rod electrode. According to the law, iron, chromium,
Impurities such as heavy metals such as nickel and oxygen can be significantly reduced, which is useful as a method for producing high-purity titanium.

【0004】この溶融塩電解精製法を使用してより高純
度のチタンを製造することが試みられているが、同法で
チタンに不純物が混入する原因として、電解容器を構成
する材料自体が不純物として電解浴中に溶出し、その不
純物が陰極であるチタン棒電極に析出し、得られるチタ
ンがその不純物により汚染されてしまうことがあげられ
る。例えば、文献の「U.S.Bereau of Mines, Report of
Investigation 5351,44(1957)」には、電解容器を軟鋼
製とした場合に、生成したチタン中の鉄の含有量が10
0ppm を越えるほど高くなることが記載されている。こ
の状況を解決するものとして、特開平3−177594
号公報にはルツボ、チタンスポンジバスケット、アノー
ドパイプ等の溶融塩と接触する他の部材乃至部品を、全
て99.9%(3N)以上の高純度のニッケルから構成
して電解浴中への不純物の溶出を低減させる技術が開示
されている。
Attempts have been made to produce titanium with higher purity by using this molten salt electrorefining method. One of the causes of the contamination of titanium by the same method is that the material constituting the electrolytic vessel itself is an impurity. As a result, it is eluted into the electrolytic bath, the impurities are deposited on the titanium rod electrode as the cathode, and the obtained titanium is contaminated by the impurities. For example, in the literature, "USBereau of Mines, Report of
Investigation 5351,44 (1957) "states that when the electrolytic vessel is made of mild steel, the iron content in the generated titanium is 10%.
It is described that it becomes higher as it exceeds 0 ppm. To solve this situation, Japanese Patent Application Laid-Open No. 3-177594 has been proposed.
In the publication, other members and parts that come into contact with the molten salt, such as a crucible, a titanium sponge basket, and an anode pipe, are all made of high-purity nickel of 99.9% (3N) or more to form impurities in the electrolytic bath. A technique has been disclosed for reducing the elution of e.g.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記9
9.9%(3N)以上の高純度のニッケル材は工業的に
入手が困難であり、また、その使用により電解容器の製
造コストが上昇してしまう。また、例えば炭素鋼製の容
器本体を高純度ニッケルでめっきした電解容器では、電
解精製中、熱によりめっきが剥がれて容器本体の一部が
電解浴に溶出して、生成チタンの品質に悪影響を及ぼ
す。このため、電解容器を構成する材料に起因する不純
物の電解浴中への溶出を防止して、生成チタンの品質に
悪影響を及ぼさない、より廉価なチタン製造装置の開発
が望まれていた。
However, the above 9
It is difficult to industrially obtain a high-purity nickel material of 9.9% (3N) or more, and its use increases the production cost of the electrolytic container. Also, for example, in an electrolytic container in which a carbon steel container body is plated with high-purity nickel, during electrolytic refining, the plating is peeled off by heat and a part of the container body is eluted into the electrolytic bath, which adversely affects the quality of the generated titanium. Exert. Therefore, it has been desired to develop a more inexpensive titanium manufacturing apparatus that prevents elution of impurities resulting from the material constituting the electrolytic vessel into the electrolytic bath and does not adversely affect the quality of the produced titanium.

【0006】従って、本発明の目的は、電解容器を構成
する材料に起因する不純物の電解浴中への溶出を防止し
て、高純度生成チタンの品質に悪影響を及ぼさない、よ
り廉価なチタン製造装置を提供することにある。
[0006] Accordingly, an object of the present invention is to provide an inexpensive titanium production method that prevents impurities derived from the material constituting the electrolytic vessel from being eluted into the electrolytic bath and does not adversely affect the quality of the high purity titanium produced. It is to provide a device.

【0007】[0007]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、溶融塩電解装置にお
いて、電解容器を電解浴に接する側がニッケル純度9
9.0%〜99.8%のニッケル材又はチタン材である
クラッド鋼で構成すれば、長時間運転を行っても、ニッ
ケル材又はチタン材が剥離や損傷することなく、且つニ
ッケル材の場合、ニッケル純度が工業的純度であっても
何ら生成チタンの品質に悪影響を及ぼすことなく、従っ
て、工業的により廉価なチタン製造装置が得られること
などを見出し、本発明を完成するに至った。
Under such circumstances, the present inventors have conducted intensive studies and as a result, have found that the molten salt electrolysis apparatus has a nickel purity of 9% on the side where the electrolysis vessel is in contact with the electrolysis bath.
If the clad steel is composed of 9.0% to 99.8% of a nickel material or a titanium material, the nickel material or the titanium material is not peeled or damaged even after a long operation, and the nickel material is used. The present inventors have found that even if the nickel purity is an industrial purity, it does not adversely affect the quality of the produced titanium at all, and thus an industrially inexpensive titanium manufacturing apparatus can be obtained, and the present invention has been completed.

【0008】すなわち、本発明(1)は、電解容器内に
収容した電解浴内に電極を入れ、且つ該電極を囲うよう
に原料チタンを入れ、電極を陰極、原料チタンを陽極と
して電圧を印加し、原料チタンを精製するチタンの製造
装置において、前記電解容器は、前記電解浴に接する側
がニッケル純度99.0%〜99.8%のニッケル材又
はチタン材であるクラッド鋼で構成されているチタンの
製造装置を提供するものである。
That is, in the present invention (1), an electrode is placed in an electrolytic bath housed in an electrolytic vessel, and a raw material titanium is placed so as to surround the electrode, and a voltage is applied using the electrode as a cathode and the raw material titanium as an anode. In the titanium manufacturing apparatus for refining titanium raw material, the electrolytic vessel is formed of clad steel having a nickel purity of 99.0% to 99.8% of nickel material or titanium material on the side in contact with the electrolytic bath. An object of the present invention is to provide an apparatus for producing titanium.

【0009】[0009]

【発明の実施の形態】本発明で使用する電解容器は、電
解浴に接する側がニッケル純度99.0%〜99.8%
のニッケル材又はチタン材であるクラッド鋼で構成され
ており、且つ一般的な加熱炉により加熱され得るもので
あれば特に限定がないが、通常有底円筒状で上部にフラ
ンジがあり、このフランジに密着して内部を密閉する蓋
体からなるものが使用される。有底円筒状で上部にフラ
ンジがある電解容器の場合、上記クラッド鋼は少なくと
も電解浴を収容する電解容器本体に使用されればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The electrolytic vessel used in the present invention has a nickel purity of 99.0% to 99.8% on the side in contact with an electrolytic bath.
Is not particularly limited as long as it is made of a clad steel that is a nickel material or a titanium material, and can be heated by a general heating furnace. A cover made of a lid that tightly adheres to the inside is used. In the case of an electrolytic vessel having a bottomed cylindrical shape and a flange at the top, the above-mentioned clad steel may be used at least for an electrolytic vessel main body containing an electrolytic bath.

【0010】クラッド鋼は二つ以上の金属材料の表面の
間に金属学的結合を生じさせて一体化した積層形の複合
材料であり、具体的には、ニッケル−ステンレス鋼、チ
タン−ステンレス鋼、ニッケル−炭素鋼−ステンレス
鋼、チタン−炭素鋼−ステンレス鋼、ニッケル−チタン
−ステンレス鋼、チタン−ニッケル−ステンレス鋼、ニ
ッケル−チタン−炭素鋼−ステンレス鋼、チタン−ニッ
ケル−炭素鋼−ステンレス鋼が挙げられ、このうち、ニ
ッケル−炭素鋼−ステンレス鋼、ニッケル−チタン−ス
テンレス鋼、ニッケル−チタン−炭素鋼−ステンレス鋼
が前記の溶融塩に対して耐食性を有する点で好ましい。
上記具体例の表記において、左端記載の材料が電解浴に
接する側であり、それより右へ順に外側部材となる。ク
ラッド鋼の製造方法としては、特に制限されず、組立圧
延法、鋳込圧延法、爆発圧着法、肉盛溶接法、拡散溶接
法、冷間圧接による方法など一般的に使用される製造方
法が挙げられる。
[0010] Cladded steel is a laminated composite material formed by forming a metallurgical bond between the surfaces of two or more metallic materials, and specifically, nickel-stainless steel, titanium-stainless steel. , Nickel-carbon steel-stainless steel, titanium-carbon steel-stainless steel, nickel-titanium-stainless steel, titanium-nickel-stainless steel, nickel-titanium-carbon steel-stainless steel, titanium-nickel-carbon steel-stainless steel Among them, nickel-carbon steel-stainless steel, nickel-titanium-stainless steel, and nickel-titanium-carbon steel-stainless steel are preferable in that they have corrosion resistance to the molten salt.
In the notation of the above specific example, the material described on the left end is on the side in contact with the electrolytic bath, and the outer members are in order from right to left. The manufacturing method of the clad steel is not particularly limited, and generally used manufacturing methods such as an assembling rolling method, a casting rolling method, an explosion bonding method, a build-up welding method, a diffusion welding method, and a method using cold welding are used. No.

【0011】クラッド鋼で使用されるニッケル材はニッ
ケル純度99.0%〜99.8%の工業用ニッケルが使
用できる。このニッケル純度は目的とするチタンの純度
に応じて上記範囲内において適宜選択すればよく、例え
ば純度99.999%(5N)以上の高純度チタンを得
るには、ニッケル純度99.3%以上、好ましくは9
9.5%〜99.8%のものを使用すればよい。ニッケ
ル材のニッケル純度を上記範囲とすることにより、従来
の3N以上の高純度ニッケル材を使用することなく、工
業的に入手可能なより安価なニッケルで5N以上の高純
度チタンを長期間に亘り安定して製造することができ
る。また、クラッド鋼で使用されるチタン材は生成する
チタンの純度により適宜決定される。例えばチタン純度
5N以上の生成高純度チタンを得る場合、チタン純度5
N以上のチタン材を使用することが望ましい。また、ス
テンレス鋼は市販のSUS304、316等が使用で
き、炭素鋼はSS400等が使用できる。
As the nickel material used in the clad steel, industrial nickel having a nickel purity of 99.0% to 99.8% can be used. The nickel purity may be appropriately selected within the above range depending on the purity of the target titanium. For example, in order to obtain high-purity titanium with a purity of 99.999% (5N) or more, nickel purity of 99.3% or more, Preferably 9
What is necessary is just to use what is 9.5%-99.8%. By setting the nickel purity of the nickel material within the above range, the high purity titanium of 5N or more can be produced over a long period of time using less expensive nickel which is industrially available without using the conventional high purity nickel material of 3N or more. It can be manufactured stably. Further, the titanium material used in the clad steel is appropriately determined depending on the purity of the generated titanium. For example, when obtaining high-purity titanium having a titanium purity of 5N or more, a titanium purity of 5N
It is desirable to use N or more titanium materials. Also, commercially available stainless steel such as SUS304 and 316 can be used, and carbon steel such as SS400 can be used.

【0012】クラッド鋼で使用されるニッケル材の厚み
としては、特に制限されないが、二つの金属材料からな
る場合、5〜10mmの範囲とすることが、また、三つ
以上の金属材料からなり、ニッケル材が容器内側の場
合、3〜8mmの範囲とすることが、三つ以上の金属材
料からなり、ニッケル材が中間層として使用される場
合、2〜5mmの範囲とすることがそれぞれ好ましい。
ニッケル材の厚みが薄すぎると長時間操業における熱変
形及び腐食等によるニッケル層の剥離あるいは消失する
場合がある。また、厚過ぎてもその効果は飽和し、経済
的に不利になる。また、クラッド鋼で使用されるチタン
材の厚みとしては、特に制限されないが、二つの金属材
料からなる場合、10〜15mmの範囲とすることが、
また、三つ以上の金属材料からなり、チタン材が容器内
側の場合、5〜10mmの範囲とすることが、三つ以上
の金属材料からなり、チタン材が中間層として使用され
る場合、3〜5mmの範囲とすることがそれぞれ好まし
い。チタン材の厚みが薄すぎるとニッケル材の場合と同
様に理由で、すなわち長時間操業における熱変形及び腐
食等によるチタン層の剥離あるいは消失する場合があり
望ましくない。また、厚過ぎてもその効果は飽和し、経
済的に不利になる。
The thickness of the nickel material used in the clad steel is not particularly limited, but when it is made of two metal materials, it is preferably in the range of 5 to 10 mm, and it is made of three or more metal materials. When the nickel material is on the inner side of the container, the thickness is preferably in the range of 3 to 8 mm, which is made of three or more metal materials. When the nickel material is used as the intermediate layer, the thickness is preferably in the range of 2 to 5 mm.
If the thickness of the nickel material is too small, the nickel layer may peel off or disappear due to thermal deformation and corrosion during long-term operation. If the thickness is too large, the effect is saturated, which is economically disadvantageous. Further, the thickness of the titanium material used in the clad steel is not particularly limited, but when it is made of two metal materials, it is preferable that the thickness be in the range of 10 to 15 mm.
When the titanium material is made of three or more metal materials and the titanium material is on the inner side of the container, the range is 5 to 10 mm. It is preferable that the thickness be in the range of 5 to 5 mm. If the thickness of the titanium material is too small, the titanium layer may peel off or disappear due to thermal deformation, corrosion, or the like during long-term operation, which is undesirable, as in the case of the nickel material. If the thickness is too large, the effect is saturated, which is economically disadvantageous.

【0013】本発明の装置を使用する溶融塩電解精製法
では、99.999%(5N)以上の高純度チタンの製
造が可能である。5N以上の高純度チタンは、鉄、クロ
ム、ニッケル、銅、アルミニウム等の金属成分の含有量
がそれぞれ5ppm以下、好ましくは1ppm以下、よ
り好ましくは0.5ppm以下であり、更に、酸素原子
(O)の含有量が200ppm以下、好ましくは100
ppm以下、より好ましくは50ppm以下である。
In the molten salt electrorefining method using the apparatus of the present invention, it is possible to produce high-purity titanium of 99.999% (5N) or more. High-purity titanium of 5N or more has a content of metal components such as iron, chromium, nickel, copper, and aluminum of 5 ppm or less, preferably 1 ppm or less, more preferably 0.5 ppm or less, respectively. ) Is less than 200 ppm, preferably 100 ppm
ppm or less, more preferably 50 ppm or less.

【0014】本発明の電解容器に装入される電解浴とし
ては、NaCl、NaCl−KCl、LiCl−KC
l、NaCl−K2 TiF6 等の一般的にチタンの溶融
塩電解精製法に用いられる塩化物若しくは塩化物とフッ
化物との混合物が使用される。これらの化合物の純度は
特に制限されないが、一般に市販されている純度の高い
特級試薬レベル、ある程度精製され不純物が除去された
一級試薬レベル、又は精製度合いの低い工業薬品レベル
のいずれもが使用できる。特級試薬レベルのものは、
鉄、クロム、ニッケル、銅、アルミニウム等の金属成分
の含有量がそれぞれ1〜5ppm、マグネシウム、カル
シウムはそれぞれ1〜20ppm、水分は20〜100
ppmである。一級試薬、工業用試薬は、当然上記特級
試薬レベルより高い不純物含有量となるが、これらをそ
のまま使用しても、また、これらを事前に加熱脱水処理
等の精製処理して使用してもよい。
The electrolytic bath to be charged into the electrolytic vessel of the present invention includes NaCl, NaCl-KCl, LiCl-KC
l, chloride used in NaCl-K typically molten salt electrolysis method for purifying titanium such as 2 TiF 6 or a mixture of chlorides and fluorides are used. Although the purity of these compounds is not particularly limited, any of commercially available high-grade, special-grade reagent levels, primary reagent levels to which impurities have been removed to some extent, and industrial chemical levels having a low degree of purification can be used. At the reagent level,
The contents of metal components such as iron, chromium, nickel, copper, and aluminum are each 1 to 5 ppm, magnesium and calcium are each 1 to 20 ppm, and the water content is 20 to 100.
ppm. First-class reagents and industrial reagents naturally have an impurity content higher than that of the above-mentioned special-grade reagents, but they can be used as they are, or they can be used after being subjected to purification treatment such as heat dehydration treatment in advance. .

【0015】本発明で用いられる原料チタンはスポンジ
チタンが一般的であるが、ブリケット状のチタンを使用
することもできる。本発明のように高純度チタンを得る
ことを目的とする場合には、原料チタンも不純物濃度の
低いものを選択することが好ましい。原料チタンは電極
を囲えるようにリング状籠容器に収容され、そのリング
状籠容器ごと前記電解容器内の電解浴中に浸漬される。
このリング状籠容器は前記電解容器の蓋体に無接触で支
持され、電源の陽極に接続される。なお、リング状籠容
器の材質は鉄やニッケルが使用されるが、純度5N以上
の高純度チタンを得るには、純度99.0%以上、好ま
しくは99.5%以上のニッケルが好ましい。
The raw material titanium used in the present invention is generally sponge titanium, but briquette-like titanium can also be used. When the purpose is to obtain high-purity titanium as in the present invention, it is preferable to select a raw material titanium having a low impurity concentration. The raw material titanium is accommodated in a ring-shaped basket container so as to surround the electrode, and the entire ring-shaped cage container is immersed in an electrolytic bath in the electrolytic container.
The ring-shaped basket container is supported by the lid of the electrolytic container in a non-contact manner, and is connected to an anode of a power supply. In addition, iron or nickel is used for the material of the ring-shaped basket container. However, in order to obtain high-purity titanium having a purity of 5N or more, nickel having a purity of 99.0% or more, preferably 99.5% or more is preferable.

【0016】電極は、温度、強度等の物理面や腐食性な
どの化学面をクリアーできるものであれば、特に制限さ
れないが、チタン製の棒が好ましい。また、ニッケル材
又はチタン材の剥離など不慮の事故の場合を想定し、電
解容器の心材を構成する材料自体(不純物)が電解浴中
に溶出する対策として、電解中、原料チタンを陽極、電
解容器を陰極として、これらの間に別途チタン生成電圧
よりも低い電圧を印加する方法を採ってもよい、これに
より、電解容器からの不純物の溶出を防ぐと共に、電解
容器へのチタンの析出を防ぐことができる。この印加電
圧は、通常500mV以下、好ましくは10〜150m
V、より好ましくは30〜100mVである。
The electrode is not particularly limited as long as it can clear a physical surface such as temperature and strength and a chemical surface such as corrosiveness, but a titanium rod is preferable. Also, assuming a case of accident such as peeling of nickel or titanium material, as a countermeasure that the material itself (impurities) constituting the core material of the electrolytic container elutes into the electrolytic bath, during the electrolysis, the raw titanium is used as an anode, A method may be adopted in which the container is used as a cathode and a voltage lower than the titanium generation voltage is separately applied between them, thereby preventing elution of impurities from the electrolytic container and preventing precipitation of titanium into the electrolytic container. be able to. This applied voltage is usually 500 mV or less, preferably 10 to 150 mV.
V, more preferably 30 to 100 mV.

【0017】次に、チタンの製造方法を図面を参照して
説明する。図1は本発明のチタン製造装置の一例を示す
概略図である。図1中、チタン製造装置1は、不図示の
加熱炉内にセットされ、電解浴に接する側が、例えばニ
ッケル純度99.3%のニッケル−ステンレス鋼(SU
S304)のクラッド鋼で構成された容器本体11を有
する電解容器3内に収容した電解浴2内に電極5を挿入
し、かつ電極5を囲うように原料チタン4を入れ、電極
5を陰極、原料チタン4を陽極として電圧を印加し、原
料チタン4を精製して5N以上の高純度チタンを得るも
のである。
Next, a method for producing titanium will be described with reference to the drawings. FIG. 1 is a schematic view showing an example of the titanium production apparatus of the present invention. In FIG. 1, a titanium manufacturing apparatus 1 is set in a heating furnace (not shown), and a side in contact with an electrolytic bath is, for example, nickel-stainless steel (SU) having a nickel purity of 99.3%.
In step S304), the electrode 5 is inserted into the electrolytic bath 2 housed in the electrolytic container 3 having the container body 11 made of clad steel, and the raw material titanium 4 is put so as to surround the electrode 5, and the electrode 5 is used as a cathode. A voltage is applied using the raw material titanium 4 as an anode, and the raw material titanium 4 is purified to obtain high purity titanium of 5N or more.

【0018】電解容器3は有底円筒体で上端縁にフラン
ジ部10を有するクラッド鋼で構成される容器本体11
と、フランジ部10に密着して容器本体11内を密閉す
る蓋体12とからなる。この容器本体11の下部にステ
ンレス製の供給管13が取り付けられ、この供給管13
は容器本体11内に溶融塩を供給したり、排出したりす
る配管である。そして、電極5を囲う原料チタン4は、
ニッケル製のリング状籠容器14内に投入され、このリ
ング状籠容器14ごと電解容器3内の周辺部3aに収容
される。尚、図1中、符号14aは籠容器の網目を示
す。
The electrolytic vessel 3 is a vessel body 11 made of clad steel having a bottomed cylindrical body and a flange 10 at the upper end edge.
And a lid 12 which is in close contact with the flange portion 10 and seals the inside of the container body 11. A supply pipe 13 made of stainless steel is attached to a lower portion of the container body 11.
Is a pipe for supplying and discharging the molten salt into the container body 11. And the raw material titanium 4 surrounding the electrode 5
It is put into a nickel-made ring-shaped basket container 14 and is housed in the peripheral portion 3 a in the electrolytic container 3 together with the ring-shaped basket container 14. In FIG. 1, reference numeral 14a indicates a mesh of the basket container.

【0019】電極5を囲う原料チタン4の中心部、すな
わち、電解容器3のほぼ中心部3bに挿入される電極5
はチタン製である。電極5は、その上部軸部24が蓋体
12を貫通し、電解容器3の上方部で垂直に移動可能に
軸支され、電解中、下方に移動させその下部軸部25が
電解容器3の中心部3bに位置する電解浴2中に入れる
ことができ、電解終了後は上方に移動させ離脱できるよ
うになっている。
The electrode 5 inserted in the center of the raw material titanium 4 surrounding the electrode 5, that is, almost in the center 3 b of the electrolytic vessel 3.
Is made of titanium. The electrode 5 has its upper shaft portion 24 penetrating through the lid 12 and is vertically movably supported on the upper portion of the electrolytic container 3. The electrode 5 is moved downward during electrolysis to move the lower shaft portion 25 of the electrolytic container 3. It can be put in the electrolytic bath 2 located at the central portion 3b, and after the electrolysis is completed, it can be moved upward and separated.

【0020】そして、原料チタン4が投入されたリング
状籠容器14と電極5とは、電源26に次のような電解
用回路で接続される。すなわち、電源26の陽極はリン
グ状籠容器14の端子14aに電気的に接続され、陰極
は切換えスイッチ27を介して電極5に電気的に接続さ
れている。また、不純物溶出防止回路として、電源28
の陽極はスイッチ29を介して籠状容器14の端子14
bに電気的に接続され、陰極は電解容器3の容器本体1
1に電気的に接続されている。
Then, the ring-shaped cage container 14 into which the raw material titanium 4 is charged and the electrode 5 are connected to a power source 26 by the following electrolysis circuit. That is, the anode of the power supply 26 is electrically connected to the terminal 14 a of the ring-shaped basket container 14, and the cathode is electrically connected to the electrode 5 via the changeover switch 27. Further, a power supply 28 is provided as an impurity elution prevention circuit.
Is connected to the terminal 14 of the basket 14 via the switch 29.
b, and the cathode is the container body 1 of the electrolytic container 3.
1 electrically.

【0021】次に、このチタン製造装置1に基づいて、
チタンの製造方法を説明する。まず、電解容器3の容器
本体11内に予め1:1のモル比で混合したNaCl−
KClの混合塩化物を供給管13を通じて投入する。次
いで減圧下で容器本体11内の混合塩化物を650℃ま
で加熱してよく脱水してから、真空加熱炉内をアルゴン
雰囲気に置換した後、740℃まで昇温して混合塩化物
を溶融し電解浴2とする。不純物溶出防止回路のスイッ
チ29をオンして電源28から直流電流にて電圧を印加
し、次いで、リング状籠容器14内に原料チタン4を投
入し、電解容器3に蓋体4を被せる。続いて、不図示の
供給管から電解容器3内底部に液体のTiCl4 を適宜
吹き込み電解浴2中にチタンイオンを生成させたのち、
電解用回路の電源28を切換スイッチ29によりオフ
し、その後、電解容器3の中心部3bの電解浴2中に電
極5を挿入し、切替スイッチ27をオンして、電源26
から直流電流にて電解用回路に電圧を印加し、電解を行
う。この際、必要に応じて原料チタン4を追加する。電
解を所定時間行った後、電解用回路の電源26を切換ス
イッチ27により切り、電極5を電解容器3上部に引き
上げ、アルゴン雰囲気下で室温まで冷却する。次いで電
極5を真空加熱炉外に取り出し、速やかに希酸溶液で電
極5に生成しているチタン全体を洗浄し、更に純水で洗
浄したのち、一旦真空乾燥して水分を除去したのち、更
に真空乾燥して高純度チタンを得る。なお、電解中、電
解容器3からの不純物は電解容器を電解浴側に例えばニ
ッケル材を有するクラッド鋼としたこと、更に不純物溶
出防止回路を設けたことにより防止され、上記のように
高純度チタンを得ることが可能となる。なお、上記不純
物溶出防止回路は任意の設置回路であり、該不純物溶出
防止回路は特に設置しなくともかまわない。
Next, based on this titanium manufacturing apparatus 1,
A method for producing titanium will be described. First, NaCl- previously mixed at a molar ratio of 1: 1 in the container body 11 of the electrolytic container 3 was used.
The mixed chloride of KCl is introduced through the supply pipe 13. Next, the mixed chloride in the container body 11 was heated to 650 ° C. under reduced pressure and dehydrated well. After the inside of the vacuum heating furnace was replaced with an argon atmosphere, the temperature was raised to 740 ° C. to melt the mixed chloride. This is referred to as electrolytic bath 2. The switch 29 of the impurity elution prevention circuit is turned on, a voltage is applied from the power supply 28 by a direct current, and then the raw material titanium 4 is charged into the ring-shaped basket container 14, and the electrolytic container 3 is covered with the lid 4. Subsequently, liquid TiCl 4 is appropriately blown into a bottom portion of the electrolytic vessel 3 from a supply pipe (not shown) to generate titanium ions in the electrolytic bath 2.
The power supply 28 of the electrolysis circuit is turned off by the changeover switch 29, and then the electrode 5 is inserted into the electrolytic bath 2 in the central portion 3 b of the electrolysis container 3, and the changeover switch 27 is turned on to turn on the power
To apply a voltage to a circuit for electrolysis with a direct current to perform electrolysis. At this time, the raw material titanium 4 is added as needed. After performing the electrolysis for a predetermined time, the power supply 26 of the electrolysis circuit is turned off by the changeover switch 27, the electrode 5 is pulled up to the upper part of the electrolysis container 3, and cooled to room temperature under an argon atmosphere. Next, the electrode 5 is taken out of the vacuum heating furnace, and the entire titanium formed on the electrode 5 is quickly washed with a dilute acid solution, further washed with pure water, and once dried under vacuum to remove moisture. Vacuum drying to obtain high purity titanium. During the electrolysis, impurities from the electrolytic vessel 3 are prevented by providing the electrolytic vessel with, for example, clad steel having a nickel material on the electrolytic bath side and providing an impurity elution prevention circuit as described above. Can be obtained. Note that the impurity elution prevention circuit is an optional installation circuit, and the impurity elution prevention circuit does not have to be particularly installed.

【0022】[0022]

【実施例】次に、実施例を挙げて本発明を更に具体的に
説明するが、これは単に例示であって、本発明を制限す
るものでない。 実施例1 内容積70lの軟鋼(SS400)の内側にニッケルを
内張りした(ニッケルの厚み7mm)クラッド鋼からな
る電解容器内に1:1のモル比で混合したNaCl−K
Clの混合塩化物(表1に不純物の割合を示す)150
kgを投入し、電気炉内で650℃乃至740℃にて脱水
溶融して電解浴とし、リング状籠容器を陽極とし、且つ
電解容器を陰極とする不純物溶出防止回路に50mVの
電圧で直流電流を流した。この電解浴中に5kgのスポン
ジチタンをニッケル製のリング状籠容器に入れたまま浸
漬し、電解浴中に液体のTiCl4 を適宜吹き込み電解
浴中にチタンイオンを生成させた。
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention. Example 1 NaCl-K mixed in a molar ratio of 1: 1 into an electrolytic vessel made of clad steel in which nickel was lined (nickel thickness: 7 mm) inside mild steel (SS400) having an inner volume of 70 l.
Cl mixed chloride (Table 1 shows the percentage of impurities) 150
kg, and dehydrated and melted at 650 ° C to 740 ° C in an electric furnace to form an electrolytic bath. Shed. 5 kg of titanium sponge was immersed in this electrolytic bath while being placed in a ring-shaped basket made of nickel, and liquid TiCl 4 was appropriately blown into the electrolytic bath to generate titanium ions in the electrolytic bath.

【0023】次に、チタン製電極を電解浴中に入れ、不
純物溶出防止回路の電圧が安定したのち、電解用回路に
800mVの電圧で直流電流を流し、電解を開始し24
時間行った後、電解用回路への通電を停止し、チタン製
電極を引き上げ室温まで冷却した。その後、チタン製電
極に生成したチタンを酸洗浄及び純水洗浄して真空乾燥
し、樹脂状結晶のチタンを得た。この得られたチタンに
つき常法により不純物元素の分析を行った。結果を表2
に示す。表中、単位はppmである。
Next, after the titanium electrode is placed in the electrolytic bath and the voltage of the impurity elution preventing circuit is stabilized, a direct current is applied to the electrolytic circuit at a voltage of 800 mV to start electrolysis.
After a period of time, the power supply to the electrolysis circuit was stopped, and the titanium electrode was pulled up and cooled to room temperature. Thereafter, the titanium formed on the titanium electrode was washed with acid and pure water, and vacuum-dried to obtain titanium as a resin crystal. The obtained titanium was analyzed for impurity elements by a conventional method. Table 2 shows the results
Shown in In the table, the unit is ppm.

【0024】実施例2 不純物溶出防止回路は使用せず(OFF状態)、それ以
外は実施例1と同様の方法で行った。結果を表2に示し
た。
Example 2 An impurity elution prevention circuit was not used (OFF state), and the other steps were performed in the same manner as in Example 1. The results are shown in Table 2.

【0025】比較例1 クラッド鋼からなる電解容器の代わりに、軟鋼(SS4
00)製の電解容器を使用した以外は、実施例2と同様
の方法で行った。結果を表2に示す。
Comparative Example 1 Instead of the electrolytic vessel made of clad steel, mild steel (SS4
Example 2 was carried out in the same manner as in Example 2 except that an electrolytic container manufactured by the Company No. 00) was used. Table 2 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明によれば、電解容器を構成する材
料に起因する不純物の電解浴中への溶出を防止して、高
純度生成チタンの品質に悪影響を及ぼさない、より廉価
なチタン製造装置を提供することができる。
According to the present invention, it is possible to prevent the impurities caused by the material constituting the electrolytic vessel from being eluted into the electrolytic bath and to produce a titanium at a lower cost without adversely affecting the quality of the high purity titanium produced. An apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のチタン製造装置の一例を示す概略図で
ある。
FIG. 1 is a schematic view showing an example of a titanium manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 チタン製造装置 2 電解浴 3 電解容器 3a 周辺部 3b 中心部 4 原料チタン 5 電極 10 フランジ部 11 容器本体 12 蓋体 13 供給管 14 リング状籠容器 14a、14b 端子 24 上部軸部 25 下部軸部 26、28 電源 27 切換スイッチ 29 スイッチ DESCRIPTION OF SYMBOLS 1 Titanium manufacturing apparatus 2 Electrolysis bath 3 Electrolysis container 3a Peripheral part 3b Central part 4 Raw material titanium 5 Electrode 10 Flange part 11 Container main body 12 Lid 13 Supply pipe 14 Ring-shaped basket container 14a, 14b Terminal 24 Upper shaft part 25 Lower shaft part 26, 28 power supply 27 selector switch 29 switch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解容器内に収容した電解浴内に電極を
入れ、且つ該電極を囲うように原料チタンを入れ、電極
を陰極、原料チタンを陽極として電圧を印加し、原料チ
タンを精製するチタンの製造装置において、前記電解容
器は、前記電解浴に接する側がニッケル純度99.0%
〜99.8%のニッケル材又はチタン材であるクラッド
鋼で構成されていることを特徴とするチタンの製造装
置。
An electrode is placed in an electrolytic bath housed in an electrolytic vessel, and a raw material titanium is put so as to surround the electrode. A voltage is applied using the electrode as a cathode and the raw material titanium as an anode to purify the raw titanium. In the titanium manufacturing apparatus, the electrolysis container has a nickel purity of 99.0% on a side in contact with the electrolysis bath.
An apparatus for manufacturing titanium, comprising: clad steel that is a nickel material or a titanium material of up to 99.8%.
【請求項2】 前記クラッド鋼は、ニッケル−ステンレ
ス鋼、チタン−ステンレス鋼、ニッケル−炭素鋼−ステ
ンレス鋼、チタン−炭素鋼−ステンレス鋼、ニッケル−
チタン−ステンレス鋼、チタン−ニッケル−ステンレス
鋼、ニッケル−チタン−炭素鋼−ステンレス鋼、チタン
−ニッケル−炭素鋼−ステンレス鋼であることを特徴と
する請求項1記載のチタンの製造装置。
2. The clad steel comprises nickel-stainless steel, titanium-stainless steel, nickel-carbon steel-stainless steel, titanium-carbon steel-stainless steel, nickel-stainless steel.
2. The titanium production apparatus according to claim 1, wherein the apparatus is titanium-stainless steel, titanium-nickel-stainless steel, nickel-titanium-carbon steel-stainless steel, or titanium-nickel-carbon steel-stainless steel.
JP37207699A 1999-12-28 1999-12-28 Titanium manufacturing device Pending JP2001181884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37207699A JP2001181884A (en) 1999-12-28 1999-12-28 Titanium manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37207699A JP2001181884A (en) 1999-12-28 1999-12-28 Titanium manufacturing device

Publications (1)

Publication Number Publication Date
JP2001181884A true JP2001181884A (en) 2001-07-03

Family

ID=18499811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37207699A Pending JP2001181884A (en) 1999-12-28 1999-12-28 Titanium manufacturing device

Country Status (1)

Country Link
JP (1) JP2001181884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014762A (en) * 2012-12-31 2013-04-03 金坛市六九钛业科技有限公司 Device for producing metal by fused salt electrolysis process
CN103834971A (en) * 2012-11-23 2014-06-04 宁波创润新材料有限公司 Electrode and molten salt electrolysis device
WO2023276440A1 (en) * 2021-06-30 2023-01-05 東邦チタニウム株式会社 Method for manufacturing titanium-containing electrodeposit, and metal titanium electrodeposit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834971A (en) * 2012-11-23 2014-06-04 宁波创润新材料有限公司 Electrode and molten salt electrolysis device
CN103014762A (en) * 2012-12-31 2013-04-03 金坛市六九钛业科技有限公司 Device for producing metal by fused salt electrolysis process
CN103014762B (en) * 2012-12-31 2015-09-16 金坛市六九钛业科技有限公司 The raw metalliferous device of a kind of fused salt electrolysis process
WO2023276440A1 (en) * 2021-06-30 2023-01-05 東邦チタニウム株式会社 Method for manufacturing titanium-containing electrodeposit, and metal titanium electrodeposit

Similar Documents

Publication Publication Date Title
CA2334237C (en) Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt
AU2002349216B2 (en) A method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state
Suzuki Direct reduction processes for titanium oxide in molten salt
CA2176791C (en) Electrolytic production process for magnesium and its alloys
US5336378A (en) Method and apparatus for producing a high-purity titanium
WO1998049357A1 (en) Titanium crystal and titanium
CN106835203B (en) A kind of purification device and method of fused salt
US6024847A (en) Apparatus for producing titanium crystal and titanium
AU2002349139A1 (en) Electrochemical processing of solid materials in fused salt
JP3718691B2 (en) Titanium production method, pure metal production method, and pure metal production apparatus
CN110983378B (en) Device and method for preparing metal aluminum and titanium tetrachloride in molten salt by soluble anode
JP4763169B2 (en) Method for producing metallic lithium
US4882017A (en) Method and apparatus for making light metal-alkali metal master alloy using alkali metal-containing scrap
JP2001181884A (en) Titanium manufacturing device
US2904428A (en) Method of reducing titanium oxide
JPH03177594A (en) Method and device for producing high-purity titanium
US2909473A (en) Process for producing titanium group metals
US3450524A (en) Process for the preparation of pure manganese
JP2001011682A (en) Method and device for producing titanium
WO2004094312A1 (en) Method of purifying metal salt, method of deacidifying titanium material and method of producing the same
JP2001115290A (en) Method for producing titanium
JP2006063359A (en) Method and device for producing metal
JP2001040493A (en) Production of titanium and production apparatus therefor
JP2000345379A (en) Production of titanium
JP3737429B2 (en) Method for purifying metal salt, method for deoxidizing titanium material, and method for producing the same