JP2001174406A - Optical part for photochemical detector, multi-optical part for photochemical detector, photochemical detector using the optical part or the multi-optical part for photochemical detector, and photochemical detection method, and manufacturing method of optical part for photochemical detector - Google Patents

Optical part for photochemical detector, multi-optical part for photochemical detector, photochemical detector using the optical part or the multi-optical part for photochemical detector, and photochemical detection method, and manufacturing method of optical part for photochemical detector

Info

Publication number
JP2001174406A
JP2001174406A JP35731099A JP35731099A JP2001174406A JP 2001174406 A JP2001174406 A JP 2001174406A JP 35731099 A JP35731099 A JP 35731099A JP 35731099 A JP35731099 A JP 35731099A JP 2001174406 A JP2001174406 A JP 2001174406A
Authority
JP
Japan
Prior art keywords
photochemical
light
photochemical detector
sample
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35731099A
Other languages
Japanese (ja)
Other versions
JP3461772B2 (en
Inventor
Tsutomu Horiuchi
勉 堀内
Yuko Ueno
祐子 上野
Osamu Niwa
修 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP35731099A priority Critical patent/JP3461772B2/en
Publication of JP2001174406A publication Critical patent/JP2001174406A/en
Application granted granted Critical
Publication of JP3461772B2 publication Critical patent/JP3461772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel optical part for a photochemical detector with minute capacity capable of absorbing light or emitting fluoresence with high efficiency, a photochemical detector, a method for manufacturing the same and a photochemical detection method. SOLUTION: The optical part for photochemical detector is constituted so that filter members each of which is formed by arranging a multilayered film, wherein two kinds of light-transmissible membranes A, B having an optical thickness being integral multiple of 1/4 of a center detection wavelength and different in refractive index are alternately laminated, to the end surface of a light-transmissible member 11 are arranged through a gap 12 being the half of the center detection wavelength and receiving a sample to be measured so that the end surfaces to which the multilayered films are arranged are opposed to each other. The photochemical detector using the optical part, photochemical detection method and the method of manufacturing the optical part for the photochemical detector of provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光化学検出用光学部
品、光化学検出器用マルチ光学部品さらに前記光化学検
出用光学部品あるいは光化学検出器用マルチ光学部品を
使用した光化学検出器、光化学検出方法および光化学検
出器用光学部品の製造方法に関し、さらに詳細には高速
液体クロマトグラフィーや、キャピラリー電気泳動、ガ
スクロマトグラフィー等の微量分析法の検出部分として
用いられる検出器や化学センサーおよびそれらの使用方
法、製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical component for photochemical detection, a multi-optical component for a photochemical detector, a photochemical detector using the optical component for photochemical detection or a multi-optical component for a photochemical detector, a photochemical detection method, and a photochemical detection. The present invention relates to a method for manufacturing optical components for instruments, and more particularly, to a detector or a chemical sensor used as a detection part of a microanalytical method such as high performance liquid chromatography, capillary electrophoresis, gas chromatography, and a method of using and manufacturing the same. Things.

【0002】[0002]

【従来の技術】人類の社会活動の活発化に伴い環境中に
排出される様々な化学物質が環境を汚染する物質である
として大きな社会問題となっている。このような汚染化
学物質は極微量でも、生体や生態系に与える影響は大き
いと言われており、高感度な検出が望まれる。現在、p
ptレベルの高感度検出が可能な方法として、ガスクロ
マトグラフィー質量分析法が挙げられる。しかし、この
方法は、装置が高価であり、熟練したオペレーターが必
要であり、分析に長時間を要し、分析コストも高価なも
のとなる。特に環境分析には、多地点からのサンプルを
定期的に分析することが要求されるために、この分析法
に代る高感度の分析法が望まれている。
2. Description of the Related Art A variety of chemical substances discharged into the environment along with the increase in human social activities have become a serious social problem because they are substances that pollute the environment. It is said that even a trace amount of such contaminant chemicals has a large effect on living organisms and ecosystems, and high-sensitivity detection is desired. Currently p
As a method capable of highly sensitive detection at the pt level, there is gas chromatography mass spectrometry. However, this method requires expensive equipment, requires a skilled operator, requires a long time for analysis, and increases the analysis cost. In particular, since environmental analysis requires periodic analysis of samples from multiple points, a highly sensitive alternative to this analysis is desired.

【0003】また、同手法は難揮発性物質や熱分解性物
質の分析には適用できないという欠点を有しており、水
中に存在する全有機物質のうちガスクロマトグラフィー
やガスクロマトグラフィー質量分析法によって測定でき
るのはそのうちのごく一部でしかないと言われている。
[0003] Further, this method has a drawback that it cannot be applied to the analysis of non-volatile substances or thermally decomposable substances, and it is difficult to use gas chromatography or gas chromatography mass spectrometry among all organic substances present in water. Is said to be able to measure only a fraction of them.

【0004】ガスクロマトグラフィー質量分析法はガス
クロマトグラフィー法でサンプルを成分ごとに分離し、
質量分析を行う方法であるが、質量分析を行うためには
イオン化のために真空排気系を必要とし、装置の小型
化、低価格化には限界があった。質量分析に代るより簡
便な高感度の検出技術の開発の必要がある。
In gas chromatography mass spectrometry, a sample is separated into components by gas chromatography,
In this method, mass spectrometry requires an evacuation system for ionization in order to perform mass spectrometry, and there is a limit to miniaturization and cost reduction of the apparatus. There is a need to develop a simpler and more sensitive detection technique that replaces mass spectrometry.

【0005】一方、液体サンプルの高感度分析には、高
速液体クロマトグラフィーや、キャピラリー電気泳動法
が多く利用されている。高速液体クロマトグラフィーで
は、サンプルを吸着カラムに通すことによってサンプル
内の各成分の吸着性の違いから分離する方法である。キ
ャピラリー電気泳動法は細管(キャピラリー)内にサン
プルを通じ、キャピラリーの両端に高電圧を印加し、各
成分の移動速度の違いによって分離する方法である。
On the other hand, high-performance liquid chromatography and capillary electrophoresis are often used for high-sensitivity analysis of liquid samples. High-performance liquid chromatography is a method in which a sample is passed through an adsorption column to separate each component in the sample from differences in adsorptivity. Capillary electrophoresis is a method in which a sample is passed through a capillary (capillary), a high voltage is applied to both ends of the capillary, and the components are separated based on the difference in the moving speed of each component.

【0006】分離したサンプルの検出には原理的に両者
で共通する技術が使え、光を用いた吸光検出、蛍光検
出、示差屈折率検出、熱光学的検出、円二色性検出、電
極を用いた電気化学的検出、電気伝導度検出、電気化学
発光検出などがある。また、ガスクロマトグラフィー法
と同様に高速液体クロマトグラフィーや、キャピラリー
電気泳動法においても質量分析と組み合わせることが行
われている。これはガスクロマトグラフィーでは難しか
った難揮発性物質や熱分解性物質にも適用でき汎用性と
いった点で優れているためである。しかし、小型化、簡
便な分析といった点ではやはり、解決しなければならな
い問題点が多い。
In principle, a technique common to both can be used to detect a separated sample, and light absorption detection, fluorescence detection, differential refractive index detection, thermo-optical detection, circular dichroism detection, and electrodes using light are used. Electrochemical detection, electrical conductivity detection, and electrochemiluminescence detection. In addition, high-performance liquid chromatography and capillary electrophoresis have been combined with mass spectrometry in the same manner as gas chromatography. This is because it can be applied to non-volatile substances and thermally decomposable substances, which are difficult in gas chromatography, and is excellent in versatility. However, there are still many problems to be solved in terms of miniaturization and simple analysis.

【0007】キャピラリー電気泳動法ではサンプルボリ
ュームが非常に小さくできるといった特徴を損なわずに
検出器を組み込むことが重要である。吸光検出や蛍光検
出の場合はキャピラリーの一部の被覆を剥がして光学的
な窓を作製することによって行われる。これに対して、
電極を用いる検出法では電極を組み込まねばならない。
In capillary electrophoresis, it is important to incorporate a detector without impairing the feature that the sample volume can be made very small. In the case of absorption detection or fluorescence detection, it is performed by peeling off a part of the capillary to form an optical window. On the contrary,
In the detection method using electrodes, electrodes must be incorporated.

【0008】電気伝導度検出には、キャピラリーにレー
ザで微細な穴を2ケ所開け微細な白金線を通して検出用
電極とすることが行われている(X.Huang,T.
K.J.Pang,M.J.Gordon,R.N.Z
are,Anal.Chem.,59,2747(19
87))。電気化学検出測定では、分離のための高電圧
が検出時に妨害となるために、キャピラリー中に微細な
液洛部を設けその液洛部分が電気化学セル中に浸漬した
構成にする(R.A.Wallingford,A.
G.Ewing,Aal.Chem.,61,1344
(1989))。液洛部以降キャピラリーの出口まで分
離の電圧は掛からなくなるために、キャピラリーの出口
に配置した電極で電気化学検出を行うことができる。こ
のように電気化学法では検出器の直前で泳動をやめるた
めに、基本的にはオフカラム検出となり、泳動後検出器
に達するまでにピークが広がる場合がある。また電気化
学反応する化合物は金属錯体や酸化還元する置換基を有
するものに限定される。
In the detection of electric conductivity, two fine holes are formed in a capillary with a laser and a fine platinum wire is used as a detection electrode (X. Huang, T. et al.).
K. J. Pang, M .; J. Gordon, R.A. N. Z
are, Anal. Chem. , 59, 2747 (19
87)). In the electrochemical detection measurement, a high voltage for separation hinders the detection, so that a fine liquid part is provided in the capillary and the liquid part is immersed in the electrochemical cell (RA). Wallingford, A .;
G. FIG. Ewing, Aal. Chem. , 61,1344
(1989)). Since the separation voltage is not applied from the liquid junction to the capillary outlet, electrochemical detection can be performed with an electrode disposed at the capillary outlet. As described above, in the electrochemical method, since the electrophoresis is stopped immediately before the detector, the off-column detection is basically performed, and the peak may spread before reaching the detector after the electrophoresis. Further, compounds that undergo an electrochemical reaction are limited to those having a metal complex or a substituent that causes oxidation and reduction.

【0009】このように、キャピラリー電気泳動ではキ
ャピラリーが微細であることから、検出器を組み込むた
めには微細加工やマイクロマシンの技術が重要になって
くる。例えば最も高感度とされるレーザ誘起蛍光法で
は、マイクロマシン技術を用いて流路は小さくできるも
ののレーザと光学系はかなり大きくなる。
As described above, in capillary electrophoresis, the capillaries are fine, so that microfabrication and micromachine technology are important for incorporating a detector. For example, in the laser-induced fluorescence method, which is considered to be the most sensitive, the flow path can be made small using micromachine technology, but the laser and the optical system become considerably large.

【0010】キャピラリー電気泳動法は現時点では吸光
検出が主流となっている。しかし、キャピラリー電気泳
動法はサンプルの絶対量が微量であり、キャピラリーの
内径が小さいため、光路長を大きくすることが難しく、
従来の光検出器を利用する限りにおいて、試料濃度をで
きるだけ高めることによって検出可能にするほか適切な
方法がない。サンプル自体が低濃度でありまた濃縮でき
ないようなリアルサンプルの検出は非常に困難になる。
分子吸光係数が10000程度の成分を十分に集光され
た高エネルギーの紫外線を用いて検出する場合、吸光法
で検出できる最低濃度は1μM程度である。
At present, absorption detection is the mainstream in capillary electrophoresis. However, in capillary electrophoresis, since the absolute amount of the sample is very small and the inside diameter of the capillary is small, it is difficult to increase the optical path length.
As long as a conventional photodetector is used, there is no suitable method other than making the detection possible by increasing the sample concentration as much as possible. It becomes very difficult to detect a real sample in which the sample itself has a low concentration and cannot be concentrated.
When a component having a molecular extinction coefficient of about 10,000 is detected using sufficiently concentrated ultraviolet light of high energy, the lowest concentration detectable by the absorption method is about 1 μM.

【0011】吸光検出の感度を上げるために、光検出部
を工夫して光路長を長くすることが行われている。例え
ば、キャピラリーの一部の内径を太くし、この部分で光
検出を行う方法(Hewlett−Packard社製
装置)や、キャピラリーの外側を銀で被覆し小さな窓を
2ケ所開け、入射光を斜めに入れキャピラリー内で多重
反射させ光路長を長くする(T.Wang,J.H.A
iken,C.W.Hui,R.A.Hartwic
k,Anal.Chem.63,1372(199
1))といったことが行われる。しかし光路長を長くす
ることには限界があり、また分離特性の低下を招く。
In order to increase the sensitivity of light absorption detection, a light detecting section has been devised to increase the optical path length. For example, a method of increasing the inner diameter of a part of the capillary and performing light detection at this part (a device manufactured by Hewlett-Packard), or covering the outside of the capillary with silver and opening two small windows to obliquely incident light. The optical path length is increased by multiple reflection in the insertion capillary (T. Wang, JHA)
Iken, C.I. W. Hui, R .; A. Hartwick
k, Anal. Chem. 63, 1372 (199
1)) are performed. However, there is a limit to increasing the optical path length, and the separation characteristics are reduced.

【0012】[0012]

【発明が解決しようとする課題】高速液体クロマトグラ
フィーや、キャピラリー電気泳動、ガスクロマトグラフ
ィー等の微量分析法や化学センサーに用いられる光検出
器において、サンプル量が微量になると光路長が短くな
るため、効率的に光を吸収することができなくなり、そ
の結果吸光検出法や蛍光検出法の感度が低下する。ま
た、光路長の長いセルでは試料量が増大し、高い分解能
を得るのが難しい。
In light detectors used in microanalytical methods such as high performance liquid chromatography, capillary electrophoresis, gas chromatography, and chemical sensors, the optical path length becomes shorter when the sample amount is small. As a result, light cannot be efficiently absorbed, and as a result, the sensitivity of the light absorption detection method or the fluorescence detection method decreases. In a cell having a long optical path length, the sample amount increases, and it is difficult to obtain high resolution.

【0013】本発明の目的は上記課題を解決するため、
高い効率で光吸収や蛍光発光が可能な微少容量の新規な
光化学検出器用光学部品、光化学検出器及びその製造方
法、さらには光化学検出方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems.
An object of the present invention is to provide a novel optical component for a photochemical detector, a photochemical detector and a method for manufacturing the same, and a photochemical detection method, which are capable of absorbing light and emitting fluorescence with high efficiency.

【0014】[0014]

【課題を解決するための手段】本発明を概説すれば、本
発明による光化学検出器用光学部品は、光学膜厚が中心
検出波長の1/4の整数倍であって、屈折率の異なる2
種類の光透過性薄膜を交互に積層してなる多層膜を光透
過性部材の端面に配置したフィルタ部材を、前記波長の
1/2の被測定試料導入用の間隙を挟んで、前記薄多層
膜を配置した端面同士を対向して配置したことを特徴と
する。
To summarize the present invention, the optical component for a photochemical detector according to the present invention has an optical film thickness which is an integral multiple of 1/4 of the center detection wavelength and which has a different refractive index.
A filter member in which a multilayer film formed by alternately laminating different types of light-transmitting thin films is disposed on the end face of the light-transmitting member, is sandwiched by a gap for introducing a sample to be measured having a wavelength of の of the wavelength. The end faces on which the films are arranged are arranged to face each other.

【0015】また、本発明による光化学検出器は、単色
光源と、前記単色光源からの入射光を入射する前記光化
学検出器用光学部品と、前記光化学検出用光学部品から
の出射光を検出する光検出器と、を含むことを特徴とす
る。
Further, the photochemical detector according to the present invention comprises a monochromatic light source, the optical component for the photochemical detector that receives incident light from the monochromatic light source, and a photodetector that detects light emitted from the optical component for photochemical detection. And a container.

【0016】さらに本発明による光化学検出器は、光源
と、前記光源からの入射光を入射する前記光化学検出器
用光学部品と、前記光化学起用光学部品の前記対向した
フィルタ部材のうちいずれかあるいは両方のフィルタ部
材を、前記フィルタ部材の端面間の距離を直線的に変化
させるための直線移動手段と、前記光化学検出器用光学
部品からの出射光の波長範囲を制限する分光手段と、前
記分光手段の出射光を検出する光検出器を含むことを特
徴とする。
Further, in the photochemical detector according to the present invention, there is provided a photochemical detector optical component for receiving incident light from the light source, and / or one or both of the opposed filter members of the photochemical generating optical component. Linear moving means for linearly changing the distance between the end faces of the filter member, spectral means for limiting the wavelength range of light emitted from the optical component for photochemical detector, and output means of the spectral means. It is characterized by including a photodetector for detecting emitted light.

【0017】また、本発明による第三の光化学検出器
は、一方の前記フィルタ部材を円盤状とし、多孔性薄膜
を形成した前記光化学検出器において、前記円盤状フィ
ルタ部材を回転させる回転機構と、他方のフィルタ部材
を前記円盤状フィルタ部材に接触させる機構と前記他方
のフィルタ部材を中心軸としてこれを取り囲むように配
置した内管と、前記内管をさらに取り囲むように配置さ
れ先端部が内管より突出した状態で設置された外管とよ
りなる細管と、前記内管と前記外管を相対位置関係を同
一のままで前記細管を前記円盤状フィルタ部材に前接触
させる機構と、前記内管外壁と前記外管内壁で構成され
る中空から前記内管と前記他方のフィルタ部材の中空に
向けて被測定気体を流動させる機構と、前記他方のフィ
ルタ部材と前記内管と前記外管の全体を前記円盤状フィ
ルタ部材の動径方向に相対移動させる移動機構を含むこ
とを特徴とする。
Further, the third photochemical detector according to the present invention, in the photochemical detector in which one of the filter members is formed in a disk shape and a porous thin film is formed, a rotating mechanism for rotating the disk-shaped filter member; A mechanism for bringing the other filter member into contact with the disc-shaped filter member, an inner tube arranged so as to surround the other filter member as a center axis, and an inner tube arranged so as to further surround the inner tube and having a distal end portion A thin tube comprising an outer tube installed in a more protruding state, a mechanism for pre-contacting the thin tube with the disc-shaped filter member while maintaining the same relative positional relationship between the inner tube and the outer tube, and the inner tube A mechanism for flowing a gas to be measured from a hollow formed by an outer wall and an inner wall of the outer tube toward the inner tube and the hollow of the other filter member; the other filter member and the inner tube; Characterized in that it comprises a moving mechanism for relatively moving the whole of the outer tube in the radial direction of the disk-shaped filter member.

【0018】さらに本発明による光化学検出法は、前記
光化学検出器用光学部品の被測定試料導入用の間隙に被
測定試料を挟んで、入射光を前記2つのフィルタ部材の
一方を通過させ、前記2つのフィルタ部材によって前記
被測定試料を配置した部位に入射光を定在波として局在
させ、前記局在した定在波光と被測定試料を光学的に相
互作用させ、前記相互作用の後に前記他方のフィルタ部
材からの出射光を検出することを特徴とする。
Further, in the photochemical detection method according to the present invention, the sample to be measured is sandwiched in a gap for introducing the sample to be measured in the optical component for a photochemical detector, and incident light passes through one of the two filter members. The incident light is localized as a standing wave at a portion where the sample to be measured is disposed by one filter member, and the localized standing wave light and the sample to be measured are optically interacted with each other. The light emitted from the filter member is detected.

【0019】また本発明によるの光化学検出器用光学部
品の製造方法は、光透過性部材の端面に屈折率の異なる
2種類の光学材料を蒸着法、スパッタ法、気相反応法、
ゾル−ゲル法、塗布法、スプレー法のいずれか1の成膜
方法により交互に積層し光透過性薄膜の多層膜を形成
し、前記光透過性薄膜の積層工程において前記2種類の
光透過性薄膜の光学膜厚を検出中心波長の1/4の整数
倍とし、前記多層膜を前記検出中心波長の1/2の被測
定試料導入用の間隙を挟んで端面同士を対向して配置す
ることを特徴とする。
Further, the method of manufacturing an optical component for a photochemical detector according to the present invention is characterized in that two types of optical materials having different refractive indices are vapor-deposited, sputtered, vapor-phase reacted,
A multilayer film of a light-transmitting thin film is formed by alternately stacking by any one of a sol-gel method, a coating method, and a spraying method, and the two types of light-transmitting thin films are laminated in the light-transmitting thin film laminating step. The optical film thickness of the thin film is set to an integral multiple of 1/4 of the detection center wavelength, and the multilayer film is arranged so that end faces thereof face each other with a gap for introducing a sample to be measured having a detection center wavelength of 1/2. It is characterized by.

【0020】すなわち、高速液体クロマトグラフィー
や、キャピラリー電気泳動、ガスクロマトグラフィー
や、化学センサー等の微量分析法に用いられる光検出器
において、光路中に屈折率の異なる材質の光学薄膜を周
期的に配置し、各光学薄膜の膜厚が検出に用いる光の波
長の1/4の整数倍であり、周期の中央に被測定試料が
通過できる構造となっていることを特徴としている。
That is, in a photodetector used for high-performance liquid chromatography, capillary electrophoresis, gas chromatography, or a microanalysis method such as a chemical sensor, an optical thin film of a material having a different refractive index is periodically provided in an optical path. The thickness of each optical thin film is arranged so as to be an integral multiple of 1/4 of the wavelength of light used for detection, and the structure is such that the sample to be measured can pass through the center of the period.

【0021】図1は、本発明の光化学検出器用光学部品
の基本構成図であってマルチモード光ファイバ(光透過
部材)11の端面に屈折率の異なる二種類の光透過性薄
膜Aと光透過性薄膜Bが交互に配置されており、それぞ
れの膜厚をnA*λ/4、nB*λ/4とする。ここでn
A、nBはそれぞれの膜の屈折率でλは光検出に用いる光
の中心波長である。端面に光透過性薄膜Aと光透過性薄
膜Bとよりなる多層膜を有した光ファイバ(フィルタ部
材)2本を微小な間隙(被測定試料導入用の間隙)12
を開けて向い合せにして、本発明による光化学検出器用
光学部品とする。
FIG. 1 is a basic structural view of an optical component for a photochemical detector according to the present invention, wherein two types of light-transmitting thin films A having different refractive indices are provided on an end face of a multimode optical fiber (light-transmitting member) 11. The conductive thin films B are alternately arranged, and their film thicknesses are n A * λ / 4 and n B * λ / 4. Where n
A and n B are the refractive indices of the respective films, and λ is the center wavelength of light used for light detection. Two optical fibers (filter members) each having a multilayer film composed of a light-transmitting thin film A and a light-transmitting thin film B on an end face are inserted into a minute gap (gap for introducing a sample to be measured) 12
Are opened to face each other to obtain an optical component for a photochemical detector according to the present invention.

【0022】以上の構成において、間隙12内にサンプ
ルを導入し、光ファイバの一方から光を導入し、他方の
光ファイバでその透過光を観測することによって隙間内
にある物質の検出を行うものである。
In the above configuration, a sample is introduced into the gap 12, light is introduced from one of the optical fibers, and the transmitted light is observed by the other optical fiber to detect a substance in the gap. It is.

【0023】[0023]

【作用】本発明では、微量サンプルに対して高効率な吸
光分析、及び蛍光分析が可能となる。それは以下のよう
な理由による。まずはじめにサンプルの通過する間隙1
2が無い場合を考える。このような屈折率が異なる光透
過性薄膜が周期的に配置されている中を光が透過する場
合、各光透過性薄膜で屈折率の差に応じた反射を次々と
受けることになる。この結果、光の透過率は低下する。
特に光学膜厚(膜厚と屈折率の積)が等しくなるように
交互に多数配置されている場合、光学膜厚の4倍に相当
する波長の光を中心として、不透過領域(禁制帯)が形
成される。
According to the present invention, highly efficient absorption analysis and fluorescence analysis can be performed on a very small amount of sample. It is for the following reasons. First, the gap 1 through which the sample passes
Consider the case where there is no 2. When light is transmitted through such periodically arranged light-transmitting thin films having different refractive indices, each light-transmitting thin film is successively subjected to reflection according to the difference in refractive index. As a result, the light transmittance decreases.
In particular, when a large number of optical film thicknesses (product of the film thickness and the refractive index) are alternately arranged so as to be equal to each other, an opaque region (forbidden band) centered on light having a wavelength corresponding to four times the optical film thickness. Is formed.

【0024】図2はSiO2(屈折率1.46)とHf
2(屈折率2.1)の光透過性薄膜をそれぞれの光学
膜厚が400/4nm(実膜厚はそれぞれ、68.5n
m、47.6nm)になるようにそれぞれ11、10層
で構成されている多層膜の透過スペクトルである。40
0nmを中心に不透過領域が形成されているのがわか
る。周期構造の中ではこの波長帯の光が存在することが
できず、外部から周期構造の内部に光が入っていけずに
反射してしまうためである。誘電体多層膜ミラーはこの
原理に基づいて高反射率を実現している。
FIG. 2 shows SiO 2 (refractive index: 1.46) and Hf
The optically transparent thin film of O 2 (refractive index 2.1) has an optical thickness of 400/4 nm (actual thickness is 68.5 n each).
(m, 47.6 nm). 40
It can be seen that an opaque region is formed around 0 nm. This is because light in this wavelength band cannot exist in the periodic structure, and light is reflected from the outside without entering the inside of the periodic structure. The dielectric multilayer mirror realizes high reflectance based on this principle.

【0025】次に周期薄膜(多層膜)の中央にその光学
膜厚が波長の半分になるような間隙(周期性を壊すとい
う意味で欠陥層と呼ぶ)がある場合を考える。この構成
における透過スペクトルは図3に示すように、400n
mの位置に鋭いピークが現れるようになる。すなわち、
400nmの波長の光は100%透過することができる
ようになる。これは、欠陥層が存在することで、この欠
陥層に存在できる波長(定在波)が現れるようになるた
めで、外部から光を入射させた場合、この波長の光のみ
透過できるようになる。
Next, let us consider a case where there is a gap (called a defect layer in the sense of destroying the periodicity) at the center of the periodic thin film (multilayer film) so that its optical film thickness becomes half the wavelength. The transmission spectrum in this configuration is 400 n as shown in FIG.
A sharp peak appears at the position of m. That is,
Light having a wavelength of 400 nm can be transmitted 100%. This is because the presence of the defect layer causes a wavelength (standing wave) that can exist in the defect layer to appear, so that when light is incident from the outside, only light of this wavelength can be transmitted. .

【0026】半導体からの類似性からこの欠陥を導入し
たことによって透過できる波長のエネルギー準位を欠陥
準位と呼ぶ。欠陥準位に対応した波長の光が周期構造内
を伝搬するとき、欠陥近傍に光が局在するために欠陥内
の光電場は強められることになる。光透過物質薄膜A,
Bを通過する毎に光電場強度は(nB/nA)倍となり、
N層通過後の欠陥での光電場強度は(nB/nA)∧Nと
なり大きく増幅される。光強度にすると増強度はさらに
大きくなり(nB/nA)∧2Nとなる。欠陥を過ぎると
光電場強度は逆に減少に転じ、出射時には入射時の強度
となり、透過率が1となる。欠陥層のところで、光電場
強度が増大することは、この場所で光が局在しているこ
とを示している。すなわち高反射の誘電体多層膜ミラー
で共振器構造となっているためにこの欠陥層で光が往復
する結果、存在確率が極めて高くなることである。光電
場強度の増強度は周期の数で制御でき、また欠陥層の光
学膜厚でピークの位置や本数を制御することが可能であ
る。
The energy level of a wavelength that can be transmitted by introducing this defect due to the similarity with the semiconductor is called a defect level. When light having a wavelength corresponding to the defect level propagates through the periodic structure, the light is localized near the defect, so that the optical electric field in the defect is strengthened. Light transmitting material thin film A,
Optical field intensity for each pass through the B becomes the (n B / n A) times,
The electric field intensity at the defect after passing through the N layer is (n B / n A ) ∧N and is greatly amplified. When the light intensity is increased, the enhancement is further increased (n B / n A ) ∧2N. On the other hand, after passing through the defect, the intensity of the photoelectric field starts to decrease, and at the time of emission, the intensity becomes the intensity at the time of incidence, and the transmittance becomes 1. An increase in the optical field strength at the defect layer indicates that light is localized at this location. In other words, since a high-reflection dielectric multilayer mirror has a resonator structure, light reciprocates in this defect layer, resulting in an extremely high existence probability. The increase of the electric field intensity can be controlled by the number of periods, and the position and number of peaks can be controlled by the optical film thickness of the defect layer.

【0027】次にこの欠陥層の中に光を吸収する物質が
あると、吸収されたことによって光電場強度が減衰し、
透過率が低下する。透過率は欠陥層での吸光度と光強度
の増強度の積の関数となる。従って分子吸光係数や濃度
が非常に小さい場合でも、周期の数を増やすことによっ
て最適な吸光度領域での透過率測定が可能になる。分子
吸光係数や濃度が非常に小さい場合でも、光が欠陥層内
に局在するために、分子が光を吸収する機会を増やすこ
とができるためである。また蛍光測定においても、光が
効率的に吸収されるため、蛍光効率も増大し、感度が向
上する。
Next, if there is a substance that absorbs light in the defect layer, the intensity of the photoelectric field is attenuated by the absorption, and
The transmittance decreases. The transmittance is a function of the product of the absorbance at the defect layer and the increase in light intensity. Therefore, even when the molecular extinction coefficient and the concentration are very small, the transmittance can be measured in the optimum absorbance region by increasing the number of periods. This is because even when the molecular extinction coefficient or the concentration is very small, light is localized in the defect layer, so that the opportunity for molecules to absorb light can be increased. Also, in the fluorescence measurement, since the light is efficiently absorbed, the fluorescence efficiency is increased and the sensitivity is improved.

【0028】光透過性薄膜を形成する材料としては多く
の光学材料を用いることができる。屈折率の低い材料と
して、例えば、石英ガラス、ヒューズドガラス、バイコ
ールガラス、パイレックスガラスやパイレックス、プラ
スチック、NaF,LiF,CaF2,NaCl,KB
r,MgO,などが挙げられる。また屈折率の高い材料
として、酸化チタン、酸化ジルコニウム、HfO2,T
25,SrTiO3などが挙げられる。また赤外吸収
測定に応用する場合Ge,InSb,Si等の半導体を
挙げることができる。基板材料としては、透明性の光学
材料や、光ファイバ、光導波路等の光学部品などを挙げ
ることができる。
Many optical materials can be used as a material for forming the light transmitting thin film. As a material having a low refractive index, for example, quartz glass, fused glass, Vycor glass, Pyrex glass or Pyrex, plastic, NaF, LiF, CaF 2 , NaCl, KB
r, MgO, and the like. As materials having a high refractive index, titanium oxide, zirconium oxide, HfO 2 , T
a 2 O 5 , SrTiO 3 and the like. When applied to infrared absorption measurement, semiconductors such as Ge, InSb, and Si can be used. Examples of the substrate material include transparent optical materials and optical components such as optical fibers and optical waveguides.

【0029】屈折率の異なる材料を周期的に配置する技
術としては屈折率の異なる材料を交互にスパッタ蒸着す
る方法や、フォトリソグラフィとドライエッチング法、
あるいはリフトオフ法、あるいはイオンミリング法など
の微細加工技術を組み合わせて基板上に作製する方法な
どが挙げられる。試料用の微細な間隙は、マイクロメー
タやピエゾ素子を用いる方法、あるいは走査型トンネル
顕微鏡(STM)を利用する方法、適当なスペーサーを
利用して向かい合せに接近させる方法などが挙げられ
る。
Techniques for periodically disposing materials having different refractive indices include a method of alternately sputter depositing materials having different refractive indices, a photolithography and a dry etching method,
Alternatively, a method in which a microfabrication technique such as a lift-off method or an ion milling method is combined and formed on a substrate can be given. The fine gap for the sample can be formed by a method using a micrometer or a piezo element, a method using a scanning tunneling microscope (STM), a method using a suitable spacer to make the sample close to each other, and the like.

【0030】高速液体クロマトグラフィーや、キャピラ
リー電気泳動、ガスクロマトグラフィーなどの場合に、
分離カラムを前記被測定試料導入用の間隙に交叉させる
ことによって、被測定試料を前記間隙に導入することが
できる。
In the case of high performance liquid chromatography, capillary electrophoresis, gas chromatography, etc.
By intersecting the separation column with the gap for introducing the sample to be measured, the sample to be measured can be introduced into the gap.

【0031】以下、上記光化学検出器用光学部品を使用
した光化学検出器および光化学検出方法、光化学検出器
用光学部品の製造方法を、実施例に基づき詳細に説明す
る。
Hereinafter, a photochemical detector and a photochemical detection method using the optical component for a photochemical detector, and a method for manufacturing the optical component for a photochemical detector will be described in detail with reference to examples.

【0032】[0032]

【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。なお、本発明は以下の実施例のみに限定され
るものではない。
Embodiments of the present invention will be described below in detail with reference to the drawings. The present invention is not limited only to the following examples.

【0033】[0033]

【実施例1】本発明の第一の実施例として、光ファイバ
の端面にSiO2とHfO2の薄膜が交互に形成され光学
化学検出器用光学部品(試料導入部)を有する光化学検
出器(吸光検出器)の構造と作製法を図4を用いて示
し、ベンゼンヘの適用例を示す。
Embodiment 1 As a first embodiment of the present invention, a photochemical detector (absorber) having optical components for optical chemical detector (sample introduction part) in which thin films of SiO 2 and HfO 2 are alternately formed on the end face of an optical fiber. The structure and manufacturing method of the detector will be described with reference to FIGS.

【0034】UV透過型マルチモード光ファイバ(コア
径365マイクロメートル、クラッド径400マイクロ
メートル、加オズオプティクス社製)を2cmの長さに
切断し、その両方の端面を光ファイバ研磨機(NTT−
AT社製)を使用し、1ccの蒸留水を塗布して3分間
メタルボンドフィルムで研磨した後、粗仕上用、中仕上
用極薄ダイヤ研磨フィルムでそれぞれ2分間1ccの蒸
留水を塗布して研磨した。最後にCe研磨フィルムで4
分間1ccのSiO2溶液を塗布して研磨した。光ファ
イバを純水で洗浄したのち、乾燥した。
A UV transmission type multi-mode optical fiber (365 μm in core diameter, 400 μm in clad diameter, manufactured by Oz Optics) was cut to a length of 2 cm, and both end faces were cut with an optical fiber polishing machine (NTT-
AT Co., Ltd.), 1 cc of distilled water was applied and polished with a metal bond film for 3 minutes, and then 1 cc of distilled water was applied for 2 minutes each with an ultra-thin diamond polishing film for rough finishing and medium finishing. Polished. Finally, use Ce polished film for 4
1 cc of SiO 2 solution was applied for one minute and polished. After washing the optical fiber with pure water, it was dried.

【0035】次にこの光ファイバをスパッタ装置(日本
シード社製)の所定位置に光ファイバの一方の端面にス
パッタ蒸着できるように取り付け、SiO2、HfO2
順に放電パワー300W、アルゴン雰囲気中0.005
Torrでスパッタ蒸着を行ない、それぞれ43、30
nmの膜厚を得た。これを32回繰り返した。
[0035] Then mounted for sputter deposited one end face of the optical fiber at a predetermined position of the optical fiber sputtering apparatus (manufactured by Nippon Seed Co.), SiO 2, discharge in the order of HfO 2 Power 300 W, an argon atmosphere 0 .005
Sputter deposition at Torr, 43, 30 respectively
A film thickness of nm was obtained. This was repeated 32 times.

【0036】その後、ニッケルを48nm蒸着して光フ
ァイバ(フィルタ部材)41,42を製造した。矩形の
石英基板43(1cm×6cm、厚み0.5mm)の中
央にダイアモンドドリルで直径0.5mmの穴44を開
け、その後この穴44を通るようにダイシングソー(デ
ィスコ社製)を用いて光ファイバ用の溝45を長手方向
に形成した。この溝45に光ファイバ41,42のニッ
ケル端面が中央の穴44上で接触するように配置し、両
光ファイバ41,42の側面をUV硬化樹脂(ロックタ
イト社製)を用いて溝45に固定した。その後、ニッケ
ル部分を酸で溶解し、微小な間隙(被測定試料導入用の
間隙)46(96nm)を有する光学化学検出器を完成
させた(図4参照)。
Thereafter, optical fibers (filter members) 41 and 42 were manufactured by depositing nickel to a thickness of 48 nm. A hole 44 having a diameter of 0.5 mm is formed in the center of a rectangular quartz substrate 43 (1 cm × 6 cm, thickness 0.5 mm) with a diamond drill, and then light is passed through the hole 44 using a dicing saw (manufactured by Disco Corporation). A groove 45 for the fiber was formed in the longitudinal direction. The nickel end faces of the optical fibers 41 and 42 are arranged so as to be in contact with the grooves 45 at the center hole 44, and the side faces of the optical fibers 41 and 42 are fixed to the grooves 45 using a UV curing resin (manufactured by Loctite). did. Thereafter, the nickel portion was dissolved with an acid to complete an optical chemical detector having a minute gap (gap for introducing a sample to be measured) 46 (96 nm) (see FIG. 4).

【0037】以上のようにして作製した光学化学検出器
を用い水銀ランプ47からの254nmを干渉フィルタ
48を用いて取り出し、光ファイバを通じて光学化学検
出器用光学部品の一方の光ファイバ(フィルタ部材)4
1に入射した。光学化学検出器用光学部品上のもう一方
の光ファイバ(フィルタ部材)42を光検出器49に接
続した(図5参照)。この時、透過光は観測されなかっ
た。
Using the optical chemical detector manufactured as described above, 254 nm from the mercury lamp 47 is taken out using the interference filter 48, and one optical fiber (filter member) 4 of the optical component for the optical chemical detector is taken out through an optical fiber.
1 was incident. The other optical fiber (filter member) 42 on the optical component for a photochemical detector was connected to a photodetector 49 (see FIG. 5). At this time, no transmitted light was observed.

【0038】次に純水を微小間隙46に滴下したとこ
ろ、透過光が観測され、その強度を測定したところ入射
光強度にほぼ等しかった。これは微小間隙の距離が96
nmに作製してあるため、そこに水(屈折率1.33)
が入り込むと光学距離が127nmとなり、この値を半
波長とする254nmの光は透過することができるよう
になるためである。
Next, when pure water was dropped into the minute gap 46, transmitted light was observed, and its intensity was measured to be almost equal to the incident light intensity. This means that the distance of the minute gap is 96
water (refractive index: 1.33)
Is entered, the optical distance becomes 127 nm, and light of 254 nm having this value as a half wavelength can be transmitted.

【0039】次に1μg/Lのベンゼンが溶けている水
溶液を滴下したところ、透過光強度は減少し、純水の場
合の約60%であった。さらにベンゼンの濃度が0.5
μg/Lの水溶液では、純水の場合の75%であった。
透過光強度の減少はベンゼンの吸収帯が254nm付近
にあるためである。ベンゼンは水道水中、環境中、排水
中に10μg/L以下、地下浸透水中に1μg/L以下
であることが国により定められている物質である。
Next, when an aqueous solution in which 1 μg / L of benzene was dissolved was added dropwise, the transmitted light intensity was reduced to about 60% of that in pure water. Further, when the benzene concentration is 0.5
In the case of the μg / L aqueous solution, it was 75% of that in the case of pure water.
The decrease in transmitted light intensity is because the absorption band of benzene is near 254 nm. Benzene is a substance regulated by the government to have a concentration of 10 μg / L or less in tap water, the environment, and wastewater, and 1 μg / L or less in underground permeated water.

【0040】以上示したように、本発明により低濃度の
微量サンプルの吸光測定が可能である。これは微小空間
内に光を局在させることによってその微小空間内に存在
する分子の光の吸収効率を増加させることができたため
である。
As described above, according to the present invention, it is possible to measure the absorbance of a low-concentration trace sample. This is because the light absorption efficiency of molecules existing in the minute space could be increased by localizing the light in the minute space.

【0041】[0041]

【実施例2】本発明の第二の実施例として、光学化学検
出器用光学部品である蛍光検出器の作製法を示し、ベン
ゾ[a]ピレンヘの適用例を示す。第一の実施例と同様
にして、光ファイバの端面にSiO2、HfO2をそれぞ
れ72、50nmの厚みで各30層蒸着し、ニッケルを
316nm蒸着した。光ファイバのニッケル部分を向か
い合わせ、石英基板に固定し、ニッケル部分を溶解させ
て、632nmの間隙を有する光化学検出器である光化
学検出器用チップを作製した。
Embodiment 2 As a second embodiment of the present invention, a method for producing a fluorescence detector which is an optical component for a photochemical detector will be described, and an application example of benzo [a] pyrene will be described. In the same manner as in the first embodiment, 30 layers of SiO 2 and HfO 2 were deposited at a thickness of 72 and 50 nm, respectively, and nickel was deposited at a thickness of 316 nm on the end face of the optical fiber. The nickel portion of the optical fiber was faced, fixed to a quartz substrate, and the nickel portion was melted to produce a photochemical detector chip which is a photochemical detector having a gap of 632 nm.

【0042】この光化学検出器の間隙部分に純水を滴下
し、ハロゲンランプからの白色光を光ファイバを用いて
光化学検出器に入射し、光化学検出器からの出射光につ
いてスペクトル測定を行ったところ、366,420,
490nmに鋭い透過光ピークを確認した。これは間隙
の距離が632nmと大きく、3つの欠陥準位(定在
波)が存在できるためである。
Pure water was dropped into the gap of the photochemical detector, white light from a halogen lamp was incident on the photochemical detector using an optical fiber, and the spectrum of the light emitted from the photochemical detector was measured. , 366, 420,
A sharp transmitted light peak was observed at 490 nm. This is because the gap distance is as large as 632 nm and three defect levels (standing waves) can exist.

【0043】次に、水銀ランプからの366nmの光を
干渉フィルタでとりだし、光ファイバを通じて光化学検
出器用チップの一方の光ファイバに入射した。チップ上
のもう方の光ファイバからの出射光を420nm付近を
透過するフィルタを通して光電子増倍管で測定した。入
射光が366nmに制限され、出射光が420nmに制
限されているために、光電子増倍管では光を観測するこ
とはできなかった。
Next, light of 366 nm from the mercury lamp was extracted by an interference filter, and was incident on one optical fiber of the chip for a photochemical detector through an optical fiber. The light emitted from the other optical fiber on the chip was measured by a photomultiplier tube through a filter transmitting near 420 nm. Since the incident light was limited to 366 nm and the emitted light was limited to 420 nm, no light could be observed with the photomultiplier.

【0044】次に、間隙部分に1μg/Lのベンゾ
[a]ピレンが溶けている水溶液を滴下したところ、光
電子増倍管で光を検出することができた。さらに10n
g/Lのベンゾ[a]ピレンが溶けている水溶液を滴下
したところ、光電子増倍管で観測された光強度は1μg
/Lのサンプルで観測された光強度の1/3程度になっ
た。ベンゾ[a]ピレンは370nm付近に吸収帯を持
ち420nm付近に蛍光発光しディーゼルエンジンの排
気ガスやたばこの煙などに含まれ発ガン性が強く疑われ
ている物質である。1μg/Lのサンプルは入射光をほ
とんど吸収するのに対して10ng/Lのサンプルで
は、吸収が1/3程度となるために、蛍光強度が1/3
程度になったものである。
Next, when an aqueous solution in which 1 μg / L of benzo [a] pyrene was dissolved was dropped into the gap, light could be detected with a photomultiplier tube. 10n more
When an aqueous solution in which g / L of benzo [a] pyrene was dissolved was dropped, the light intensity observed with the photomultiplier tube was 1 μg.
/ L was about 1/3 of the light intensity observed in the sample of / L. Benzo [a] pyrene is a substance which has an absorption band at around 370 nm and emits fluorescence at around 420 nm, is contained in exhaust gas of a diesel engine, smoke of tobacco, and the like, and is highly suspected of being carcinogenic. The sample of 1 μg / L absorbs almost all the incident light, whereas the sample of 10 ng / L absorbs about 1/3, so that the fluorescence intensity is 1/3.
It is something about.

【0045】以上示したように、本発明により低濃度の
微量サンプルの蛍光測定が可能である。これは微小空間
内に光を局在させることによってその微小空間内に存在
する分子の光の吸収効率を増加させることで蛍光発光の
効率を増大することができたためである。
As described above, according to the present invention, it is possible to measure the fluorescence of a low-concentration trace sample. This is because the efficiency of fluorescence emission was increased by increasing the light absorption efficiency of the molecules existing in the minute space by localizing the light in the minute space.

【0046】[0046]

【実施例3】本発明の第三の実施例として、光ファイバ
の端面にSiO2とHfO2の薄膜が交互に形成され試料
導入部を有する吸光検出部(光化学検出器用光学部品)
を複数配置したマルチファイバ光化学検出器用光学部品
(光化学検出器用マルチ光学部品)を使用した光化学検
出器におけるベンゼンの検出例を図6を用いて示す。こ
こでは、SiO2とHfO2の光透過性薄膜の周期数を変
え、光電場強度の増強度を変化させたものを周期数の順
に一列に配置してある。各光ファイパー型光化学検出器
用光学部品は実施例1と同様に作製した。ここで周期数
とは一方の光ファイバのSiO2とHfO2それぞれの光
透過性薄膜の数である。
Embodiment 3 As a third embodiment of the present invention, an absorption detector (optical component for a photochemical detector) having a sample introduction part in which thin films of SiO 2 and HfO 2 are alternately formed on the end face of an optical fiber.
FIG. 6 shows an example of detecting benzene in a photochemical detector using an optical component for a multi-fiber photochemical detector in which a plurality of are arranged (multi-optical components for a photochemical detector). Here, the number of periods of the light-transmitting thin film of SiO 2 and HfO 2 is changed, and those obtained by changing the enhancement of the electric field intensity are arranged in a line in the order of the number of periods. Each optical component for an optical fiber type photochemical detector was produced in the same manner as in Example 1. Here, the number of periods is the number of light transmitting thin films of SiO 2 and HfO 2 of one optical fiber.

【0047】実施例1と同様にベンゼンを検出した。周
期数によって得られる透過率に違いが生じるため、基板
上に一列に並んだ光ファイバ61,62,63,64,
65,66の透過光を観察すると、特定のファイバの前
後で透過光強度が大きく変わっている。この光ファイバ
の位置はサンプルの濃度に依存するため、光ファイバの
位置を読むだけで、サンプル濃度を概算することができ
る。また各光ファイバの強度分布からサンプル濃度を正
確に定量する事が可能となる。
Benzene was detected in the same manner as in Example 1. Since the transmittance obtained by the number of periods differs, the optical fibers 61, 62, 63, 64,
When observing the transmitted light at 65 and 66, the transmitted light intensity changes greatly before and after a specific fiber. Since the position of the optical fiber depends on the concentration of the sample, the sample concentration can be estimated only by reading the position of the optical fiber. In addition, the sample concentration can be accurately determined from the intensity distribution of each optical fiber.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【実施例4】本発明の第四の実施例として、光ファイバ
の端面にSiO2とHfO2の薄膜が交互に形成され、試
料導入部分(光化学検出器用光学部品のフィルタ部材間
の間隙)の距離が可変な光化学検出器の構成と特徴を図
7を用いて示す。
Embodiment 4 As a fourth embodiment of the present invention, thin films of SiO 2 and HfO 2 are alternately formed on the end face of an optical fiber, and a sample introduction portion (a gap between filter members of an optical component for a photochemical detector) is formed. The configuration and characteristics of a photochemical detector having a variable distance will be described with reference to FIG.

【0050】実施例1と同様な方法で光ファイバの端面
にSiO2(62nm)とHfO2(43nm)の多層膜
をそれぞれ30層スパッタした。ただし、ニッケルのス
パッタは行わなかった。スパッタ装置より取り出し、光
ファイバ(フィルタ部材)71、72の多層膜711、
721の面が僅かに突出するようにそれぞれファイバホ
ルダー73、74に固定した。一方の光ファイバホルダ
ー74はピエゾステージ75に固定した。多層膜付きの
光ファイバ(フィルタ部材)71をXe光源76におよ
び多層膜付きの光ファイバ(フィルタ部材)72を分光
器77と光検出器78に光ファイバで接続した。多層膜
付き光ファイバ(フィルタ部材)71,72を向かいあ
わせに光軸が合うように配置し、多層どうしを接触させ
た。Xe光源76から白色光を入射させ、出射光を分光
器77で分光して光検出器78でそのスペクトルを測定
した。360nmの位置に透過光のピークが現れること
で、両光ファイバが正しく接触していることを確認し
た。
In the same manner as in Example 1, a multilayer film of SiO 2 (62 nm) and 30 layers of HfO 2 (43 nm) was sputtered on the end face of the optical fiber. However, nickel sputtering was not performed. The multilayer film 711 of the optical fibers (filter members) 71 and 72 is taken out from the sputtering apparatus.
721 was fixed to the fiber holders 73 and 74, respectively, so that the surface of 721 slightly protruded. One optical fiber holder 74 was fixed to a piezo stage 75. The optical fiber (filter member) 71 with a multilayer film was connected to an Xe light source 76 and the optical fiber (filter member) 72 with a multilayer film was connected to a spectroscope 77 and a photodetector 78 by optical fibers. The optical fibers (filter members) 71 and 72 with a multilayer film were arranged face to face so that the optical axes were aligned, and the multilayers were brought into contact. White light was made incident from the Xe light source 76, the emitted light was split by the spectroscope 77, and the spectrum was measured by the photodetector 78. The appearance of the peak of the transmitted light at a position of 360 nm confirmed that the two optical fibers were in correct contact.

【0051】その後ピエゾ素子を70nm動かして間隙
を作った。この間隙にベンゾ[a]ピレン(1μg/
L)の水溶液を滴下した。このとき透過光のピークは3
10nmであった。さらに間隙を10nm刻みで大きく
していき透過スペクトルを測定した。間隙を大きくして
いく毎に透過ピークの波長及びその透過率が変化した。
波長を横軸に透過ピークの大きさを縦軸にプロットした
ところ図8のようなスペクトルを得ることができた。こ
れはベンゾ[a]ピレンの吸収スペクトルに相当するも
のである。
Thereafter, the piezo element was moved 70 nm to form a gap. Benzo [a] pyrene (1 μg /
The aqueous solution of L) was added dropwise. At this time, the peak of the transmitted light is 3
It was 10 nm. Further, the gap was increased at intervals of 10 nm, and the transmission spectrum was measured. As the gap was increased, the wavelength of the transmission peak and its transmittance changed.
When the wavelength was plotted on the horizontal axis and the magnitude of the transmission peak was plotted on the vertical axis, a spectrum as shown in FIG. 8 could be obtained. This corresponds to the absorption spectrum of benzo [a] pyrene.

【0052】以上示したように、本発明により低濃度の
微量サンプルにおいても吸収スペクトルが測定できる。
これは間隙間距離を変化させることで、透過スペクトル
位置をスキャンすることができるためである。このた
め、一度、間隙間距離と透過ピークの検量線を得ておけ
ば、分光器にかえて、禁制帯の外側の波長をカットする
フィルタを設置し、間隙間距離の関数として透過光強度
を測定することで透過スペクトルを得ることもできる。
As described above, according to the present invention, an absorption spectrum can be measured even in a low-concentration trace sample.
This is because the transmission spectrum position can be scanned by changing the gap distance. For this reason, once the calibration curve of the gap distance and the transmission peak is obtained, a filter that cuts the wavelength outside the forbidden band is installed in place of the spectrometer, and the transmitted light intensity is functioned as a function of the gap distance. By measuring, a transmission spectrum can be obtained.

【0053】[0053]

【実施例5】本発明の第五の実施例として、大気中の微
量物質の検出例を示す。実施例1と同様な方法で2本の
光ファイバの端面にSiO2とHfO2をそれぞれ53,
37nmの膜厚で32層づつ形成し、光ファイバ端面の
間隔が156nmである光化学検出器用光学部品を作製
した。
[Embodiment 5] As a fifth embodiment of the present invention, an example of detecting a trace substance in the atmosphere will be described. In the same manner as in the first embodiment, SiO 2 and HfO 2 were respectively 53,
Optical components for photochemical detectors were formed in which 32 layers each having a thickness of 37 nm were formed and the interval between the end faces of the optical fiber was 156 nm.

【0054】以上のようにして作製した光化学検出器用
光学部品を用いて吸光検出を行った。前記光化学検出器
用光学部品をガス通気用セルに収容し、水銀ランプから
の312mmを干渉フィルタを用いて取り出し、光ファ
イバを通じて光化学検出器用光学部品の一方の光ファイ
バ(フィルタ部材)に入射した。光化学検出器用光学部
品上の他方の光ファイバ(フィルタ部材)を光検出器に
接続した。ガス通気用セルに窒素を通気し、透遇光を測
定したところ、312nmの鋭い透過光ピークを確認し
た。濃度0.5mg/m3の窒素希釈ホルムアルデヒド
ガスを通気したところ、透過光強度は減少し、ホルムア
ルデヒドガス通気前の場合の約43%となった。
Absorption detection was performed using the optical component for a photochemical detector prepared as described above. The optical component for a photochemical detector was housed in a cell for gas ventilation, 312 mm from a mercury lamp was taken out using an interference filter, and was incident on one optical fiber (filter member) of the optical component for a photochemical detector through an optical fiber. The other optical fiber (filter member) on the photochemical detector optical component was connected to the photodetector. Nitrogen was passed through the gas venting cell, and the transmitted light was measured. As a result, a sharp transmitted light peak at 312 nm was confirmed. When a nitrogen-diluted formaldehyde gas having a concentration of 0.5 mg / m 3 was passed, the transmitted light intensity was reduced to about 43% of that before the formaldehyde gas was passed.

【0055】またホルムアルデヒドガスの濃度が0.1
mg/m3では、ホルムアルデヒドガス通気前の場合の
約82%であった。透過光強度の減少はホルムアルデヒ
ドの吸収帯が310nm付近にあるためである。ホルム
アルデヒドは大気中の濃度が0.6mg/m3以下であ
ることが日本産業衛生学会により定められている物質で
ある。
When the concentration of formaldehyde gas is 0.1
At mg / m 3 , it was about 82% of that before formaldehyde gas ventilation. The decrease in transmitted light intensity is due to the absorption band of formaldehyde being around 310 nm. Formaldehyde is a substance determined by the Japan Society for Occupational Health to have a concentration in the atmosphere of 0.6 mg / m 3 or less.

【0056】以上示したように、本発明により濃縮操作
を必要とせずに大気中の低濃度微量サンプルの吸光測定
が可能である。これは微小空間内に光を局在させること
によってその微小空間内に存在する分子の光の吸収効率
を増加させることができたためである。
As described above, according to the present invention, the absorption measurement of a low-concentration trace sample in the atmosphere can be performed without the need for a concentration operation. This is because the light absorption efficiency of molecules existing in the minute space could be increased by localizing the light in the minute space.

【0057】[0057]

【実施例6】本発明の第六の実施例として、機能性材料
による濃縮部および呈色試薬を有する吸光検出器(光化
学検出器)の作製法を示し、クロロホルムヘの適用例を
示す(図9参照)。
[Embodiment 6] As a sixth embodiment of the present invention, a method for producing an absorption detector (photochemical detector) having a concentrating section made of a functional material and a color reagent is shown, and an example of application to chloroform is shown. 9).

【0058】実施例1と同様な方法で光ファイバの端面
と円形石英基板上にSiO2とHfO2をそれぞれ75,
52nmの膜厚で10層づつ形成した。この石英基板
(フィルタ部材)91の多層膜面上にテトラエトキシシ
ランのエタノール溶液を滴下し、スピンコート法により
前記石英基板91を5000rpmで回転させて150
nmの多孔質ガラス薄膜を得た。次に多孔質ガラス薄膜
に、クロロホルムから塩素を遊離させる酸化剤である五
酸化ヨウ素および遊離した塩素と反応して橙色に変色す
るオルトトリジンを予め含浸させた。
In the same manner as in Example 1, 75 and 2 SiO 2 and HfO 2 were deposited on the end face of the optical fiber and the circular quartz substrate, respectively.
Ten layers were formed at a film thickness of 52 nm. An ethanol solution of tetraethoxysilane is dropped on the multilayer film surface of the quartz substrate (filter member) 91, and the quartz substrate 91 is rotated at 5000 rpm by a spin coating method to obtain 150
nm porous glass thin film was obtained. Next, the porous glass thin film was previously impregnated with orthotolidine, which reacts with iodine pentoxide, which is an oxidizing agent for releasing chlorine from chloroform, and liberated chlorine to turn orange.

【0059】この石英基板91にハロゲンランプ94と
光学系95を設置し、ハロゲンランプ94によって石英
基板91に照射される部分が動径方向に線状になるよう
にした。
A halogen lamp 94 and an optical system 95 are provided on the quartz substrate 91 so that a portion irradiated on the quartz substrate 91 by the halogen lamp 94 becomes linear in the radial direction.

【0060】さらに通気用の二重構造の二重細管96中
に多層膜付き光ファイバ97を収容した。この二重細管
96は、外側のカバーとなる外管961と内側に設けら
れた内管962よりなり、前記内管962は外管961
より短く構成されており、内管962の外壁と外管96
1の内壁の間隙963より試料ガスを二重細管96内に
供給できるようになっている。一方、光ファイバ(フィ
ルタ部材)97は前記内管962内に設けられており、
前記に従細管96はこの光ファイバ97を上下に移動す
る機構を有している。
Further, an optical fiber 97 with a multilayer film was accommodated in a double thin tube 96 having a double structure for ventilation. The double thin tube 96 includes an outer tube 961 serving as an outer cover and an inner tube 962 provided inside, and the inner tube 962 is an outer tube 961.
The outer wall of the inner tube 962 and the outer tube 96
The sample gas can be supplied into the double narrow tube 96 from the gap 963 on the inner wall of the first tube. On the other hand, an optical fiber (filter member) 97 is provided in the inner tube 962,
The capillary 96 has a mechanism for moving the optical fiber 97 up and down.

【0061】前記石英基板91の動径方向に移動するこ
とが可能で二重細管96の端面を石英基板91に接触さ
せることが可能な治具98に二重細管96を取り付け、
光ファイバを光検出器に接続し、吸光検出器(光化学検
出器)を完成させた。
The double thin tube 96 is attached to a jig 98 which can move in the radial direction of the quartz substrate 91 and can bring the end face of the double thin tube 96 into contact with the quartz substrate 91.
The optical fiber was connected to a photodetector to complete an absorption detector (photochemical detector).

【0062】光ファイバ97の端面部分が石英基板91
から離れている状態(図9下段右図参照)で、二重細管
96の前記間隙963より多孔質ガラス薄膜に接し、さ
らに内管962を通って外部に抜けるように窒素ガスg
を通した。
The end portion of the optical fiber 97 is a quartz substrate 91
9 (see the lower right figure in FIG. 9), the nitrogen gas g is brought into contact with the porous glass thin film through the gap 963 of the double thin tube 96 and further to the outside through the inner tube 962.
Through.

【0063】次に光ファイバ97の端面を多孔質ガラス
薄膜に接触した状態(図9下段左図参照)でハロゲンラ
ンプからの白色光をスペクトル測定を行ったところ、4
38nmに鋭い透過光ピークを確認した。
Next, white light from a halogen lamp was subjected to spectrum measurement with the end face of the optical fiber 97 in contact with the porous glass thin film (see the lower left figure in FIG. 9).
A sharp transmitted light peak was observed at 38 nm.

【0064】次に、石英基板91の回転や二重細管96
の動径方向の移動により、二重細管96と石英基板91
の接する位置を変えた。多孔質ガラス薄膜部分に濃度1
0mg/m3の窒素希釈クロロホルムガスを0.1cc
mで1分通気後に測定したところ、試薬を含浸させた検
出器においては透過光強度は減少し、クロロホルムガス
通気前の場合の約65%であった。透過光強度の減少
は、試薬とクロロホルムが反応した生成物の吸収帯が4
38m付近にあるためである。
Next, the rotation of the quartz substrate 91 and the double capillary 96
Is moved in the radial direction, whereby the double thin tube 96 and the quartz substrate 91 are moved.
Changed the contact position. Concentration 1 on porous glass thin film
0.1 cc of 0 mg / m 3 nitrogen-diluted chloroform gas
As a result of measurement after 1 minute of ventilation at m, the intensity of transmitted light was reduced in the detector impregnated with the reagent, and was about 65% of that before chloroform gas ventilation. The decrease in transmitted light intensity was due to the absorption band of the product of the reaction between the reagent and chloroform being 4
This is because it is near 38 m.

【0065】クロロホルムの吸収帯は多孔質ガラスの吸
収端より短波長の169nm,151nmおよび143
nm付近であり、直接吸収を観測できない。クロロホル
ムは大気中の濃度が49mg/m3以下であることが日
本産業衛生学会により定められている物質である。多孔
質ガラスは表面に微小な細孔を有するため大気との接触
面積が通常のガラスの10万倍程度となり、大気中の微
量物質の濃縮固定や、試薬を含浸する等の容易な方法で
機能性薄膜とすることができる。
The absorption bands of chloroform are 169 nm, 151 nm, and 143 nm, which are shorter than the absorption edge of the porous glass.
nm, and no direct absorption can be observed. Chloroform is a substance determined by the Japan Society for Occupational Health to have an atmospheric concentration of 49 mg / m 3 or less. Porous glass has micropores on its surface, so the area of contact with the atmosphere is about 100,000 times that of ordinary glass, and it functions by easy methods such as concentration and fixing of trace substances in the atmosphere and impregnation with reagents. It can be a conductive thin film.

【0066】また石英基板と細管の位置を連続的に制御
することによって長時間の連続モニタリングが可能にな
り、石英基板自体がモニタリング結果の記録媒体とする
ことができる。
By continuously controlling the positions of the quartz substrate and the thin tube, continuous monitoring can be performed for a long time, and the quartz substrate itself can be used as a recording medium of the monitoring result.

【0067】以上示したように、本発明により低濃度の
微量サンプルの呈色試薬を用いた吸光測定が可能であ
る。
As described above, according to the present invention, it is possible to measure the absorption of a small amount of a low-concentration sample using a color reagent.

【0068】[0068]

【実施例7】本発明の第七の実施例として、機能性材料
による濃縮部および呈色試薬を有するマルチ吸光検出器
(光化学検出器)の作製法を示し、トルエン・n−ヘキ
サンの2成分混合気体への適用例を示す。光ファイバ
(フィルタ部材)の端面と円形石英基板(フィルタ部
材)上のSiO2とTiO2の膜厚はそれぞれ93,58
nmの膜厚で16層づつ形成した。
[Embodiment 7] As a seventh embodiment of the present invention, a method for producing a multi-absorption detector (photochemical detector) having a concentrating section made of a functional material and a color reagent is shown, and two components of toluene and n-hexane are shown. An example of application to a mixed gas will be described. The thicknesses of SiO 2 and TiO 2 on the end face of the optical fiber (filter member) and the circular quartz substrate (filter member) are 93, 58, respectively.
Sixteen layers each having a thickness of nm were formed.

【0069】石英基板の多層膜面上にテトラエトキシシ
ランのエタノール溶液を滴下しスピンコート法を繰り返
して1210nmの多孔質ガラス薄膜を得た。石英基板
の右半分の多孔質ガラス薄膜部にトルエンと反応して茶
色に変色する五酸化ヨウ素の硫酸溶液を含浸させた。左
半分にはn−ヘキサンと反応して黄褐色から緑褐色に変
色するクロム酸の硫酸溶液を含浸させた。実施例6と同
様に光ファイパー及び石英基板を設置して吸光検出器
(光化学検出器)を作製した。
An ethanol solution of tetraethoxysilane was dropped on the multilayer film surface of the quartz substrate and the spin coating method was repeated to obtain a 1210 nm porous glass thin film. The porous glass thin film in the right half of the quartz substrate was impregnated with a sulfuric acid solution of iodine pentoxide, which turned brown when reacted with toluene. The left half was impregnated with a sulfuric acid solution of chromic acid that changed from yellow-brown to green-brown by reacting with n-hexane. An optical fiber and a quartz substrate were set in the same manner as in Example 6 to produce an absorption detector (photochemical detector).

【0070】五酸化ヨウ素を含浸させた部分で、二重細
管の外管内壁および内管内壁との間隙より多孔質ガラス
薄膜に接し内管を通って外部に抜けるように窒素ガスを
通した。次に光ファイバの端面を多孔質ガラス薄膜に接
触した状態でハロゲンランプからの白色光をスペクトル
測定を行ったところ、512,579nmに鋭い透過光
ピークを確認した。石英基板を180度回転させ、クロ
ム酸の硫酸溶液を含浸させた部分でも同様の結果を得
た。次に五酸化ヨウ素を含浸させた部分に、濃度10m
g/m3のトルエン、および濃度10mg/m3のn−ヘ
キサンの2成分混合窒素希釈ガスを0.1ccmで1分
通気後に透過光を測定した。512nmのピークのみ混
合ガス通気前の約15%に透過光強度が減少した。
At the portion impregnated with iodine pentoxide, nitrogen gas was passed so as to come into contact with the porous glass thin film from the inner wall of the outer tube and the gap between the inner wall of the inner tube and pass through the inner tube to the outside. Next, white light from a halogen lamp was subjected to spectrum measurement in a state where the end face of the optical fiber was in contact with the porous glass thin film, and a sharp transmitted light peak was confirmed at 512 and 579 nm. The same result was obtained in a portion where the quartz substrate was rotated by 180 degrees and impregnated with a sulfuric acid solution of chromic acid. Next, the portion impregnated with iodine pentoxide was added with a concentration of 10 m.
The transmitted light was measured after passing a binary mixed nitrogen dilution gas of g / m 3 and 10 mg / m 3 n-hexane at 0.1 ccm for 1 minute. Only at the peak of 512 nm, the transmitted light intensity was reduced to about 15% before the gas mixture was passed.

【0071】次に石英基板を180度回転させ、クロム
酸の硫酸溶液を含浸させた部分で混合ガスを0.1cc
mで5分通気させ透過光を測定した。579nmのピー
クのみ混合ガス通気前の約78%に透過光強度が減少し
た。
Next, the quartz substrate was rotated 180 degrees, and 0.1 cc of the mixed gas was applied to a portion impregnated with a sulfuric acid solution of chromic acid.
m for 5 minutes, and the transmitted light was measured. Only at the peak of 579 nm, the transmitted light intensity decreased to about 78% before the gas mixture was passed.

【0072】透過光強度の減少は、試薬と各検出対象成
分が反応した生成物の光吸収によるものである。トルエ
ンおよびn−ヘキサンの吸収帯は多孔質ガラスの吸収端
より短波長側であり、直接吸収を観測できない。以上示
したように、本発明により低濃度の微量ガスの多成分同
時測定が可能である。
The decrease in the transmitted light intensity is due to the light absorption of the product of the reaction between the reagent and each component to be detected. The absorption bands of toluene and n-hexane are on the shorter wavelength side than the absorption edge of the porous glass, and direct absorption cannot be observed. As described above, according to the present invention, multi-component simultaneous measurement of a low concentration trace gas is possible.

【0073】[0073]

【発明の効果】以上説明したように、本発明では低濃度
で極微量のサンプルについて吸収及び蛍光測定が可能に
なる。屈折率の異なる光透過性薄膜を交互に積層し周期
構造を形成することにより、特定の波長帯の光を反射す
る機能を持たせることができる。この周期構造の中に周
期性を欠くような層(欠陥層)が存在すると、特定の波
長の光のみを透過できるようになる。このときの光電場
強度はこの欠陥層において非常に増幅されている。これ
はこの層において光が局在していることであり、この層
に光を吸収する分子があると、非常に高い確率で光を吸
収することができるようになる。
As described above, according to the present invention, absorption and fluorescence measurement can be performed on a very small amount of a sample at a low concentration. By alternately stacking light-transmitting thin films having different refractive indexes to form a periodic structure, a function of reflecting light in a specific wavelength band can be provided. If a layer (defect layer) that lacks periodicity exists in this periodic structure, only light of a specific wavelength can be transmitted. The intensity of the photoelectric field at this time is greatly amplified in the defect layer. This means that light is localized in this layer, and if there are molecules that absorb light in this layer, light can be absorbed with a very high probability.

【0074】すなわち、分子の絶対量が少ない場合にお
いても光が吸収され、これが透過率に大きく反映される
ことになる。光透過性薄膜の周期数を変えることで光電
場の増強度を制御できるために、濃度が低い場合におい
ても、最適な吸光度領域での透過率測定が可能になる。
また試料通過部の厚みを制御することによって吸収スペ
クトルを得ることができるために、極微量サンブルの同
定も可能になる。
That is, even when the absolute amount of the molecule is small, light is absorbed, and this is largely reflected on the transmittance. Since the enhancement of the photoelectric field can be controlled by changing the number of periods of the light-transmitting thin film, the transmittance can be measured in the optimum absorbance region even when the concentration is low.
Further, since an absorption spectrum can be obtained by controlling the thickness of the sample passage portion, it is possible to identify a trace amount of sample.

【0075】一般に入射光に対して吸収帯を持たない物
質に対する吸光検出は、間接的方法によって行われる。
すなわち、あらかじめ溶液中に吸光性の物質を溶解させ
ておき、サンプルを加え、吸光度の減少(透過率の増
大)を測定することによってサンプル中の目的物質を間
接的に定量する方法で汎用性の高い方法である。
In general, the detection of absorption of a substance having no absorption band with respect to incident light is performed by an indirect method.
That is, a method in which a light-absorbing substance is dissolved in a solution in advance, a sample is added, and the decrease in absorbance (increase in transmittance) is measured to indirectly quantify the target substance in the sample. A high way.

【0076】本発明においても間接法は可能であり、し
かも、光透過性薄膜の周期数を選べば、溶解しておいた
吸光性物質によるべースラインを下げることが可能で、
ダイナミックレンジが広がり、光電子増倍管等の利用が
可能になり、高感度化が期待できる。
In the present invention, the indirect method is also possible, and if the number of periods of the light-transmitting thin film is selected, it is possible to lower the baseline of the dissolved light-absorbing substance.
The dynamic range is widened and the use of a photomultiplier tube or the like becomes possible, and high sensitivity can be expected.

【0077】以上示したように、高速液体クロマトグラ
フィーや、キャピラリー電気泳動等で多用され汎用的な
検出方法である吸光検出、蛍光検出の検出感度を飛躍的
に増大させることができるため非常に利用価値が高い。
As described above, since the detection sensitivity of absorption detection and fluorescence detection, which are widely used in high-performance liquid chromatography and capillary electrophoresis, which are general-purpose detection methods, can be dramatically increased, they are very useful. High value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光化学検出器用光学部品の構成を示す
斜視図。
FIG. 1 is a perspective view showing a configuration of an optical component for a photochemical detector of the present invention.

【図2】上記光化学検出器用光学部品の透過率(試料通
過部の無い場合)を示す図。
FIG. 2 is a view showing the transmittance of the optical component for a photochemical detector (when there is no sample passage portion).

【図3】上記光化学検出器用光学部品の透過率(試斜通
過部のある場合)を示す図。
FIG. 3 is a diagram showing the transmittance of the optical component for a photochemical detector (when there is a test slant passage portion).

【図4】実施例1の光化学検出器の構成を示す図。FIG. 4 is a diagram illustrating a configuration of a photochemical detector according to the first embodiment.

【図5】実施例1の光化学検出器の吸光検出法を説明す
る図。
FIG. 5 is a view for explaining an absorption detection method of the photochemical detector of Example 1.

【図6】実施例3の光化学検出器の構成を示す図。FIG. 6 is a diagram illustrating a configuration of a photochemical detector according to a third embodiment.

【図7】実施例4の光化学検出器の構成を示す図。FIG. 7 is a diagram illustrating a configuration of a photochemical detector according to a fourth embodiment.

【図8】実施例4の光化学検出器による吸収スペクトル
を測定した図。
FIG. 8 is a diagram showing an absorption spectrum measured by the photochemical detector of Example 4.

【図9】実施例6の光化学検出器の構成を示す図。FIG. 9 is a diagram showing a configuration of a photochemical detector according to a sixth embodiment.

【符号の説明】[Explanation of symbols]

11 光ファイバ 12 被測定試料導入用の間隙 A 光透過性薄膜 B 光透過性薄膜 41 光ファイバ 42 光ファイバ 43 石英基板 44 穴 45 溝 46 間隙 47 水銀ランプ 48 干渉フィルタ 49 光検出器 61 光ファイバ 62 光ファイバ 63 光ファイバ 64 光ファイバ 65 光ファイバ 66 光ファイバ 71 光ファイバ 72 光ファイバ 73 光ファイバホルダ 74 光ファイバホルダ 75 ピエゾステージ 76 Xe光源 77 分光器 78 光検出器 91 石英基板(フィルタ部材) 92 基板回転機構 93 基板設置用ステージ 94 ハロゲンランプ 95 光学系 96 二重細管 961 外管 962 内管 97 光ファイバ Reference Signs List 11 optical fiber 12 gap for introducing sample to be measured A light-transmitting thin film B light-transmitting thin film 41 optical fiber 42 optical fiber 43 quartz substrate 44 hole 45 groove 46 gap 47 mercury lamp 48 interference filter 49 photodetector 61 optical fiber 62 Optical fiber 63 Optical fiber 64 Optical fiber 65 Optical fiber 66 Optical fiber 71 Optical fiber 72 Optical fiber 73 Optical fiber holder 74 Optical fiber holder 75 Piezo stage 76 Xe light source 77 Spectroscope 78 Photodetector 91 Quartz substrate (filter member) 92 Substrate Rotating mechanism 93 Substrate setting stage 94 Halogen lamp 95 Optical system 96 Double thin tube 961 Outer tube 962 Inner tube 97 Optical fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 6/00 G01N 27/26 325A (72)発明者 丹羽 修 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2G043 AA03 BA16 CA01 CA03 EA01 EA13 EA18 EA19 GA08 GB02 HA05 HA08 JA01 JA03 KA02 KA03 LA02 LA07 MA01 2G054 AA02 AA06 AB07 BB03 BB04 CA21 EA03 EA04 EB01 FA16 FA19 FA20 FA21 FA37 FB04 GA04 GB01 GB02 JA06 JA10 2G059 AA05 BB01 BB04 BB12 CC16 EE01 EE12 FF10 GG10 HH03 JJ03 JJ17 KK01 KK10 MM12 NN01 2H038 AA08 BA23 BA25 (54)【発明の名称】 光化学検出器用光学部品、光化学検出器用マルチ光学部品、前記光化学検出器用光学部品または 光化学検出器用マルチ光学部品を使用した光化学検出器、光化学検出方法および光化学検出器用 光学部品の製造方法──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 6/00 G01N 27/26 325A (72) Inventor Osamu Niwa 2-3-1 Otemachi, Chiyoda-ku, Tokyo No. F-term in Nippon Telegraph and Telephone Corporation (reference) 2G043 AA03 BA16 CA01 CA03 EA01 EA13 EA18 EA19 GA08 GB02 HA05 HA08 JA01 JA03 KA02 KA03 LA02 LA07 MA01 2G054 AA02 AA06 AB07 BB03 BB04 CA21 EA03 EA04 EB01 FA04 FA19 GB01 GB02 JA06 JA10 2G059 AA05 BB01 BB04 BB12 CC16 EE01 EE12 FF10 GG10 HH03 JJ03 JJ17 KK01 KK10 MM12 NN01 2H038 AA08 BA23 BA25 (54) Photochemical detectors using optical components or multi-optical components for photochemical detectors, photochemical The method of manufacturing output method and photochemical detector optics

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 光学膜厚が中心検出波長の1/4の整数
倍であって、屈折率の異なる2種類の光透過性薄膜を交
互に積層してなる多層膜を光透過性部材の端面に配置し
たフィルタ部材を、前記波長の1/2の被測定試料導入
用の間隙を挟んで、前記多層膜を配置した端面同士を対
向して配置したことを特徴とする光化学検出器用光学部
品。
1. An end face of a light-transmitting member, wherein a multilayer film having an optical film thickness that is an integral multiple of 1/4 of the center detection wavelength and having two types of light-transmitting thin films having different refractive indices alternately stacked is formed. An optical component for a photochemical detector, characterized in that the filter member arranged in (1) is arranged with the end faces on which the multilayer films are arranged facing each other with a gap for introducing a sample to be measured at a half of the wavelength therebetween.
【請求項2】 前記光透過性部材として端面を中心軸に
垂直な平面としたマルチモード光ファイバを用いること
を特徴とする請求項1記載の光化学検出器用光学部品。
2. The optical component for a photochemical detector according to claim 1, wherein a multi-mode optical fiber having an end surface that is a plane perpendicular to a central axis is used as the light transmitting member.
【請求項3】 対向する前記フィルタ部材の多層膜が同
一構成を有する請求項1または2記載の光化学検出器用
光学部品。
3. The optical component for a photochemical detector according to claim 1, wherein the multilayer films of the opposing filter members have the same configuration.
【請求項4】 互いに前記光透過性薄膜の周期数の異な
る多層膜を有する複数の請求項1乃至3のいずれかに記
載の光化学検出器用光学部品が配置されたことを特徴と
する光化学検出器用マルチ光学部品。
4. The photochemical detector optical component according to claim 1, wherein a plurality of optical components for photochemical detector according to claim 1 having a plurality of multilayer films having different numbers of periods of said light-transmitting thin films are arranged. Multi optical components.
【請求項5】 単色光源と、 前記単色光源からの入射光を入射する請求項1乃至3の
いずれかに記載の光化学検出器用光学部品と、 前記光化学検出器用光学部品からの出射光を検出する光
検出器と、 を含むことを特徴とする光化学検出器。
5. A monochromatic light source, and the optical component for a photochemical detector according to claim 1, which receives incident light from the monochromatic light source, and detects light emitted from the optical component for a photochemical detector. A photochemical detector, comprising: a photodetector;
【請求項6】 単色光源と、 前記単色光源からの入射光を入射する請求項4記載の光
化学検出器用マルチ光学部品と、 前記光化学検出器用マルチ光学部品からの出射光を検出
する光検出器と、 を含むことを特徴とする光化学検出器。
6. A monochromatic light source; a multi-optical component for a photochemical detector according to claim 4, which receives incident light from the monochromatic light source; and a photodetector for detecting outgoing light from the multi-optical component for the photochemical detector. A photochemical detector comprising:
【請求項7】 光源と、 前記光源からの入射光を入射する請求項1乃至3のいず
れかに記載の光化学検出器用光学部品と、 前記光化学検出器用光学部品の前記対向したフィルタ部
材のうちいずれかあるいは両方のフィルタ部材を、前記
フィルタ部材の端面間の距離を直線的に変化させるため
の直線移動手段と、 前記光化学検出器用光学部品からの出射光の波長範囲を
制限する分光手段と、 前記分光手段の出射光を検出する光検出器、 を含むことを特徴とする光化学検出器。
7. A light source, an optical component for a photochemical detector according to claim 1, which receives incident light from the light source, and any of the opposed filter members of the optical component for a photochemical detector. One or both filter members, linear moving means for linearly changing the distance between the end faces of the filter members, and spectral means for limiting a wavelength range of light emitted from the photochemical detector optical component, A photochemical detector comprising: a photodetector that detects light emitted from the spectroscopic means.
【請求項8】 請求項5または6記載の光化学検出器で
あって、前記被測定試料導入用の間隙に、被測定試料と
化学反応を示す材料を配置したことを特徴とする光化学
検出器。
8. The photochemical detector according to claim 5, wherein a material exhibiting a chemical reaction with the sample to be measured is arranged in the gap for introducing the sample to be measured.
【請求項9】 請求項8記載の光化学検出器であって、
前記化学反応する材料を前記フィルタ部材の前記多層膜
上に形成した多孔性薄膜に含浸させたことを特徴とする
光化学検出器。
9. The photochemical detector according to claim 8, wherein:
A photochemical detector, wherein the material causing the chemical reaction is impregnated in a porous thin film formed on the multilayer film of the filter member.
【請求項10】 請求項9記載の光化学検出器であっ
て、前記多孔性薄膜に、前記被測定試料と反応する材料
が反応した結果生ずる反応生成物により呈色する呈色試
薬を含浸させたことを特徴とする光化学検出器。
10. The photochemical detector according to claim 9, wherein the porous thin film is impregnated with a color reagent that is colored by a reaction product generated as a result of a reaction between the material reacting with the sample to be measured. A photochemical detector, characterized in that:
【請求項11】 請求項5乃至10のいずれかに記載の
光化学検出器であって、前記被測定試料導入用の間隙に
高速液体クロマトグラフィ、ガスクロマトグラフィ、キ
ャピラリー電気泳動のいずれか1の分離カラムを交叉さ
せて配置したことを特徴とする光化学検出器。
11. The photochemical detector according to claim 5, wherein a separation column of any one of high performance liquid chromatography, gas chromatography, and capillary electrophoresis is provided in the gap for introducing the sample to be measured. A photochemical detector characterized by being arranged in a crossed manner.
【請求項12】 一方の前記フィルタ部材を円盤状と
し、多孔性薄膜を形成した請求項9または10に記載の
光化学検出器において、 前記円盤状フィルタ部材を回転させる回転機構と、 他方のフィルタ部材を前記円盤状フィルタ部材に接触さ
せる機構と、 前記他方のフィルタ部材を中心軸としてこれを取り囲む
ように配置した内管および前記内管をさらに取り囲むよ
うに配置され先端部が内管より突出した状態で設置され
た外管とよりなる二重細管と、 前記内管と前記外管を相対位置関係を同一のままで前記
二重細管を前記円盤状フィルタ部材に接触させる機構
と、 前記内管外壁と前記外管内壁で構成される中空から前記
内管と前記他方のフィルタ部材の中空に向けて被測定気
体を流動させる機構と、 前記他方のフィルタ部材と前記内管と前記外管の全体を
前記円盤状フィルタ部材の動径方向に相対移動させる移
動機構、 を含むことを特徴とする光化学検出器。
12. The photochemical detector according to claim 9, wherein one of the filter members has a disk shape and a porous thin film is formed, and a rotation mechanism for rotating the disk filter member; and the other filter member. A mechanism for contacting the filter member with the disc-shaped filter member, and an inner tube arranged so as to surround the other filter member as a central axis, and a state in which a distal end portion protrudes from the inner tube so as to further surround the inner tube. A double thin tube comprising an outer tube installed in the inner tube, a mechanism for bringing the double thin tube into contact with the disc-shaped filter member while maintaining the same relative positional relationship between the inner tube and the outer tube, and the inner tube outer wall. And a mechanism for flowing the gas to be measured from the hollow formed by the inner wall of the outer tube toward the hollow of the inner tube and the other filter member; and the other filter member and the inner tube. A moving mechanism for relatively moving the entire outer tube in the radial direction of the disc-shaped filter member.
【請求項13】 光学膜厚が中心検出波長の1/4の整
数倍であって、屈折率の異なる2種類の光透過性薄膜を
交互に積層してなる多層膜を光透過性部材の端面に配置
したフィルタ部材を、前記波長の1/2の被測定試料導
入用の間隙を挟んで、前記薄多層膜を配置した端面同士
を対向して配置した光化学検出器用光学部品の前記被測
定試料導入用の間隙に被測定試料を挟んで、入射光を前
記2つのフィルタ部材の一方を通過させ、前記2つのフ
ィルタ部材によって前記被測定試料を配置した部位に入
射光を定在波として局在させ、前記局在した定在波光と
被測定試料を光学的に相互作用させ、前記相互作用の後
に前記他方のフィルタ部材からの出射光を検出すること
を特徴とする光化学検出方法。
13. An end face of a light transmitting member, wherein a multilayer film having an optical film thickness that is an integral multiple of 1/4 of the center detection wavelength and two types of light transmitting thin films having different refractive indexes are alternately laminated. The sample to be measured of the optical component for a photochemical detector in which the filter member arranged in the above is disposed with the end faces on which the thin multilayer films are arranged facing each other with a gap for introducing the sample to be measured having a wavelength of 1/2 of the wavelength being interposed therebetween. The sample light is passed through one of the two filter members with the sample to be measured sandwiched in the gap for introduction, and the incident light is localized as a standing wave at the portion where the sample to be measured is arranged by the two filter members. And causing the localized standing wave light to optically interact with the sample to be measured, and detecting the light emitted from the other filter member after the interaction.
【請求項14】 請求項13記載の光化学検出方法にお
いて、前記局在させた定在波光の波長を被測定試料の吸
収波長または蛍光吸収波長とする光化学検出方法。
14. The photochemical detection method according to claim 13, wherein a wavelength of the localized standing wave light is an absorption wavelength or a fluorescence absorption wavelength of the sample to be measured.
【請求項15】 光透過性部材の端面に屈折率の異なる
2種類の光学材料を蒸着法、スパッタ法、気相反応法、
ゾル−ゲル法、塗布法、スプレー法のいずれか1の成膜
方法により交互に積層し光透過性薄膜の多層膜を形成
し、前記光透過性薄膜の積層工程において前記2種類の
光透過性薄膜の光学膜厚を検出中心波長の1/4の整数
倍とし、前記多層膜を前記検出中心波長の1/2の被測
定試料導入用の間隙を挟んで端面同士を対向して配置す
ることを特徴とする光化学検出器用光学部品の製造方
法。
15. Two kinds of optical materials having different refractive indexes are deposited on the end face of the light transmitting member by a vapor deposition method, a sputtering method, a gas phase reaction method,
A multilayer film of a light-transmitting thin film is formed by alternately stacking by any one of a sol-gel method, a coating method, and a spraying method, and the two types of light-transmitting thin films are laminated in the light-transmitting thin film laminating step. The optical film thickness of the thin film is set to an integral multiple of 1/4 of the detection center wavelength, and the multilayer film is arranged so that end faces thereof face each other with a gap for introducing a sample to be measured having a detection center wavelength of 1/2. A method for producing an optical component for a photochemical detector, comprising:
JP35731099A 1999-12-16 1999-12-16 Optical component for photochemical detector, multi-optical component for photochemical detector, optical component for photochemical detector or photochemical detector using multi-optical component for photochemical detector, photochemical detection method, and method for manufacturing optical component for photochemical detector Expired - Fee Related JP3461772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35731099A JP3461772B2 (en) 1999-12-16 1999-12-16 Optical component for photochemical detector, multi-optical component for photochemical detector, optical component for photochemical detector or photochemical detector using multi-optical component for photochemical detector, photochemical detection method, and method for manufacturing optical component for photochemical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35731099A JP3461772B2 (en) 1999-12-16 1999-12-16 Optical component for photochemical detector, multi-optical component for photochemical detector, optical component for photochemical detector or photochemical detector using multi-optical component for photochemical detector, photochemical detection method, and method for manufacturing optical component for photochemical detector

Publications (2)

Publication Number Publication Date
JP2001174406A true JP2001174406A (en) 2001-06-29
JP3461772B2 JP3461772B2 (en) 2003-10-27

Family

ID=18453474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35731099A Expired - Fee Related JP3461772B2 (en) 1999-12-16 1999-12-16 Optical component for photochemical detector, multi-optical component for photochemical detector, optical component for photochemical detector or photochemical detector using multi-optical component for photochemical detector, photochemical detection method, and method for manufacturing optical component for photochemical detector

Country Status (1)

Country Link
JP (1) JP3461772B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667339B1 (en) 2005-01-11 2007-01-12 삼성전자주식회사 Biosensor and biosensor system
WO2007029757A2 (en) 2005-09-05 2007-03-15 Canon Kabushiki Kaisha Terahertz waveguide device and detection method using the same
JP2008051630A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Optical analyzer
JP2011053193A (en) * 2009-09-04 2011-03-17 Osaka Gas Co Ltd Gas detecting apparatus and fire detecting system
KR20200047956A (en) * 2018-10-29 2020-05-08 경북대학교 산학협력단 Sample change detection device and sample change detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667339B1 (en) 2005-01-11 2007-01-12 삼성전자주식회사 Biosensor and biosensor system
WO2007029757A2 (en) 2005-09-05 2007-03-15 Canon Kabushiki Kaisha Terahertz waveguide device and detection method using the same
US7759946B2 (en) 2005-09-05 2010-07-20 Canon Kabushiki Kaisha Waveguide, and device and detection method using the same
JP2008051630A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Optical analyzer
JP4686723B2 (en) * 2006-08-24 2011-05-25 独立行政法人国立高等専門学校機構 Optical analyzer
JP2011053193A (en) * 2009-09-04 2011-03-17 Osaka Gas Co Ltd Gas detecting apparatus and fire detecting system
KR20200047956A (en) * 2018-10-29 2020-05-08 경북대학교 산학협력단 Sample change detection device and sample change detection method
KR102208863B1 (en) * 2018-10-29 2021-01-28 경북대학교 산학협력단 Sample change detection device and sample change detection method

Also Published As

Publication number Publication date
JP3461772B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
US8537353B2 (en) Sensor chip for biological and chemical sensing
Schwab et al. Remote, long-pathlength cell for high-sensitivity Raman spectroscopy
Dallas et al. Light at the end of the tunnel: recent analytical applications of liquid-core waveguides
Verpoorte et al. A silicon flow cell for optical detection in miniaturized total chemical analysis systems
US5444807A (en) Micro chemical analysis employing flow through detectors
EP1106988B1 (en) Flow cell with an inner layer of an amorphous fluoropolymer having a refractive index less than the refractive index of water
US5415842A (en) Surface plasmon resonance analytical device
Kano et al. Surface-plasmon sensor for absorption-sensitivity enhancement
Liu et al. Highly versatile fiber-based optical Fabry-Pérot gas sensor
Bradshaw et al. Planar integrated optical waveguide spectroscopy
JPH09218149A (en) Detection meter cell and optical measuring device
Lu et al. IR-ATR chemical sensors based on planar silver halide waveguides coated with an ethylene/propylene copolymer for detection of multiple organic contaminants in water.
Mac Craith et al. Fibre optic chemical sensors based on evanescent wave interactions in sol-gel-derived porous coatings: Code: F7
JP3461772B2 (en) Optical component for photochemical detector, multi-optical component for photochemical detector, optical component for photochemical detector or photochemical detector using multi-optical component for photochemical detector, photochemical detection method, and method for manufacturing optical component for photochemical detector
WO2021152345A1 (en) An optical waveguide gas sensor
Eguchi Optical gas sensors
Delonge et al. Integrated optical detection cell based on Bragg reflecting waveguides
EP1105729A1 (en) Metallic overcoating as a light attenuating layer for optical sensors
JP3871967B2 (en) Sensing element using photoresponsive DNA thin film
JPH05332937A (en) Optical ion sensor
Bürck et al. Integrated optical NIR-evanescent wave absorbance sensorfor chemical analysis
JP2015078866A (en) Optical resonator structure
JP2004294099A (en) Raman probe and raman scattering measuring device using it
WO2001084134A1 (en) Capillary array unit and electrophoretic device comprising the same
EP3929168A1 (en) Hollow waveguide for gas detection

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees