JP2001181007A - Product of hydraulic material formed by papermaking - Google Patents

Product of hydraulic material formed by papermaking

Info

Publication number
JP2001181007A
JP2001181007A JP36409999A JP36409999A JP2001181007A JP 2001181007 A JP2001181007 A JP 2001181007A JP 36409999 A JP36409999 A JP 36409999A JP 36409999 A JP36409999 A JP 36409999A JP 2001181007 A JP2001181007 A JP 2001181007A
Authority
JP
Japan
Prior art keywords
fiber
mass
papermaking
hydraulic material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36409999A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takizawa
清 滝沢
Yoshinori Hitomi
祥徳 人見
Mitsuo Mayahara
光郎 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP36409999A priority Critical patent/JP2001181007A/en
Publication of JP2001181007A publication Critical patent/JP2001181007A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0052Mixtures of fibres of different physical characteristics, e.g. different lengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a product of a hydraulic material formed by papermaking, excellent in strength and toughness, and further to provide a slurry of the hydraulic material and a method for efficiently producing the product of the hydraulic material formed by the papermaking. SOLUTION: This product of the hydraulic material formed by the papermaking contains 1-10 wt.% reinforcing fiber having 7-30 dtex size, 6-20 mm fiber length, >=100 cN strength and 5-10% elongation, and 1-10 wt.% pulp having 70-130 CSF based on the formed product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水硬性材料抄造成形体
及びその製造方法、さらに抄造成形用スラリーに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded article of a hydraulic material, a method for producing the molded article, and a slurry for the molded article.

【0002】[0002]

【従来の技術】従来、水硬性材料を抄造法により成形し
てなる抄造成形体が、屋根瓦、サイジング材料などに広
く使用されている。かかる抄造成形体は、水硬性材料、
補強材等を配合したスラリーを丸網式、長網式、フロー
オン式等の方式により抄き上げて製造したものであり、
連続的な工業的生産方式であることから均一で安定した
品質の製品が生産できる利点がある。補強材としてはア
スベストが広く使用されていたが、近年、健康を保護す
る点からアスベストにかえて有機繊維を使用するケース
が増加しており、有機繊維を用いてなる水硬性材料の抄
造成形体は瓦やサイジング材として充分な性能を有する
ものである。
2. Description of the Related Art Conventionally, a molded article formed by molding a hydraulic material by a papermaking method has been widely used as a roof tile, a sizing material, and the like. Such a molded article is a hydraulic material,
It is manufactured by making a slurry containing reinforcing material etc. into a round net type, long net type, flow-on type etc.
Since it is a continuous industrial production method, there is an advantage that a product of uniform and stable quality can be produced. Asbestos has been widely used as a reinforcing material, but in recent years, organic fibers have been increasingly used in place of asbestos to protect health. Has sufficient performance as a tile or a sizing material.

【0003】[0003]

【発明が解決しようとする課題】該抄造成形体は瓦やサ
イジング材として十分な性能を有しているものの、建築
・土木用途に用いる場合にはより高度の耐衝撃性等が必
要となることから、諸性能のさらなる改善が望まれてい
た。しかしながら、抄造成形体の機械的性能を高めるた
めに補強繊維の添加量を増やすと繊維の水分散性や抄造
成形体の生産効率が低下する問題があり、さらに、近年
は耐震性の点からより靭性の高い抄造体が望まれてい
る。本発明の目的は、瓦やサイジング材としてはもちろ
んのこと、建築物・土木構造物及びそれらの補修材等に
好適な水硬性材料抄造成形体及び水硬性材料スラリー、
さらに該抄造成形体の効率的な製造方法を提供すること
にある。
Although the molded article has sufficient performance as a tile or a sizing material, it requires a higher degree of impact resistance when used for construction and civil engineering. Therefore, further improvements in various performances have been desired. However, increasing the amount of reinforcing fiber added to enhance the mechanical performance of the paper-formed body has the problem of reducing the water dispersibility of the fiber and the production efficiency of the paper-formed body, and in recent years, from the viewpoint of earthquake resistance, There is a demand for a tough paper body. The object of the present invention is not only a tile and a sizing material, but also a hydraulic material sheeting molded product and a hydraulic material slurry suitable for buildings, civil engineering structures and repair materials thereof,
It is still another object of the present invention to provide a method for efficiently producing the molded article.

【0004】[0004]

【問題を解決するための手段】本発明は、(1) 繊度
7〜30dtex、繊維長6〜20mm、強力100cN以
上、伸度5〜10%の補強繊維を1〜10質量%/成形
体、CSF70〜130のパルプを1〜10質量%/成
形体含有する水硬性材料抄造成形体、(2) 繊度7〜
30dtex、繊維長6〜20mm、強力100cN以上、
伸度5〜10%の補強繊維を1〜10質量%/固体分、
CSF70〜130のパルプを1〜10質量%/固体分
含有する抄造成形用水硬性材料スラリー、(3) 標準
抄造法により得られる標準試験体の最大強度P(MP
a)と、該最大強度Pを示す際のたわみδ(cm)の積
が3.5以上となる(2)に記載の抄造成形用水硬性材
料スラリー、(4) 繊度7〜30dtex、繊維長6〜2
0mm、強力100cN以上、伸度5〜10%の補強繊
維を1〜10質量%/固体分、CSF70〜130のパ
ルプを1〜10質量%/固体分含有する水硬性材料スラ
リーを抄造法により成形する抄造成形体の製造方法、に
関する。
According to the present invention, there are provided (1) a reinforcing fiber having a fineness of 7 to 30 dtex, a fiber length of 6 to 20 mm, a strength of 100 cN or more, and an elongation of 5 to 10% by 1 to 10% by mass / compact; Hydraulic material sheet molding containing 1 to 10% by mass / mold of pulp of CSF 70 to 130, (2) Fineness 7 to
30dtex, fiber length 6-20mm, strength 100cN or more,
1 to 10% by mass / solid content of reinforcing fibers having an elongation of 5 to 10%,
A hydraulic material slurry for papermaking molding containing 1 to 10% by mass / solid content of pulp of CSF 70 to 130, (3) Maximum strength P (MP) of a standard specimen obtained by a standard papermaking method
a) and the deflection δ (cm) when exhibiting the maximum strength P is 3.5 or more, the hydraulic material slurry for papermaking molding according to (2), (4) fineness 7 to 30 dtex, fiber length 6 ~ 2
Hydraulic material slurry containing 0 mm, strength of 100 cN or more, reinforcing fiber having elongation of 5 to 10%, 1 to 10% by mass / solid, and pulp of CSF 70 to 130, 1 to 10% by mass / solid, is formed by a papermaking method. And a method for producing a sheet-formed molded article.

【0005】[0005]

【発明の実施の形態】本発明は、補強材として特定の繊
維を用いることにより、靭性等の諸性能に優れた抄造成
形体が得られることを見出したものである。具体的に
は、補強繊維として繊度7〜30dtex、繊維長6〜20
mm、強力100cN以上、伸度5〜10%の有機繊維
を用いるものである。従来、抄造成形体の補強繊維とし
て繊度5dtex以下の比較的細径の繊維が使用されて
きたが、抄造成形体の機械的性能を上げるために繊維の
強度を高めようとすると多大なコストがかかり、また添
加量を増加させると繊維の水分散性が低いためにファイ
バーボール等が発生して抄造成形体の諸性能はそれほど
向上せず、また生産効率も低下してしまう。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has been found that a molded article excellent in various properties such as toughness can be obtained by using a specific fiber as a reinforcing material. More specifically, the reinforcing fibers have a fineness of 7 to 30 dtex and a fiber length of 6 to 20.
mm, an organic fiber having a strength of 100 cN or more and an elongation of 5 to 10% is used. Conventionally, relatively small-diameter fibers having a fineness of 5 dtex or less have been used as reinforcing fibers for a molded article, but a great deal of cost is required to increase the fiber strength in order to increase the mechanical performance of the molded article. In addition, when the amount of addition is increased, fiber balls or the like are generated due to low water dispersibility of the fiber, so that various performances of the formed paper product are not so much improved and the production efficiency is lowered.

【0006】以上のことから、本発明は、繊度7〜30
dtex、強力100cN以上の繊維を用いるものであ
る。デシテックスあたりの強力は同程度であっても、繊
度を大きくすることによって繊維1本あたりの負担荷重
を増大させることが可能となり、また太径とすることに
より繊維の水分散性が向上して補強繊維の添加量を増や
すことができることから、抄造体の強度、靭性を高める
ことができる。繊維1本あたりの負担可能な荷重が小さ
い場合、外部応力が加わると、ひび割れが拡大して他の
繊維に応力が伝達される前に破断してしまうが、繊維1
本あたりの負担可能な荷重が大きい場合、外部応力を受
け止めながらひび割れを拡大することが可能になり、ひ
び割れが拡大するにしたがって外部応力を負担する繊維
が増えるため、外部応力を各繊維が分担して負担するこ
とが可能になる。よって、抄造成形体の強力及び靭性が
向上することになる。
From the above, the present invention provides a fineness of 7 to 30.
A dtex fiber having a strength of 100 cN or more is used. Even if the strength per decitex is almost the same, it is possible to increase the burden load per fiber by increasing the fineness, and by increasing the diameter, the water dispersibility of the fiber is improved and reinforced. Since the amount of added fiber can be increased, the strength and toughness of the papermaking body can be increased. When the load that can be borne per fiber is small, when an external stress is applied, the crack expands and breaks before the stress is transmitted to other fibers.
If the load that can be borne per book is large, it is possible to expand the crack while receiving the external stress, and as the crack expands, more fibers bear the external stress, so each fiber shares the external stress. It is possible to bear. Therefore, the strength and toughness of the papermaking molded article are improved.

【0007】補強繊維の繊度は7dtex以上とする必要
がある。繊度が小さすぎると単位デシテックスあたりの
強度は高くても繊維そのものの強力をそれほど大きくで
きず、また水分散性が不十分となることから本発明の効
果が得られない。繊度10dtex以上であるのがより好まし
い。逆に繊度が大きすぎるとマトリックスとの接着性が
大幅に低下して「抜け」が生じやすくなり、ブリッジン
グ効果・補強効果が十分に得られなくなる。よって30
dtex以下、特に20dtex以下とするのが好ましい。抄造
法の場合、繊維は2次元方向に配向しやすく、混練成形
に比して繊維の折れ、屈曲等が生じにくいことから、繊
維そのものの補強効果は発揮されやすいものの「抜け」
は生じやすくなる。よって、混練成形法を採用する場合
に比して細径の繊維を用いるのが好ましい。
[0007] The fineness of the reinforcing fibers must be 7 dtex or more. If the fineness is too small, the strength of the fiber itself cannot be increased so much even if the strength per unit decitex is high, and the effect of the present invention cannot be obtained because the water dispersibility becomes insufficient. More preferably, the fineness is 10 dtex or more. On the other hand, if the fineness is too large, the adhesiveness to the matrix is greatly reduced, so that "dropout" is likely to occur, and the bridging effect and the reinforcing effect cannot be sufficiently obtained. Therefore 30
dtex or less, particularly preferably 20 dtex or less. In the case of the papermaking method, the fibers are easily oriented in a two-dimensional direction, and the fibers are less likely to be bent or bent as compared with kneading molding.
Is more likely to occur. Therefore, it is preferable to use fibers having a small diameter as compared with the case where the kneading molding method is employed.

【0008】繊維1本あたりの負担荷重を確保する点か
ら、繊維の破断強力は100cN以上、好ましくは15
0cN以上、さらに好ましくは170cN以上である必
要がある。繊維の破断強力が小さすぎる場合、外部応力
が加わると、ひび割れが拡大して他の繊維に応力が伝達
される前に破断してしまい本発明の効果が得られない。
繊維1本あたりの負荷荷重を確保する点からは、繊維の
デシテックスあたりの強度は、10cN/dtex以上、特
に12cN/dtex以上であるのが好ましく、繊度が小さ
いほどデシテックスあたりの強度を高くするのが望まし
い。
[0008] From the viewpoint of ensuring a burden load per fiber, the breaking strength of the fiber is 100 cN or more, preferably 15 cN or more.
It must be 0 cN or more, more preferably 170 cN or more. If the breaking strength of the fiber is too small, when an external stress is applied, the cracks are expanded and the fiber is broken before the stress is transmitted to other fibers, so that the effect of the present invention cannot be obtained.
From the viewpoint of securing the applied load per fiber, the strength of the fiber per decitex is preferably at least 10 cN / dtex, particularly preferably at least 12 cN / dtex. The smaller the fineness, the higher the strength per decitex. Is desirable.

【0009】しかしながら、単に特定の繊度、強力を有
する繊維を用いても所望の効果は得られない。すなわ
ち、本発明で用いられる繊維は、従来広く用いられてい
る繊維に比して太径でマトリックスとの接着力が小さく
「抜け」やすいものであり、また繊維が2次元的に配向
する抄造法を採用しているためその傾向は顕著となる。
さらに抄造工程時に繊維とマトリックスとの絡みあいが
小さくなりすぎて抄き上げ性が低下して生産効率が不十
分となるのみでなく、繊維に保持される水硬性材料粒子
が低減して成形体の密度が小さくなるため機械的性能が
低下しやすくなる。以上のことから、該補強繊維の繊維
長を6〜20mmと比較的長くするとともに、繊維伸度
を5〜10%とする必要がある。
However, the desired effect cannot be obtained simply by using fibers having a specific fineness and strength. That is, the fiber used in the present invention has a larger diameter than the conventionally widely used fiber, has a small adhesive force with the matrix, and is easy to “peel off”, and the papermaking method in which the fiber is two-dimensionally oriented. This tendency is remarkable because of the adoption of.
Furthermore, not only does the entanglement between the fiber and the matrix become too small during the papermaking process, the papermaking properties are reduced and the production efficiency becomes insufficient, but also the hydraulic material particles held by the fiber are reduced and the molded product is reduced. , The mechanical performance tends to be reduced. From the above, it is necessary to make the fiber length of the reinforcing fiber relatively long, that is, 6 to 20 mm, and to make the fiber elongation 5 to 10%.

【0010】すなわち、補強繊維の繊維長を長くするこ
とにより「抜け」が生じにくくなって、十分なブリッジ
ング効果を得るとともに他の繊維への応力分散が可能と
なり、さらに、繊維と水硬性材料が適度に絡み合うため
抄き上げ性が向上し、また繊維の水硬性材料粒子保持効
果が高まって生産効率及び得られる抄造成形体の性能が
向上する。繊維の抜け抑制、抄き上げ性向上の点からは
繊維長は、6mm以上、特に7mm以上、さらに10m
m以上であるのが好ましく、繊維の水分散性を確保する
点からは20mm以下、特に18mm以下、さらに15
mm以下であるのが好ましい。
[0010] That is, by increasing the fiber length of the reinforcing fiber, "pull-out" is less likely to occur, a sufficient bridging effect can be obtained, and stress dispersion to other fibers becomes possible. Are appropriately entangled with each other, so that the machinability is improved, and the effect of holding the fibers of the hydraulic material particles is enhanced, so that the production efficiency and the performance of the obtained molded article are improved. The fiber length is 6 mm or more, particularly 7 mm or more, and more preferably 10 m, from the viewpoint of suppressing fiber detachment and improving the papermaking property.
m or more, and from the viewpoint of ensuring the water dispersibility of the fiber, it is 20 mm or less, particularly 18 mm or less, and more preferably 15 mm or less.
mm or less.

【0011】また繊維の伸度も特定の範囲とする必要が
ある。すなわち、伸度が高すぎると繊維の自由度が大き
くなって「抜け」が生じやすくなり、またひび割れ幅が
大きくなるためブリッジング繊維に加わる負荷が大きく
なって応力集中が生じ、外部応力の分散が困難になる。
よって、伸度10%以下、特に8%以下、さらに7%以
下であるのが好ましい。しかしながら伸度が小さすぎる
と、外部荷重が加わった際にひび割れ開口部で容易に破
断してしまい、外部応力を十分に負担するとともに他の
繊維に応力を伝達することが困難となる。よって、破断
伸度は5%以上、特に6%以上であるのが好ましい。
[0011] The elongation of the fiber also needs to be in a specific range. In other words, if the elongation is too high, the degree of freedom of the fiber increases and "pull-out" tends to occur, and the crack width increases, so that the load applied to the bridging fiber increases, causing stress concentration and dispersion of external stress. Becomes difficult.
Therefore, the elongation is preferably 10% or less, particularly 8% or less, and more preferably 7% or less. However, if the elongation is too small, it will easily break at the crack opening when an external load is applied, making it difficult to sufficiently bear external stress and to transmit stress to other fibers. Therefore, the breaking elongation is preferably 5% or more, particularly preferably 6% or more.

【0012】かかる補強繊維としては、軽量で取扱性、
機械的性能に優れていることから有機繊維を用いるのが
好ましく、具体的にはポリオレフィン系繊維(ポリプロ
ピレン系繊維、ポリエチレン系繊維等)、ポリアミド系
繊維(アラミド繊維を包含する)、ポリビニルアルコー
ル系繊維、アクリル系繊維、ポリベンゾオキサゾール系
繊維、ポリエステル系繊維、ポリアミド系繊維(アラミ
ド系繊維を含む)、レーヨン系繊維(ポリノジックレー
ヨン繊維、溶剤紡糸レーヨン繊維等)等が挙げられる。
もちろん、複数種の繊維を併用してもかまわない。なか
でも機械的性能、耐アルカリ性、耐候性に優れるポリオ
レフィン系繊維及び又はポリビニルアルコール系繊維、
特にポリビニルアルコール系繊維を少なくとも用いるの
が好ましい。繊維の配合量は1〜10質量%/成形体と
するのが好ましい。繊維の配合量が小さすぎる場合には
本発明の効果が十分に得られず、逆に配合量が多すぎる
と水分散性が不十分になる。成形体の機械的性能の点か
らは配合量2.5質量%以上/成形体、特に3.5質量
%以上/成形体であるのが好ましく、均一分散性の点か
らは、6質量%以下/成形体であるのがより好ましい。
[0012] Such reinforcing fibers are lightweight and easy to handle.
It is preferable to use organic fibers because of their excellent mechanical performance. Specifically, polyolefin fibers (polypropylene fibers, polyethylene fibers, etc.), polyamide fibers (including aramid fibers), and polyvinyl alcohol fibers And acrylic fibers, polybenzoxazole fibers, polyester fibers, polyamide fibers (including aramid fibers), rayon fibers (polynosic rayon fibers, solvent-spun rayon fibers, etc.).
Of course, a plurality of types of fibers may be used in combination. Among them, mechanical performance, alkali resistance, polyolefin fiber and or polyvinyl alcohol fiber excellent in weather resistance,
In particular, it is preferable to use at least polyvinyl alcohol-based fibers. The blending amount of the fibers is preferably 1 to 10% by mass / molded article. If the amount of the fiber is too small, the effect of the present invention cannot be sufficiently obtained. Conversely, if the amount is too large, the water dispersibility becomes insufficient. From the viewpoint of the mechanical performance of the molded article, the blending amount is preferably 2.5% by mass or more / the molded article, particularly preferably 3.5% by mass or more / the molded article. From the viewpoint of uniform dispersibility, 6% by mass or less. / A molded article is more preferable.

【0013】なお、本発明は上記の特定の補強繊維を配
合することに特徴を有するものであるが、本発明の効果
を損わない範囲であれば他の補強繊維を配合してもかま
わない。なかでも、他の補強繊維を3質量%以下/成形
体、特に1質量%以下/成形体、さらに0〜0.5質量
%/成形体配合するのが好ましい。
The present invention is characterized in that the above-mentioned specific reinforcing fiber is compounded. However, other reinforcing fibers may be compounded as long as the effects of the present invention are not impaired. . In particular, it is preferable to mix other reinforcing fibers in an amount of 3% by mass or less / molded body, particularly 1% by mass or less / molded body, and more preferably 0 to 0.5% by mass / molded body.

【0014】かかる補強繊維を水硬性材料に配合してス
ラリーとして抄造成形体を得ればよいが、単に特定の補
強繊維を用いるのみでは所望の成形体は得られない。す
なわち、補強繊維の径が大きい場合、抄造時の抄き上げ
性が低下して生産効率が低下し、しかも細径繊維を用い
る場合に比して水硬性材料粒子保持効果が低下するため
成形体の密度が小さくなって機械的性能も低下しやすく
なる。以上のことから、本発明においては特定のパルプ
を配合する必要があり、具体的にはCSF70〜130
のパルプを配合する必要がある。かかる細かいパルプを
配合することにより水硬性材料粒子を十分に捕捉でき、
シート厚さを厚くできるために生産効率が向上し長時間
の機械の運転が可能となるのみでなく、密度が高く強度
・靭性に優れた成形体が得られる。一般にCSF150
〜300のパルプが広く使用されているが、本発明にお
いては、かかる粗いパルプを用いた場合には所望の効果
が得られない。水硬性材料捕捉効果の点からは、CSF
125以下、特にCSF115以下であるのが好まし
い。逆にCSFが小さすぎると抄造性が低下するためC
SFは70以上、特に80以上であるのが好ましい。
It is only necessary to mix such a reinforcing fiber with a hydraulic material to obtain a molded article as a slurry, but a desired molded article cannot be obtained simply by using a specific reinforcing fiber. That is, when the diameter of the reinforcing fiber is large, the machinability at the time of papermaking is reduced and the production efficiency is reduced, and the effect of retaining the hydraulic material particles is reduced as compared with the case where the fine fiber is used. And the mechanical performance tends to decrease. From the above, in the present invention, it is necessary to mix a specific pulp, specifically, CSF70-130
Pulp must be blended. By incorporating such fine pulp, hydraulic material particles can be sufficiently captured,
Since the sheet thickness can be increased, not only the production efficiency is improved and the machine can be operated for a long time, but also a molded article having a high density and excellent strength and toughness can be obtained. Generally CSF150
Although pulp of ~ 300 is widely used, in the present invention, when such coarse pulp is used, the desired effect cannot be obtained. In terms of the hydraulic material trapping effect, CSF
It is preferably 125 or less, particularly preferably CSF 115 or less. Conversely, if the CSF is too small, the papermaking properties will decrease.
SF is preferably 70 or more, particularly preferably 80 or more.

【0015】パルプは天然パルプ又は天然パルプに種々
の処理を加えたものが好ましく、なかでも木材パルプ、
特に抄き上げ性、水硬性材料粒子捕捉性等の点から針葉
樹の木材パルプがより好ましい。パルプの添加量は1〜
10質量%/成形体とする必要があり、パルプの添加量
が小さくなると水硬性材料粒子の捕捉効果が不十分にな
り、逆にパルプの添加量が大きくなりすぎても抄造成形
体の抄造性が損われるとともに機械的性能が低下する。
より本発明の効果を効率的に得る点からはパルプの配合
量を3質量%以上/成形体、6質量%以下/成形体とす
るのが好ましい。なおパルプのCSFが小さいほど添加
量が少なくても十分な水硬性材料粒子捕捉効果が得られ
配合量を低減させることができる。
The pulp is preferably natural pulp or natural pulp to which various treatments have been added. Among them, wood pulp,
In particular, coniferous wood pulp is more preferable from the viewpoints of paper making property, hydraulic material particle trapping property and the like. Pulp addition amount is 1 ~
It is necessary to be 10% by mass / molded article. When the added amount of pulp is small, the effect of capturing the hydraulic material particles is insufficient, and conversely, even when the added amount of pulp is too large, the formability of the molded article is increased. And the mechanical performance is reduced.
From the viewpoint of obtaining the effects of the present invention more efficiently, it is preferable that the blending amount of pulp is 3% by mass or more / molded product, and 6% by mass or less / molded product. As the CSF of the pulp is smaller, a sufficient effect of capturing the hydraulic material particles can be obtained even if the amount of the pulp is smaller, and the amount of the pulp can be reduced.

【0016】本発明に用いられる水硬性材料は特に限定
されず、セッコウ、セッコウスラグ、マグネシア等が好
適に挙げられる。なかでもセメントが好適に使用でき、
ポルトランドセメントがその代表的なものであるが、高
炉セメント、フライアッシュセメント、アルミナセメン
ト等を使用してもよく、これらを併用してもかまわな
い。また本発明においては水硬性材料の配合量を75質
量%以上/成形体、特に80質量%以上/成形体とする
のが好ましい。すなわち、本発明においては「抜け」が
生じやすい比較的太径の繊維を用い、しかも繊維が2次
元配向して「抜け」が生じやすい抄造法により成形して
いることから、繊維とマトリックスの接着性を確保する
必要がある。しかしながら、たとえば骨材等を多量に添
加すると繊維と骨材との接触部分では十分な接着力が得
られないことから補強繊維の補強効果は著しく低下する
こととなる。以上のことから、本発明においては多量の
水硬性材料を配合するのが好ましい。
The hydraulic material used in the present invention is not particularly limited, and preferred examples include gypsum, gypsum slag, and magnesia. Among them, cement can be suitably used,
Portland cement is a typical example, but blast furnace cement, fly ash cement, alumina cement, or the like may be used, or these may be used in combination. In the present invention, it is preferable that the blending amount of the hydraulic material is 75% by mass or more / molded body, particularly 80% by mass or more / molded body. In other words, in the present invention, fibers having relatively large diameters that easily cause “peeling” are used, and the fibers are two-dimensionally oriented and formed by a papermaking method that is likely to cause “peeling”. Needs to be secured. However, for example, when a large amount of aggregate or the like is added, a sufficient adhesive force cannot be obtained at a contact portion between the fiber and the aggregate, so that the reinforcing effect of the reinforcing fiber is significantly reduced. From the above, in the present invention, it is preferable to mix a large amount of hydraulic material.

【0017】なお本発明の効果を損わない範囲であれば
他の添加剤を添加してもかまわない。たとえばシリカヒ
ューム、シリカフラワー、ナトリウムベントナイト、セ
ピオライト、フライアッシュ、高炉スラグ、ボールクレ
イ、水酸化アルミニウム、マイカ等のなどの微粒子を本
発明の効果を損わない範囲で添加してもかまわない。無
機微粒子を配合することによって、抄造性等を改善でき
る。本発明の効果を十分に得る点からは、かかる水硬性
材料以外の無機微粒子の配合量を20質量%以下/成形
体、特に15質量%以下/成形体とするのが好ましい。
[0017] Other additives may be added as long as the effects of the present invention are not impaired. For example, fine particles such as silica fume, silica flour, sodium bentonite, sepiolite, fly ash, blast furnace slag, ball clay, aluminum hydroxide, mica and the like may be added as long as the effects of the present invention are not impaired. By blending the inorganic fine particles, papermaking properties and the like can be improved. From the viewpoint of sufficiently obtaining the effects of the present invention, it is preferable that the blending amount of the inorganic fine particles other than the hydraulic material is 20% by mass or less / compact, particularly 15% by mass or less / compact.

【0018】かかる材料を用いてスラリーを調製し、該
スラリーを用いて抄造成形体を製造すればよい。たとえ
ば特定の補強繊維を1〜10質量%/固体分、パルプを
1〜5質量%/固体分含有する水硬性材料スラリーを調
製すればよく、水硬性材料の配合比は75質量%以上/
固体分とするのが好ましい。スラリー濃度は適宜設定す
ればよいが、抄造性及び成形体性能の点からは、固体材
料100重量部に対し、水200〜2000重量部を含
有するスラリーとするのが好ましい。特に丸網方式や長
網方式にあっては水500〜2000重量部、フローオ
ン方式においては400重量部以下とするのが好まし
い。水配合量が多すぎると抄造効率が悪くなり、逆に少
なすぎると固形材料の均一分散性が不十分になる。
A slurry may be prepared using such a material, and a sheet-formed article may be manufactured using the slurry. For example, a hydraulic material slurry containing 1 to 10% by mass / solid content of a specific reinforcing fiber and 1 to 5% by mass / solid content of pulp may be prepared, and the compounding ratio of the hydraulic material is 75% by mass or more /
Preferably, it is solid. The slurry concentration may be appropriately set, but from the viewpoint of papermaking properties and molded article performance, it is preferable to use a slurry containing 200 to 2,000 parts by weight of water with respect to 100 parts by weight of the solid material. In particular, it is preferable to use 500 to 2,000 parts by weight of water for the round net method and the long net method, and 400 parts by weight or less for the flow-on method. If the amount of water is too large, the papermaking efficiency will be poor, and if too small, the uniform dispersibility of the solid material will be insufficient.

【0019】スラリーの調製方法は特に限定されない
が、固体成分が均一に分散されたスラリーを得る点から
は、水を張った攪拌機にパルプを投入して攪拌し、次い
で補強繊維、水硬性材料、他の添加剤(無機物質等)を
順次添加するのが好ましい。成形法は抄造法であれば特
に限定されず、たとえば丸網式、長網式、フローオン式
等を採用すればよい。たとえばスラリーを金網等のメッ
シュに濾し取り直ちにフェルトに転写する方法(丸網
式、長網式)や、メッシュ状に一挙に流し込み成形する
方法(フローオン方式)などのより成形、たとえばスレ
ート板を成形すればよい。引続きプレスによって水を絞
り養生すれば所望の抄造体が得られる。また得られるシ
ートを数枚積層し、必要に応じて加圧プレスを行って養
生してもかまわない。単体及び積層体に対するプレスは
2〜10MPaの圧力で最大10分間程度行えばよく、
プレスにより板密度が上がって強度が向上する。
The method for preparing the slurry is not particularly limited, but from the viewpoint of obtaining a slurry in which the solid components are uniformly dispersed, the pulp is put into a stirrer filled with water and stirred, and then the reinforcing fibers, hydraulic material, It is preferable to sequentially add other additives (such as inorganic substances). The forming method is not particularly limited as long as it is a papermaking method. For example, a round net type, a long net type, a flow-on type, or the like may be employed. For example, a method of filtering a slurry on a mesh such as a wire net and transferring it immediately to a felt (round net type, long net type) or a method of casting at a time in a mesh shape (flow-on type) is used. What is necessary is just to shape | mold. Subsequently, if the water is squeezed and cured by a press, a desired paper body can be obtained. In addition, several sheets obtained may be laminated, and if necessary, may be pressed and cured. The press for the simple substance and the laminate may be performed at a pressure of 2 to 10 MPa for a maximum of about 10 minutes,
Pressing increases plate density and improves strength.

【0020】本発明により得られる成形体は強度及び靭
性に優れたものであり、具体的性能は、抄造方法、配合
等により大きく異なるが、たとえば本発明のスラリーを
用いて標準抄造法により標準試験体を製造した場合、最
大強度をP(MPa)、該最大強度を奏するときのたわ
みをδ(cm)とするとき、P×δが3.5以上、特に
10以上の靭性に優れた成形体が得られる。またかかる
標準試験体の最大曲げ強度は20MPa以上、特に35
MPs以上、さらに38MPa以上であるのが好まし
く、たわみδは0.15cm以上、特に0.20cm以
上、さらに0.26cm以上であるのが好ましい。また
機械的性能、耐久性等の点からは、成形体の密度は、密
度1.4〜1.8g/cm3程度であるのが好ましい。
The molded article obtained by the present invention is excellent in strength and toughness, and the specific performance greatly differs depending on the papermaking method, the composition, etc., for example, the standard test is carried out by the standard papermaking method using the slurry of the present invention. When the body is manufactured, when the maximum strength is P (MPa) and the deflection at the time of achieving the maximum strength is δ (cm), P × δ is 3.5 or more, particularly 10 or more, a molded article excellent in toughness. Is obtained. Further, the maximum bending strength of such a standard specimen is 20 MPa or more, especially 35 MPa.
It is preferably at least MPs, more preferably at least 38 MPa, and the deflection δ is at least 0.15 cm, particularly preferably at least 0.20 cm, more preferably at least 0.26 cm. From the viewpoints of mechanical performance, durability and the like, the density of the molded body is preferably about 1.4 to 1.8 g / cm 3 .

【0021】抄造成形体の形態は特に限定されないが、
たとえば板状にすることによって様々な用途に使用でき
る。本発明によれば抄造成形体の強度、靭性を大幅に向
上し非常にたわみの大きい成形体を提供できる。この成
形体は、その優れた靭性から耐震構造物補強や構造物の
耐衝撃性向上補強に有用である。本発明の成形体はあら
ゆる製品とすることができ、たとえば屋根瓦、サイジン
グ材はもちろんのこと、水槽タンク、パイプ等としても
広く使用できる。以下更に本発明を実施例でもって説明
するが、本発明は実施例により何等限定されるものでは
ない。
[0021] The form of the papermaking molded article is not particularly limited.
For example, it can be used in various applications by forming it into a plate shape. ADVANTAGE OF THE INVENTION According to this invention, the intensity | strength and toughness of a papermaking molded object are improved significantly, and the molded object with very large deflection can be provided. This molded article is useful for reinforcing an earthquake-resistant structure and improving and improving the impact resistance of a structure due to its excellent toughness. The molded article of the present invention can be any product, and can be widely used as, for example, roof tiles, sizing materials, water tanks, pipes, and the like. Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to the examples.

【0022】[0022]

【実施例】[繊度 dtex]得られた繊維状物の一定試
長の重量を測定して見掛け繊度をn=5以上で測定し、
平均値を求めた。なお、一定糸長の重量測定により繊度
が測定できないもの(細デニ−ル繊維)はバイブロスコ
−プにより測定した。
[Example] [Fineness dtex] The apparent fineness was measured at n = 5 or more by measuring the weight of a given test length of the obtained fibrous material.
The average was determined. In addition, the fineness could not be measured by measuring the weight of a certain yarn length (fine denier fiber) was measured by a vibroscope.

【0023】[繊維強力 cN、強度cN/dtex、伸
度 %]予め温度20℃、相対湿度65%の雰囲気下で
24時間繊維を放置して調湿したのち、単繊維を試長1
0cm、引張速度5cm/分としてインストロン試験機
「島津製作所製オートグラフ」にて繊維強力を測定し、
該強力を繊度で除して強度を求めた。伸度は、単繊維破
断伸び(cm)/把持長(cm)×100により算出し
た。なお繊維長が10cmより短い場合は、そのサンプ
ルの可能な範囲での最大長さを把持長として測定するこ
ととする。
[Fiber strength cN, strength cN / dtex, elongation%] The fibers are allowed to stand in an atmosphere of a temperature of 20 ° C. and a relative humidity of 65% for 24 hours to adjust the humidity.
The fiber strength was measured with an Instron tester “Autograph manufactured by Shimadzu Corporation” at 0 cm and a tensile speed of 5 cm / min.
The strength was obtained by dividing the strength by fineness. The elongation was calculated by elongation at break of single fiber (cm) / gripping length (cm) × 100. If the fiber length is shorter than 10 cm, the maximum length of the sample within the possible range is measured as the grip length.

【0024】[CSF(濾水度) ml]パルプの濾水
度試験方法 JIS P8121−1976のカナダ標
準型に準じて測定し、スラリー濃度0.4質量%、温度
20℃に補正した平均値をCSFとして評価した。
[CSF (freeness) ml] Freeness test method of pulp Measured according to the Canadian standard type of JIS P8121-1976, and the average value corrected to a slurry concentration of 0.4% by mass and a temperature of 20 ° C. It was evaluated as CSF.

【0025】[最大曲げ強度(P) MPa、最大曲げ
強度Pを示すたわみ(δ) cm]水硬性材料スラリー
を下記の標準抄造法により標準成形体を製造し、材齢2
8日後の試験体を以下の条件で中央載荷方式による曲げ
試験を行い、最大荷重発生時の曲げ応力を最大曲げ強
度、荷重−たわみ曲線において該最大曲げ強度を示すた
わみをδとして評価した。 標準抄造法:ハチェックによる丸網抄造法により成形
し、抄造シート14枚をメーキングローラーに巻き取
り、5MPaの圧力でプレス搾液し、50℃、飽和湿度
条件下で24時間養生し、さらに20℃、飽和湿度条件
下で養生して水硬性材料抄造成形体を得る。 曲げ試験: 装置 島津オートグラフAG5000−B 試料 幅25mm,厚さ4mm,長さ10cmの大きさ
に切り出したもの ただし抄造方向を長さ方向として切出し、厚さ4±0.
5mmのものについては切出すことなくそのまま試験体
として用いる。 試験速度 0.2mm/分 3点曲げスパン 5cm
[Deflection (δ) cm showing maximum bending strength (P) MPa and maximum bending strength P] A standard molded body was manufactured from the hydraulic material slurry by the following standard papermaking method.
Eight days later, the test specimen was subjected to a bending test by a central loading method under the following conditions, and the bending stress when a maximum load was generated was evaluated as the maximum bending strength, and the deflection showing the maximum bending strength in the load-deflection curve was evaluated as δ. Standard papermaking method: Formed by a round mesh papermaking method by HACHEK, 14 papermaking sheets are wound around a making roller, pressed and squeezed at a pressure of 5 MPa, and cured at 50 ° C. under a saturated humidity condition for 24 hours. Cured under the conditions of ° C. and saturated humidity to obtain a molded article of hydraulic material. Bending test: Apparatus Shimadzu Autograph AG5000-B Sample Cut out to a size of 25 mm in width, 4 mm in thickness, and 10 cm in length.
A sample of 5 mm is used as a specimen without cutting out. Test speed 0.2mm / min 3-point bending span 5cm

【0026】[実施例1〜5、比較例1〜8]予備攪拌
機に水500リットルを投入して攪拌機を攪拌させ、針
葉樹パルプ(CSF 120ml)1.5kgを添加
し、次いで表1に記載の補強繊維、さらにセメント、カ
オリン、シリカヒュームを下記の配合量となるように順
次添加し、十分攪拌した後に得られた濃度40質量%の
スラリーを別のフィードタンクに移送した。次いでフィ
ードタンクから丸網部にスラリーを供給しハチェックに
より抄造を行った。次いで得られたシート14枚をメー
キングローラーに巻き取り、5MPaの圧力でプレス搾
液し、50℃、飽和湿度条件下で24時間養生し、さら
に20℃、飽和湿度条件下で養生して水硬性材料抄造成
形体を得た。得られた成形体は厚さ3.95〜4.25
mm、密度1.68〜1.72g.cm3のスレート板
であり、かかる成形体の性能を表1に示す。
Examples 1 to 5 and Comparative Examples 1 to 8 500 liters of water was put into a pre-stirrer to stir the stirrer, and 1.5 kg of softwood pulp (CSF 120 ml) was added. Reinforcing fibers, further cement, kaolin, and silica fume were added sequentially in the following amounts, and after sufficient stirring, the obtained slurry having a concentration of 40% by mass was transferred to another feed tank. Next, the slurry was supplied from the feed tank to the round net portion, and papermaking was performed by Hatschek. Then, the obtained 14 sheets are wound around a making roller, pressed and squeezed at a pressure of 5 MPa, cured for 24 hours at 50 ° C. and saturated humidity, and further cured at 20 ° C. and saturated humidity. A material molded article was obtained. The obtained molded body has a thickness of 3.95 to 4.25.
mm, density 1.68-1.72 g. It is a slate plate of cm 3 , and the performance of such a molded product is shown in Table 1.

【0027】なお、普通セメントは(秩父小野田製 普
通ポルトランドセメント)、カオリンはファインマテッ
クス(株)社製「ビンタンカオリン」、シリカヒュームは
ユニオン化成(株)社製「EFACO SILICA」を用い、配合
量は下記のとおりである。 補強繊維 表1に記載のとおり カオリン 5質量% シリカヒューム 5質量% パルプ 3質量% 普通セメント 残部
The ordinary cement (ordinary Portland cement manufactured by Chichibu Onoda), kaolin used "Bintan Kaolin" manufactured by Fine Matex Co., Ltd., and silica fume used "EFACO SILICA" manufactured by Union Kasei Co., Ltd. Is as follows. Reinforcing fiber As shown in Table 1, kaolin 5 mass% silica fume 5 mass% pulp 3 mass% ordinary cement balance

【0028】[0028]

【表1】 [Table 1]

【0029】[実施例6〜11]配合を下記に変更した
以外は実施例1と同様に成形体を製造した。結果を表2
に示す。なお、普通セメントは(秩父小野田製 普通ポ
ルトランドセメント)、パルプは針葉樹パルプ(CSF
110ml)、シリカヒュームはユニオン化成(株)社製
「EFACO SILICA」、ワラストナイトはユニオン化成
(株)社製「H―60FF」を用い、配合量は下記のとお
りである。 補強繊維 4質量% パルプ 4質量% シリカヒューム 4質量% ワラストナイト 4質量% 普通セメント 84質量%
[Examples 6 to 11] Moldings were produced in the same manner as in Example 1 except that the composition was changed as follows. Table 2 shows the results
Shown in In addition, ordinary cement (ordinary Portland cement manufactured by Chichibu Onoda), pulp is softwood pulp (CSF)
110ml), silica fume is "EFACO SILICA" manufactured by Union Kasei Co., Ltd., wollastonite is Union Kasei
The compounding amount is as follows using "H-60FF" manufactured by Corporation. Reinforcing fiber 4% by mass Pulp 4% by mass Silica fume 4% by mass Wollastonite 4% by mass Ordinary cement 84% by mass

【0030】[0030]

【表2】 [Table 2]

【0031】[実施例12〜15、比較例9〜11]C
SFの異なったパルプを用いた以外は実施例6と同様に
成形体を製造し、厚み4mm±0.15mm、密度1.
70±0.02g/cm3の成形体を得た。結果を表3
に示す。
[Examples 12 to 15, Comparative Examples 9 to 11] C
A molded product was produced in the same manner as in Example 6 except that pulp having a different SF was used, and the thickness was 4 mm ± 0.15 mm and the density was 1.
A molded article of 70 ± 0.02 g / cm 3 was obtained. Table 3 shows the results
Shown in

【0032】[0032]

【表3】 [Table 3]

【0033】[実施例16〜18、比較例12]予備攪
拌機に水500リットルを投入して攪拌機を攪拌させ、
針葉樹パルプ(CSF 120ml)1.5kgを添加
し、次いで表4に記載の補強繊維、さらにセメント、パ
ーライトを下記の配合量となるように順次添加し、十分
攪拌した後に得られた濃度40質量%のスラリーを別の
フィードタンクに移送した。次いでフィードタンクから
スラリーをTAPPI抄造機に供給し、標準抄造法とは
異なるTAPPI式により抄造を行った。なおTAPP
I式とはスラリーを底がメッシュの箱型容器に流しこん
だ後、底部から吸引して固形分を製板するものであり、
フローオン方式に類似の抄造法である。次いで得られた
シート14枚をメーキングローラーに巻き取り、5MP
aの圧力でプレス搾液し、50℃、飽和湿度条件下で2
4時間養生し、さらに20℃、飽和湿度条件下で養生し
て水硬性材料抄造成形体を得た。得られた成形体は厚さ
0.39〜0.42mm、密度1.48〜1.51g.
cm3のスレート板であり、かかる成形体の性能を表4
に示す。
Examples 16 to 18 and Comparative Example 12 500 liters of water was put into a preliminary stirrer and the stirrer was stirred.
1.5 kg of softwood pulp (CSF 120 ml) was added, and then the reinforcing fibers shown in Table 4 and further cement and pearlite were added in order to obtain the following blending amounts, and after sufficient stirring, the concentration obtained was 40% by mass. Was transferred to another feed tank. Next, the slurry was supplied from the feed tank to a TAPPI papermaking machine, and papermaking was performed by a TAPPI method different from the standard papermaking method. Note that TAPP
Formula I is a method in which a slurry is poured into a box-shaped container having a mesh bottom and then suctioned from the bottom to produce a solid content.
This is a papermaking method similar to the flow-on method. Next, the obtained 14 sheets are wound around a making roller and 5MP.
Press and squeeze under the pressure of a.
Cured for 4 hours, and further cured at 20 ° C. under a saturated humidity condition to obtain a molded article of hydraulic material. The obtained molded body had a thickness of 0.39 to 0.42 mm and a density of 1.48 to 1.51 g.
a slate plate of cm 3, Table 4 the performance of such compacts
Shown in

【0034】なお、普通セメントは(秩父小野田製 普
通ポルトランドセメント)、パーライトは宇部興産(株)
社製「宇部パーライトI型」を用い、配合量は下記のと
おりである。 補強繊維 4質量% パーライト 3質量% パルプ 5質量% 普通セメント 88質量%
The ordinary cement (ordinary Portland cement manufactured by Chichibu Onoda) and the pearlite are Ube Industries, Ltd.
Using "Ube Perlite I" manufactured by Kobe Steel, the compounding amount is as follows. Reinforcement fiber 4% by weight Pearlite 3% by weight Pulp 5% by weight Ordinary cement 88% by weight

【0035】[0035]

【表4】 [Table 4]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊度7〜30dtex、繊維長6〜20m
m、強力100cN以上、伸度5〜10%の補強繊維を
1〜10質量%/成形体、CSF70〜130のパルプ
を1〜10質量%/成形体含有する水硬性材料抄造成形
体。
1. Fineness: 7-30 dtex, fiber length: 6-20 m
m, a molded article of a hydraulic material containing 1 to 10% by mass of a reinforcing fiber having a strength of 100 cN or more and an elongation of 5 to 10%, and 1 to 10% by mass of a pulp having a CSF of 70 to 130 / molded body.
【請求項2】 繊度7〜30dtex、繊維長6〜20m
m、強力100cN以上、伸度5〜10%の補強繊維を
1〜10質量%/固体分、CSF70〜130のパルプ
を1〜10質量%/固体分含有する抄造成形用水硬性材
料スラリー。
2. Fineness: 7-30 dtex, fiber length: 6-20 m
m, a hydraulic material slurry for papermaking molding containing 1 to 10% by mass / solid content of reinforcing fibers having a strength of 100 cN or more and an elongation of 5 to 10%, and 1 to 10% by mass / solid content of pulp of CSF 70 to 130.
【請求項3】 標準抄造法により得られる標準試験体の
最大強度P(MPa)と、該最大強度Pを示す際のたわ
みδ(cm)の積が3.5以上となる請求項2に記載の
抄造成形用水硬性材料スラリー。
3. The product according to claim 2, wherein the product of the maximum strength P (MPa) of the standard specimen obtained by the standard papermaking method and the deflection δ (cm) when indicating the maximum strength P is 3.5 or more. Hydraulic material slurry for papermaking molding.
【請求項4】 繊度7〜30dtex、繊維長6〜20m
m、強力100cN以上、伸度5〜10%の補強繊維を
1〜10質量%/固体分、CSF70〜130のパルプ
を1〜10質量%/固体分含有する水硬性材料スラリー
を抄造法により成形する抄造成形体の製造方法。
4. Fineness: 7-30 dtex, fiber length: 6-20 m
m, a hydraulic material slurry containing 1 to 10% by mass / solid content of reinforcing fiber having a strength of 100 cN or more and elongation of 5 to 10%, and 1 to 10% by mass / solid content of pulp of CSF 70 to 130 by a papermaking method. The method for producing a sheet-formed molded article.
JP36409999A 1999-12-22 1999-12-22 Product of hydraulic material formed by papermaking Pending JP2001181007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36409999A JP2001181007A (en) 1999-12-22 1999-12-22 Product of hydraulic material formed by papermaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36409999A JP2001181007A (en) 1999-12-22 1999-12-22 Product of hydraulic material formed by papermaking

Publications (1)

Publication Number Publication Date
JP2001181007A true JP2001181007A (en) 2001-07-03

Family

ID=18480977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36409999A Pending JP2001181007A (en) 1999-12-22 1999-12-22 Product of hydraulic material formed by papermaking

Country Status (1)

Country Link
JP (1) JP2001181007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016104603A1 (en) * 2014-12-26 2017-11-02 株式会社クラレ Fiber-containing roof tile, molding material for manufacturing fiber-containing roof tile, and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146415A (en) * 1976-06-01 1977-12-06 Kubota Ltd Method of producing fibreereinforced cement boards
JPS5386723A (en) * 1977-01-10 1978-07-31 Kubota Ltd Glass fiber reinforced cement plate and method of its production
JPS56125264A (en) * 1980-03-06 1981-10-01 Kuraray Co Fiber reinforced cement product
JPS6126544A (en) * 1984-07-13 1986-02-05 株式会社クラレ Hydraulic inorganic papering product and manufacture
JPS6131337A (en) * 1984-07-18 1986-02-13 株式会社クラレ Hydraulic inorganic papering product and manufacture
JPS62241852A (en) * 1986-04-11 1987-10-22 電気化学工業株式会社 Fiber reinforced cement set body
JPH07286401A (en) * 1994-04-19 1995-10-31 Kuraray Co Ltd Hydraulic setting inorganic papermaking product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146415A (en) * 1976-06-01 1977-12-06 Kubota Ltd Method of producing fibreereinforced cement boards
JPS5386723A (en) * 1977-01-10 1978-07-31 Kubota Ltd Glass fiber reinforced cement plate and method of its production
JPS56125264A (en) * 1980-03-06 1981-10-01 Kuraray Co Fiber reinforced cement product
JPS6126544A (en) * 1984-07-13 1986-02-05 株式会社クラレ Hydraulic inorganic papering product and manufacture
JPS6131337A (en) * 1984-07-18 1986-02-13 株式会社クラレ Hydraulic inorganic papering product and manufacture
JPS62241852A (en) * 1986-04-11 1987-10-22 電気化学工業株式会社 Fiber reinforced cement set body
JPH07286401A (en) * 1994-04-19 1995-10-31 Kuraray Co Ltd Hydraulic setting inorganic papermaking product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016104603A1 (en) * 2014-12-26 2017-11-02 株式会社クラレ Fiber-containing roof tile, molding material for manufacturing fiber-containing roof tile, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TW568893B (en) Concrete comprising organic fibres dispersed in a cementitious matrix, cementitious matrix of the concrete, and premixes
WO2006025331A1 (en) Inorganic plate and process for production thereof
HU214790B (en) Fibre reinforced solid shaped bodies
JP5770091B2 (en) Fiber-cement product compositions and shaped products obtained therefrom
JP2008100877A (en) Inorganic board and its manufacturing method
JP2014514240A (en) Fiber blended in three modes in high toughness cementitious composites
JP4648668B2 (en) Inorganic board and method for producing the same
JPH09295877A (en) Staple fiber-reinforced concrete
JP2001181007A (en) Product of hydraulic material formed by papermaking
EP0220649B1 (en) Asbestos-free, wet-formed hydraulic inorganic article and production thereof
CN115196940A (en) Composite fiber reinforced basic magnesium sulfate cement and preparation method thereof
JP2002293602A (en) Papermaking process of hydraulic material
JPH0669901B2 (en) Hydraulic inorganic papermaking product and method for producing the same
JPH07286401A (en) Hydraulic setting inorganic papermaking product
JP2003252668A (en) Hydraulic sheet for water storage tank wall material and water storage tank wall material using it
JP4667998B2 (en) Non-asbestos hydraulic paperboard
JPH0733273B2 (en) Fiber-reinforced cement cured product
JPH0580424B2 (en)
JP3763614B2 (en) Inorganic curable composition, inorganic molded body, and method for producing the same
JPH0717427B2 (en) Hydraulic inorganic papermaking product and method for producing the same
JP2721563B2 (en) Hydraulic molding composition
JP2004137119A (en) Cement-based fiber composite material
JPS6021836A (en) Hydraulic inorganic board and manufacture
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body
JP3227234B2 (en) Hydraulic inorganic molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108