JP2001168385A - Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element - Google Patents

Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element

Info

Publication number
JP2001168385A
JP2001168385A JP34644599A JP34644599A JP2001168385A JP 2001168385 A JP2001168385 A JP 2001168385A JP 34644599 A JP34644599 A JP 34644599A JP 34644599 A JP34644599 A JP 34644599A JP 2001168385 A JP2001168385 A JP 2001168385A
Authority
JP
Japan
Prior art keywords
layer
iii nitride
compound semiconductor
light emitting
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34644599A
Other languages
Japanese (ja)
Other versions
JP2001168385A5 (en
Inventor
Masayoshi Koike
正好 小池
Shiro Yamazaki
史郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP34644599A priority Critical patent/JP2001168385A/en
Priority to US09/730,005 priority patent/US6541798B2/en
Publication of JP2001168385A publication Critical patent/JP2001168385A/en
Priority to US10/252,723 priority patent/US6617061B2/en
Publication of JP2001168385A5 publication Critical patent/JP2001168385A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a III nitride semiconductor light emitting element having a clad layer in which an elastic constant is lowered. SOLUTION: The clad layer is formed in a multilayer structure obtained by laminating 20 respective layers of an Al0.2Ga0.8N having a thickness of 50 nm and a Ga0.99In0.01N having a thickness of 20 nm. Since the clad layer of about 1.4 μm has the multilayer structure, its elastic constant is low due to the multilayer structure. A laser diode is useful by forming a guide layer or the like such as the other layer needing a band gap of a gallium aluminum nitride (AlxGa1-xN, 0<x<1) of a multilayer structure of the gallium aluminum nitride (AlxGa1-xN, 0<x<1) and an indium gallium nitride (GayIn1-yN, 0<y<1).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、III族窒化物系化
合物半導体素子に関する。本発明は発光ダイオード(LE
D)やレーザダイオード(LD)等の発光素子として機能する
III族窒化物系化合物半導体素子に特に有用である。
尚、III族窒化物系化合物半導体とは、例えばAlN、Ga
N、InNのような2元系、AlxGa1-xN、AlxIn1-xN、GaxIn
1-xN(いずれも0<x<1)のような3元系、AlxGayIn
1-x-yN(0<x<1, 0<y<1, 0<x+y<1)の4元系を包
括した一般式AlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x
+y≦1)で表されるものがある。なお、本明細書におい
ては、特に断らない限り、単にIII族窒化物系化合物半
導体と言う場合は、伝導型をp型あるいはn型にするた
めの不純物がドープされたIII族窒化物系化合物半導体
をも含んだ表現とする。
The present invention relates to a group III nitride compound semiconductor device. The present invention relates to a light emitting diode (LE
Functions as a light emitting element such as D) or laser diode (LD)
It is particularly useful for group III nitride compound semiconductor devices.
Incidentally, the group III nitride compound semiconductor is, for example, AlN, Ga
Binary systems like N, InN, Al x Ga 1-x N, Al x In 1-x N, Ga x In
A ternary system such as 1-x N (both 0 <x <1), Al x Ga y In
1-xy N (0 <x <1, 0 <y <1, 0 <x + y <1) General formula Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x
+ y ≦ 1). In the present specification, unless otherwise specified, a group III nitride-based compound semiconductor simply referred to as a group III nitride-based compound semiconductor is a group III nitride-based compound semiconductor doped with an impurity for changing the conductivity type to p-type or n-type. Is also included.

【0002】[0002]

【従来の技術】III族窒化物系化合物半導体は、発光ス
ペクトルが紫外から赤色の広範囲に渡る直接遷移型の半
導体であり、発光ダイオード(LED)やレーザダイオード
(LD)等の発光素子に応用されている。このIII族窒化物
系化合物半導体では、通常、サファイアを基板として用
い、その上に形成している。この際、いわゆるクラッド
層を設け、負極からの電子と、正極からの正孔が発光層
で対を生成するようにしている。III族窒化物系化合物
半導体発光素子において、クラッド層としてはアルミニ
ウム(Al)を含むAlxGa1-xN(0<x<1)を用いることが一
般的である。
2. Description of the Related Art A group III nitride compound semiconductor is a direct transition type semiconductor having an emission spectrum ranging from ultraviolet to red over a wide range, such as a light emitting diode (LED) or a laser diode.
(LD) and the like. In this group III nitride compound semiconductor, sapphire is usually used as a substrate and is formed thereon. At this time, a so-called cladding layer is provided so that electrons from the negative electrode and holes from the positive electrode generate pairs in the light emitting layer. In a group III nitride compound semiconductor light emitting device, it is common to use Al x Ga 1 -xN (0 <x <1) containing aluminum (Al) as a cladding layer.

【0003】図3に従来のIII族窒化物系化合物半導体
発光素子の一例として発光ダイオード(LED)900の構
造を示す。発光ダイオード(LED)900は、サファ
イア基板901を有しており、そのサファイア基板90
1上にAlNバッファ層902が形成されている。
FIG. 3 shows the structure of a light emitting diode (LED) 900 as an example of a conventional group III nitride compound semiconductor light emitting device. The light emitting diode (LED) 900 has a sapphire substrate 901 and the sapphire substrate 90.
1, an AlN buffer layer 902 is formed.

【0004】そのバッファ層902の上には、順に、シ
リコン(Si)ドープGaNから成るn層903、シリコン(S
i)ドープAlxGa1-xNから成るnクラッド層904、GayIn
1-yNから成る井戸層とGaNから成るバリア層とが交互に
積層された多重量子井戸構造(MQW)の活性層905が形
成されている。そして、その活性層905の上に、マグ
ネシウム(Mg)ドープAlxGa1-xNから成るpクラッド層9
06、マグネシウム(Mg)ドープGaNから成るpコンタク
ト層907が形成されている。そして、pコンタクト層
907上に電極908Aが形成されている。又、n層9
03上には電極908Bが形成されている。
On the buffer layer 902, an n layer 903 made of silicon (Si) doped GaN and a silicon (S
i) doped Al x Ga consisting 1-x N n-cladding layer 904, Ga y In
An active layer 905 having a multiple quantum well structure (MQW) in which well layers made of 1-yN and barrier layers made of GaN are alternately stacked. Then, on the active layer 905, a p-cladding layer 9 made of magnesium (Mg) doped Al x Ga 1 -xN
06, a p-contact layer 907 made of magnesium (Mg) -doped GaN is formed. Then, an electrode 908A is formed on the p-contact layer 907. Also, the n layer 9
An electrode 908B is formed on the substrate 03.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、厚いAlxGa1-xN(0<x<1)から成るn及び
pクラッド層の弾性定数が高いため、n及びpクラッド
層にクラックが発生しやすく、このため素子特性が良く
ないという問題がある。
However, in the above prior art, since the elastic constants of the n and p cladding layers made of thick Al x Ga 1 -xN (0 <x <1) are high, the n and p cladding layers are thick. Cracks are likely to occur, resulting in poor element characteristics.

【0006】よって本発明は、弾性定数を低くして厚い
AlxGa1-xN(0<x<1)層の素子としての機能を低下させ
ないIII族窒化物系化合物半導体素子及びIII族窒化物系
化合物半導体発光素子を提供することを目的とする。
Accordingly, the present invention has a low elastic constant and a large elastic constant.
It is an object of the present invention to provide a group III nitride-based compound semiconductor device and a group III nitride-based compound semiconductor light-emitting device that do not deteriorate the function of the Al x Ga 1-x N (0 <x <1) layer as a device.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め請求項1に記載の手段によれば、III族窒化物系化合
物半導体素子において、AlxGa1-xN(0<x<1)と、GayI
n1-yN(0<y<1)とを各々3層以上有することを特徴と
する。
According to the first aspect of the present invention, there is provided a group III nitride compound semiconductor device comprising an Al x Ga 1 -xN (0 <x <1 a), Ga y I
It is characterized by having three or more layers each of n 1−y N (0 <y <1).

【0008】また、請求項2に記載の手段によれば、請
求項1に記載のIII族窒化物系化合物半導体素子におい
て、GayIn1-yN(0<y<1)から成る層の厚さは15nm以上
30nm以下であることを特徴とする。
According to a second aspect of the present invention, in the group III nitride-based compound semiconductor device according to the first aspect, the thickness of the layer comprising Ga y In 1-y N (0 <y <1) is reduced. Thickness is more than 15nm
It is characterized by being 30 nm or less.

【0009】また、請求項3に記載の手段によれば、請
求項1又は請求項2に記載のIII族窒化物系化合物半導
体素子を発光素子としたIII族窒化物系化合物半導体発
光素子である。
According to a third aspect of the present invention, there is provided a group III nitride compound semiconductor light emitting device using the group III nitride compound semiconductor device according to the first or second aspect as a light emitting device. .

【0010】[0010]

【作用及び発明の効果】III族窒化物系化合物半導体素
子において、広いバンドギャップを要求される層にはAl
xGa1-xN(0<x<1)が求められる。そこでAlxGa1-xN(0
<x<1)とGayIn1-yN(0<y<1)との多層構造を形成す
れば、AlxGa1-xN(0<x<1)の広いバンドギャップを有
し、且つ全体として弾性定数を小さい層とすることがで
きる。よって、製造時、使用時の温度変化等によるクラ
ックの発生を抑えることができる(請求項1)。これは
AlxGa1-xN(0<x<1)のアルミニウム組成xの高い層に
おいて特に顕著であり、複数のAlxGa1-xN(0<x<1)層
を形成することで、III族窒化物系化合物半導体素子全
体の特性設計、特に発光層の設計(AlxGayIn1-x-yNの組
成)をより柔軟に行うことができる。
In the group III nitride-based compound semiconductor device, a layer requiring a wide band gap is Al.
x Ga 1−x N (0 <x <1) is obtained. Then Al x Ga 1-x N (0
<By forming a multilayer structure with x <1) and Ga y In 1-y N ( 0 <y <1), Al x Ga 1-x N (0 has a wide bandgap <x <1) In addition, a layer having a small elastic constant as a whole can be obtained. Therefore, it is possible to suppress the occurrence of cracks due to a temperature change or the like during manufacturing or use (claim 1). this is
Al x Ga 1-x N is particularly pronounced in high aluminum composition x layer (0 <x <1), by forming a plurality of Al x Ga 1-x N ( 0 <x <1) layer, It is possible to more flexibly design characteristics of the entire group III nitride-based compound semiconductor device, in particular, design a light emitting layer (composition of Al x Ga y In 1-xy N).

【0011】GayIn1-yN(0<y<1)から成る層の厚さを
15nm以上30nm以下とすることにより、広いバンドギャッ
プを要求される層としての機能を維持するとともにクラ
ックの発生をほぼ完全に抑えることができる(請求項
2)。なお、15nm未満の厚さでは、GayIn1-yN(0<y<
1)から成る層による、AlxGa1-xN(0<x<1)層との多
層の弾性定数の低減の効果が十分でなく、30nmを超える
と広いバンドギャップを要求される層としての機能が低
下してしまう。このような素子はレーザダイオード、発
光ダイオードなどの発光素子として有用である(請求項
3)。
The thickness of the layer consisting of Ga y In 1-y N (0 <y <1) is
When the thickness is 15 nm or more and 30 nm or less, the function as a layer requiring a wide band gap can be maintained, and the generation of cracks can be almost completely suppressed (claim 2). At a thickness of less than 15 nm, Ga y In 1-y N (0 <y <
The effect of reducing the elastic constant of the multilayer with Al x Ga 1-x N (0 <x <1) layer by the layer consisting of 1) is not sufficient. Function will be reduced. Such an element is useful as a light emitting element such as a laser diode and a light emitting diode (claim 3).

【0012】[0012]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。なお、本発明は下記実施例に限定さ
れるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. Note that the present invention is not limited to the following examples.

【0013】〔第1実施例〕図1は、本発明の具体的な
第1の実施例に係る発光ダイオード(LED)100の構造
を示す。発光ダイオード(LED)100は、サファイ
ア基板101を有しており、そのサファイア基板101
上に膜厚50nmのAlNバッファ層102が形成されてい
る。
FIG. 1 shows the structure of a light emitting diode (LED) 100 according to a first embodiment of the present invention. The light emitting diode (LED) 100 has a sapphire substrate 101, and the sapphire substrate 101
An AlN buffer layer 102 having a thickness of 50 nm is formed thereon.

【0014】そのバッファ層102の上には、順に、膜
厚約4.0μm、シリコン(Si)濃度5×1018/cm3、シリコン
(Si)ドープGaNから成るn層103が形成されている。
n層103の上には総膜厚約1.4μmの多層構造から成る
nクラッド層104が形成されている。nクラッド層1
04は、シリコン(Si)濃度5×1018/cm3、膜厚50nmのシ
リコン(Si)ドープAl0.2Ga0.8N層を20層、シリコン(Si)
濃度5×1018/cm3、膜厚20nmのシリコン(Si)ドープGa
0.99In0.01N層を19層、交互に積層したものである。
On the buffer layer 102, a film thickness of about 4.0 μm, a silicon (Si) concentration of 5 × 10 18 / cm 3 ,
An n-layer 103 made of (Si) -doped GaN is formed.
On the n-layer 103, an n-cladding layer 104 having a multilayer structure with a total thickness of about 1.4 μm is formed. n clad layer 1
04 is a silicon (Si) concentration of 5 × 10 18 / cm 3 , 20 layers of 50 nm thick silicon (Si) doped Al 0.2 Ga 0.8 N layer, silicon (Si)
Silicon (Si) -doped Ga with a concentration of 5 × 10 18 / cm 3 and a film thickness of 20 nm
It consists of 19 layers of 0.99 In 0.01 N layers alternately stacked.

【0015】多層構造からなるnクラッド層104の上
には、膜厚約3nmのGa0.98In0.02Nから成る井戸層と膜厚
約5nmのAl0.05Ga0.95Nから成るバリア層とが交互に積層
された多重量子井戸構造(MQW)の発光層105が形成さ
れている。井戸層は4層、バリア層は3層である。多重
量子井戸構造(MQW)の発光層105の上には、総膜厚約
1.4μmの多層構造から成るpクラッド層106が形成さ
れている。pクラッド層106は、マグネシウム(Mg)濃
度7×1019/cm3、膜厚50nmのマグネシウム(Mg)ドープAl
0.2Ga0.8N層を20層、マグネシウム(Mg)濃度7×1019/c
m3、膜厚20nmのマグネシウム(Mg)ドープGa0.99In0.01N
層を19層、交互に積層したものである。多層構造から成
るpクラッド層106の上には、膜厚200nm、マグネシ
ウム(Mg)濃度1×1020/cm3、マグネシウム(Mg)ドープGaN
から成るpコンタクト層107が形成されている。そし
て、pコンタクト層107上にNi電極108Aが形成さ
れている。又、n層103上にはAlから成る電極108
Bが形成されている。
On the n-cladding layer 104 having a multilayer structure, a well layer of Ga 0.98 In 0.02 N having a thickness of about 3 nm and a barrier layer of Al 0.05 Ga 0.95 N having a thickness of about 5 nm are alternately laminated. The light emitting layer 105 having a multiple quantum well structure (MQW) is formed. There are four well layers and three barrier layers. On the light emitting layer 105 having a multiple quantum well structure (MQW), the total film thickness is about
A p-cladding layer 106 having a multilayer structure of 1.4 μm is formed. The p-cladding layer 106 has a magnesium (Mg) concentration of 7 × 10 19 / cm 3 and a magnesium (Mg) -doped Al having a thickness of 50 nm.
20 layers of 0.2 Ga 0.8 N layer, magnesium (Mg) concentration 7 × 10 19 / c
m 3 , 20 nm thick magnesium (Mg) doped Ga 0.99 In 0.01 N
19 layers were alternately laminated. On the p-cladding layer 106 having a multilayer structure, a film thickness of 200 nm, a magnesium (Mg) concentration of 1 × 10 20 / cm 3 , and magnesium (Mg) -doped GaN
Is formed. Then, a Ni electrode 108A is formed on the p-contact layer 107. An electrode 108 made of Al is formed on the n-layer 103.
B is formed.

【0016】次に、この構造の発光ダイオードの製造方
法について説明する。上記発光素子100は、有機金属
化合物気相成長法(以下「MOVPE」と示す)による気相
成長により製造された。用いられたガスは、NH3とキャ
リアガスH2又はN2とトリメチルガリウム(Ga(CH3)3、以
下「TMG」と記す)とトリメチルアルミニウム(Al(C
H3) 3、以下「TMA」と記す)とトリメチルインジウム(In
(CH3)3、以下「TMI」と記す)とシラン(SiH4)とシクロ
ペンタジエニルマグネシウム(Mg(C5H5)2、以下「CP2M
g」と記す)である。
Next, a method for manufacturing a light emitting diode having this structure will be described.
The method will be described. The light emitting element 100 is made of an organic metal
Gas phase by compound vapor phase epitaxy (hereinafter referred to as “MOVPE”)
Manufactured by growth. The gas used was NHThreeAnd the cap
Rear gas HTwoOr NTwoAnd trimethylgallium (Ga (CHThree)Three,
Below, "TMG") and trimethylaluminum (Al (C
HThree) Three, Hereinafter referred to as “TMA”) and trimethylindium (In
(CHThree)Three, Hereinafter referred to as “TMI”) and silane (SiHFour) And cyclo
Pentadienyl magnesium (Mg (CFiveHFive)Two, Below "CPTwoM
g ").

【0017】まず、有機洗浄及び熱処理により洗浄した
a面を主面とし、単結晶のサファイア基板1をMOVPE装
置の反応室に載置されたサセプタに装着する。次に、常
圧でH 2を流速10L/minで約30分反応室に流しながら温度1
100℃でサファイア基板101をベーキングした。
First, organic cleaning and heat treatment were performed.
MOVPE mounting single crystal sapphire substrate 1 with a-plane as main surface
To the susceptor placed in the reaction chamber. Next, always
H by pressure TwoFlow through the reaction chamber at a flow rate of 10 L / min for about 30 minutes.
The sapphire substrate 101 was baked at 100 ° C.

【0018】次に、温度を400℃まで低下させて、H2を1
0L/min、NH3を10L/min、TMAを20μmol/minで約90秒間供
給してAlNのバッファ層102を約50nmの厚さに形成し
た。次に、サファイア基板101の温度を1150℃に保持
し、H2を10L/min、NH3を10L/min、TMGを200μmol/min、
H2ガスにて0.86ppmに希釈されたシラン(SiH4)を20nmol/
minで導入し、膜厚約4.0μm、シリコン(Si)濃度5×1018
/cm3、シリコン(Si)ドープGaNからなるn層103を形
成した。
Next, by lowering the temperature to 400 ° C., the H 2 1
By supplying 0 L / min, NH 3 at 10 L / min, and TMA at 20 μmol / min for about 90 seconds, the AlN buffer layer 102 was formed to a thickness of about 50 nm. Next, the temperature of the sapphire substrate 101 was maintained at 1150 ° C., H 2 was 10 L / min, NH 3 was 10 L / min, TMG was 200 μmol / min,
20 nmol / silane (SiH 4 ) diluted to 0.86 ppm with H 2 gas
min, film thickness about 4.0μm, silicon (Si) concentration 5 × 10 18
An n-layer 103 of / cm 3 and silicon (Si) -doped GaN was formed.

【0019】上記のn層103を形成した後、N2又は
H2、NH3、TMA、TMG及びシラン(SiH4)を供給して、膜厚
約50nmのAl0.2Ga0.8Nから成る層を形成した。次に、N2
又はH2、NH3、TMG、TMI及びシラン(SiH4)を供給して、
膜厚約20nmのGa0.99In0.01Nから成る層を形成した。こ
れを同一条件で各々20層及び19層積層し、総膜厚約1.4
μmの多層構造のnクラッド層104を形成した。
After forming the above-mentioned n-layer 103, N 2 or
H 2 , NH 3 , TMA, TMG and silane (SiH 4 ) were supplied to form an Al 0.2 Ga 0.8 N layer having a thickness of about 50 nm. Then N 2
Or supplying H 2 , NH 3 , TMG, TMI and silane (SiH 4 )
A layer made of Ga 0.99 In 0.01 N having a thickness of about 20 nm was formed. 20 layers and 19 layers were laminated under the same conditions, and the total film thickness was about 1.4.
An n-cladding layer 104 having a multilayer structure of μm was formed.

【0020】次に、N2又はH2、NH3、TMGを供給して、膜
厚約3nmのGa0.98In0.02Nから成る井戸層を形成した。次
に、N2又はH2、NH3、TMG及びTMAを供給して、膜厚約5nm
のAl 0.05Ga0.95Nから成るバリア層を形成した。さら
に、井戸層とバリア層とを同一条件で形成し、最後に膜
厚約3nmのGa0.98In0.02Nから成る井戸層を形成した。こ
のようにして井戸層4層、バリア層3層から成るMQW構
造の発光層105を形成した。
Next, NTwoOr HTwo, NHThreeSupply TMG, membrane
Ga about 3 nm thick0.98In0.02A well layer made of N was formed. Next
And NTwoOr HTwo, NHThree, TMG and TMA to supply a film thickness of about 5 nm
Al 0.05Ga0.95A barrier layer made of N was formed. Further
Then, a well layer and a barrier layer are formed under the same conditions.
Ga about 3 nm thick0.98In0.02A well layer made of N was formed. This
MQW structure composed of four well layers and three barrier layers
A light emitting layer 105 was formed.

【0021】次に、N2又はH2、NH3、TMA、TMG及びCP2Mg
を供給して、膜厚約50nmのAl0.2Ga0 .8Nから成る層を形
成した。次に、N2又はH2、NH3、TMG、TMI及びCP2Mgを供
給して、膜厚約20nmのGa0.99In0.01Nから成る層を形成
した。これを同一条件で各々20層及び19層積層し、総膜
厚約1.4μmの多層構造のpクラッド層106を形成し
た。
Next, N 2 or H 2 , NH 3 , TMA, TMG and CP 2 Mg
By supplying, to form a layer consisting of a film thickness of about 50nm Al 0.2 Ga 0 .8 N. Next, N 2 or H 2 , NH 3 , TMG, TMI and CP 2 Mg were supplied to form a layer of Ga 0.99 In 0.01 N having a thickness of about 20 nm. Under the same conditions, 20 layers and 19 layers were laminated, respectively, to form a p-cladding layer 106 having a multilayer structure with a total film thickness of about 1.4 μm.

【0022】次に、温度を1100℃に保持し、N2又はH2
10L/min、NH3を10L/min、TMGを50μmol/min、Cp2Mgを0.
15μmol/minで導入して、マグネシウム(Mg)が1×1020/c
m3ドーピングされた、膜厚約200nmのマグネシウム(Mg)
ドープのGaNからなるpコンタクト層107を形成し
た。
Next, the temperature is maintained at 1100 ° C. and N 2 or H 2 is added.
10 L / min, NH 3 10 L / min, TMG 50 μmol / min, Cp 2 Mg 0.
Introduced at 15 μmol / min, magnesium (Mg) is 1 × 10 20 / c
m 3 doped magnesium having a thickness of about 200 nm (Mg)
A p-contact layer 107 made of doped GaN was formed.

【0023】次に、電子線照射装置を用いて、pコンタ
クト層107及びpクラッド層106に一様に電子線を
照射し、低抵抗の多層構造のウエハを形成することがで
きた。
Next, the p-contact layer 107 and the p-cladding layer 106 were uniformly irradiated with an electron beam by using an electron beam irradiation apparatus, whereby a low-resistance multi-layer wafer could be formed.

【0024】次に、スパッタリングによりSiO2層を形成
し、そのSiO2上にフォトレジストを塗布し、フォトリソ
グラフを行った。次にn層103に対する電極形成部位
フォトレジストを除去し、フォトレジストによって覆わ
れていないSiO2層をフッ化水素酸系エッチング液で除去
した。
Next, by sputtering to form an SiO 2 layer, a photoresist is applied thereon SiO 2, it was carried out photolithography. Next, the photoresist where the electrode was formed on the n-layer 103 was removed, and the SiO 2 layer not covered with the photoresist was removed with a hydrofluoric acid-based etchant.

【0025】次に、フォトレジスト及びSiO2層によって
覆われていない部位のpコンタクト層107、pクラッ
ド層106、活性層105、nクラッド層104及びn
層103の一部を真空度0.04Torr、高周波電力0.44W/cm
2、Cl2ガスを10ml/minの割合で供給しドライエッチング
し、その後Arでドライエッチングした。この工程で、n
層103に対する電極取り出しのための領域が形成され
た。
Next, the photoresist and the p-contact layer 107 of the portion not covered by the SiO 2 layer, p-cladding layer 106, the active layer 105, n cladding layer 104 and n
A part of the layer 103 is vacuumed at 0.04 Torr and high frequency power is 0.44 W / cm
2. Dry etching was performed by supplying Cl 2 gas at a rate of 10 ml / min, followed by dry etching with Ar. In this step, n
A region for extracting an electrode from the layer 103 was formed.

【0026】次に、ニッケル(Ni)を蒸着してpコンタク
ト層107の上に電極108Aを形成した。一方、n層
103に対しては、アルミニウム(Al)を蒸着して電極1
08Bを形成した。
Next, an electrode 108A was formed on the p-contact layer 107 by depositing nickel (Ni). On the other hand, aluminum (Al) is deposited on the
08B was formed.

【0027】このようにして得られた発光ダイオード1
00は、クラックの発生が抑えられ、従来のクラッド層
が単層の発光ダイオードに比較し、高出力の発光ダイオ
ードが得られた。
The light emitting diode 1 thus obtained
In No. 00, the generation of cracks was suppressed, and a light-emitting diode with a higher output was obtained as compared with a conventional light-emitting diode having a single clad layer.

【0028】〔第2実施例〕図2は、本発明の具体的な
実施例に係るレーザダイオード200の構成を示した断
面図である。レーザダイオード200は、サファイア基
板201を有しており、そのサファイア基板201上に
膜厚50nmのAlNバッファ層202が形成されている。
[Second Embodiment] FIG. 2 is a sectional view showing the structure of a laser diode 200 according to a specific embodiment of the present invention. The laser diode 200 has a sapphire substrate 201, and an AlN buffer layer 202 having a thickness of 50 nm is formed on the sapphire substrate 201.

【0029】そのバッファ層202の上には、順に、膜
厚約4.0μm、シリコン(Si)濃度5×1018/cm3、シリコン
(Si)ドープGaNから成るn層203が形成されている。
n層203の上には総膜厚約1.4μmの多層構造から成る
nクラッド層204が形成されている。nクラッド層2
04は、シリコン(Si)濃度5×1018/cm3、膜厚50nmのシ
リコン(Si)ドープAl0.2Ga0.8N層を20層、シリコン(Si)
濃度5×1018/cm3、膜厚20nmのシリコン(Si)ドープGa
0.99In0.01N層を19層、交互に積層したものである。
On the buffer layer 202, a film thickness of about 4.0 μm, a silicon (Si) concentration of 5 × 10 18 / cm 3 ,
An n-layer 203 made of (Si) -doped GaN is formed.
On the n-layer 203, an n-cladding layer 204 having a multilayer structure with a total film thickness of about 1.4 μm is formed. n clad layer 2
04 is a silicon (Si) concentration of 5 × 10 18 / cm 3 , 20 layers of 50 nm thick silicon (Si) doped Al 0.2 Ga 0.8 N layer, silicon (Si)
Silicon (Si) -doped Ga with a concentration of 5 × 10 18 / cm 3 and a film thickness of 20 nm
It consists of 19 layers of 0.99 In 0.01 N layers alternately stacked.

【0030】多層構造から成るnクラッド層204の上
には、総膜厚約120nmの多層構造から成るnガイド層2
05が形成されている。nガイド層205は、シリコン
(Si)濃度1×1018/cm3、膜厚50nmのシリコン(Si)ドープA
l0.1Ga0.9N層2層の間に、シリコン(Si)濃度1×1018/cm
3、膜厚20nmのシリコン(Si)ドープGa0.99In0.01N層を挿
入したものである。
On the n-cladding layer 204 having a multilayer structure, an n-guide layer 2 having a multilayer structure having a total thickness of about 120 nm is formed.
05 is formed. The n guide layer 205 is made of silicon
(Si) concentration of 1 × 10 18 / cm 3 , 50 nm thick silicon (Si) doped A
l 0.1 Ga 0.9 between the N layer 2 layer, a silicon (Si) concentration of 1 × 10 18 / cm
3. A silicon (Si) -doped Ga 0.99 In 0.01 N layer having a thickness of 20 nm is inserted.

【0031】多層構造から成るnガイド層205の上に
は、膜厚約3nmのGa0.98In0.02Nから成る井戸層と膜厚約
5nmのAl0.05Ga0.95Nから成るバリア層とが交互に積層さ
れた多重量子井戸構造(MQW)の活性層206が形成され
ている。井戸層は4層、バリア層は3層である。多重量
子井戸構造(MQW)の活性層206の上には、総膜厚約120
nmの多層構造のpガイド層207が形成されている。p
ガイド層207は、マグネシウム(Mg)濃度7×1019/c
m3、膜厚50nmのマグネシウム(Mg)ドープAl0.1Ga0. 9N層
2層の間に、マグネシウム(Mg)濃度7×1019/cm3、膜厚2
0nmのマグネシウム(Mg)ドープGa0.99In0.01N層を挿入し
たものである。
A well layer made of Ga 0.98 In 0.02 N having a thickness of about 3 nm and a well layer having a thickness of about
An active layer 206 having a multiple quantum well structure (MQW) in which barrier layers made of Al 0.05 Ga 0.95 N of 5 nm are alternately stacked is formed. There are four well layers and three barrier layers. On the active layer 206 having a multiple quantum well structure (MQW), a total film thickness of about 120
A p guide layer 207 having a multilayer structure of nm is formed. p
The guide layer 207 has a magnesium (Mg) concentration of 7 × 10 19 / c
m 3, while the thickness 50nm of magnesium (Mg) doped Al 0.1 Ga 0. 9 N layer two layers, magnesium (Mg) concentration of 7 × 10 19 / cm 3, thickness 2
This is one in which a 0 nm magnesium (Mg) -doped Ga 0.99 In 0.01 N layer is inserted.

【0032】多層構造から成るpガイド層207の上に
は、総膜厚約1.4μmの多層構造から成るpクラッド層2
08が形成されている。pクラッド層208は、マグネ
シウム(Mg)濃度7×1019/cm3、膜厚50nmのマグネシウム
(Mg)ドープAl0.2Ga0.8N層を20層、マグネシウム(Mg)濃
度7×1019/cm3、膜厚20nmのマグネシウム(Mg)ドープGa0
.99In0.01N層を19層、交互に積層したものである。多層
構造から成るpクラッド層208の上には、膜厚200n
m、マグネシウム(Mg)濃度1×1020/cm3、マグネシウム(M
g)ドープGaNから成るpコンタクト層209が形成され
ている。そして、pコンタクト層209上にNi電極21
0Aが形成されている。又、n層3上にはAlから成る電
極210Bが形成されている。
On the p-guide layer 207 having a multilayer structure, a p-cladding layer 2 having a multilayer thickness of about 1.4 μm is formed.
08 is formed. The p-cladding layer 208 has a magnesium (Mg) concentration of 7 × 10 19 / cm 3 and a thickness of 50 nm.
(Mg) Doped Al 0.2 Ga 0.8 N layer 20 layers, magnesium (Mg) concentration 7 × 10 19 / cm 3 , 20 nm thick magnesium (Mg) doped Ga 0
It consists of 19 layers of .99 In 0.01 N layers alternately stacked. On the p-cladding layer 208 having a multilayer structure,
m, magnesium (Mg) concentration 1 × 10 20 / cm 3 , magnesium (M
g) A p-contact layer 209 made of doped GaN is formed. Then, the Ni electrode 21 is formed on the p-contact layer 209.
0A is formed. On the n layer 3, an electrode 210B made of Al is formed.

【0033】次に、この構造の発光素子(半導体レー
ザ)の製造方法について説明する。上記発光素子200
は、有機金属化合物気相成長法(以下「MOVPE」と示
す)による気相成長により製造された。
Next, a method of manufacturing a light emitting device (semiconductor laser) having this structure will be described. Light emitting element 200
Was produced by vapor phase epitaxy by metalorganic compound vapor phase epitaxy (hereinafter referred to as “MOVPE”).

【0034】まず、有機洗浄及び熱処理により洗浄した
a面を主面とし、単結晶のサファイア基板201をMOVP
E装置の反応室に載置されたサセプタに装着する。次
に、常圧でH2を流速10L/minで約30分反応室に流しなが
ら温度1100℃でサファイア基板201をベーキングし
た。
First, a single crystal sapphire substrate 201 was MOVP
E Attach to a susceptor placed in the reaction chamber of the device. Next, the sapphire substrate 201 was baked at a temperature of 1100 ° C. while flowing H 2 at normal pressure at a flow rate of 10 L / min for about 30 minutes.

【0035】次に、温度を400℃まで低下させて、H2を1
0L/min、NH3を10L/min、TMAを20μmol/minで約90秒間供
給してAlNのバッファ層202を約50nmの厚さに形成し
た。次に、サファイア基板201の温度を1150℃に保持
し、H2を10L/min、NH3を10L/min、TMGを200μmol/min、
H2ガスにて0.86ppmに希釈されたシラン(SiH4)を20nmol/
minで導入し、膜厚約4.0μm、シリコン(Si)濃度5×1018
/cm3、シリコン(Si)ドープGaNからなるn層203を形
成した。
Next, by lowering the temperature to 400 ° C., the H 2 1
By supplying 0 L / min, NH 3 at 10 L / min, and TMA at 20 μmol / min for about 90 seconds, the AlN buffer layer 202 was formed to a thickness of about 50 nm. Next, the temperature of the sapphire substrate 201 was maintained at 1150 ° C., H 2 was 10 L / min, NH 3 was 10 L / min, TMG was 200 μmol / min,
20 nmol / silane (SiH 4 ) diluted to 0.86 ppm with H 2 gas
min, film thickness about 4.0μm, silicon (Si) concentration 5 × 10 18
An n-layer 203 of / cm 3 and silicon (Si) -doped GaN was formed.

【0036】上記のn層203を形成した後、N2又は
H2、NH3、TMA、TMG及びシラン(SiH4)を供給して、膜厚
約50nmのAl0.2Ga0.8Nから成る層を形成した。次に、N2
又はH2、NH3、TMG、TMI及びシラン(SiH4)を供給して、
膜厚約20nmのGa0.99In0.01Nから成る層を形成した。こ
れを同一条件で各々20層及び19層積層し、総膜厚約1.4
μmの多層構造のnクラッド層204を形成した。
After forming the above-mentioned n layer 203, N 2 or
H 2 , NH 3 , TMA, TMG and silane (SiH 4 ) were supplied to form an Al 0.2 Ga 0.8 N layer having a thickness of about 50 nm. Then N 2
Or supplying H 2 , NH 3 , TMG, TMI and silane (SiH 4 )
A layer made of Ga 0.99 In 0.01 N having a thickness of about 20 nm was formed. 20 layers and 19 layers were laminated under the same conditions, and the total film thickness was about 1.4.
An n-cladding layer 204 having a multilayer structure of μm was formed.

【0037】次にN2又はH2、NH3、TMA、TMG及びシラン
(SiH4)を供給して、膜厚約50nmのAl0 .1Ga0.9Nから成る
層を形成した。次に、N2又はH2、NH3、TMG、TMI及びシ
ラン(SiH4)を供給して、膜厚約20nmのGa0.99In0.01Nか
ら成る層を形成した。更に膜厚約50nmのAl0.1Ga0.9Nか
ら成る層を形成し、総膜厚約120nmの多層構造のnガイ
ド層205を形成した。
Next, N 2 or H 2 , NH 3 , TMA, TMG and silane
(SiH 4) by supplying, to form a layer consisting of a film thickness of about 50nm Al 0 .1 Ga 0.9 N. Next, N 2 or H 2 , NH 3 , TMG, TMI and silane (SiH 4 ) were supplied to form a Ga 0.99 In 0.01 N layer having a thickness of about 20 nm. Further, a layer made of Al 0.1 Ga 0.9 N having a thickness of about 50 nm was formed, and an n-guide layer 205 having a multilayer structure with a total thickness of about 120 nm was formed.

【0038】次に、N2又はH2、NH3、TMG、TMIを供給し
て、膜厚約3nmのGa0.98In0.02Nから成る井戸層を形成し
た。次に、N2又はH2、NH3、TMG、TMAを供給して、膜厚
約5nmのAl0.05Ga0.95Nから成るバリア層を形成した。さ
らに、井戸層とバリア層とを同一条件で形成し、最後に
膜厚約3nmのGa0.98In0.02Nから成る井戸層を形成した。
このようにして、井戸層4層、バリア層3層から成るMQ
W構造の活性層206を形成した。
Next, N 2 or H 2 , NH 3 , TMG, and TMI were supplied to form a well layer of Ga 0.98 In 0.02 N having a thickness of about 3 nm. Next, N 2 or H 2 , NH 3 , TMG, and TMA were supplied to form a barrier layer made of Al 0.05 Ga 0.95 N with a thickness of about 5 nm. Further, a well layer and a barrier layer were formed under the same conditions, and finally a well layer of Ga 0.98 In 0.02 N having a thickness of about 3 nm was formed.
In this way, the MQ composed of four well layers and three barrier layers
An active layer 206 having a W structure was formed.

【0039】次にN2又はH2、NH3、TMA、TMG及びCP2Mgを
供給して、膜厚約50nmのAl0.1Ga0.9Nから成る層を形成
した。次に、N2又はH2、NH3、TMG、TMI及びCP2Mgを供給
して、膜厚約20nmのGa0.99In0.01Nから成る層を形成し
た。更に膜厚約50nmのAl0.1Ga 0.9Nから成る層を形成
し、総膜厚約120nmの多層構造のpガイド層207を形
成した。次に、N2又はH2、NH3、TMA、TMG及びCP2Mgを供
給して、膜厚約50nmのAl0. 2Ga0.8Nから成る層を形成し
た。次に、N2又はH2、NH3、TMG、TMI及びCP2Mgを供給し
て、膜厚約20nmのGa0.99In0.01Nから成る層を形成し
た。これを同一条件で各々20層及び19層積層し、総膜厚
約1.4μmの多層構造のpクラッド層208を形成した。
Next, NTwoOr HTwo, NHThree, TMA, TMG and CPTwoMg
Supply Al with a film thickness of about 50 nm0.1Ga0.9Form a layer consisting of N
did. Then NTwoOr HTwo, NHThree, TMG, TMI and CPTwoSupply Mg
And a Ga film with a thickness of about 20 nm0.99In0.01Form a layer of N
Was. Al with a thickness of about 50 nm0.1Ga 0.9Form a layer consisting of N
To form a multi-layered p-guide layer 207 having a total thickness of about 120 nm.
Done. Then NTwoOr HTwo, NHThree, TMA, TMG and CPTwoProvide Mg
Al with a thickness of about 50 nm0. TwoGa0.8Form a layer of N
Was. Then NTwoOr HTwo, NHThree, TMG, TMI and CPTwoSupply Mg
About 20nm thick Ga0.99In0.01Form a layer of N
Was. 20 layers and 19 layers are laminated under the same conditions, and the total film thickness is
A p-cladding layer 208 having a multilayer structure of about 1.4 μm was formed.

【0040】次に、温度を1100℃に保持し、N2又はH2
10L/min、NH3を10L/min、TMGを50μmol/min、Cp2Mgを0.
15μmol/minで導入して、マグネシウム(Mg)がドーピン
グされた、膜厚約200nmのマグネシウム(Mg)ドープのGaN
からなるpコンタクト層209を形成した。
Next, the temperature was maintained at 1100 ° C. and N 2 or H 2 was added.
10 L / min, NH 3 10 L / min, TMG 50 μmol / min, Cp 2 Mg 0.
Introduced at 15 μmol / min, magnesium (Mg) doped, magnesium (Mg) doped GaN with a thickness of about 200 nm
Was formed.

【0041】次に、電子線照射装置を用いて、pコンタ
クト層209、pクラッド層208及びpガイド層20
7に一様に電子線を照射し、低抵抗の多層構造のウエハ
を形成することができた。
Next, the p-contact layer 209, the p-cladding layer 208 and the p-guide layer 20 are
7 was uniformly irradiated with an electron beam, and a low-resistance multi-layer wafer could be formed.

【0042】次に、スパッタリングによりSiO2層を形成
し、そのSiO2上にフォトレジストを塗布し、フォトリソ
グラフを行った。次にn層203に対する電極形成部位
フォトレジストを除去し、フォトレジストによって覆わ
れていないSiO2層をフッ化水素酸系エッチング液で除去
した。
Next, by sputtering to form an SiO 2 layer, a photoresist is applied thereon SiO 2, it was carried out photolithography. Next, the photoresist on the electrode formation site for the n-layer 203 was removed, and the SiO 2 layer not covered with the photoresist was removed with a hydrofluoric acid-based etchant.

【0043】次に、フォトレジスト及びSiO2層によって
覆われていない部位のpコンタクト層209、pクラッ
ド層208、pガイド層207、活性層206、nガイ
ド層205、nクラッド層204及びn層203の一部
を真空度0.04Torr、高周波電力0.44W/cm2、Cl2ガスを10
ml/minの割合で供給しドライエッチングし、その後Arで
ドライエッチングした。この工程で、n層203に対す
る電極取り出しのための領域が形成された。
Next, the p-contact layer 209, the p-cladding layer 208, the p-guide layer 207, the active layer 206, the n-guide layer 205, the n-cladding layer 204, and the n-layer which are not covered by the photoresist and the SiO 2 layer. Part of 203 was vacuum 0.04 Torr, high frequency power 0.44 W / cm 2 , Cl 2 gas was 10
Dry etching was performed by supplying at a rate of ml / min, and then dry etching was performed with Ar. In this step, a region for extracting an electrode from the n-layer 203 was formed.

【0044】次に、ニッケル(Ni)を蒸着してpコンタク
ト層209の上に電極210Aを形成した。一方、n層
203に対しては、アルミニウム(Al)を蒸着して電極2
10Bを形成した。
Next, an electrode 210 A was formed on the p-contact layer 209 by depositing nickel (Ni). On the other hand, aluminum (Al) is deposited on the
10B was formed.

【0045】次に、共振器端面を形成するためドライエ
ッチングを行った。その後、スクライビングしてクライ
ブ溝を形成し、共振器の端面に平行なx軸方向にダイシ
ンクして、短冊片を得た。このようにして得たレーザダ
イオード200は、駆動電流は50mAにて発光出力10m
W,発振ピーク波長410nmであった。このレーザダイオ
ード200は、クラックの発生が抑えられ、従来のクラ
ッド層及びガイド層が単層のレーザに比較し、高出力の
レーザダイオードが得られた。
Next, dry etching was performed to form an end face of the resonator. Thereafter, scribe grooves were formed by scribing, and die-sinking was performed in the x-axis direction parallel to the end face of the resonator to obtain strips. The laser diode 200 thus obtained has a driving current of 50 mA and an emission output of 10 m.
W, the oscillation peak wavelength was 410 nm. In the laser diode 200, generation of cracks was suppressed, and a higher-output laser diode was obtained as compared with a conventional single-layer laser having a clad layer and a guide layer.

【0046】上記実施例では有機金属気相成長法(MOCV
D)により発光素子を製造したが、半導体層を形成する
方法としては、分子線気相成長法(MBE)、ハライド気
相成長法(Halide VPE)等を用いても良い。
In the above embodiment, the metal organic chemical vapor deposition (MOCV
Although the light emitting element was manufactured by D), as a method of forming the semiconductor layer, a molecular beam vapor deposition (MBE), a halide vapor deposition (Halide VPE), or the like may be used.

【0047】上記実施例では発光層がMQWのレーザダ
イオードを一例としてあげたが、発光素子の構造はこれ
に限定されない。発光素子の構造としては、ホモ構造、
ヘテロ構造、ダブルヘテロ構造のものが考えられる。こ
れらは、pin接合或いはpn接合等により形成するこ
ともできる。発光層の構造としては、単一量子井戸構造
(SQW)のものであっても良い。
In the above embodiment, a laser diode having a light emitting layer of MQW is taken as an example, but the structure of the light emitting element is not limited to this. As the structure of the light emitting element, a homo structure,
Heterostructures and double heterostructures are conceivable. These can be formed by a pin junction, a pn junction, or the like. The light emitting layer may have a single quantum well structure (SQW).

【0048】III族窒化物系化合物半導体を形成させる
基板としては、サファイアの他、シリコン(Si)、炭化ケ
イ素(SiC)、スピネル(MgAl2O4)、ZnO、MgO、あるいは窒
化ガリウム(GaN)その他のIII族窒化物系化合物半導体等
を用いることができる。サファイア基板上にIII族窒化
物系化合物半導体を結晶性良く形成させるため、サファ
イア基板との格子不整合を是正すべくバッファ層を形成
したが、他の基板を使用する場合もバッファ層を設ける
ことことが望ましい。バッファ層としては、低温で形成
させたIII族窒化物系化合物半導体AlxGayIn1-x-yN(0≦
x≦1, 0≦y≦1,0≦x+y≦1)、より好ましくはAlxGa1-xN
(0≦x≦1)が用いられる。
As a substrate on which a group III nitride compound semiconductor is formed, in addition to sapphire, silicon (Si), silicon carbide (SiC), spinel (MgAl 2 O 4 ), ZnO, MgO, or gallium nitride (GaN) Other group III nitride compound semiconductors and the like can be used. A buffer layer was formed to correct the lattice mismatch with the sapphire substrate in order to form a group III nitride compound semiconductor with good crystallinity on the sapphire substrate.However, if another substrate is used, a buffer layer must be provided. It is desirable. As the buffer layer, a group III nitride-based compound semiconductor Al x Ga y In 1-xy N (0 ≦
x ≦ 1, 0 ≦ y ≦ 1,0 ≦ x + y ≦ 1), more preferably Al x Ga 1-x N
(0 ≦ x ≦ 1) is used.

【0049】III族窒化物系化合物半導体のIII族元素の
組成の一部は、ボロン(B)、タリウム(Tl)で置き換えて
も、また、窒素(N)の組成一部をリン(P)、ヒ素(As)、ア
ンチモン(Sb)、ビスマス(Bi)で置き換えても本発明を実
質的に適用できる。なお、発光素子として構成する場合
は、本来III族窒化物系化合物半導体の2元系、若しく
は3元系を用いることが望ましい。
Part of the composition of the group III element of the group III nitride compound semiconductor can be replaced by boron (B) or thallium (Tl), and part of the composition of nitrogen (N) can be replaced by phosphorus (P). The present invention can be substantially applied even if it is replaced with arsenic (As), antimony (Sb) or bismuth (Bi). When a light-emitting element is used, it is preferable to use a binary or ternary group III nitride-based compound semiconductor.

【0050】上記実施例において、クラッド層104若
しくは106又は204又若しくは208、ガイド層2
05若しくは207の多層構造の各単位層、MQW構造
の発光層の井戸層及び障壁層におけるIII族窒化物系化
合物半導体の組成比は各々が一例であって、任意の一般
式AlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)を
用いても良い。その場合は各層においてアルミニウム組
成x、ガリウム組成y、インジウム組成1-x-yが異なって
も良い。
In the above embodiment, the cladding layer 104 or 106 or 204 or 208, the guide layer 2
The composition ratio of the group III nitride-based compound semiconductor in each unit layer of the multilayer structure of No. 05 or 207, the well layer and the barrier layer of the light emitting layer of the MQW structure is an example, and any general formula of Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) may be used. In that case, the aluminum composition x, the gallium composition y, and the indium composition 1-xy may be different in each layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の具体的な一実施例にかかる発光ダイ
オード100の構造を示す断面図。
FIG. 1 is a cross-sectional view illustrating a structure of a light emitting diode 100 according to a specific embodiment of the present invention.

【図2】 本発明の具体的な一実施例にかかるレーザダ
イオード200の構造を示す断面図。
FIG. 2 is a cross-sectional view showing a structure of a laser diode 200 according to a specific example of the present invention.

【図3】 従来の発光ダイオード900の構造を示す断
面図。
FIG. 3 is a cross-sectional view illustrating a structure of a conventional light emitting diode 900.

【符号の説明】[Explanation of symbols]

100 発光ダイオード 101、201 サファイア基板 102、202 バッファ層 103、203 n層 104、204 多重構造nクラッド層 105、206 MQW構造の発光層 106、208 多層構造pクラッド層 107、209 pコンタクト層 108A、108B、210A、210B 金属電極 200 レーザダイオード 205 多層構造nガイド層 207 多層構造pガイド層 REFERENCE SIGNS LIST 100 light emitting diode 101, 201 sapphire substrate 102, 202 buffer layer 103, 203 n layer 104, 204 multi-layer n cladding layer 105, 206 MQW structure light emitting layer 106, 208 multilayer structure p cladding layer 107, 209 p contact layer 108 A 108B, 210A, 210B Metal electrode 200 Laser diode 205 Multi-layered n guide layer 207 Multi-layered p guide layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA40 CA05 CA34 CA40 CA46 CA49 CA57 CA65 CA74 CA83 5F073 AA74 CA07 CB05 CB07 DA05 DA24 DA31 EA07 EA24 EA29 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F041 AA40 CA05 CA34 CA40 CA46 CA49 CA57 CA65 CA74 CA83 5F073 AA74 CA07 CB05 CB07 DA05 DA24 DA31 EA07 EA24 EA29

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 III族窒化物系化合物半導体素子におい
て、 AlxGa1-xN(0<x<1)と、GayIn1-yN(0<y<1)とを各
々3層以上有することを特徴とするIII族窒化物系化合
物半導体素子。
1. A group III nitride compound semiconductor device comprising three layers of Al x Ga 1-x N (0 <x <1) and Ga y In 1-y N (0 <y <1). A group III nitride compound semiconductor device having the above.
【請求項2】 前記GayIn1-yN(0<y<1)から成る層の
厚さは15nm以上30nm以下であることを特徴とする請求項
1に記載のIII族窒化物系化合物半導体素子。
2. The group III nitride compound according to claim 1, wherein the thickness of the layer made of Ga y In 1-y N (0 <y <1) is 15 nm or more and 30 nm or less. Semiconductor element.
【請求項3】 請求項1又は請求項2に記載のIII族窒
化物系化合物半導体素子を発光素子としたことを特徴と
するIII族窒化物系化合物半導体発光素子。
3. A group III nitride compound semiconductor light emitting device, wherein the group III nitride compound semiconductor device according to claim 1 is a light emitting device.
JP34644599A 1999-12-06 1999-12-06 Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element Withdrawn JP2001168385A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP34644599A JP2001168385A (en) 1999-12-06 1999-12-06 Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element
US09/730,005 US6541798B2 (en) 1999-12-06 2000-12-06 Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device
US10/252,723 US6617061B2 (en) 1999-12-06 2002-09-24 Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34644599A JP2001168385A (en) 1999-12-06 1999-12-06 Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JP2001168385A true JP2001168385A (en) 2001-06-22
JP2001168385A5 JP2001168385A5 (en) 2006-11-02

Family

ID=18383485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34644599A Withdrawn JP2001168385A (en) 1999-12-06 1999-12-06 Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element

Country Status (2)

Country Link
US (2) US6541798B2 (en)
JP (1) JP2001168385A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268581A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Gallium nitride family compound semiconductor light emitting device
JP2006332365A (en) * 2005-05-26 2006-12-07 Toyoda Gosei Co Ltd Group iii nitride based compound semiconductor light emitting element and light emitting device using the same
JP2008311640A (en) * 2007-05-16 2008-12-25 Rohm Co Ltd Semiconductor laser diode
JP2009239083A (en) * 2008-03-27 2009-10-15 Rohm Co Ltd Semiconductor light-emitting element
JP2009239084A (en) * 2008-03-27 2009-10-15 Rohm Co Ltd Semiconductor laser element
US7968360B2 (en) 2007-06-18 2011-06-28 Sharp Kabushiki Kaisha Method of producing nitride semiconductor light-emitting device using a surfactant material
US9838780B2 (en) 2007-01-05 2017-12-05 Apple Inc. Audio I O headset plug and plug detection circuitry

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168385A (en) * 1999-12-06 2001-06-22 Toyoda Gosei Co Ltd Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element
KR100425341B1 (en) * 2000-02-08 2004-03-31 삼성전기주식회사 Nitride semiconductor light emitting device
JP2002026386A (en) * 2000-07-10 2002-01-25 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
MY141883A (en) * 2001-06-06 2010-07-16 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
JP3866540B2 (en) * 2001-07-06 2007-01-10 株式会社東芝 Nitride semiconductor device and manufacturing method thereof
JP4383172B2 (en) 2001-10-26 2009-12-16 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン Light emitting device structure using nitride bulk single crystal layer and manufacturing method thereof
US20060138431A1 (en) * 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
PL225427B1 (en) * 2002-05-17 2017-04-28 Ammono Spółka Z Ograniczoną Odpowiedzialnością Light emitting element structure having nitride bulk single crystal layer
US7811380B2 (en) * 2002-12-11 2010-10-12 Ammono Sp. Z O.O. Process for obtaining bulk mono-crystalline gallium-containing nitride
JP4860927B2 (en) 2002-12-11 2012-01-25 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン Epitaxy substrate and manufacturing method thereof
KR20050035325A (en) * 2003-10-10 2005-04-18 삼성전기주식회사 Nitride semiconductor light emitting device and method of manufacturing the same
KR100848380B1 (en) * 2004-06-11 2008-07-25 암모노 에스피. 제트오. 오. Bulk mono-crystalline gallium-containing nitride and its application
PL371405A1 (en) * 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Method for manufacture of volumetric monocrystals by their growth on crystal nucleus
DE102006061167A1 (en) * 2006-04-25 2007-12-20 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
EP1883140B1 (en) * 2006-07-27 2013-02-27 OSRAM Opto Semiconductors GmbH LD or LED with superlattice clad layer and graded doping
EP1883119B1 (en) * 2006-07-27 2015-11-04 OSRAM Opto Semiconductors GmbH Semiconductor layer structure with overlay grid
EP1883141B1 (en) * 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD or LED with superlattice cladding layer
US20090173956A1 (en) * 2007-12-14 2009-07-09 Philips Lumileds Lighting Company, Llc Contact for a semiconductor light emitting device
US20090238227A1 (en) * 2008-03-05 2009-09-24 Rohm Co., Ltd. Semiconductor light emitting device
US9142714B2 (en) * 2008-10-09 2015-09-22 Nitek, Inc. High power ultraviolet light emitting diode with superlattice
KR101007087B1 (en) 2009-10-26 2011-01-10 엘지이노텍 주식회사 Light emitting device and fabrication method thereof
KR20140010587A (en) * 2012-07-13 2014-01-27 삼성전자주식회사 Semiconductor light emitting device with doped buffer layer and manufacturing method of the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838029A (en) * 1994-08-22 1998-11-17 Rohm Co., Ltd. GaN-type light emitting device formed on a silicon substrate
JP3538275B2 (en) 1995-02-23 2004-06-14 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP3500762B2 (en) * 1995-03-17 2004-02-23 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
DE69637304T2 (en) * 1995-03-17 2008-08-07 Toyoda Gosei Co., Ltd. A semiconductor light-emitting device consisting of a III-V nitride compound
JPH0936423A (en) * 1995-07-24 1997-02-07 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
JP3557742B2 (en) * 1995-07-24 2004-08-25 豊田合成株式会社 Group III nitride semiconductor light emitting device
JPH09232629A (en) 1996-02-26 1997-09-05 Toshiba Corp Semiconductor element
JP3374737B2 (en) 1997-01-09 2003-02-10 日亜化学工業株式会社 Nitride semiconductor device
JP3620292B2 (en) 1997-09-01 2005-02-16 日亜化学工業株式会社 Nitride semiconductor device
JP3448196B2 (en) 1997-07-25 2003-09-16 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP3275810B2 (en) 1997-11-18 2002-04-22 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP3744211B2 (en) * 1997-09-01 2006-02-08 日亜化学工業株式会社 Nitride semiconductor device
JP2001168385A (en) * 1999-12-06 2001-06-22 Toyoda Gosei Co Ltd Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268581A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Gallium nitride family compound semiconductor light emitting device
US8076679B2 (en) 2004-03-19 2011-12-13 Panasonic Corporation Nitride-based semiconductor light-emitting diode and illuminating device
JP2006332365A (en) * 2005-05-26 2006-12-07 Toyoda Gosei Co Ltd Group iii nitride based compound semiconductor light emitting element and light emitting device using the same
US9838780B2 (en) 2007-01-05 2017-12-05 Apple Inc. Audio I O headset plug and plug detection circuitry
JP2008311640A (en) * 2007-05-16 2008-12-25 Rohm Co Ltd Semiconductor laser diode
US7968360B2 (en) 2007-06-18 2011-06-28 Sharp Kabushiki Kaisha Method of producing nitride semiconductor light-emitting device using a surfactant material
JP2009239083A (en) * 2008-03-27 2009-10-15 Rohm Co Ltd Semiconductor light-emitting element
JP2009239084A (en) * 2008-03-27 2009-10-15 Rohm Co Ltd Semiconductor laser element

Also Published As

Publication number Publication date
US20030022028A1 (en) 2003-01-30
US20010028063A1 (en) 2001-10-11
US6541798B2 (en) 2003-04-01
US6617061B2 (en) 2003-09-09

Similar Documents

Publication Publication Date Title
JP2001168385A (en) Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element
US6861663B2 (en) Group III nitride compound semiconductor light-emitting device
JP2008306062A (en) Semiconductor light-emitting element and its fabrication process
JP2006108585A (en) Group iii nitride compound semiconductor light emitting element
JP2006332205A (en) Nitride semiconductor light emitting element
US6631149B1 (en) Laser diode using group III nitride group compound semiconductor
JPH09293897A (en) Semiconductor element and manufacture thereof
JP2011151074A (en) Method for manufacturing nitride semiconductor device
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JPH10229217A (en) Semiconductor light emitting element
JP2009117641A (en) Semiconductor light-emitting element
JP2009071174A (en) Semiconductor light-emitting device
JP4261592B2 (en) Nitride semiconductor light emitting device
JP2008288532A (en) Nitride semiconductor device
JP4034015B2 (en) Group III nitride compound semiconductor light emitting device
JP3589000B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4523097B2 (en) Group III nitride compound semiconductor laser diode
JP2009027022A (en) Nitride semiconductor light-emitting element
JP2803791B2 (en) Method for manufacturing semiconductor device
JP2009043832A (en) Semiconductor light emitting element
JP2008118048A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same
JP3620923B2 (en) Group 3 nitride semiconductor light emitting device
JP3543628B2 (en) Method for growing nitride III-V compound semiconductor and method for manufacturing semiconductor light emitting device
JP2001168472A (en) Iii nitride compound semiconductor light-emitting element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080326