JP2001167873A - Anode for heating shift type plasma - Google Patents

Anode for heating shift type plasma

Info

Publication number
JP2001167873A
JP2001167873A JP35377399A JP35377399A JP2001167873A JP 2001167873 A JP2001167873 A JP 2001167873A JP 35377399 A JP35377399 A JP 35377399A JP 35377399 A JP35377399 A JP 35377399A JP 2001167873 A JP2001167873 A JP 2001167873A
Authority
JP
Japan
Prior art keywords
anode
tip
transfer
type plasma
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35377399A
Other languages
Japanese (ja)
Other versions
JP3595475B2 (en
Inventor
Takeshi Kawachi
毅 河内
Kazuto Yamamura
和人 山村
Hiroyuki Mitake
裕幸 三武
Junichi Kinoshita
潤一 木下
Katsuhiro Imanaga
克洋 今永
Masahiro Toki
正弘 土岐
Yoshiaki Kimura
欣晃 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35377399A priority Critical patent/JP3595475B2/en
Priority to TW089126456A priority patent/TW469757B/en
Priority to CA002362657A priority patent/CA2362657C/en
Priority to AU18886/01A priority patent/AU762693B2/en
Priority to EP00981694A priority patent/EP1154678A4/en
Priority to PCT/JP2000/008828 priority patent/WO2001043511A1/en
Priority to BRPI0008795-5B1A priority patent/BR0008795B1/en
Priority to US09/913,342 priority patent/US6649860B2/en
Priority to KR10-2001-7010216A priority patent/KR100480964B1/en
Publication of JP2001167873A publication Critical patent/JP2001167873A/en
Application granted granted Critical
Publication of JP3595475B2 publication Critical patent/JP3595475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Discharge Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anode for heating a shift type plasma with a means of retarding the melt loss rate of a leading end to prolong the lifetime. SOLUTION: In a shift type plasma torch in which direct current is energized to heat melted metal in a container, and Ar plasma is generated while heating the melted metal, the shift type plasma torch comprises an electrode made of conductor metal having inner water cooling structure, a metallic protection body having inner water cooling structure provided at a distance from outside of the anode, and a means for supplying as containing Ar to gaps between the anode and the protection body, wherein a protrusion is provided at a central portion at the end of the cooling structure of the anode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は移行型プラズマ用陽
極の改良に係り、特にタンディッシュ内溶鋼加熱用とし
て適用するのが好適な移行型プラズマ加熱用陽極に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an anode for a transition type plasma, and more particularly to an anode for a transition type plasma heating which is suitably applied for heating molten steel in a tundish.

【0002】[0002]

【従来の技術】タンディッシュ内溶鋼を加熱するための
直流電流ツイントーチ型プラズマ加熱装置の概要は図1
の様になっている。タンディッシュカバー2にはそれぞ
れ陽極3と陰極4である2本のプラズマトーチが挿入さ
れており、それぞれのトーチ3,4と溶鋼5との間にプ
ラズマアーク6を発生させ、溶鋼を加熱するものであ
る。このとき電子の流れ7は、陰極4から溶鋼5を通り
陽極3に向かう。
2. Description of the Related Art The outline of a DC twin-torch type plasma heating apparatus for heating molten steel in a tundish is shown in FIG.
It is like. Two plasma torches, ie, an anode 3 and a cathode 4, are inserted into the tundish cover 2, and a plasma arc 6 is generated between each of the torches 3, 4 and the molten steel 5 to heat the molten steel. It is. At this time, the electron flow 7 travels from the cathode 4 to the anode 3 through the molten steel 5.

【0003】上記陽極プラズマトーチの1例を図2に示
す。同図は上記陽極トーチの先端部断面を示す。陽極3
の材質として、例えば無酸素銅が用いられる。上記陽極
トーチは外側を覆うステンレス又は銅製の外筒ノズル8
と、内側の銅製の陽極本体3からなる。陽極3の先端部
は平らな円盤状であり、陽極3及びノズル8はいずれも
冷却構造となっており、冷却水入側と出側水路はそれぞ
れ円筒形の仕切版9,11で仕切られている(図中、1
0及び12は冷却水の流れを示す)。また、ノズル8と
陽極3の間は隙間13があり、その隙間13からプラズ
マガスを吹き出す構造となっている。
FIG. 2 shows an example of the anode plasma torch. The figure shows a cross section of the tip of the anode torch. Anode 3
For example, oxygen-free copper is used as the material of the first substrate. The anode torch is a stainless steel or copper outer cylinder nozzle 8 that covers the outside.
And an inner copper anode body 3. The tip of the anode 3 has a flat disk shape, the anode 3 and the nozzle 8 both have a cooling structure, and the cooling water inlet and outlet water channels are separated by cylindrical partition plates 9 and 11, respectively. (In the figure, 1
0 and 12 indicate the flow of cooling water). Further, there is a gap 13 between the nozzle 8 and the anode 3, and the structure is such that plasma gas is blown out from the gap 13.

【0004】[0004]

【本発明が解決しようとする課題】上記直流電流陽極プ
ラズマトーチの問題点の1つに、陽極先端が損傷し寿命
が短いということがある。陽極はプラズマ加熱稼働時に
おいては、電子の受け手となるために電子が陽極先端外
表面に衝突し、先端外表面にかかる熱負荷が大きい。陽
極先端にかかる熱負荷は数十MW/m2と非常に大き
く、陽極先端冷却側の熱伝達形態は強制対流核沸騰熱伝
達にあると考えられる。強制対流核沸騰熱伝達の場合、
その熱伝達率は105[W/m2K]のオーダーと強制対
流伝熱の熱伝達率の10倍程度大きいが、陽極先端外表
面にかかる熱負荷が大きくなりすぎると冷却側伝熱面の
温度は上昇し伝熱形態が膜沸騰伝熱へと移行するバーン
アウトが生じる。膜沸騰伝熱へと移行する際に、伝熱面
における熱伝達率は急激に低下し更に伝熱面の温度は上
昇してしまい、最終的に陽極先端温度が融点を超え溶損
してしまう危険性がある。
One of the problems with the direct current anode plasma torch is that the anode tip is damaged and the life is short. At the time of plasma heating operation, the anode serves as a recipient of electrons, so that the electrons collide with the outer surface of the tip of the anode, and a large heat load is applied to the outer surface of the tip. The heat load applied to the anode tip is as large as several tens of MW / m 2, and the heat transfer form on the anode tip cooling side is considered to be forced convection nucleate boiling heat transfer. In the case of forced convection nucleate boiling heat transfer,
The heat transfer coefficient is of the order of 10 5 [W / m 2 K], which is about 10 times larger than the heat transfer coefficient of forced convection heat transfer. Temperature rises, and a burnout occurs in which the heat transfer mode shifts to film boiling heat transfer. When transitioning to film boiling heat transfer, the heat transfer coefficient on the heat transfer surface drops sharply and the temperature on the heat transfer surface rises, eventually causing the anode tip temperature to exceed the melting point and cause erosion. There is.

【0005】図2で示される、従来陽極冷却水路構造の
場合のバーンアウトを引き起こす熱負荷値−バーンアウ
ト限界熱流束−を図21に示す。図21に示すグラフ
は、前記陽極3の先端冷却側が最大半径Rcool=2
2mmである陽極の先端冷却側における半径を横軸にと
り、バーンアウト限界熱流束を縦軸にとったものであ
る。なお、バーンアウト限界熱流束の見積りには、Ze
nkevichの式(Zenkevich et al, J. Nuclear En
ergy, Part B, 1-2, 137, 1959)を用い、バーンアウト
限界熱流束wBO[W/m2]は(1)式で表される。 ここで、(1)式中のL,σ,G,ν,i及びicool
冷却水の物理量であり、それぞれ、蒸発熱[J/k
g]、表面張力[N/m]、重量速度[kg/m
2s]、動粘性係数[m2/s]、エンタルピー[J/k
g]及び主流のエンタルピー[J/kg]を表す。図2
1のグラフより、中心付近のバーンアウト限界熱流束が
低いことがわかる。これは、陽極3を流れる冷却水の流
速による起因が大きく、陽極中心上側から流れ込む冷却
水は陽極先端に衝突し流速が低下するのでバーンアウト
限界熱流束も低下する。陽極先端外表面にかかる熱負荷
がバーンアウト限界熱流束を超えると、陽極先端冷却側
においてバーンアウトが生じ伝熱面温度が上昇し溶損に
至ると考えられ、バーンアウト限界熱流束が低い陽極先
端中心部は溶損しやすい。また、陽極先端中心部のバー
ンアウト限界熱流束は低いが、移行型プラズマ加熱の場
合、陽極先端外表面中心部には熱が集中しやすい性質が
ある。また、陽極表面に一旦電流の集中ヶ所(アノード
スポット)が形成されると、そのアノードスポットに更
に電流が集中する性質がある。つまり、陽極先端外表面
において、溶解によって損傷し始めると更に損傷が促進
し、最終的に冷却水側まで溶損し寿命に至る。
FIG. 2 shows a heat load value causing a burnout—a burnout limit heat flux—in the case of the conventional anode cooling water channel structure shown in FIG. The graph shown in FIG. 21 shows that the cooling end of the anode 3 has a maximum radius Rcool = 2.
The abscissa represents the radius of the anode on the cooling side at the tip end, which is 2 mm, and the ordinate represents the burnout limit heat flux. In addition, the estimation of the burnout limit heat flux
nkevic formula (Zenkevich et al, J. Nuclear En
ergy, Part B, 1-2, 137, 1959), and the burnout limit heat flux w BO [W / m 2 ] is expressed by equation (1). Here, L, σ, G, ν, i, and i cool in the equation (1) are physical quantities of the cooling water, and each is the heat of evaporation [J / k].
g], surface tension [N / m], weight speed [kg / m
2 s], kinematic viscosity coefficient [m 2 / s], enthalpy [J / k
g] and the mainstream enthalpy [J / kg]. FIG.
It can be seen from the graph of FIG. 1 that the burnout limit heat flux near the center is low. This is largely due to the flow rate of the cooling water flowing through the anode 3, and the cooling water flowing from above the center of the anode collides with the tip of the anode and the flow velocity is reduced, so that the burnout limit heat flux is also reduced. If the heat load applied to the outer surface of the anode tip exceeds the burnout limit heat flux, it is considered that burnout occurs on the anode tip cooling side and the temperature of the heat transfer surface rises, leading to erosion. The center of the tip is easily melted. In addition, although the burnout limit heat flux at the center of the anode tip is low, in the case of transitional plasma heating, heat tends to concentrate at the center of the outer surface of the anode tip. Further, once a current concentration point (anode spot) is formed on the anode surface, the current tends to be further concentrated on the anode spot. In other words, if the outer surface of the anode tip starts to be damaged by melting, the damage is further promoted, and finally the molten water is melted down to the cooling water side, leading to a life.

【0006】図3はプラズマにかかるピンチ効果を説明
したものである。ノズルと陽極との隙間13から吹き出
るプラズマに比べて十分温度の低いガスの流れ14によ
り、プラズマ15は中心方向に集中しやすい性質(サー
マルピンチ効果)をもっている。プラズマ中の電流密度
は一般に温度に対する増加関数であり、プラズマ中心部
16の電流密度は全体の平均に比べ大きいと言えるの
で、陽極先端外表面中心部17に入射する電流密度は大
きくなる。従って、陽極先端外表面中心部17は先端外
表面外周部18に比べ損傷の度合いが大きい。また、プ
ラズマ中を流れる電流19が作り出す回転磁場20との
相互作用によりプラズマ中を陽極に向かって運動する電
子21は中心方向に向かう力22を受ける(磁気的ピン
チ効果)。
FIG. 3 illustrates the pinch effect on the plasma. The plasma 15 has a property (thermal pinch effect) that the plasma 15 tends to concentrate toward the center due to the gas flow 14 whose temperature is sufficiently lower than the plasma blown out from the gap 13 between the nozzle and the anode. The current density in the plasma is generally an increasing function with respect to the temperature, and it can be said that the current density in the plasma center portion 16 is larger than the average of the whole, so that the current density incident on the anode tip outer surface center portion 17 becomes larger. Accordingly, the degree of damage of the center portion 17 of the outer surface of the anode tip is greater than that of the outer peripheral portion 18 of the tip outer surface. In addition, electrons 21 moving toward the anode in the plasma receive a force 22 toward the center due to interaction with the rotating magnetic field 20 generated by the current 19 flowing in the plasma (magnetic pinch effect).

【0007】また、図4に示す様に、内部を流れる冷却
水水圧、熱応力やクリープにより陽極先端は外側に凸型
に変形をおこす。この凸型変形は陽極先端外表面中心部
17に突起23を形成することとなり、電場32は前記
突起部23へ集中する。プラズマ中を運動する電子21
は電場32の方向に加速されるので、電流19は突起部
23に集中しやすいことから、更に陽極先端外表面中心
部への電流集中を招くことになる。つまり、陽極先端外
表面中心部17は更に損傷を受けやすくなる。陽極先端
外表面中心部17の損傷が進行すると、最終的に、陽極
先端外表面中心部17において冷却水路25が破れ操業
不能状態に陥る。このように、陽極先端外表面中心部へ
の電流集中により陽極の耐用時間は著しく短縮されてし
まう。
Further, as shown in FIG. 4, the tip of the anode is deformed outwardly convexly due to the pressure of cooling water flowing inside, thermal stress and creep. This convex deformation results in the formation of a projection 23 at the center 17 of the outer surface of the anode tip, and the electric field 32 concentrates on the projection 23. Electrons 21 moving in plasma
Since the current 19 is accelerated in the direction of the electric field 32, the current 19 tends to concentrate on the protrusion 23, which further causes the current to concentrate on the center of the outer surface of the front end of the anode. That is, the central portion 17 of the outer surface of the anode tip is more easily damaged. As the damage to the center portion 17 of the outer surface of the anode tip progresses, the cooling water channel 25 is finally broken at the center portion 17 of the outer surface of the anode tip, resulting in an inoperable state. As described above, the service life of the anode is significantly shortened due to the current concentration on the center of the outer surface of the anode tip.

【0008】図5aから図5dはアノードスポットへの
電流集中について説明したものである。陽極先端外表面
表面の清浄性が良好な初期状態(図5a)において、電
子21は陽極先端外表面26に対しほぼ垂直に入射す
る。しかし、前述した様に、図4に示した陽極先端外表
面中心部17には電流が集中しやすく、陽極先端外表面
が高温になることで銅が融解・蒸発し外表面中心近傍に
銅蒸気の雲27を形成する(図5b)。電子21の衝突
により、蒸発した銅原子28の中の電子は励起し、電離
する。この時、銅原子より電離した電子29は質量が小
さく移動度が大きいため、すぐに陽極先端外表面に入射
する。しかし、銅イオン30は移動度が小さく蒸気雲2
7中に停滞するので、蒸気雲は正に帯電する(図5
c)。この蒸気雲27の正電荷ポテンシャルにより、プ
ラズマアーク中の電子21は蒸気雲27へ向かう加速度
を受ける(図5d)。結果として、アノードスポット3
1が生じると、プラズマアーク中の電子は陽極先端外表
面近傍において陽極先端外表面中心部に加速度的に集中
する。このような機構により、陽極先端の損傷は加速度
的に進行する。本発明は、プラズマ加熱用陽極におい
て、冷却のバーンアウト限界熱流束を向上させ、上記の
ような陽極先端の損傷速度を遅延させ、寿命を延長させ
るための、上記陽極先端形状及び材質に関するものであ
る。
FIGS. 5a to 5d illustrate the current concentration on the anode spot. In the initial state where the cleanliness of the outer surface of the anode tip is good (FIG. 5A), the electrons 21 enter the anode tip outer surface 26 almost perpendicularly. However, as described above, the current tends to concentrate on the center portion 17 of the outer surface of the anode tip shown in FIG. 4, and the high temperature of the outer surface of the anode tip causes copper to melt and evaporate, thereby causing copper vapor near the center of the outer surface. (FIG. 5b). The electrons in the evaporated copper atoms 28 are excited and ionized by the collision of the electrons 21. At this time, since the electrons 29 ionized from the copper atoms have a small mass and a high mobility, they are immediately incident on the outer surface of the anode tip. However, the copper ions 30 have low mobility and the vapor cloud 2
7, the vapor cloud becomes positively charged (FIG. 5).
c). Due to the positive charge potential of the vapor cloud 27, the electrons 21 in the plasma arc receive an acceleration toward the vapor cloud 27 (FIG. 5D). As a result, anode spot 3
When 1 occurs, the electrons in the plasma arc are concentrated at an accelerated concentration in the center of the outer surface of the anode tip near the outer surface of the anode tip. With such a mechanism, the damage to the tip of the anode proceeds at an accelerated rate. The present invention relates to the shape and material of the anode tip for improving the burnout limit heat flux of cooling, delaying the damage rate of the anode tip as described above, and extending the life of the anode for plasma heating. is there.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の要旨とするところは、 (1)直流電流を容器内の溶融金属に通電し、Arプラ
ズマを発生させながら溶融金属を加熱する移行型プラズ
マトーチであって、内部水冷構造を有する導電性金属か
らなる陽極と、前記陽極の外側に一定の間隔を設け内部
水冷構造を有する金属製保護体と、前記陽極と前記保護
体の間隙にArを含有する気体を供給する気体供給手段
を有し、前記陽極先端冷却側の中央に突起を有すること
を特徴とする移行型プラズマ加熱用陽極。 (2)陽極先端外表面の中心部が内側に凹んでいること
を特徴とする(1)に記載の移行型プラズマ加熱用陽
極。 (3)陽極先端外表面の全体が内側に凹んでいることを
特徴とする(1)又は(2)のいずれか1項に記載の移
行型プラズマ加熱用陽極。 (4)陽極先端冷却側にリブを有することを特徴とする
(1)から(3)のいずれか1項に記載の移行型プラズ
マトーチ。 (5)陽極内部に第2の気体供給手段を有し、前記第2
の気体供給手段は陽極先端外表面より気体を吹き出す機
能を有することを特徴とする(1)から(4)のいずれ
か1項に記載の移行型プラズマ加熱用陽極。 (6)陽極先端外表面の全体及び/又は中心部が凹んで
おり、かつ、前記陽極内部に円周方向に回転自在な1又
は2以上の永久磁石を有することを特徴とする(1)か
ら(5)のいずれか1項に記載の移行型プラズマ加熱用
陽極。 (7)陽極先端材質をCr又はZrを含む銅合金とする
(1)から(6)のいずれか1項に記載の移行型プラズ
マ加熱用陽極。である。
Means for Solving the Problems To solve the above problems, the gist of the present invention is as follows: (1) A direct current is applied to the molten metal in the vessel to generate an Ar plasma, and the molten metal is discharged. A transfer-type plasma torch for heating, comprising an anode made of a conductive metal having an internal water-cooling structure, a metal protector having an internal water-cooling structure provided at a fixed interval outside the anode, and the anode and the protector A gas supply means for supplying a gas containing Ar to the gap, and a projection at the center on the cooling side at the tip of the anode. (2) The transfer-type plasma heating anode according to (1), wherein the center of the outer surface of the anode tip is concave inward. (3) The transition-type plasma heating anode according to any one of (1) and (2), wherein the entire outer surface of the anode tip is depressed inward. (4) The transfer type plasma torch according to any one of (1) to (3), wherein a rib is provided on a cooling side of the anode tip. (5) having a second gas supply means inside the anode;
(5) The transfer-type plasma heating anode according to any one of (1) to (4), wherein the gas supply means has a function of blowing gas from an outer surface of the anode tip. (6) The method according to (1), wherein the whole and / or center of the outer surface of the anode tip is concave and one or more permanent magnets rotatable in the circumferential direction are provided inside the anode. (5) The transfer-type plasma heating anode according to any one of (5). (7) The transition-type plasma heating anode according to any one of (1) to (6), wherein the anode tip material is a copper alloy containing Cr or Zr. It is.

【0010】[0010]

【発明の実施の形態】前述した様に、陽極先端中心部損
傷を引き起こすものは、陽極先端冷却側伝熱面のバーン
アウト、プラズマにかかるピンチ効果による電流集中、
電流集中を加速させる陽極先端の凸変形やアノードスポ
ットの形成である。本発明では、この様なバーンアウト
の発生、電流集中、凸変形やアノードスポットの形成を
防止するために、陽極先端形状を変更し、陽極先端に高
強度合金を適用し、アノードスポット形成防止のための
外乱発生装置を設置する。冷却伝熱面におけるバーンア
ウトの防止するためには、陽極の有効面積を大きくする
ことが考えられる。しかし、設備の取り合い上の問題
や、陽極を大きくすることでトーチの質量が増加するの
でトーチ保持設備限界の問題等、陽極の有効面積を十分
大きくできない場合がある。そのため、陽極先端部を適
当な形状とすることでバーンアウトの発生を防止する必
要がある。そのような形状の前記(1)に係る本発明例
を図22に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the causes of damage to the center of the anode tip include burnout of the heat transfer surface on the anode tip cooling side, current concentration due to the pinch effect on plasma, and the like.
The convex deformation of the anode tip and the formation of the anode spot accelerate the current concentration. In the present invention, in order to prevent the occurrence of such burnout, current concentration, convex deformation and formation of the anode spot, the shape of the anode tip is changed, and a high-strength alloy is applied to the anode tip to prevent anode spot formation. A disturbance generator for the operation. In order to prevent burnout on the cooling heat transfer surface, it is conceivable to increase the effective area of the anode. However, there is a case where the effective area of the anode cannot be sufficiently increased due to a problem in the arrangement of the facilities and a problem of the limit of the torch holding facility because the mass of the torch is increased by enlarging the anode. Therefore, it is necessary to prevent the occurrence of burnout by making the tip of the anode an appropriate shape. FIG. 22 shows an example of the present invention according to the above (1) having such a shape.

【0011】図22において、陽極先端冷却側の中央に
冷却水の流れ10を円滑にするための突起51を設置す
る。突起51はほぼ円錐形を成しており、その側面は冷
却水の流れ10に対する流線型としている。この突起5
1により陽極先端冷却水側中心部における冷却水流速の
低下を防ぐことができ、バーンアウト限界熱流束の向上
が図れる。冷却水流速向上を効果的に狙うため、突起底
面の半径Rp及び突起の高さHpはそれぞれ、仕切版9
の内径Rinの1/1〜2/1及び1/1〜3/1である
ことが好ましい。
In FIG. 22, a projection 51 for smoothing the flow of cooling water 10 is provided at the center on the cooling side of the anode tip. The projection 51 has a substantially conical shape, and its side surface is streamlined with respect to the flow 10 of the cooling water. This projection 5
By means of 1, it is possible to prevent a decrease in the flow rate of the cooling water at the center portion of the cooling water side on the tip of the anode, and to improve the burnout limit heat flux. In order to effectively increase the cooling water flow rate, the radius Rp of the bottom surface of the projection and the height Hp of the projection are respectively set to the partition plate 9.
It is preferable that the inner diameter Rin is 1/1 to 2/1 and 1/1 to 3/1.

【0012】陽極先端部を適当な形状とすることで陽極
先端外表面中心部への電流集中を防止することを狙った
前記(2)に係る本発明例を図6に示す。図6におい
て、陽極先端外表面中心部17を凹ませる。図7におい
て、電場32は導体表面に対して垂直に入射するので、
図16に示す比較例に比べ陽極先端外表面中心部を凹ま
せることにより陽極先端外表面中心部の電束密度を低下
させ電流集中を防ぐことができる。凹部の領域は、電流
集中防止領域を確保するため、陽極先端中心から陽極先
端半径Raの1/5〜3/4を半径とする円であること
が望ましい。また、凹部の中心高さHdは、電流拡散効
果を確保するため、凹部領域半径Rdの1/3〜2/1
とすることが望ましい。凹部領域半径Rdは陽極先端外
表半径Raの1/3〜3/4であることが好ましい。ま
た、本発明において、気体供給手段から供給する気体
は、Ar100vol%でも良いし、Ar75vol%以上で
電圧上昇のためN 20.1〜25vol%を含有し、残部不
可避的不純物としても良い。また、陽極先端外表面中心
部を凹ませることにより、突起51を設置したことによ
る先端中心部厚みの増加を低減でき冷却面からの距離を
縮めることにもなるので、先端外表面の温度を低下させ
る効果も狙える。
[0012] By forming the tip of the anode into an appropriate shape, the anode
Aimed to prevent current concentration at the center of the outer surface of the tip
FIG. 6 shows an example of the present invention according to the above (2). Figure 6
Then, the center part 17 of the outer surface of the anode tip is depressed. Figure 7
Since the electric field 32 is incident perpendicularly to the conductor surface,
Compared to the comparative example shown in FIG.
Lowers the electric flux density at the center of the outer surface of the anode tip
The current concentration can be prevented. The area of the depression is the current
From the center of the anode tip to the anode tip to secure the concentration prevention area
A circle whose radius is 1/5 to 3/4 of the end radius Ra
Is desirable. In addition, the center height Hd of the concave portion depends on the current diffusion effect.
1/3 to 2/1 of the concave region radius Rd
It is desirable that Concave area radius Rd is outside the anode tip
It is preferably 1/3 to 3/4 of the table radius Ra. Ma
In the present invention, the gas supplied from the gas supply means
Is 100% by volume of Ar or 75% by volume or more of Ar
N due to voltage rise Two0.1 to 25 vol%
It may be an unavoidable impurity. Also, the center of the outer surface of the anode tip
By recessing the portion, the protrusion 51 is installed.
The increase in thickness at the center of the tip can be reduced and the distance from the cooling surface can be reduced.
It also reduces the temperature of the outer surface of the tip
The effect can be aimed at.

【0013】前記(3)に係る本発明において、陽極先
端の凸型変形を防止するための陽極先端外表部形状の1
例を図8に示す。図8において、陽極先端にかかる水圧
と熱応力による凸変形をキャンセルするために陽極先端
外表面全体33に内側に凹み(クラウン)を形成する。
クラウンの高さHcは、プラズマ加熱時において陽極先
端外表面が変形により水平面を保持するため、100〜
500μmとすることが望ましい。
In the present invention according to the above (3), the shape of the outer surface of the anode tip for preventing convex deformation of the anode tip can be improved.
An example is shown in FIG. In FIG. 8, in order to cancel convex deformation due to water pressure and thermal stress applied to the anode tip, a concave (crown) is formed inside the entire outer surface 33 of the anode tip.
The height Hc of the crown is 100 to 100 because the outer surface of the tip of the anode maintains a horizontal plane due to deformation during plasma heating.
Desirably, it is 500 μm.

【0014】陽極先端の凸変形を防止するために、陽極
先端に高温状態においても陽極先端の剛性を高く保つ必
要がある。前記(4)に係る本発明として、高剛性を保
持するための手法の1つとして、陽極先端冷却面側にお
いてリブを設置する。図9は、陽極先端冷却面側の外周
部にリブ34を設置した陽極の断面図を表す。リブは円
周方向に1枚以上、好ましくは等間隔に4枚以上設置す
る。リブの高さHr、半径方向の長さLr及び幅Drは
それぞれ、高剛性を保ちかつ冷却水の流れを妨げないよ
うにするため、陽極先端半径Raの1/5〜2/3、陽
極先端半径Raの1/5〜2/3及び陽極先端冷却水路
幅Dcの1/4〜1/1とするのが好ましい。しかし、
冷却面内にリブを設置する場合、冷却水路や仕切版の形
状を変更する必要があるので、高剛性を保持するために
はCr−Cu、Zr−Cu又はCr−Zr−Cu等の高
強度材を適用することが望ましい。以上のことから、陽
極先端外表面中心部への電流集中を防止できるが、前述
したように、アノードスポットが形成されるとそのアノ
ードスポットに更に電流集中が生じるので、陽極先端外
表面中心部以外にアノードスポットが形成されてもその
アノードスポットにやはり電流集中を生じる虞がある。
そこで、アノードスポット形成防止用外乱発生装置の例
を図10と図11に示す。
In order to prevent convex deformation of the anode tip, it is necessary to maintain high rigidity of the anode tip even in a high temperature state. In the present invention according to the above (4), as one of the techniques for maintaining high rigidity, a rib is provided on the cooling surface side of the anode tip. FIG. 9 is a cross-sectional view of an anode in which ribs 34 are provided on the outer peripheral portion on the anode tip cooling surface side. One or more ribs are provided in the circumferential direction, preferably four or more ribs are arranged at equal intervals. The height Hr of the rib, the length Lr in the radial direction, and the width Dr are each 1/5 to 2/3 of the anode tip radius Ra, and the anode tip to maintain high rigidity and not to obstruct the flow of cooling water. It is preferable to set the radius Ra to 1 / to / and the anode tip cooling water channel width Dc to 先端 to 1/1. But,
When ribs are installed in the cooling surface, it is necessary to change the shape of the cooling water channel and the partition plate. Therefore, in order to maintain high rigidity, high strength such as Cr-Cu, Zr-Cu or Cr-Zr-Cu is used. It is desirable to apply a material. From the above, it is possible to prevent current concentration on the center of the outer surface of the anode tip. However, as described above, when the anode spot is formed, further current concentration occurs on the anode spot. Even if an anode spot is formed, there is a possibility that current concentration may also occur in the anode spot.
An example of a disturbance generating device for preventing anode spot formation is shown in FIGS.

【0015】前記(5)に係る本発明例を示す図10に
おいて、プラズマ作動ガスを陽極先端外表面26から吹
き出し、陽極先端外表面近傍においてガス流れに擾乱や
旋回を引き起こすための第2の気体供給手段43を設け
ることで、アノードスポット31を移動させることがで
きる。第2の気体供給手段43は陽極先端外表面を貫通
する円筒管とすることが好ましく、前記円筒管の外径は
冷却水の流れを妨げることなく確実に気体を供給できる
ように1mm〜5mmとし、材質は腐食防止のためステ
ンレス、銅又は腐食防止メッキを施した銅が好ましい。
また、効果は1本でも得ることができ、好ましくは図1
0及び図20に示すように、陽極中心部に1本と陽極内
部に設置された冷却水路仕切版9の内部に円周方向に等
間隔に4〜10本設置することが好ましい。
In FIG. 10 showing the example of the present invention according to the above (5), a second gas for blowing out a plasma working gas from the outer surface 26 of the anode tip to cause disturbance or swirl in the gas flow near the outer surface of the anode tip. By providing the supply means 43, the anode spot 31 can be moved. The second gas supply means 43 is preferably a cylindrical tube penetrating the outer surface of the anode tip, and the outer diameter of the cylindrical tube is set to 1 mm to 5 mm so as to reliably supply gas without obstructing the flow of the cooling water. The material is preferably stainless steel, copper or copper plated with corrosion prevention for corrosion prevention.
In addition, the effect can be obtained even by one line.
As shown in FIG. 0 and FIG. 20, it is preferable to install one at the center of the anode and 4 to 10 at equal intervals in the circumferential direction inside the cooling channel partition plate 9 installed inside the anode.

【0016】前記(6)に係る本発明例を示す図11に
おいて、陽極内部に永久磁石36を埋め込み、その永久
磁石を回転させることで時間的に変動する外部磁場38
(図19)を形成し、アノードスポットを移動させるこ
とができる。図13に示すように、永久磁石に繋がる羽
46を冷却水路内に有し冷却水の流れにより永久磁石の
回転を実施できる。
In FIG. 11 showing the example of the present invention according to the above (6), a permanent magnet 36 is embedded in the anode, and an external magnetic field 38 which fluctuates with time by rotating the permanent magnet.
(FIG. 19) to move the anode spot. As shown in FIG. 13, the blades 46 connected to the permanent magnets are provided in the cooling water channel, and the rotation of the permanent magnets can be performed by the flow of the cooling water.

【0017】高剛性を保持するための手段の1つとし
て、前記(7)に係る本発明では、高強度を保てる銅合
金を陽極先端に適用する。但し、陽極先端外表面温度を
低く保つために、前記銅合金の熱伝導率は従来材質であ
る無酸素銅と同程度、若しくは、それ以上である必要が
ある。この様な条件を満たす銅合金の例として、Cr−
Cu、Zr−CuとCr−Zr−Cuがある。例えば、
Cr−Zr−Cuでは、市販されているCr0.5〜
1.5%、Zr0.08〜0.30%、残部銅がある。
As one of means for maintaining high rigidity, in the present invention according to the above (7), a copper alloy capable of maintaining high strength is applied to the tip of the anode. However, in order to keep the temperature of the outer surface of the anode tip low, the thermal conductivity of the copper alloy needs to be equal to or higher than that of oxygen-free copper which is a conventional material. As an example of a copper alloy satisfying such conditions, Cr-
There are Cu, Zr-Cu and Cr-Zr-Cu. For example,
In Cr-Zr-Cu, commercially available Cr 0.5-
There is 1.5%, Zr 0.08 to 0.30%, and the balance is copper.

【0018】[0018]

【実施例】以下に本発明の実施例について説明する。図
12、図13、図17及び図18はそれぞれ本発明の一
実施例を示す断面図である。図12及び図17で示され
る陽極の特徴は以下の(1)〜(6)の通りであり、図
12は本発明の垂直断面図、図17は本発明の水平断面
図を示す。 (1)陽極先端外表面半径Ra=25mm、陽極先端冷
却側半径Rcool=22mm、陽極先端厚みDa=3
mmである。 (2)陽極先端冷却側中心部に設置した円錐状の突起5
1は、底面半径Rp=15mm、高さHp=20mmで
あり、側面は冷却水の流れに沿うような流線型を成して
いる。
Embodiments of the present invention will be described below. 12, 13, 17, and 18 are cross-sectional views showing one embodiment of the present invention. The features of the anode shown in FIGS. 12 and 17 are as follows (1) to (6). FIG. 12 is a vertical sectional view of the present invention, and FIG. 17 is a horizontal sectional view of the present invention. (1) Anode tip outer surface radius Ra = 25 mm, anode tip cooling side radius Rcool = 22 mm, anode tip thickness Da = 3
mm. (2) Conical projection 5 installed at the center of the anode tip cooling side
1 has a bottom radius Rp = 15 mm and a height Hp = 20 mm, and the side surface has a streamline shape along the flow of the cooling water.

【0019】図23に示すグラフは、前記陽極の先端冷
却側が最大半径Rcool=22mmである陽極の先端
冷却側における半径を横軸にとり、バーンアウト限界熱
流束を縦軸にとったものであり、図中破線52は従来型
陽極(図2参照)の先端冷却側伝熱面におけるバーンア
ウト限界熱流束、図中実線53は本発明実施例の先端冷
却側伝熱面におけるバーンアウト限界熱流束を示す。図
23より、本発明実施例において、従来陽極に比べバー
ンアウト限界熱流束が向上し陽極先端半径方向において
バーンアウト限界熱流束が高いレベルで一定に保たれて
いることがわかり、バーンアウトの危険性が低下した。
また、突起51を設置することで先端中心部の肉厚が増
加し先端外表面中心部の温度が上昇することが考えられ
るが、突起51における冷却伝熱面積が大きいので問題
ない。
The graph shown in FIG. 23 is obtained by plotting the radius on the tip cooling side of the anode where the maximum cooling radius Rcool = 22 mm on the tip cooling side of the anode is plotted on the horizontal axis, and the burnout limit heat flux is plotted on the vertical axis. A broken line 52 in the drawing indicates a burnout limit heat flux on the tip cooling side heat transfer surface of the conventional anode (see FIG. 2), and a solid line 53 in the drawing indicates a burnout limit heat flux on the tip cooling side heat transfer surface in the embodiment of the present invention. Show. FIG. 23 shows that in the embodiment of the present invention, the burnout limit heat flux is improved as compared with the conventional anode, and the burnout limit heat flux is kept constant at a high level in the radial direction of the anode tip. Sex decreased.
Further, it is conceivable that the provision of the projection 51 increases the thickness of the central portion of the distal end and increases the temperature of the central portion of the outer surface of the distal end. However, there is no problem because the cooling heat transfer area of the projection 51 is large.

【0020】(3)陽極先端外表面全体の凹み(クラウ
ン)は、曲率Rc=1041mmの球面であり先端中心
における高さはHc=300μmである。このクラウン
により、プラズマ加熱操業時における陽極先端外表面は
熱応力変形によりほぼ平面となる。 (4)陽極先端外表面中心部17に形成した半径rd=
10mmの範囲における曲率Rd=15mmの球面状の
凹部40を設置する。先端中心における凹部40の高さ
はHd=4mmである。図16に示すように凹部40が
ない従来型にくらべ陽極先端外表面中心部17に入射す
る電場32は分散し、電流密度は低下する。但し、陽極
先端外表面の凹部とその外側との境界41は大きな凸部
を形成しないように滑らかに繋げる必要がある。その境
界41の曲率はRb=30mm以上が望ましく、本実施
例の場合、Rb=50mmとした。
(3) The depression (crown) on the entire outer surface of the anode tip is a spherical surface having a curvature Rc of 1041 mm, and the height at the center of the tip is Hc = 300 μm. Due to this crown, the outer surface of the tip of the anode during the plasma heating operation becomes substantially flat due to thermal stress deformation. (4) Radius rd formed at the center 17 of the outer surface of the anode tip =
A spherical recess 40 having a curvature Rd of 15 mm in a range of 10 mm is provided. The height of the recess 40 at the center of the tip is Hd = 4 mm. As shown in FIG. 16, the electric field 32 incident on the center portion 17 of the outer surface of the anode tip is dispersed and the current density is reduced as compared with the conventional type having no concave portion 40. However, it is necessary to smoothly connect the boundary 41 between the concave portion on the outer surface of the anode tip and the outside thereof so as not to form a large convex portion. The curvature of the boundary 41 is desirably Rb = 30 mm or more. In the case of this embodiment, Rb = 50 mm.

【0021】(5)陽極先端外表面は500度以上の高
温に曝されるので、従来の無酸素銅を用いた陽極ではク
リープによる変形の虞がある。特に、陽極先端外表面の
損傷が進行し先端厚みが減少すると、クリープ変形は大
きくなり陽極先端は凸型に変形してしまう。そこで、陽
極の材質にCr0.08%、Zr0.15%を含む銅合
金を適用した。図14は、半径25mmの銅(又は銅合
金)円盤の板厚に対する中心のクリープ変形変形量(図
15で示されるhc[mm])を示したものである。図
中◇直線49で示される無酸素銅に対して、図中○直線
50で示されるCr−Zr−Cuはクリープ変形が小さ
く、特に、陽極先端厚み1.5mmにおいては3桁小さ
い。つまり、Cr−Zr−Cuは無酸素銅に比べクリー
プ変形しにくく、陽極先端の凸型変形を抑えることがで
きる。
(5) Since the outer surface of the anode tip is exposed to a high temperature of 500 ° C. or more, the conventional anode using oxygen-free copper may be deformed by creep. In particular, as the outer surface of the anode tip progresses and the tip thickness decreases, creep deformation increases and the anode tip deforms into a convex shape. Therefore, a copper alloy containing 0.08% of Cr and 0.15% of Zr was applied to the material of the anode. FIG. 14 shows the amount of creep deformation at the center (hc [mm] shown in FIG. 15) with respect to the thickness of a copper (or copper alloy) disk having a radius of 25 mm. In contrast to oxygen-free copper indicated by the straight line 49 in the figure, Cr-Zr-Cu indicated by the straight line 50 in the figure has a small creep deformation, and is particularly three orders of magnitude smaller when the anode tip thickness is 1.5 mm. In other words, Cr-Zr-Cu is less susceptible to creep deformation than oxygen-free copper, and can suppress convex deformation at the tip of the anode.

【0022】(6a)陽極先端外表面に作動ガスを吹き
出すための8個の吹き出し口42a〜42hを陽極先端
外表面において円周上に、更に1個の吹き出し口42i
を陽極先端外表面中心部に設置し、更に、吹き出し口4
2a〜42hに繋がる作動ガスを通すための内管43a
〜43hを仕切版9の内部に、吹き出し口42iに繋が
る内管43iを陽極中心軸上に有する。また、作動ガス
の旋回を引き起こすために、内管42a〜42hは陽極
下方において斜めになっている。吹き出し口42a〜4
2iから吹き出される作動ガスにより、陽極先端外表面
近傍における作動ガスの流れに旋回をおこさせること
で、アノードスポットを移動させることができる。図2
に示す従来の移行型プラズマ加熱用陽極に比べ、本発明
による移行型プラズマ加熱用陽極の寿命は1.5〜2倍
に増加した。図13及び図18は図12及び図17で示
される陽極の(1)〜(4)と同じ特徴を有し、更に5
つめの特徴として以下の特徴を有し、更に5つめの特徴
として以下の特徴を有し、図13は本発明の垂直断面
図、図18は本発明の水平断面図を示す。
(6a) Eight outlets 42a to 42h for blowing the working gas to the outer surface of the anode tip are provided on the circumference of the outer surface of the anode tip and one outlet 42i.
Is placed at the center of the outer surface of the anode tip.
Inner pipe 43a for passing the working gas connected to 2a to 42h
To 43h inside the partition plate 9 and an inner tube 43i connected to the outlet 42i on the central axis of the anode. Further, the inner tubes 42a to 42h are slanted below the anode in order to cause swirling of the working gas. Outlets 42a-4
By causing the flow of the working gas near the outer surface of the tip of the anode to swirl by the working gas blown out from 2i, the anode spot can be moved. FIG.
The life of the transfer-type plasma heating anode according to the present invention was increased 1.5 to 2 times as compared with the conventional transfer-type plasma heating anode shown in FIG. 13 and 18 have the same features as (1) to (4) of the anode shown in FIGS.
The fifth feature has the following features, and the fifth feature has the following features. FIG. 13 is a vertical sectional view of the present invention, and FIG. 18 is a horizontal sectional view of the present invention.

【0023】(6b)陽極内部の仕切版9の中に永久磁
石36を2個有する。この2個の永久磁石36a、36
bは陽極対称軸に対して対称な位置に設置され、連結棒
44によって繋がっており、連結棒44は陽極先端冷却
側中心から垂直上方5mmに設置された回転軸45と連
結しており、永久磁石36a、36bは回転軸を中心に
円周方向に回転可能である。また、連結棒44に固定さ
れた羽46を冷却水路47内に設置することで、冷却水
の流れ48により永久磁石36a、36bは円周方向に
回転する。陽極先端外表面近傍において、永久磁石36
a、36bによって形成される磁場38は永久磁石36
a、36bが回転することで時間に対して周期的に変動
する。磁場と運動する荷電粒子は相互作用するので、時
間的に変動する磁場38により(図19参照)プラズマ
中のイオンや電子の運動も変動の影響を受ける。そのた
め、陽極先端外表面においてアノードスポットが形成さ
れても時間的に変動する磁場により荷電粒子は外乱を受
け、アノードスポットを移動することができる。図2に
示す従来の移行型プラズマ加熱用陽極に比べ、本発明に
よる移行型プラズマ加熱用陽極の寿命は1.5〜2倍に
増加した。
(6b) The partition plate 9 inside the anode has two permanent magnets 36. These two permanent magnets 36a, 36
b is installed at a position symmetrical with respect to the anode symmetry axis, and is connected by a connecting rod 44. The connecting rod 44 is connected to a rotating shaft 45 installed vertically 5 mm above the center of the anode tip cooling side, and is permanently mounted. The magnets 36a and 36b are rotatable in a circumferential direction about a rotation axis. By installing the wings 46 fixed to the connecting rods 44 in the cooling water passage 47, the permanent magnets 36a and 36b rotate in the circumferential direction by the flow 48 of the cooling water. Near the outer surface of the anode tip, a permanent magnet 36
a, 36b form a permanent magnet 36
As a and b rotate, they fluctuate periodically with respect to time. Since the moving particles interact with the magnetic field, the movement of ions and electrons in the plasma is also affected by the time-varying magnetic field 38 (see FIG. 19). Therefore, even if an anode spot is formed on the outer surface of the anode tip, the charged particles are disturbed by a magnetic field that fluctuates with time, and can move the anode spot. As compared with the conventional transfer-type plasma heating anode shown in FIG. 2, the life of the transfer-type plasma heating anode according to the present invention is increased by 1.5 to 2 times.

【0024】[0024]

【発明の効果】本発明により、直流電流ツイントーチ型
プラズマ加熱装置の陽極先端の損傷速度を遅延させ、寿
命を延長させることができる。
According to the present invention, the damage speed of the anode tip of the direct current twin torch type plasma heating apparatus can be delayed and the service life can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】タンディッシュとプラズマトーチの概略図。FIG. 1 is a schematic view of a tundish and a plasma torch.

【図2】従来技術によるタンディッシュ内溶鋼加熱用移
行型プラズマ陽極の概略図。
FIG. 2 is a schematic view of a transfer type plasma anode for heating molten steel in a tundish according to the prior art.

【図3】プラズマのピンチ効果の説明図。FIG. 3 is an explanatory diagram of a pinch effect of plasma.

【図4】陽極先端凸型変形による電流集中の説明図。FIG. 4 is an explanatory diagram of current concentration due to convex deformation of the anode tip.

【図5】アノードスポット形成による電流集中の説明
図。
FIG. 5 is an explanatory diagram of current concentration due to formation of an anode spot.

【図6】本発明に係る移行型プラズマ加熱用陽極の1例
の垂直断面図。
FIG. 6 is a vertical sectional view of one example of a transfer-type plasma heating anode according to the present invention.

【図7】図6で示す移行型プラズマ加熱用陽極の1例の
先端から出る電場の概略図。
FIG. 7 is a schematic diagram of an electric field emerging from the tip of one example of the transfer-type plasma heating anode shown in FIG. 6;

【図8】本発明に係る移行型プラズマ加熱用陽極の1例
の垂直断面図。
FIG. 8 is a vertical sectional view of one example of a transfer-type plasma heating anode according to the present invention.

【図9】本発明に係る移行型プラズマ加熱用陽極の1例
の垂直断面図。
FIG. 9 is a vertical sectional view of one example of a transfer-type plasma heating anode according to the present invention.

【図10】本発明に係る移行型プラズマ加熱用陽極の1
例の垂直断面図。
FIG. 10 shows one of the transfer-type plasma heating anodes according to the present invention.
FIG. 4 is a vertical sectional view of an example.

【図11】本発明に係る移行型プラズマ加熱用陽極の1
例の垂直断面図。
FIG. 11 shows one of the transfer-type plasma heating anodes according to the present invention.
FIG. 4 is a vertical sectional view of an example.

【図12】本発明に係る移行型プラズマ加熱用陽極の1
例の垂直断面図。
FIG. 12 shows one of the transfer-type plasma heating anodes according to the present invention.
FIG. 4 is a vertical sectional view of an example.

【図13】本発明に係る移行型プラズマ加熱用陽極の1
例の垂直断面図。
FIG. 13 shows a transfer-type plasma heating anode 1 according to the present invention.
FIG. 4 is a vertical sectional view of an example.

【図14】クリープ変形量の材質比較。FIG. 14 is a material comparison of the amount of creep deformation.

【図15】図14で示されるグラフの説明図。FIG. 15 is an explanatory diagram of the graph shown in FIG. 14;

【図16】図2で示される従来技術による移行型プラズ
マ加熱用陽極の先端から出る電場の概略図。
FIG. 16 is a schematic view of an electric field emerging from the tip of the transfer plasma heating anode according to the prior art shown in FIG. 2;

【図17】図12で示される移行型プラズマ加熱用陽極
の水平断面図。
FIG. 17 is a horizontal sectional view of the transfer-type plasma heating anode shown in FIG. 12;

【図18】図13で示される移行型プラズマ加熱用陽極
の水平断面図。
FIG. 18 is a horizontal sectional view of the transfer-type plasma heating anode shown in FIG. 13;

【図19】図13で示される本発明における、磁場の概
略図。
FIG. 19 is a schematic diagram of a magnetic field in the present invention shown in FIG.

【図20】図10で示される移行型プラズマ加熱用陽極
の水平断面図。
FIG. 20 is a horizontal sectional view of the transfer-type plasma heating anode shown in FIG. 10;

【図21】従来陽極先端冷却側伝熱面におけるバーンア
ウト限界熱流束の分布。
FIG. 21 shows a distribution of a critical heat flux of a burnout on a conventional heat transfer surface on the tip cooling side of an anode.

【図22】本発明に係る移行型プラズマ加熱用陽極の1
例の垂直断面図。
FIG. 22 shows a transfer-type plasma heating anode 1 according to the present invention.
FIG. 4 is a vertical sectional view of an example.

【図23】従来陽極と本発明に係る実施例の従来陽極先
端冷却側伝熱面におけるバーンアウト限界熱流束の分
布。
FIG. 23 shows the distribution of the critical heat flux of the burnout on the conventional anode and the conventional heat transfer surface on the cooling side of the tip of the conventional anode in the embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1 タンディッシュ 3 陽極 5 溶鋼 6 プラズマアーク 7 電子の流れ 9 仕切版 10 冷却水の流れ 17 陽極先端外表面中心部 19 電流 21 プラズマ中の電子 23 陽極先端凸変形部 26 陽極先端外表面 31 アノードスポット 29 陽極先端外表面クラウン 32 電場 34 リブ 36,36a,36b 永久磁石 38 磁場 40 陽極先端凹部 42 作動ガス吹き出し口 43 第2の気体供給手段(作動ガス吹き出し用小管) 51 突起 DESCRIPTION OF SYMBOLS 1 Tundish 3 Anode 5 Molten steel 6 Plasma arc 7 Electron flow 9 Partition plate 10 Flow of cooling water 17 Central part of anode tip outer surface 19 Current 21 Electrons in plasma 23 Anode tip convex deformation part 26 Anode tip outer surface 31 Anode spot 29 Anode tip outer surface crown 32 Electric field 34 Rib 36, 36a, 36b Permanent magnet 38 Magnetic field 40 Anode tip concave part 42 Working gas outlet 43 Second gas supply means (small tube for working gas outlet) 51 Projection

フロントページの続き (72)発明者 三武 裕幸 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 木下 潤一 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 今永 克洋 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 土岐 正弘 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 木村 欣晃 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 Fターム(参考) 3K084 AA08 AA12 CA02 CA09 CB03 CC07 DA14 Continued on the front page (72) Inventor Hiroyuki Mitake 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Junichi Kinoshita 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Inside the Kimitsu Works (72) Inventor Katsuhiro Imanaga 1 Kimitsu, Kimitsu City, Chiba Prefecture Inside Nippon Steel Corporation (72) Inventor Masahiro Toki 1 Kimitsu City, Kimitsu City, Chiba Prefecture Kimitsu Corporation Inside the steelworks (72) Inventor Yoshiaki Kimura 1 Kimitsu, Kimitsu-shi, Chiba F-term in the Nippon Steel Corporation Kimitsu Works (reference) 3K084 AA08 AA12 CA02 CA09 CB03 CC07 DA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】直流電流を容器内の溶融金属に通電し、A
rプラズマを発生させながら溶融金属を加熱する移行型
プラズマトーチであって、内部水冷構造を有する導電性
金属からなる陽極と、前記陽極の外側に一定の間隔を設
け内部水冷構造を有する金属製保護体と、前記陽極と前
記保護体の間隙にArを含有する気体を供給する気体供
給手段を有し、前記陽極先端冷却側の中央に突起を有す
ることを特徴とする移行型プラズマ加熱用陽極。
1. A method according to claim 1, wherein a direct current is applied to the molten metal in the container.
A transfer type plasma torch for heating a molten metal while generating r plasma, comprising: an anode made of a conductive metal having an internal water-cooled structure; and a metal protection having an internal water-cooled structure provided at a predetermined interval outside the anode. A transfer-type plasma heating anode, comprising: a body; and gas supply means for supplying a gas containing Ar to a gap between the anode and the protection body, and a projection at a center of the anode tip cooling side.
【請求項2】陽極先端外表面の中心部が内側に凹んでい
ることを特徴とする請求項1に記載の移行型プラズマ加
熱用陽極。
2. The transfer-type plasma heating anode according to claim 1, wherein the center of the outer surface of the tip of the anode is recessed inward.
【請求項3】陽極先端外表面の全体が内側に凹んでいる
ことを特徴とする請求項1又は2のいずれか1項に記載
の移行型プラズマ加熱用陽極。
3. The transfer-type plasma heating anode according to claim 1, wherein the entire outer surface of the anode tip is depressed inward.
【請求項4】陽極先端冷却側にリブを有することを特徴
とする請求項1から3のいずれか1項に記載の移行型プ
ラズマトーチ。
4. The transfer type plasma torch according to claim 1, wherein a rib is provided on a cooling side of the tip of the anode.
【請求項5】陽極内部に第2の気体供給手段を有し、前
記第2の気体供給手段は陽極先端外表面より気体を吹き
出す機能を有することを特徴とする請求項1から4のい
ずれか1項に記載の移行型プラズマ加熱用陽極。
5. The anode according to claim 1, further comprising a second gas supply unit inside the anode, wherein the second gas supply unit has a function of blowing gas from an outer surface of a front end of the anode. Item 2. The transfer-type plasma heating anode according to Item 1.
【請求項6】陽極先端外表面の全体及び/又は中心部が
凹んでおり、かつ、前記陽極内部に円周方向に回転自在
な1又は2以上の永久磁石を有することを特徴とする請
求項1から5のいずれか1項に記載の移行型プラズマ加
熱用陽極。
6. The anode according to claim 1, wherein the whole and / or center of the outer surface of the tip of the anode is concave and one or more permanent magnets rotatable in the circumferential direction are provided inside the anode. 6. The transfer plasma heating anode according to any one of 1 to 5.
【請求項7】陽極先端材質をCr又はZrを含む銅合金
とする請求項1から6のいずれか1項に記載の移行型プ
ラズマ加熱用陽極。
7. The transfer plasma heating anode according to claim 1, wherein the material of the anode tip is a copper alloy containing Cr or Zr.
JP35377399A 1999-12-13 1999-12-13 Transition type plasma heating anode Expired - Fee Related JP3595475B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP35377399A JP3595475B2 (en) 1999-12-13 1999-12-13 Transition type plasma heating anode
TW089126456A TW469757B (en) 1999-12-13 2000-12-12 A transferred plasma heating anode
AU18886/01A AU762693B2 (en) 1999-12-13 2000-12-13 Transfer-type plasma heating anode
EP00981694A EP1154678A4 (en) 1999-12-13 2000-12-13 Transfer-type plasma heating anode
CA002362657A CA2362657C (en) 1999-12-13 2000-12-13 A transferred plasma heating anode
PCT/JP2000/008828 WO2001043511A1 (en) 1999-12-13 2000-12-13 Transfer-type plasma heating anode
BRPI0008795-5B1A BR0008795B1 (en) 1999-12-13 2000-12-13 TRANSFERED PLASMA HEATING ANODE
US09/913,342 US6649860B2 (en) 1999-12-13 2000-12-13 Transfer type plasma heating anode
KR10-2001-7010216A KR100480964B1 (en) 1999-12-13 2000-12-13 Transfer-type plasma heating anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35377399A JP3595475B2 (en) 1999-12-13 1999-12-13 Transition type plasma heating anode

Publications (2)

Publication Number Publication Date
JP2001167873A true JP2001167873A (en) 2001-06-22
JP3595475B2 JP3595475B2 (en) 2004-12-02

Family

ID=18433128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35377399A Expired - Fee Related JP3595475B2 (en) 1999-12-13 1999-12-13 Transition type plasma heating anode

Country Status (1)

Country Link
JP (1) JP3595475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124314A (en) * 2017-01-30 2018-08-09 株式会社Ihi Plasma light source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307160A (en) * 2001-04-11 2002-10-22 Nippon Steel Corp Transferable anode for plasma heating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124314A (en) * 2017-01-30 2018-08-09 株式会社Ihi Plasma light source

Also Published As

Publication number Publication date
JP3595475B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US4100055A (en) Target profile for sputtering apparatus
JP6469023B2 (en) Optimized thermal nozzle and method of using the same
US20070034501A1 (en) Cathode-arc source of metal/carbon plasma with filtration
JP6484242B2 (en) Lined long life plasma nozzle
JP6652689B1 (en) Ion gun
JP2001167873A (en) Anode for heating shift type plasma
KR100480964B1 (en) Transfer-type plasma heating anode
JP3682192B2 (en) Transition type plasma heating anode
US3040112A (en) Electron-beam furnace with beam emission suppressors
JP4000764B2 (en) Vacuum arc evaporator
JP2018162520A (en) Long-life plasma-nozzle subjected to lining
JP2001241858A (en) Guide tube structure for electromagnetic flux concentration
JP6941275B2 (en) Short arc type discharge lamp
JP2019186132A (en) Induction heating dissolution device
JPH0297666A (en) Metal vapor generator
EP4283011B1 (en) Magnetron device for sputtering target
CN108966473A (en) A kind of miniaturization magnetic device for direct-current arc constraint control
US20220293388A1 (en) Ion gun
JP2001316734A (en) Method for controlling concentration of flow flux in guiding tube
JP2002307160A (en) Transferable anode for plasma heating
KR100624745B1 (en) Hollow cathode discharge gun with stable discharge characteristics
CN111916326A (en) Magnetic conduction sleeve structure of ion source with safeguard function
JPH04139384A (en) Moving type plasma torch
CN115216741A (en) Equipment for improving deposition rate
JP2001167898A (en) Torch for heating plasma

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040903

R151 Written notification of patent or utility model registration

Ref document number: 3595475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees