JP2001167801A - Method of transporting lithium secondary cell - Google Patents

Method of transporting lithium secondary cell

Info

Publication number
JP2001167801A
JP2001167801A JP34752599A JP34752599A JP2001167801A JP 2001167801 A JP2001167801 A JP 2001167801A JP 34752599 A JP34752599 A JP 34752599A JP 34752599 A JP34752599 A JP 34752599A JP 2001167801 A JP2001167801 A JP 2001167801A
Authority
JP
Japan
Prior art keywords
battery
temperature
lithium secondary
transporting
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34752599A
Other languages
Japanese (ja)
Other versions
JP3774095B2 (en
Inventor
Hiroshi Nemoto
宏 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP34752599A priority Critical patent/JP3774095B2/en
Priority to US09/730,186 priority patent/US6596430B2/en
Priority to CA 2327597 priority patent/CA2327597A1/en
Priority to EP20000126794 priority patent/EP1107342B1/en
Priority to DE60041685T priority patent/DE60041685D1/en
Priority to AT00126794T priority patent/ATE424628T1/en
Publication of JP2001167801A publication Critical patent/JP2001167801A/en
Priority to US10/434,904 priority patent/US6811919B2/en
Application granted granted Critical
Publication of JP3774095B2 publication Critical patent/JP3774095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of safely transporting a lithium secondary cell that suppresses maximum rising temperature of the cell to prevent a disaster in case that the temperature of the cell is raised by accident during transportation of the cell. SOLUTION: The lithium secondary cell comprises an electrode body 1, of which positive or negative plates 2, 3, are wound or laminated through a separator 4 and uses non-aqueous electrolyte. When energy per unit mass accumulated in the cell is E (J/g), specific heat is Cp (J/ deg.C.g), normal transporting temperature is T1 ( deg.C), maximum rising temperature is T2 ( deg.C), and minimum temperature of the cell that brings about unsafe state of the cell by heating is t ( deg.C), the cell is transported in state that satisfies a relation of E/Cp+T1=T2<t.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、輸送中に不慮の
事故等により電池温度が上昇した場合であっても、災害
につながらないように、電池の最高上昇温度を制限する
安全なリチウム二次電池の輸送方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a safe lithium secondary battery that limits the maximum temperature of the battery so as not to cause a disaster even if the battery temperature rises due to an accident or the like during transportation. Transportation method.

【0002】[0002]

【従来の技術】 近年、リチウム二次電池は、携帯電
話、VTR、ノート型コンピュータ等の携帯型電子機器
の電源用電池として、広く用いられるようになってきて
いる。また、リチウム二次電池は、単電池電圧が4V程
度と、従来の鉛蓄電池等の二次電池よりも高く、しかも
エネルギー密度が大きいことから、前記携帯型電子機器
のみならず、最近の環境問題を背景に、低公害車として
積極的に一般への普及が図られている電気自動車(E
V)或いはハイブリッド電気自動車(HEV)のモータ
駆動電源としても注目を集めている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as power batteries for portable electronic devices such as mobile phones, VTRs, and notebook computers. In addition, the lithium secondary battery has a unit cell voltage of about 4 V, which is higher than that of a conventional secondary battery such as a lead storage battery, and has a higher energy density. Against this background, electric vehicles (E
V) or a motor drive power source for a hybrid electric vehicle (HEV).

【0003】 リチウム二次電池には、一般的に、正極
活物質にリチウム遷移金属複合酸化物が、負極活物質に
炭素質材料が、電解液にLiイオン電解質を有機溶媒に
溶解した非水電解液が用いられる。電池反応を行う部分
である電極体としては、サンドイッチ型、捲回型、積層
型といった種々の形態のものがあるが、いずれの構造も
セパレータで正極板と負極板を隔てた構造を有してい
る。
In general, a lithium secondary battery includes a non-aqueous electrolyte in which a lithium transition metal composite oxide is used as a positive electrode active material, a carbonaceous material is used as a negative electrode active material, and a Li ion electrolyte is dissolved in an organic solvent as an electrolyte. Liquid is used. There are various types of electrodes such as a sandwich type, a wound type, and a laminated type as an electrode body which is a part for performing a battery reaction, and each structure has a structure in which a positive electrode plate and a negative electrode plate are separated by a separator. I have.

【0004】 ここで、EV・HEV用の電池について
は、モータ駆動等に大きなパワーを必要とすることか
ら、1本当たりに、ある程度大きな容量が必要とされ
る。そこで、このような用途には捲回型若しくは積層型
を用いることが好ましく、これらの電極体の形成には、
一般的に金属からなる集電基板の表面に電極活物質層を
形成してなる電極板(正極板及び負極板を指す。)が用
いられる。
[0004] Here, an EV / HEV battery requires a large power to drive a motor or the like, and therefore requires a certain amount of capacity per battery. Therefore, it is preferable to use a wound type or a laminated type for such applications, and to form these electrode bodies,
Generally, an electrode plate (which indicates a positive electrode plate and a negative electrode plate) in which an electrode active material layer is formed on a surface of a current collecting substrate made of metal is used.

【0005】 このような捲回型や積層型の電極体を用
いたリチウム二次電池に、内部短絡や外部短絡、過充電
等が起きた場合には、電極体の有する内部抵抗に起因し
て生ずるジュール熱によって電池温度が上昇する。この
とき、電極体に大電流が急激に流れた場合には当然に温
度上昇が著しいものとなり、電池の爆発事故、更には災
害へと発展する危険性がある。
When an internal short-circuit, an external short-circuit, an overcharge, or the like occurs in a lithium secondary battery using such a wound or stacked electrode body, the lithium secondary battery may be damaged by the internal resistance of the electrode body. The generated Joule heat causes the battery temperature to rise. At this time, when a large current suddenly flows through the electrode body, the temperature rise naturally becomes remarkable, and there is a risk that the battery may explode or develop into a disaster.

【0006】 ここで、電池の温度上昇には、内的原因
と外的原因とが考えられる。例えば、内的原因としては
セパレータに破れ等の損傷箇所があった場合、電気良導
体である金属ゴミが捲回体等の製造中に混入してセパレ
ータを貫通した場合等が考えられ、いずれの場合でも電
池内で電極板間が短絡することとなるために大電流が流
れることとなる。このときの発生したジュール熱は非水
電解液を加熱、蒸発させるために電池内圧が上昇し、電
池の破裂、爆発が起こる危険性がある。
[0006] Here, an internal cause and an external cause can be considered as the temperature rise of the battery. For example, it is considered that the internal cause is, for example, a case where there is a damaged portion such as a break in the separator, a case where metal dust, which is a good electrical conductor, enters during the production of the wound body and penetrates the separator, and the like. However, since a short circuit occurs between the electrode plates in the battery, a large current flows. The Joule heat generated at this time heats and evaporates the non-aqueous electrolyte, so that the internal pressure of the battery increases, and there is a danger that the battery may burst or explode.

【0007】 一方、外的原因としては、電池内部を釘
等の電気良導体が貫通した場合が考えられるが、この場
合は内部短絡と同様の現象が起こる。また、電池の正負
極端子間が短絡した場合が想定されるが、この場合には
外部短絡時の負荷(抵抗)の大きさによって発熱の程度
が異なることとなる。その他にも、充電装置の故障によ
って過充電が生じた場合、エンジン等の発熱装置の近く
に載置されて加熱された場合等が考えられる。
On the other hand, as an external cause, it is conceivable that an electric good conductor such as a nail penetrates the inside of the battery. In this case, a phenomenon similar to an internal short circuit occurs. Further, it is assumed that the positive and negative terminals of the battery are short-circuited. In this case, the degree of heat generation differs depending on the magnitude of the load (resistance) at the time of external short-circuit. Other possible cases include a case where overcharging occurs due to a failure of the charging device, a case where the charging device is placed near a heating device such as an engine and heated.

【0008】 発明者らは、このような種々の電池の温
度上昇原因について検討し、Journal of Power Sources
81−82(1999)887−890において、2
5Ahの容量を有するリチウム二次電池について、釘刺
し試験、外部短絡試験、過充電試験、外部加熱試験を行
ったときの電池の温度変化を調べた結果を公表してい
る。この中で、最も温度上昇の大きいものは釘刺し試
験、即ち内部短絡が生じた場合であり、約400℃に至
る温度上昇を確認している。
[0008] The inventors have studied the causes of the temperature rise of such various batteries, and found the Journal of Power Sources
81-82 (1999) 887-890, 2
Regarding lithium secondary batteries having a capacity of 5 Ah, the results of examining temperature changes of batteries when performing nail penetration tests, external short-circuit tests, overcharge tests, and external heating tests are published. Among them, the one with the largest temperature rise is the nail penetration test, that is, the case where an internal short circuit has occurred, and the temperature rise to about 400 ° C. has been confirmed.

【0009】[0009]

【発明が解決しようとする課題】 さて、このような容
量の大きいリチウム二次電池には、電池内圧が上昇した
ときに所定の圧力で電池内圧を外気圧に開放する放圧弁
が設けられており、電池の温度上昇に基づく爆発を防止
している。しかしながら、電池の内圧上昇が急速で放圧
が追いつかない場合、放圧弁の作動不良が生じた場合等
には、電池の爆発は避けられない。また、一度放圧弁が
作動してしまった電池は、基本的には以後の使用が不可
能となる。
The lithium secondary battery having such a large capacity is provided with a pressure relief valve for releasing the internal pressure of the battery to an external pressure at a predetermined pressure when the internal pressure of the battery increases. And prevents explosion due to battery temperature rise. However, explosion of the battery is inevitable when the internal pressure of the battery rapidly rises and the pressure release cannot keep up, or when the operation of the pressure relief valve is defective. Further, the battery once the pressure relief valve has been activated cannot be used basically thereafter.

【0010】 また、電池が満充電に近い状態にあるほ
ど、放出されるエネルギーも大きくなることから、短絡
等による電池の温度上昇は大きなものとなる。従って、
例えば、製造された電池が満充電等の充電容量の多い状
態で、一国の製造工場からその国の別の場所或いは他国
へ輸送されている間に、何らかの原因で温度上昇を起こ
した場合には、事故や災害に至る可能性が大きくなる。
[0010] Further, as the battery is in a state closer to full charge, the released energy increases, so that the temperature rise of the battery due to a short circuit or the like becomes large. Therefore,
For example, if the temperature of a manufactured battery rises for some reason while it is being transported from a manufacturing plant in one country to another place in that country or to another country in a state with a large charge capacity such as full charge, etc. Are more likely to lead to accidents and disasters.

【0011】 そこで発明者らは、上述のように電池の
温度が上昇する原因は数多くあるが、詰まるところ、電
池に蓄積されているエネルギーによって電池自体が加熱
されることとなっている場合が殆どであり、また、内部
短絡時に最も電池温度が上昇することに着目し、電池に
蓄積されたエネルギー量を所定の条件を満足する量に制
限すれば、電池温度の上昇を一定温度以下に抑制するこ
とができると考え、本発明に到達した。
[0011] The inventors have found that there are many causes of the battery temperature rising as described above. However, in most cases, the battery itself is heated by the energy stored in the battery. Also, paying attention to the fact that the battery temperature rises most at the time of an internal short circuit, and limiting the amount of energy stored in the battery to an amount that satisfies a predetermined condition, the rise of the battery temperature is suppressed to a certain temperature or less. The present invention has been reached by considering that the present invention can be performed.

【0012】 なお、製造した電池は一度充放電を行っ
て特性を確認した後に出荷、輸送することが好ましいこ
とはいうまでもない。その場合に、完全に放電しきった
状態で出荷すれば、外部加熱以外の要因では電池温度の
上昇は起こり得ないことから、輸送安全性の点からは好
ましいと考えられる。ところが、リチウム二次電池の充
放電特性や自己放電特性等を考慮すると、このように完
全放電させた場合には、以後の実使用時に使用不可能と
なることが容易に想定される。従って、このような方法
を採用することはできない。
It is needless to say that it is preferable that the manufactured battery is charged and discharged once and its characteristics are confirmed, and then shipped and transported. In this case, if the battery is shipped in a completely discharged state, the battery temperature cannot rise due to factors other than external heating, and this is considered preferable in terms of transport safety. However, in consideration of the charge / discharge characteristics, self-discharge characteristics, and the like of the lithium secondary battery, it is easily assumed that when the battery is completely discharged as described above, the battery cannot be used in actual use thereafter. Therefore, such a method cannot be adopted.

【0013】[0013]

【課題を解決するための手段】 即ち、本発明によれ
ば、正負各電極板をセパレータを介して捲回若しくは積
層してなる電極体を備え、非水電解液を用いたリチウム
二次電池の輸送方法であって、当該電池に蓄積された単
位重量当たりのエネルギー量をE(J/g)、当該電池
の比熱をCp(J/℃・g)、当該電池の通常輸送温度
をT1(℃)、当該電池の最高上昇温度をT2(℃)と
し、また、当該電池が熱により不安全な状態となる最低
温度をt(℃)としたときに、当該電池を、下記式、
E/Cp+T1=T2<t ・・・式 の関係が満足さ
れた状態として輸送することを特徴とするリチウム二次
電池の輸送方法、が提供される。
That is, according to the present invention, there is provided a lithium secondary battery using a non-aqueous electrolyte, comprising an electrode body formed by winding or laminating each of positive and negative electrode plates via a separator. It is a transportation method, wherein the energy amount per unit weight stored in the battery is E (J / g), the specific heat of the battery is Cp (J / ° C. · g), and the normal transportation temperature of the battery is T 1 ( C), the maximum temperature of the battery is defined as T 2 (° C.), and the minimum temperature at which the battery becomes unsafe due to heat is defined as t (° C.).
E / Cp + T 1 = T 2 <t A method for transporting a lithium secondary battery is provided, wherein the transport is performed in a state where the relationship of the formula is satisfied.

【0014】 本発明のリチウム二次電池の輸送方法に
おいては、最高上昇温度T2は、非水電解液の沸点以下
とすることが好ましい。一方、最高上昇温度T2は、非
水電解液の主要成分の各沸点中で最も低い温度以下とし
てもよい。また、最高上昇温度T2を、セパレータの主
要構成材料の融点中で最も高い温度以下とすることも好
ましい。
In the method for transporting a lithium secondary battery according to the present invention, the maximum temperature rise T 2 is preferably equal to or lower than the boiling point of the non-aqueous electrolyte. On the other hand, the maximum rise temperature T 2 may be equal to or lower than the lowest temperature among the boiling points of the main components of the non-aqueous electrolyte. It is also preferable that the maximum rise temperature T 2 be equal to or lower than the highest temperature among the melting points of the main constituent materials of the separator.

【0015】 本発明のリチウム二次電池の輸送方法
は、満充電時の電池容量が2Ah以上の電池の輸送に好
適に適用される。また、本発明は、電気自動車若しくは
ハイブリッド電気自動車用の電源として用いられる電池
の輸送に適用される。
The method for transporting a lithium secondary battery of the present invention is suitably applied to transport of a battery having a battery capacity of 2 Ah or more when fully charged. Further, the present invention is applied to transport of a battery used as a power source for an electric vehicle or a hybrid electric vehicle.

【0016】[0016]

【発明の実施の形態】 本発明の輸送方法が適用される
リチウム二次電池(電池)は、正負各電極板をセパレー
タを介して捲回若しくは積層してなる電極体を備え、非
水電解液を用いたものである。但し、各1枚の正極板と
負極板でセパレータを挟み込んだ電極体を備えたコイン
型電池に適用することを妨げるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION A lithium secondary battery (battery) to which a transportation method of the present invention is applied includes an electrode body formed by winding or laminating positive and negative electrode plates via a separator, and a non-aqueous electrolyte. Is used. However, this does not prevent application to a coin-type battery including an electrode body in which a separator is sandwiched between one positive electrode plate and one negative electrode plate.

【0017】 図1は捲回型電極体(以下「捲回体」と
いう。)1の概略構造を示した斜視図である。捲回体1
は、集電用タブ(タブ)5・6が複数取り付けられた電
極板2・3(正極板2、負極板3)をセパレータ4を介
して巻芯13の外周に捲回した構造を有している。
FIG. 1 is a perspective view showing a schematic structure of a wound electrode body (hereinafter referred to as a “wound body”) 1. Wound body 1
Has a structure in which electrode plates 2.3 (positive plates 2, negative plates 3) on which a plurality of current collecting tabs (tabs) 5 and 6 are attached are wound around the outer periphery of a core 13 via a separator 4. ing.

【0018】 ここで、正極板2は集電基板の両面に正
極活物質を塗工して、正極活物質層を形成することによ
って作製される。集電基板としては、アルミニウム箔や
チタン箔等の正極電気化学反応に対する耐蝕性が良好で
ある金属箔が好適に用いられる。なお、箔の代わりにパ
ンチングメタル或いはメッシュ(網)を用いることもで
きる。また、正極活物質としては、コバルト酸リチウム
(LiCoO2)、ニッケル酸リチウム(LiNi
2)、マンガン酸リチウム(LiMn24)等のリチ
ウム遷移金属複合酸化物を用いることができる。
Here, the positive electrode plate 2 is manufactured by applying a positive electrode active material on both surfaces of a current collecting substrate to form a positive electrode active material layer. As the current collecting substrate, a metal foil having good corrosion resistance to a positive electrode electrochemical reaction, such as an aluminum foil or a titanium foil, is preferably used. In addition, a punching metal or a mesh (net) can be used instead of the foil. As the positive electrode active material, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO)
O 2 ) and lithium transition metal composite oxides such as lithium manganate (LiMn 2 O 4 ) can be used.

【0019】 これら各種の正極活物質の集電基板(金
属箔)への塗工は、正極活物質粉末に溶剤やバインダ等
を添加して作製したスラリー或いはペーストを、ドクタ
ーブレード法、ロールコータ法等を用いて、集電基板に
塗布・乾燥することで行われる。なお、正極活物質層の
形成に当たっては、これら正極活物質粉末にアセチレン
ブラック或いはカーボンブラック等の炭素微粉末が導電
助材として加えられる。
The application of these various positive electrode active materials to a current collecting substrate (metal foil) is performed by applying a slurry or paste prepared by adding a solvent, a binder, or the like to the positive electrode active material powder, using a doctor blade method, a roll coater method, or the like. The method is performed by coating and drying the current collecting substrate using the method described above. In forming the positive electrode active material layer, fine carbon powder such as acetylene black or carbon black is added to the positive electrode active material powder as a conductive additive.

【0020】 負極板3は、正極板2と同様にして作製
することができる。負極板3の集電基板としては、銅箔
若しくはニッケル箔等の負極電気化学反応に対する耐蝕
性が良好な金属箔が好適に用いられる。勿論、パンチン
グメタルやメッシュを用いてもよい。負極活物質として
は、ソフトカーボンやハードカーボンといったアモルフ
ァス系炭素質材料や、人造黒鉛や天然黒鉛等の高黒鉛化
炭素質粉末が用いられる。
The negative electrode plate 3 can be manufactured in the same manner as the positive electrode plate 2. As the current collecting substrate of the negative electrode plate 3, a metal foil having good corrosion resistance to a negative electrode electrochemical reaction such as a copper foil or a nickel foil is suitably used. Of course, punching metal or mesh may be used. As the negative electrode active material, an amorphous carbonaceous material such as soft carbon or hard carbon, or a highly graphitized carbonaceous powder such as artificial graphite or natural graphite is used.

【0021】 セパレータ4としては、マイクロポアを
有するLiイオン透過性のポリエチレンフィルム(PE
フィルム)を、多孔性のLiイオン透過性のポリプロピ
レンフィルム(PPフィルム)で挟んだ3層構造とした
ものが好適に用いられる。これは、捲回体1の温度が上
昇した場合に、PEフィルムが約130℃で軟化してマ
イクロポアが潰れ、Liイオンの移動即ち電池反応を抑
制する安全機構を兼ねたものである。そして、このPE
フィルムをより軟化温度の高いPPフィルムで挟持する
ことによって、PEフィルムが軟化した場合において
も、PPフィルムが形状を保持して正極板2と負極板3
の接触・短絡を防止し、電池反応の確実な抑制と安全性
の確保が可能となる。
As the separator 4, a Li ion-permeable polyethylene film having micropores (PE
Film) having a three-layer structure sandwiched between porous Li ion-permeable polypropylene films (PP films) is preferably used. This is because when the temperature of the wound body 1 rises, the PE film softens at about 130 ° C., the micropores are crushed, and also serves as a safety mechanism for suppressing the movement of Li ions, that is, the battery reaction. And this PE
By sandwiching the film with a PP film having a higher softening temperature, even when the PE film is softened, the PP film retains its shape and retains the positive electrode plate 2 and the negative electrode plate 3.
This prevents contact and short-circuit of the battery and ensures reliable suppression of battery reaction and secures safety.

【0022】 電極板2・3とセパレータ4を巻芯13
周りに捲回する作業の際に、電極板2・3において電極
活物質の塗工されていない集電基板が露出した部分にタ
ブ5・6がそれぞれ取り付けられる。このため、電極板
2・3は、集電基材の幅方向の少なくとも一端に活物質
層が形成されていないストライプ構造とすることが好ま
しい。なお、巻芯13は、金属、樹脂、セラミック等種
々の材質のものを用いることができ、導電性材料を用い
る場合には、電極板2・3との絶縁を確保しなければな
らない。
The electrode plates 2 and 3 and the separator 4 are
At the time of the winding work, tabs 5 and 6 are attached to portions of the electrode plates 2 and 3 where the current collecting substrate not coated with the electrode active material is exposed. For this reason, it is preferable that the electrode plates 2 and 3 have a stripe structure in which the active material layer is not formed at least at one end in the width direction of the current collecting base material. The core 13 can be made of various materials such as metal, resin and ceramic. When a conductive material is used, it is necessary to ensure insulation from the electrode plates 2 and 3.

【0023】 タブ5・6としては、それぞれの電極板
2・3の集電基板と同じ材質からなる箔状のものが好適
に用いられる。タブ5・6の電極板2・3への取り付け
は、超音波溶接やスポット溶接等を用いて行うことがで
きる。このとき、図1に示されるように、捲回体1の一
端面に一方の電極のタブが配置されるようにタブ5・6
をそれぞれ取り付けると、タブ5・6間の接触を防止す
ることができ、好ましい。
As the tabs 5 and 6, foil-like ones made of the same material as the current collecting substrate of each of the electrode plates 2 and 3 are preferably used. The tabs 5 and 6 can be attached to the electrode plates 2 and 3 using ultrasonic welding, spot welding, or the like. At this time, as shown in FIG. 1, the tabs 5 and 6 are arranged such that the tab of one electrode is arranged on one end surface of the wound body 1.
It is preferable to attach each of them to prevent contact between the tabs 5 and 6, which is preferable.

【0024】 上述の通りにして作製された捲回体1を
用いて、電池を組み立てるに当たっては、先ず、電流を
外部に取り出すための正負極端子とタブ5・6との導通
をそれぞれ確保しつつ、作製された捲回体1を電池ケー
スに挿入して安定な位置にホールドする。その後、非水
電解液を含浸させた後に、電池ケースを封止することで
電池を作製することができる。本発明において、電池ケ
ースの形状や構造、或いは捲回体1におけるタブ5・6
と正負極端子との接続の形態には何ら制限がないことは
いうまでもない。
In assembling a battery using the wound body 1 manufactured as described above, first, while ensuring continuity between the positive and negative electrode terminals for extracting current to the outside and the tabs 5 and 6, respectively. Then, the manufactured wound body 1 is inserted into the battery case and held at a stable position. After that, the battery case can be sealed by impregnating with a non-aqueous electrolyte and then sealing the battery case. In the present invention, the shape and structure of the battery case, or the tabs 5 and 6 in the wound body 1 are used.
Needless to say, there is no limitation on the form of connection between the terminal and the positive and negative terminals.

【0025】 なお、非水電解液としては、六フッ化リ
ン酸リチウム(LiPF 6)やホウフッ化リチウム(L
iBF4)等のリチウム錯体フッ素化合物、或いは過塩
素酸リチウム(LiClO4)といったリチウムハロゲ
ン化物等から選ばれた1種類若しくは2種類以上の電解
質を、エチレンカーボネート(EC)、ジエチルカーボ
ネート(DEC)、ジメチルカーボネート(DMC)、
プロピレンカーボネート(PC)といった炭酸エステル
系溶媒やγ−ブチロラクトン、テトラヒドロフラン、ア
セトニトリル等の単独溶媒若しくは混合溶媒に溶解して
なるものが好適に用いられる。
As the non-aqueous electrolyte, lithium hexafluoride
Lithium phosphate (LiPF 6) Or lithium borofluoride (L
iBFFour) And other lithium complex fluorine compounds or persalts
Lithium citrate (LiClOFour) Such as lithium halide
Of one or more types selected from oxides
The quality is ethylene carbonate (EC), diethyl carbonate
Nate (DEC), dimethyl carbonate (DMC),
Carbonic esters such as propylene carbonate (PC)
Solvent, γ-butyrolactone, tetrahydrofuran,
Dissolved in a single solvent such as cetonitrile or a mixed solvent
Are preferably used.

【0026】 次に、図2に積層型電極体(以下「積層
体」という。)7の斜視図を示す。積層体7は、正極板
8と負極板9とを、セパレータ10を介しながら交互に
積層した構造を有しており、電極板8・9の1枚1枚に
タブ11・12が取り付けられている。図2では電極板
8・9等の面形状は四角形であるが、円形、楕円形等種
々の形状とすることができる。
Next, FIG. 2 shows a perspective view of a laminated electrode body (hereinafter, referred to as “laminated body”) 7. The laminate 7 has a structure in which a positive electrode plate 8 and a negative electrode plate 9 are alternately laminated with a separator 10 interposed therebetween, and tabs 11 and 12 are attached to each of the electrode plates 8 and 9. I have. In FIG. 2, the surface shapes of the electrode plates 8 and 9 are square, but may be various shapes such as a circle and an ellipse.

【0027】 なお、電極板8・9の作製には、前述し
た捲回体1に用いられる電極板2・3と同様の方法を用
いることが可能である。また、積層体7を収容する電池
ケースの形状や電池の端子位置、電池の外形について制
限がないことはいうまでもなく、セパレータや非水電解
液についても、捲回体1を用いた場合と同様のものを用
いることができる。
The electrode plates 8 and 9 can be manufactured by the same method as the electrode plates 2 and 3 used for the above-described wound body 1. In addition, it goes without saying that there is no limitation on the shape of the battery case, the terminal position of the battery, and the outer shape of the battery that house the stacked body 7, and the separator and the non-aqueous electrolyte are also different from the case where the wound body 1 is used. Similar ones can be used.

【0028】 さて、上述した捲回体1又は積層体7を
用いて作製された電池を製造所から出荷し、所定の場所
へ輸送するに際して、本発明では、電池が下記式、 E/Cp+T1=T2<t ・・・式 但し、E(J/g):蓄積された単位重量当たりのエネ
ルギー量、 Cp(J/℃・g):電池の比熱、 T1(℃):通常輸送温度、 T2(℃):最高上昇温度 t(℃):電池が熱により不安全な状態となる最低温
度、 の関係が満足された状態として輸送する。
Now, when the battery manufactured by using the above-described wound body 1 or the laminated body 7 is shipped from a manufacturing plant and transported to a predetermined place, in the present invention, the battery has the following formula: E / Cp + T 1 = T 2 <t formula where E (J / g): accumulated energy per unit weight, Cp (J / ° C. · g): specific heat of battery, T 1 (° C.): normal transport temperature , T 2 (° C.): maximum temperature rise t (° C.): minimum temperature at which the battery becomes unsafe due to heat

【0029】 ここで、蓄積された単位重量当たりのエ
ネルギー量E(J/g)とは、輸送に際して実際に電池
に充填されるエネルギー量を指し、電池の満充電時の単
位重量当たりのエネルギー量をE0(J/g)とする
と、E≦E0の関係が成り立つ。電池の比熱Cp(J/
℃・g)は、電池全体の比熱を指し、電極体のみの比熱
を指すものではない。なお、Eの代わりに電池全体のエ
ネルギー量E’(J)を、Cpの代わりに電池全体の熱
容量C(J/℃)を用いても、式は同様に成立するこ
とは明らかである。電池に蓄えられるエネルギー量は、
電池の充電容量(放電可能容量)でもある。
Here, the stored energy amount per unit weight E (J / g) refers to the energy amount actually charged into the battery at the time of transportation, and the energy amount per unit weight when the battery is fully charged. Is E 0 (J / g), the relationship of E ≦ E 0 holds. Battery specific heat Cp (J /
° C · g) indicates the specific heat of the whole battery, not the specific heat of only the electrode body. It is apparent that the equation holds similarly even when the energy amount E ′ (J) of the entire battery is used instead of E and the heat capacity C (J / ° C.) of the entire battery is used instead of Cp. The amount of energy stored in the battery is
It is also the charge capacity (dischargeable capacity) of the battery.

【0030】 電池の比熱Cpは、乾燥器等の中に載置
することにより電池内部まで一定の所定温度保持された
電池を、デュワー瓶中に蓄えられた水の中へ投下して、
その上昇水温を測定することにより求めることができ
る。なお、比熱公知の材料塊を用いて、デュワー瓶から
の放熱による熱損失を予め求めておけば、より正確な電
池の比熱を測定することができる。
The specific heat Cp of the battery is obtained by dropping a battery, which is kept at a predetermined temperature inside the battery by placing it in a dryer or the like, into water stored in a Dewar bottle,
It can be obtained by measuring the rising water temperature. In addition, if the heat loss due to the heat radiation from the Dewar bottle is obtained in advance by using a mass of material having a known specific heat, a more accurate specific heat of the battery can be measured.

【0031】 通常輸送温度T1(℃)は、多くの場合
は室温であるが、航空機を利用する場合や船舶を利用す
る場合等の輸送手段の違いを考慮し、また、輸送経路
(航路)の気候域、例えば、熱帯であるとか寒帯である
とかを考慮して、適宜好適な値に定めることも可能であ
る。
Usually, the transport temperature T 1 (° C.) is room temperature, but in consideration of differences in transport means such as when using an aircraft or when using a ship, the transport route (sea route) is taken into consideration. In consideration of the climatic region of, for example, a tropical region or a cold region, it is also possible to appropriately determine an appropriate value.

【0032】 最高上昇温度T2(℃)は、式から明
らかなように、電池に蓄積されたエネルギーによって、
電池自体が温められて到達する電池温度を指している。
また、電池が熱により不安全な状態となる最低温度t
(℃)とは、例えば、非水電解液が蒸発し、電池内圧が
上昇して放圧弁が作動することとなる温度や、電池構成
成分の発熱反応により反応が急激に開始する温度等をい
う。非水電解液の沸点は、非水電解液を形成する溶媒の
種類や混合比率等によって異なり、また、放圧弁の設定
開放圧力や容器(電池ケース)耐圧は任意に設定するこ
とができることから、tは電池の設計(構造や使用材料
等)によって異なるものとなる。
As is apparent from the equation, the maximum temperature T 2 (° C.) depends on the energy stored in the battery.
It refers to the battery temperature reached when the battery itself is warmed.
In addition, the minimum temperature t at which the battery becomes unsafe due to heat
The term (° C.) refers to, for example, a temperature at which the non-aqueous electrolyte evaporates and the internal pressure of the battery increases to operate the pressure relief valve, and a temperature at which the reaction rapidly starts due to an exothermic reaction of the battery components. . The boiling point of the non-aqueous electrolyte varies depending on the type and mixing ratio of the solvent forming the non-aqueous electrolyte, and since the set opening pressure of the pressure relief valve and the pressure resistance of the container (battery case) can be arbitrarily set, t differs depending on the design of the battery (structure, materials used, etc.).

【0033】 従って、式の用い方としては、先ず電
池の設計に応じてtを定め、次にT2を定める。T1は輸
送方法等により決定することができ、また、Cpは別途
測定により予め求めることができることから、こうして
定められたT2に対して一義的にEを決定することがで
きる。
Therefore, as a method of using the equation, first, t is determined according to the battery design, and then T 2 is determined. Since T 1 can be determined by a transportation method or the like, and Cp can be obtained in advance by a separate measurement, E can be uniquely determined for T 2 thus determined.

【0034】 次に、上述した式の具体的な使用態様
について例を挙げて説明することとする。式の第1の
使用態様は、最高上昇温度T2を、非水電解液の沸点以
下に設定することである。例えば、非水電解液に用いら
れる溶媒の沸点は、前述したPCで241℃、ECで2
48℃、DECで127℃、DMCで90℃である。こ
のような溶媒を混合した場合には、分子間相互作用によ
って沸点が上昇する場合があるが、それぞれの成分が沸
点で蒸発を始める場合も起こり得る。
Next, a specific mode of use of the above-described formula will be described with an example. The first mode of use of the equation, the maximum temperature increase T 2, is to set the boiling point of the non-aqueous electrolyte. For example, the boiling point of the solvent used for the non-aqueous electrolyte is 241 ° C. for the aforementioned PC and 2 ° C. for the EC.
48 ° C., 127 ° C. in DEC, and 90 ° C. in DMC. When such a solvent is mixed, the boiling point may increase due to intermolecular interaction, but each component may start to evaporate at the boiling point.

【0035】 つまり、本発明で定義する非水電解液の
沸点とは、非水電解液から、少なくとも非水電解液を構
成する一成分が蒸発を始める温度を指す。沸点は外圧に
よって変化するが、この場合の外圧は電池内圧であり、
通常は1気圧である。但し、電池外温度、電池封止時の
不活性ガス圧力等により変化し得る。
That is, the boiling point of the non-aqueous electrolyte defined in the present invention refers to a temperature at which at least one component of the non-aqueous electrolyte starts to evaporate from the non-aqueous electrolyte. The boiling point changes depending on the external pressure. In this case, the external pressure is the internal pressure of the battery,
Usually, it is 1 atm. However, it may vary depending on the temperature outside the battery, the pressure of the inert gas when the battery is sealed, and the like.

【0036】 従って、最高上昇温度T2を、非水電解
液の主要成分の各沸点中で最も低い温度以下とすること
も好ましい。非水電解液の主要成分とは、具体的に何%
以上含まれる成分のことを指すものではない。例えば、
溶媒Aと溶媒Bの等量混合物では両溶媒A・Bが主要成
分であることはいうまでもなく、溶媒Aが20%であっ
ても、やはり溶媒Aは主要成分と考えることができる。
これに対して、溶媒Aが98%であり、溶媒Bが2%と
いった混合溶媒では、主要成分は溶媒Aのみと考えるこ
とができる。主要成分であるか否かについては、他のど
の成分に対しても相対的に1/20以下の含有量しか含
まれていな成分は主要成分でないとし、この条件を判断
基準とすることができる。
Therefore, it is also preferable that the maximum rise temperature T 2 be equal to or lower than the lowest temperature among the boiling points of the main components of the non-aqueous electrolyte. What are the major components of the non-aqueous electrolyte?
It does not refer to the components contained above. For example,
It goes without saying that in a mixture of equal amounts of the solvent A and the solvent B, both solvents A and B are the main components. Even if the solvent A is 20%, the solvent A can be considered as a main component.
On the other hand, in a mixed solvent in which the solvent A is 98% and the solvent B is 2%, the main component can be considered to be only the solvent A. Regarding whether or not it is a main component, a component containing only 1/20 or less of the content relative to any other component is regarded as not a main component, and this condition can be used as a criterion. .

【0037】 さて、最高上昇温度T2の基準を、セパ
レータの主要構成材料の融点中で最も高い温度以下とす
ることも好ましい。例えば、前述した3層構造を有する
PP/PE/PPフィルムからなるセパレータでは、融
点が高く、セパレータの骨格をなすPPフィルムが溶融
すると、正極板と負極板の直接接触の危険性が高くなる
ことから、T2をPPフィルムの溶融温度以下とすれ
ば、電池の安全性が確保され、好ましい。
Now, it is also preferable that the criterion of the maximum rise temperature T 2 is lower than the highest temperature among the melting points of the main constituent materials of the separator. For example, a separator made of a PP / PE / PP film having a three-layer structure described above has a high melting point, and when the PP film forming the skeleton of the separator is melted, the risk of direct contact between the positive electrode plate and the negative electrode plate increases. Therefore, it is preferable that T 2 be equal to or lower than the melting temperature of the PP film because the safety of the battery is ensured.

【0038】 ところで、式は、電池が断熱状態にあ
ることを前提としているが、実際には電池温度が上昇し
たときには電池表面から外部へ熱が放出されることとな
るから、もし、電池に蓄積されたエネルギーによって電
池自体が加熱されても、電池の温度が設定された最高上
昇温度T2に達することは現実には起こり得ないと言っ
てもよい。このことは、逆に言えば、電池の上昇温度が
2よりも低い温度に抑えられるということを示してい
ることから、式の条件を満たす状態とすることは、電
池の安全性をより高めた状態とすることを意味してい
る。
The equation assumes that the battery is in an adiabatic state. However, in reality, when the battery temperature rises, heat is released from the battery surface to the outside. be heated cell itself by energy, to reach the maximum rising temperature T 2 the temperature of the battery is set it may be said that reality can not occur. Conversely, this indicates that the temperature rise of the battery can be suppressed to a temperature lower than T 2 , so that the condition satisfying the condition of the equation can enhance the safety of the battery. It means that it is in a state where it is in a closed state.

【0039】 上述した本発明の輸送方法は、満充電時
の電池容量が2Ah以上、特に5Ah以上の大容量電池
に好適に用いられるが、電池を安全に輸送するという本
発明の目的に鑑みれば、2Ah以下の容量の電池に用い
ることも勿論可能である。輸送される電池の用途に制限
はないことはいうまでもないが、電気自動車若しくはハ
イブリッド電気自動車用の電源として用いられる大容量
電池の輸送に本発明は好適に用いることができる。
The above-described transport method of the present invention is suitably used for a large-capacity battery having a battery capacity of 2 Ah or more, particularly 5 Ah or more when fully charged. However, in view of the object of the present invention that the battery is transported safely. Of course, it can be used for a battery having a capacity of 2 Ah or less. It goes without saying that the use of the transported battery is not limited, but the present invention can be suitably used for transporting a large-capacity battery used as a power source for an electric vehicle or a hybrid electric vehicle.

【0040】[0040]

【発明の効果】 以上、本発明のリチウム二次電池の輸
送方法によれば、短絡事故等により自己発熱した場合で
あっても、蓄積エネルギー、即ち充電量が制限されてい
るために、電池温度が所定温度以上に上昇することがな
く、また、電池の爆発等が回避されることから、電池輸
送時の安全性が確保されるという優れた効果が得られ
る。一方で、一定容量の充電はされていることから、経
時的な自己放電によっても、実使用に際して支障をきた
したり、電池特性が低下することがない。なお、リチウ
ム二次電池そのものの安全性が確保されれば、輸送に際
して使用する容器等については簡素化や軽量化を図るこ
とが可能となることから、本発明は輸送効率の向上にも
寄与する。
As described above, according to the method for transporting a lithium secondary battery of the present invention, even when self-heating occurs due to a short-circuit accident or the like, the stored energy, that is, the charge amount is limited, so that the battery temperature is limited. Since the temperature of the battery does not rise to a predetermined temperature or higher, and the explosion of the battery is avoided, an excellent effect of ensuring safety during battery transportation can be obtained. On the other hand, since the battery is charged at a fixed capacity, even if the battery is self-discharged over time, no trouble is caused in actual use, and the battery characteristics are not deteriorated. If the safety of the lithium secondary battery itself is ensured, containers and the like used for transportation can be simplified and reduced in weight, so that the present invention also contributes to improvement of transportation efficiency. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 捲回型電極体の概略構造を示す斜視図であ
る。
FIG. 1 is a perspective view showing a schematic structure of a wound electrode body.

【図2】 積層型電極体の概略構造を示す斜視図であ
る。
FIG. 2 is a perspective view showing a schematic structure of a stacked electrode body.

【符号の説明】[Explanation of symbols]

1…捲回型電極体、2…正極板、3…負極板、4…セパ
レータ、5・6…タブ、7…積層型電極体、8…正極
板、9…負極板、10…セパレータ、11・12…タ
ブ、13…巻芯。
DESCRIPTION OF SYMBOLS 1 ... Wound electrode body, 2 ... Positive electrode plate, 3 ... Negative electrode plate, 4 ... Separator, 5 * ... Tab, 7 ... Laminated electrode body, 8 ... Positive electrode plate, 9 ... Negative electrode plate, 10 ... Separator, 11 -12: tab, 13: winding core.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正負各電極板をセパレータを介して捲回
若しくは積層してなる電極体を備え、非水電解液を用い
たリチウム二次電池の輸送方法であって、 当該電池に蓄積された単位重量当たりのエネルギー量を
E(J/g)、当該電池の比熱をCp(J/℃・g)、
当該電池の通常輸送温度をT1(℃)、当該電池の最高
上昇温度をT2(℃)とし、また、当該電池が熱により
不安全な状態となる最低温度をt(℃)としたときに、 当該電池を、下記式、 E/Cp+T1=T2<t ・・・式 の関係が満足された状態として輸送することを特徴とす
るリチウム二次電池の輸送方法。
1. A method for transporting a lithium secondary battery using a non-aqueous electrolyte, comprising an electrode body formed by winding or laminating each of positive and negative electrode plates with a separator interposed therebetween. The energy amount per unit weight is E (J / g), the specific heat of the battery is Cp (J / ° C. · g),
When the normal transport temperature of the battery is T 1 (° C.), the maximum temperature of the battery is T 2 (° C.), and the minimum temperature at which the battery is unsafe due to heat is t (° C.). A method for transporting a lithium secondary battery, wherein the battery is transported in a state in which a relationship represented by the following formula: E / Cp + T 1 = T 2 <t is satisfied.
【請求項2】 前記最高上昇温度T2を、前記非水電解
液の沸点以下としたことを特徴とする請求項1記載のリ
チウム二次電池の輸送方法。
2. The method for transporting a lithium secondary battery according to claim 1, wherein the maximum temperature rise T 2 is lower than the boiling point of the non-aqueous electrolyte.
【請求項3】 前記最高上昇温度T2を、前記非水電解
液の主要成分の各沸点中で最も低い温度以下としたこと
を特徴とする請求項1記載のリチウム二次電池の輸送方
法。
3. The method for transporting a lithium secondary battery according to claim 1, wherein the maximum rising temperature T 2 is set to be equal to or lower than the lowest temperature among the boiling points of the main components of the non-aqueous electrolyte.
【請求項4】 前記最高上昇温度T2を、前記セパレー
タの主要構成材料の融点中で最も高い温度以下としたこ
とを特徴とする請求項1〜3のいずれか一項に記載のリ
チウム二次電池の輸送方法。
4. The lithium secondary battery according to claim 1, wherein the maximum temperature rise T 2 is not more than the highest temperature among the melting points of the main constituent materials of the separator. How to transport batteries.
【請求項5】 満充電時の電池容量が2Ah以上の電池
に適用されることを特徴とする請求項1〜4のいずれか
一項に記載のリチウム二次電池の輸送方法。
5. The method for transporting a lithium secondary battery according to claim 1, wherein the method is applied to a battery having a battery capacity of 2 Ah or more when fully charged.
【請求項6】 電気自動車若しくはハイブリッド電気自
動車用の電源として用いられる電池に適用されることを
特徴とする請求項1〜5のいずれか一項に記載のリチウ
ム二次電池の輸送方法。
6. The method for transporting a lithium secondary battery according to claim 1, wherein the method is applied to a battery used as a power source for an electric vehicle or a hybrid electric vehicle.
JP34752599A 1999-12-07 1999-12-07 Transport method of lithium secondary battery Expired - Fee Related JP3774095B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP34752599A JP3774095B2 (en) 1999-12-07 1999-12-07 Transport method of lithium secondary battery
CA 2327597 CA2327597A1 (en) 1999-12-07 2000-12-05 Lithium secondary battery and transportation method thereof
US09/730,186 US6596430B2 (en) 1999-12-07 2000-12-05 Lithium secondary battery and transportation method thereof
DE60041685T DE60041685D1 (en) 1999-12-07 2000-12-06 Lithium secondary battery and its method of transport
EP20000126794 EP1107342B1 (en) 1999-12-07 2000-12-06 Lithium secondary battery and transportation method thereof
AT00126794T ATE424628T1 (en) 1999-12-07 2000-12-06 LITHIUM SECONDARY BATTERY AND METHOD OF TRANSPORT THEREOF
US10/434,904 US6811919B2 (en) 1999-12-07 2003-05-09 Lithium secondary battery and transportation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34752599A JP3774095B2 (en) 1999-12-07 1999-12-07 Transport method of lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001167801A true JP2001167801A (en) 2001-06-22
JP3774095B2 JP3774095B2 (en) 2006-05-10

Family

ID=18390824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34752599A Expired - Fee Related JP3774095B2 (en) 1999-12-07 1999-12-07 Transport method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3774095B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104339A (en) * 2006-09-22 2008-05-01 Matsushita Electric Ind Co Ltd Power supply apparatus and electric apparatus
WO2013000375A1 (en) * 2011-06-27 2013-01-03 深圳市吉阳自动化科技有限公司 Pole piece winding method and pole piece winding apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104339A (en) * 2006-09-22 2008-05-01 Matsushita Electric Ind Co Ltd Power supply apparatus and electric apparatus
WO2013000375A1 (en) * 2011-06-27 2013-01-03 深圳市吉阳自动化科技有限公司 Pole piece winding method and pole piece winding apparatus

Also Published As

Publication number Publication date
JP3774095B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US5834135A (en) Multilayered gel electrolyte bonded rechargeable electrochemical cell
US20090181305A1 (en) Non-Aqueous Electrolyte Secondary Battery
US20140045008A1 (en) Large format lithium-ion battery cell with improved saftey against crush and puncture
EP3142173B1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20200203724A1 (en) Electrode, nonaqueous electrolyte battery and battery pack
JP2004273139A (en) Lithium secondary battery
JP4218792B2 (en) Non-aqueous secondary battery
US6811919B2 (en) Lithium secondary battery and transportation method thereof
JPH10233237A (en) Nonaqueous electrolyte secondary battery
JP2012138368A (en) Lithium ion battery and battery pack including the same
JPH10112323A (en) Battery
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP2010040227A (en) Lithium-ion secondary battery
US20060040184A1 (en) Non-aqueous electrolyte battery
JP2001167752A (en) Non-aqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP3774095B2 (en) Transport method of lithium secondary battery
JPH06243856A (en) Electricity accumulating element
JP2022100813A (en) Secondary battery
JP3394484B2 (en) Lithium secondary battery and design method thereof
JP2000306607A (en) Nonaqueous electrolyte battery
JP4736329B2 (en) Lithium ion secondary battery
JP2000277160A (en) Nonaqueous electrolyte secondary battery
JPH10261428A (en) Battery
JP2005267953A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3774095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees