JP2001167759A - NON-STOICHIOMETRIC Zr-Ni-BASED HYDROGEN STORAGE ALLOY FOR USE IN NEGATIVE ELECTRODE OF Ni/MH SECONDARY BATTERY - Google Patents

NON-STOICHIOMETRIC Zr-Ni-BASED HYDROGEN STORAGE ALLOY FOR USE IN NEGATIVE ELECTRODE OF Ni/MH SECONDARY BATTERY

Info

Publication number
JP2001167759A
JP2001167759A JP2000333637A JP2000333637A JP2001167759A JP 2001167759 A JP2001167759 A JP 2001167759A JP 2000333637 A JP2000333637 A JP 2000333637A JP 2000333637 A JP2000333637 A JP 2000333637A JP 2001167759 A JP2001167759 A JP 2001167759A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
storage alloy
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000333637A
Other languages
Japanese (ja)
Inventor
Yon Rii Jai
ジャイ・ヨン・リー
Jin Jan Kuku
クク・ジン・ジャン
San Yu Ji
ジ・サン・ユ
Min Rii San
サン・ミン・リー
Rii Ho
ホ・リー
Hoe Kimu Soun
ソウン・ホェ・キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JP2001167759A publication Critical patent/JP2001167759A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-stoichiometric Zr-Ni-based hydrogen storage alloy for use in a negative electrode for Ni/MH secondary battery having a large capacity and a high performance. SOLUTION: Zr-based hydrogen storage alloy represented by the following general formula 1: Zr1-XTiX(MnUVVCrYNi1-U-V-Y)Z where X, U, V, Y and Z each independently represent an atomic fraction of the respective alloying elements or the like, and are values satisfying the following relationship: 0<X<=0.4; 0.3<=U<=0.4; 0.1<=V<=0.2; 0.0<=Y<=0.2; 0.45<=U+V+Y<=0.65; and 1.6<=Z<=1.9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ni/MH二次電
池用の高容量、高性能水素貯蔵合金に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity, high performance hydrogen storage alloy for a Ni / MH secondary battery.

【0002】[0002]

【従来の技術】現在Ni/MH二次電池の主な研究方向
は高容量化、高性能化(高率放電特性及び寿命向上等)
に関するものであって、このような電池の特性は主に負
極を構成している水素貯蔵合金の特性により左右されて
いると報告されている。すなわち、Ni/MH二次電池
の高容量化、高性能化は水素貯蔵合金負極の高容量化、
高性能化と直結されるということができて、したがって
多くの研究者らは水素貯蔵合金負極材料の性能向上を研
究の核心分野として設定している。水素貯蔵合金負極材
料の性能向上に対する研究において最近いくつかの研究
者らにより非化学量論比組成を有する水素貯蔵合金の優
秀な高率放電特性及びサイクル寿命が報告されており、
これにより現在電極活物質として非化学量論比組成の合
金に対する関心が集中されている。
2. Description of the Related Art At present, the main research directions of Ni / MH secondary batteries are high capacity and high performance (high rate discharge characteristics, long life, etc.).
It is reported that the characteristics of such a battery are mainly influenced by the characteristics of the hydrogen storage alloy constituting the negative electrode. That is, the higher capacity and higher performance of the Ni / MH secondary battery correspond to the higher capacity of the hydrogen storage alloy negative electrode,
It can be said that this is directly linked to higher performance, and thus many researchers have set the performance improvement of the hydrogen storage alloy negative electrode material as a core field of research. In recent studies on the performance improvement of hydrogen storage alloy negative electrode materials, some researchers have reported excellent high rate discharge characteristics and cycle life of hydrogen storage alloys having a non-stoichiometric composition,
As a result, interest in non-stoichiometric alloys has been focused on as an electrode active material.

【0003】一般的に、水素貯蔵合金が負極の活物質と
して使われるNi/MH二次電池の反応原理は次の通り
である。電池の放電時には水素貯蔵合金内に水素原子が
KOH電解質の水酸化イオン(OH-)と結合して水に
なり、この時電子が外部回路を通じて正極に移動して、
充電時には水が水素イオン(H+)と水酸化イオン(O
-)で分解されて水酸化イオンは電解質に残り、水素
イオンが外部から流入された電子と結合して水素原子状
態で水素貯蔵合金と結合して合金内に水素を保存するよ
うになる。これは水素貯蔵合金がアルカリ溶液にて安定
で、多くの量の水素を速く吸収/放出する水素貯蔵合金
固有の可逆的な特性を利用することである。
In general, the reaction principle of a Ni / MH secondary battery using a hydrogen storage alloy as an active material of a negative electrode is as follows. During battery discharge hydroxide ions of the hydrogen storage hydrogen atom KOH electrolyte in the alloy (OH -) combined with it in water, this time the electron moves to the cathode through an external circuit,
During charging, water is converted to hydrogen ions (H + ) and hydroxide ions (O
Hydroxide ions are decomposed by H ) and remain in the electrolyte, and the hydrogen ions combine with electrons introduced from the outside and combine with the hydrogen storage alloy in the form of hydrogen atoms to store hydrogen in the alloy. This is to make use of the inherent reversible properties of hydrogen storage alloys, which are stable in alkaline solutions and rapidly absorb / release large amounts of hydrogen.

【0004】水素貯蔵合金をNi/MH二次電池用負極
活物質として使用するためには大きく次の2種類の条件
が要求される。最初に、気体−固体反応で適合した水素
吸収・放出圧力(一般的に室温で0.01〜1気圧内
外)、大きい水素貯蔵容量(電極の理論放電容量は水素
貯蔵容量(CHwt%)に比例する:理論放電容量
[(mAh/g)=268×CH]、速い水素化反応速
度などの水素化反応特性を揃えなければならない。二つ
目、KOH電解質と合金の電気化学反応時合金と電解質
界面で水素の分解及び合成と関連された電荷移動反応が
容易でなければならない。すなわち、合金表面が電荷移
動反応の触媒機能を有する水素貯蔵合金のみがNi/M
H二次電池の負極活物質として使われることができる。
In order to use a hydrogen storage alloy as a negative electrode active material for a Ni / MH secondary battery, the following two types of conditions are required. First, the gas - solid reaction hydrogen absorption and desorption pressures were fit (typically out 0.01 atm at room temperature), large hydrogen theoretical discharge capacity of the storage capacitor (electrode hydrogen storage capacity (C H wt%) The hydrogenation reaction characteristics such as the theoretical discharge capacity [(mAh / g) = 268 × C H ] and the rapid hydrogenation reaction rate must be uniform.Second, during the electrochemical reaction between the KOH electrolyte and the alloy The charge transfer reaction associated with the decomposition and synthesis of hydrogen at the alloy-electrolyte interface must be easy, that is, only the hydrogen storage alloy whose surface has a catalytic function of the charge transfer reaction is Ni / M
It can be used as a negative electrode active material of an H secondary battery.

【0005】現在、このような要求条件に符合される水
素貯蔵合金は多数知られているが、代表的なものとして
はAB5型ヘキサゴナル構造のLa−Nd−Ni−Co
−Al[参照:米国特許第4,488,817号]、M
m−Mn−Ni−Co−Al[参照:日本国特許公告昭
61−1132501号、同昭61−214361号]
とAB2型としてC14、15−ヘキサゴナル、BCC
多状構造のTi−V−Ni−Cr[参照:米国特許第
4,551,400号]、C14構造のZr−V−Ni
系[参照:J.of the Less-Common Metals、172−1
74:1219(1991)]などがある。
[0005] Currently, such hydrogen storage alloys meet the requirements conditions are known many, La-Nd-Ni-Co of AB 5 type hexagonal structure as a typical
-Al [see: U.S. Pat. No. 4,488,817], M
m-Mn-Ni-Co-Al [Reference: Japanese Patent Publication Nos. 61-1132501, 61-214361]
As the AB 2 type C14,15- hexagonal, BCC
Ti-V-Ni-Cr with polymorphic structure [see U.S. Patent No. 4,551,400], Zr-V-Ni with C14 structure
[Ref: J. of the Less-Common Metals, 172-1
74: 1219 (1991)].

【0006】これら合金のうち、AB5型のLa−Ni
系負極はアルカリ電解質で充電/放電サイクルによる電
極容量の減少が非常に大きい[J.of the Less-Common
Metals、161:193(1990)及び155:119
(1989)]。このような現像を退化というが、例え
ば、J.J.G.Willems等による米国特許第4,488,
817号は合金組成元素のうちNi元素をCo,Alで
少量置換して、La元素をNdに少量置換することによ
ってサイクル寿命を向上させることはできるが、容量が
減少する短所を有している。
[0006] Of these alloys, AB 5 type of La-Ni
The system negative electrode is an alkaline electrolyte, and the charge / discharge cycle greatly reduces the electrode capacity [J. of the Less-Common
Metals, 161: 193 (1990) and 155: 119
(1989)]. Such development is referred to as degeneration. J. G. US Patent No. 4,488, Willems et al.
No. 817 can improve the cycle life by substituting a small amount of the Ni element with Co and Al and substituting the La element with a small amount of Nd among the alloy composition elements, but has a disadvantage that the capacity is reduced. .

【0007】また、T.Gamo等による米国特許第4,9
46,646号はZrが30原子%以上、Niが40原
子%以上含まれたZr系水素貯蔵合金を開示している
が、放電容量が300−370mAh/g内外に終わる
限界を有する。
Further, T.S. US Patent No. 4,9 by Gamo et al.
No. 46,646 discloses a Zr-based hydrogen storage alloy containing 30 atomic% or more of Zr and 40 atomic% or more of Ni, but has a limit that a discharge capacity is limited to 300 to 370 mAh / g.

【0008】また、K.Hongによる米国特許第4,84
9,205号、M.A.Fechenkoなどによる米国特許第
4,728,586号及び同第4,551,400号に
も容量300−380mAh/gのTi−Zr−V−N
i−Cu−Mn−M(M=Al,Co,Fe等)の水素
貯蔵合金程度が開示されているだけである。
Further, K. US Patent No. 4,84 by Hong
9, 205; A. U.S. Pat. Nos. 4,728,586 and 4,551,400 to Fechenko et al. Also describe a Ti-Zr-VN with a capacity of 300-380 mAh / g.
Only a hydrogen storage alloy of i-Cu-Mn-M (M = Al, Co, Fe, etc.) is disclosed.

【0009】[0009]

【発明が解決しようとする課題】いままで開発されたN
i/MH二次電池用水素貯蔵合金はMm−Ni系のAB
5型(A=水素と親和力が大きい元素、La,Ce,P
r,Ndのような希土類系金属類、B=Ni,Mn,C
o,Fe,Alのような遷移元素)とZr−Ni,Ti
−Ni系のAB2型があるが、AB5型の場合はエネルギ
ー貯蔵密度が低い短所を、AB2型の場合は諸般性能が
落ちる問題点を有している。今後、高容量で高性能のN
i/MH二次電池開発のためにはAB5に比べて高い水
素貯蔵容量を有するAB2型水素貯蔵合金の高容量化と
優秀な電極寿命のための研究が先行されなければならな
い。
[Problems to be Solved by the Invention] The N
Hydrogen storage alloy for i / MH secondary battery is Mm-Ni AB
FiveType (A = element with high affinity for hydrogen, La, Ce, P
rare earth metals such as r, Nd, B = Ni, Mn, C
o, Fe, transition elements such as Al) and Zr-Ni, Ti
-Ni-based ABTwoThere is a type, ABFiveEnergy for type
-The disadvantage of low storage density is ABTwoFor various types, various performance
It has the problem of falling. In the future, high capacity and high performance N
AB for i / MH secondary battery developmentFiveHigher water than
AB with element storage capacityTwoCapacity of hydrogen storage alloy
Research for excellent electrode life must be preceded
No.

【0010】本発明者は、非化学量論比の組成を有する
新規なZr系水素貯蔵合金を提供することによって高容
量高性能のAB2型水素貯蔵合金を開発することを本発
明の目的とする。
An object of the present invention is to develop a high capacity, high performance AB 2 type hydrogen storage alloy by providing a novel Zr-based hydrogen storage alloy having a non-stoichiometric composition. I do.

【0011】[0011]

【課題を解決するための手段】以下、本発明によるZr
系水素貯蔵合金をより具体的に説明しようとする。
The Zr according to the present invention will now be described.
The system based hydrogen storage alloy will be described more specifically.

【0012】本発明のZrr系水素貯蔵合金は下記一般
式(I)で表示される。
The Zrr-based hydrogen storage alloy of the present invention is represented by the following general formula (I).

【0013】 Zr1-xTix(MnUVCrYNi1-U-V-YZ …(I) 前記式で、X,U,V,YおよびZは各々合金組成元素
等の原子分率として、0<X≦0.4、0.3≦U≦
0.4、0.1≦V≦0.2、0.0≦Y≦0.2、
0.45≦U+V+Y≦0.65、1.6≦Z≦1.9
を満足する値である。
Zr 1-x T x (Mn U V V Cr Y Ni 1-UVY ) Z (I) In the above formula, X, U, V, Y and Z are each an atomic fraction of an alloy composition element or the like. , 0 <X ≦ 0.4, 0.3 ≦ U ≦
0.4, 0.1 ≦ V ≦ 0.2, 0.0 ≦ Y ≦ 0.2,
0.45 ≦ U + V + Y ≦ 0.65, 1.6 ≦ Z ≦ 1.9
Is a value that satisfies

【0014】本発明の水素貯蔵合金中のZrは、基本合
金組成元素であり、それの最適組成比率は置換金属元素
のTiの組成を考慮して原子分率で0.6以上、1未満
である。
Zr in the hydrogen storage alloy of the present invention is a basic alloy composition element, and its optimum composition ratio is at least 0.6 and less than 1 in atomic fraction in consideration of the composition of Ti as a substitution metal element. is there.

【0015】[0015]

【発明の実施の形態】本発明における水素貯蔵合金中の
Tiは、放電容量比の増加を持ってくる元素であり、そ
れの最適組成比率は原子分率で0超過、0.4以下であ
る。もしも、前記組成比率を逸脱すれば放電容量が30
0mAh/gで減少するようになり、また電極寿命が低
下されるために望ましくない。合金内の組成のうち、Z
rの代わりにTiを置換する理由は次の通りである。一
般的に非化学量論比組成の合金は、Aサイトにある合金
元素の水素に対する親和力がBサイトにある元素よりも
大きいために合金の平衡水素圧力が全体的に低い傾向を
見せている。したがって、適切な水素平衡圧力を有する
ことによって可逆的な水素貯蔵容量を増加させるために
はZrの代わりに水素親和力が落ちるが、他の結晶学的
特性が類似のTiを置換することによって合金の可逆的
な水素貯蔵容量を増加させようとするものである。
BEST MODE FOR CARRYING OUT THE INVENTION Ti in a hydrogen storage alloy according to the present invention is an element which increases the discharge capacity ratio, and its optimum composition ratio is more than 0 and 0.4 or less in atomic fraction. . If the composition ratio deviates, the discharge capacity becomes 30.
At 0 mAh / g, it decreases, and the life of the electrode is shortened, which is not desirable. Of the compositions in the alloy, Z
The reason for substituting Ti for r is as follows. Generally, an alloy having a non-stoichiometric composition has a tendency that the equilibrium hydrogen pressure of the alloy as a whole is lower because the affinity of the alloy element at the A site for hydrogen is higher than that of the element at the B site. Therefore, to increase the reversible hydrogen storage capacity by having a suitable hydrogen equilibrium pressure, the hydrogen affinity is reduced in place of Zr, but other crystallographic properties replace the Ti by replacing the Ti. It is intended to increase the reversible hydrogen storage capacity.

【0016】本発明における水素貯蔵合金中のMnの最
適組成比率は、0.3以上、0.4以下であり、もしも
Mnの含量が0.3より小さい場合には合金の放電効率
(電流密度依存性)が急激に減少して、0.4を超過す
る場合には充電効率の減少及び触媒機能が低下されて望
ましくない。
In the present invention, the optimum composition ratio of Mn in the hydrogen storage alloy is 0.3 or more and 0.4 or less. If the Mn content is less than 0.3, the discharge efficiency (current density Dependency) rapidly decreases and exceeds 0.4, which is undesirable because the charging efficiency is reduced and the catalyst function is reduced.

【0017】本発明における水素貯蔵合金中のVの最適
組成比率は、原子分率で0.1以上、0.2以下とし
て、電極寿命及び水素貯蔵容量を向上させるための元素
であるCrの最適組成比率は0.2以下にする。前記C
rは、Tiが置換された合金電極の退化及び放電容量を
改善するためのものであり、水素との親和力が大きくて
Vの溶解を防止する特性を有している。また、本発明の
水素貯蔵合金でNiは得られる合金のKOH電解質内で
の触媒機能を付与する元素であり、それの最適組成比率
は原子分率で0.35以上0.55以下とすることが望
ましい。
The optimum composition ratio of V in the hydrogen storage alloy according to the present invention is set to an atomic ratio of 0.1 or more and 0.2 or less, so that Cr, which is an element for improving electrode life and hydrogen storage capacity, is optimized. The composition ratio is set to 0.2 or less. Said C
r is for improving the degeneration and the discharge capacity of the alloy electrode in which Ti has been substituted, and has a property of having a high affinity for hydrogen and preventing the dissolution of V. In the hydrogen storage alloy of the present invention, Ni is an element that imparts a catalytic function in the KOH electrolyte of the obtained alloy, and its optimum composition ratio is set to be 0.35 or more and 0.55 or less in atomic fraction. Is desirable.

【0018】前記した諸般条件を満足する本発明の水素
貯蔵合金は放電容量が370ないし425mAh/gで
高容量であり、電流密度依存性は25mA/gでの放電
容量を基準に400mA/gで80%以上を有する。
The hydrogen storage alloy of the present invention which satisfies the above-mentioned various conditions has a high discharge capacity of 370 to 425 mAh / g, and has a current density dependence of 400 mA / g based on the discharge capacity at 25 mA / g. Has more than 80%.

【0019】本発明の水素貯蔵合金の製造過程、気体−
固体反応での水素化反応特性及びアルカリ電解質での水
素貯蔵合金の特性を測定するための実験方法は次の通り
である。
Process for producing hydrogen storage alloy of the present invention, gas
An experimental method for measuring the hydrogenation reaction characteristics in a solid state reaction and the characteristics of a hydrogen storage alloy in an alkaline electrolyte is as follows.

【0020】まず、水素貯蔵合金の各組成に合うように
原子比で各元素の量を決定してその全体重さが5g程度
になるように定量する。次に、アルゴン雰囲気下でアー
ク溶解させる。この時、試片の均質性を向上させるため
に溶解された試片が凝固された後その試片をひっくり返
して再溶解する過程を4回以上反復する。
First, the amount of each element is determined by the atomic ratio so as to match each composition of the hydrogen storage alloy, and quantitatively determined so that the total weight becomes about 5 g. Next, arc melting is performed in an argon atmosphere. At this time, in order to improve the homogeneity of the sample, a process of solidifying the melted sample, turning the sample over, and re-dissolving the sample is repeated four times or more.

【0021】前記過程で得た試片を粉砕して100〜2
00メッシュの試片のみを反応管に注入した後シバート
型(Sievert's type)の高圧水素装置に連結して、活性
化処理は反応管内部を約10-2Torrで30分間程度
維持した後熱処理なしで約20気圧の水素を加える。こ
の場合、ほとんど1時間以内に水素吸収が完了される。
The specimen obtained in the above process is pulverized to 100-2
After injecting only the 00 mesh specimen into the reaction tube, it is connected to a Sievert's type high-pressure hydrogen device, and the activation treatment is performed by maintaining the inside of the reaction tube at about 10 -2 Torr for about 30 minutes and then without heat treatment. About 20 atm of hydrogen. In this case, hydrogen absorption is completed almost within one hour.

【0022】前記過程によって水素吸収が完了すればま
た反応管内部を真空で維持させて試片内部の水素をすべ
て放出させ、次にこのような水素の吸収/放出過程が数
分内に完了されるようにする。一方、活性化処理後に自
動温度調節器を使用して反応管を含んだ水素注入装置を
常に一定の温度で維持させ、次に所定温度で水素吸収-
放出時の水素組成による平衡水素圧力曲線(P−C−T
曲線)を得てこの曲線から合金の熱力学的な特性を得
る。P−C−T曲線でX軸は合金ボールに対した水素原
子のモル数、Y軸は水素分圧を示す。
When the hydrogen absorption is completed by the above process, the inside of the reaction tube is maintained at a vacuum to release all the hydrogen in the specimen, and the hydrogen absorption / desorption process is completed within a few minutes. So that On the other hand, after the activation process, the hydrogen injection device including the reaction tube is always maintained at a constant temperature by using an automatic temperature controller, and then hydrogen absorption is performed at a predetermined temperature.
Equilibrium hydrogen pressure curve (PCT) depending on the hydrogen composition at the time of release
Curve) to obtain the thermodynamic properties of the alloy from this curve. In the PCT curve, the X axis indicates the number of moles of hydrogen atoms with respect to the alloy ball, and the Y axis indicates the hydrogen partial pressure.

【0023】次に、アルカリ電解質での水素貯蔵合金の
特性を調べるためにまず、実験に使用するZr−Ti−
Mn−V−Cr−Ni系(α=0.0、0.2、0.
4、0.6)合金をアルゴン雰囲気下でアーク溶解して
製造する。前記過程により製造された合金は空気中から
機械的に粉砕して合金の熱力学的特性を測定するために
自動P−C−T曲線測定装置を使用してP−C−T曲線
を測定して、また製造した合金の構造分析及び格子常数
を求めるためにXRD分析をする。粉砕された合金中−
400メッシュ大きさの粉末を300wt%Niパウダ
ーと混合した後、10000kg/cm2の圧力で冷間
プレスしてペレットを製造して、製造されたペレットを
使用して半分電池試験を実施する。本発明では充/放電
電流密度は100mA/gであり、6時間充電及び放電
時−0.75V(vs.Hg/HgO)でカットオフし
た。電極が十分に活性化された後、放電容量、電流密度
依存性、電極寿命を測定する。
Next, in order to examine the characteristics of the hydrogen storage alloy in the alkaline electrolyte, first, Zr-Ti-
Mn-V-Cr-Ni system (α = 0.0, 0.2, 0.
4, 0.6) The alloy is manufactured by arc melting under an argon atmosphere. The alloy produced by the above process is mechanically pulverized from the air, and the PCT curve is measured using an automatic PCT curve measuring device to measure the thermodynamic properties of the alloy. XRD analysis is then performed to determine the structural analysis and lattice constant of the manufactured alloy. In the crushed alloy
A 400 mesh size powder is mixed with 300 wt% Ni powder and then cold pressed at a pressure of 10,000 kg / cm 2 to produce pellets, and a half battery test is performed using the produced pellets. In the present invention, the charge / discharge current density was 100 mA / g, and the charge / discharge was cut off at −0.75 V (vs. Hg / HgO) during charging and discharging for 6 hours. After the electrodes are sufficiently activated, the discharge capacity, current density dependence, and electrode life are measured.

【0024】以上のような本発明の目的と別の特徴及び
長所などは次ぎに参照する本発明の好適な実施例に対す
る以下の説明から明確になるであろう。
The above objects and other features and advantages of the present invention will be apparent from the following description of preferred embodiments of the present invention with reference to the accompanying drawings.

【0025】[0025]

【実施例】以下、本発明を実施例によって図面を参照し
て具体的に説明しようとするが、本発明の権利範囲はこ
れら実施例に限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings by way of examples, but the scope of the present invention is not limited to these examples.

【0026】本発明の実施例ではZr1-xTix(Mn
0.20.2Ni0.51.8を基本合金としてTiの原子
分率を0.0、0.2、0.4、0.6で変化させてT
i置換による諸般物性の変化を観察してその結果を図1
ないし図4に示した。
In the embodiment of the present invention, Zr 1 -x Ti x (Mn
0.2 V 0.2 Ni 0.5 ) 1.8 as a base alloy, and changing the atomic fraction of Ti at 0.0, 0.2 , 0.4 and 0.6 to obtain T
Changes in various physical properties due to i-substitution were observed and the results were shown in FIG.
4 to FIG.

【0027】また、Zr0.7Ti0.3(Mn0.20.2
CrYNi0.6-Y1.8を基本合金としてCr置換によ
る物性変化を図5及び図6に示した。
Further, Zr 0.7 Ti 0.3 (Mn 0.2 V 0.2)
FIG. 5 and FIG. 6 show the change in physical properties due to the substitution of Cr with Cr Y Ni 0.6-Y ) 1.8 as a basic alloy.

【0028】1.Zr1-xTix(Mn0.20.2Ni
0.51.8(X=0.0、0.2、0.4、0.6)合
金の特性分析本発明では水素貯蔵容量が比較的大きく
て、適切な平衡圧力を有するZr(Mn0.20.2Ni
0.51.8合金を基本合金として選定して合金内にTi
量を増加させて非化学量論比を形成させた水素貯蔵合金
の熱力学的特性及び放電特性を調べた。
1. Zr 1-x Ti x (Mn 0.2 V 0.2 Ni
0.5 ) 1.8 (X = 0.0, 0.2, 0.4, 0.6) Analysis of alloy properties In the present invention, Zr () having a relatively large hydrogen storage capacity and an appropriate equilibrium pressure is used. Mn 0.2 V 0.2 Ni
0.5 ) 1.8 alloy is selected as the base alloy and Ti
The thermodynamic and discharge characteristics of the hydrogen storage alloy with increasing non-stoichiometric ratio were investigated.

【0029】図1は、Tiが増加することによる合金電
極の放電容量を測定した結果であり、Ti量による最大
(maxima)現像を見せることを分かる。
FIG. 1 shows the result of measuring the discharge capacity of the alloy electrode due to the increase of Ti, and it can be seen that the maximum development according to the amount of Ti is shown.

【0030】図2は、Tiが増加することによる合金の
P−C−T特性を示したものであり、Tiの原子分率が
増加するほど水素平衡圧力が増加して全体的な水素貯蔵
容量が減少することを分かる。しかし、図3に現れたよ
うにTi量が増加することによって合金電極の電流密度
依存性が向上されるために前述した放電容量傾向を示
す。しかし、図4に現れたようにTiが置換されるほど
合金電極の寿命が順次に減少されることを分かることが
でき、これはTiが置換されるほど合金電極表面に形成
される酸化膜の気孔度が増加して酸素の侵入及びVなど
の電解質内での溶解が増加して結局形成される酸化膜の
厚さが増加されるためである。
FIG. 2 shows the PCT characteristics of the alloy as the Ti content increases. The hydrogen equilibrium pressure increases as the atomic fraction of Ti increases and the overall hydrogen storage capacity increases. Is found to decrease. However, as shown in FIG. 3, the increase in the amount of Ti improves the current density dependency of the alloy electrode, and thus shows the above-described discharge capacity tendency. However, as shown in FIG. 4, it can be seen that the life of the alloy electrode is gradually reduced as the Ti is replaced. This is because the porosity increases, the penetration of oxygen and the dissolution in the electrolyte such as V increase, and the thickness of the oxide film formed eventually increases.

【0031】2.Zr0.7Ti0.3(Mn0.20.2
YNi0.6-Y1.8合金の特性分析図5は、Zr0.7
Ti0.3(Mn0.20.2CrYNi0.6-Y1.8合金
に対するCr置換による30℃でのP−C−T曲線の変
化を示している。前記曲線で分かるようにCrが置換さ
れるほど合金の水素貯蔵容量が増加することを確認する
ことができる。Tiが置換された合金電極の退化及び放
電容量を改善するためにNiの代わりに水素との親和力
が大きくてVの溶解を防止することができるCrを部分
置換した。Crが置換されるほど合金の水素貯蔵容量が
増加することを分かる。また図6のように前記合金を対
象に電極の放電容量をみた結果、合金電極の放電容量は
Crが置換されながら相当に増加していることを分か
る。
2. Zr 0.7 Ti 0.3 (Mn 0.2 V 0.2 C
r Y Ni 0.6-Y ) 1.8 Characteristic analysis of alloy FIG. 5 shows Zr 0.7
Shows the change in the P-C-T curve at 30 ° C. by Cr substituted for Ti 0.3 (Mn 0.2 V 0.2 Cr Y Ni 0.6-Y) 1.8 alloy. As can be seen from the curve, it can be seen that the more the Cr is replaced, the greater the hydrogen storage capacity of the alloy. In order to improve the degeneration and the discharge capacity of the Ti-substituted alloy electrode, instead of Ni, Cr was substituted instead of Ni, which has a high affinity for hydrogen and can prevent the dissolution of V. It can be seen that as the Cr is replaced, the hydrogen storage capacity of the alloy increases. In addition, as shown in FIG. 6, the discharge capacity of the electrode for the above-described alloy is found to be considerably increased while the Cr is replaced.

【0032】3.Zr0.65Ti0.35(Mn0.3
0.14Cr0.11Ni0.451.76合金の特性分析図7及
び図8はいままでの合金設計過程を通じて合金の化学量
論比とTi及びCrの置換量が最適化されたZr0.65
Ti0.35(Mn0.30.14Cr0.11Ni0.451.8
合金の30℃でのP−C−T曲線及び放電曲線を示して
いる。これによれば前記合金は可逆的な水素貯蔵容量
(0.01気圧〜1気圧)が約1.6wt%であり、放
電容量の場合425mAh/gとして商用化された合金
対比約45%程度向上された非常に高い放電容量を有し
ていることを確認することができる。
3. Zr 0.65 Ti 0.35 (Mn 0.3 V
0.14 Cr 0.11 Ni 0.45 ) 1.76 Characteristic analysis of alloy FIGS. 7 and 8 show that the stoichiometric ratio of the alloy and the substitution amounts of Ti and Cr have been optimized through the conventional alloy design process. Zr 0.65
Ti 0.35 (Mn 0.3 V 0.14 Cr 0.11 Ni 0.45 ) 1.8
1 shows a PCT curve and a discharge curve at 30 ° C. of an alloy. According to this, the alloy has a reversible hydrogen storage capacity (0.01 atm to 1 atm) of about 1.6 wt%, and a discharge capacity of 425 mAh / g, which is about 45% higher than the alloy commercialized. It can be confirmed that the battery has a very high discharge capacity.

【0033】図9及び図10は各々前記合金に対する放
電電流密度による放電容量の変化及び充放電サイクル数
による放電容量の変化を示している。これによれば電極
寿命及び電流密度依存性のような他の諸般性能等は既存
の商用化されている合金とほとんど対等であるか優秀な
性能を見せていることを確認することができる。
FIGS. 9 and 10 show a change in discharge capacity according to a discharge current density and a change in discharge capacity according to the number of charge / discharge cycles for the alloy. According to this, it can be confirmed that other various performances such as electrode life and current density dependence are almost equal to or excellent in performance with existing commercial alloys.

【0034】[0034]

【発明の効果】本発明は高性能、高容量Ni/MH二次
電池用水素貯蔵合金の開発に関するものであり、特に既
存の商用化されているCo元素を含んだ水素貯蔵合金
(Mm−Ni系)を代替することができる。したがっ
て、本発明は既存のNi/MH二次電池の性能及びエネ
ルギー密度を向上させることによって実際二次電池市場
でのNi/MH二次電池の比重を一層高めることができ
てまた高容量、高性能二次電池が主要性能因子である電
気自動車の開発を操り上げることができる。
The present invention relates to the development of a high-performance, high-capacity hydrogen storage alloy for a Ni / MH secondary battery, and more particularly to an existing commercially available hydrogen storage alloy containing a Co element (Mm-Ni). System) can be substituted. Therefore, the present invention can further increase the specific gravity of the Ni / MH secondary battery in the secondary battery market by improving the performance and energy density of the existing Ni / MH secondary battery, and also increase the capacity and the high capacity. Performance secondary batteries can drive the development of electric vehicles where key performance factors.

【0035】以上では本発明を実施例によって詳細に説
明したが、本発明は実施例によって限定されず、本発明
が属する技術分野において通常の知識を有するものであ
れば本発明の思想と精神を離れることなく、本発明を修
正または変更できるであろう。
Although the present invention has been described in detail with reference to the embodiments, the present invention is not limited to the embodiments, and any person having ordinary knowledge in the technical field to which the present invention belongs can apply the idea and spirit of the present invention. The invention could be modified or changed without departing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ZrxTi1-x(Mn0.20.2Ni0.51.8
(X=0.0、0.2、0.4、0.6)合金に対する
30℃での放電曲線(放電電流密度:50mA/g)を
示したグラフ。
FIG. 1 Zr x Ti 1-x (Mn 0.2 V 0.2 Ni 0.5 ) 1.8
4 is a graph showing a discharge curve (discharge current density: 50 mA / g) at 30 ° C. for an alloy (X = 0.0, 0.2, 0.4, 0.6).

【図2】ZrxTi1-x(Mn0.20.2Ni0.51.8
(X=0.0、0.2、0.4、0.6)合金に対する
30℃でのP−C−T曲線を示したグラフ。
FIG. 2 Zr x Ti 1-x (Mn 0.2 V 0.2 Ni 0.5 ) 1.8
(X = 0.0, 0.2, 0.4, 0.6) The graph which showed the PCT curve at 30 degreeC with respect to an alloy.

【図3】ZrxTi1-x(Mn0.20.2Ni0.51.8
(X=0.0、0.2、0.4、0.6)合金に対する
30℃での放電電流密度による放電容量の変化を示すグ
ラフ。
FIG. 3 Zr x Ti 1-x (Mn 0.2 V 0.2 Ni 0.5 ) 1.8
6 is a graph showing a change in discharge capacity according to a discharge current density at 30 ° C. for an (X = 0.0, 0.2, 0.4, 0.6) alloy.

【図4】ZrxTi1-x(Mn0.20.2Ni0.51.8
(X=0.0、0.2、0.4、0.6)合金に対する
30℃での充放電サイクル数による放電容量の変化を示
すグラフ。
FIG. 4 Zr x Ti 1-x (Mn 0.2 V 0.2 Ni 0.5 ) 1.8
6 is a graph showing a change in discharge capacity according to the number of charge / discharge cycles at 30 ° C. for an alloy (X = 0.0, 0.2, 0.4, 0.6).

【図5】Zr0.7Ti0.3(Mn0.20.2CrYNi
0.6-Y1.8合金に対するCr置換による30℃でのP
−C−T曲線を示したグラフ。
FIG. 5: Zr 0.7 Ti 0.3 (Mn 0.2 V 0.2 Cr Y Ni
0.6-Y ) 1.8 P at 30 ° C by Cr substitution for alloy
-The graph which showed the CT curve.

【図6】Zr0.7Ti0.3(Mn0.20.2CrYNi
0.6-Y1.8合金に対するCr置換による30℃での放
電曲線(放電電流密度:50mA/g)を示したグラ
フ。
FIG. 6: Zr 0.7 Ti 0.3 (Mn 0.2 V 0.2 Cr Y Ni
0.6-Y ) A graph showing a discharge curve (discharge current density: 50 mA / g) at 30 ° C. of the 1.8 alloy by substitution with Cr.

【図7】Zr0.65Ti0.35(Mn0.30.14Cr
0.11Ni0.451.76合金に対する30℃でのP−C
−T曲線を示したグラフ。
FIG. 7: Zr 0.65 Ti 0.35 (Mn 0.3 V 0.14 Cr
0.11 Ni 0.45 ) PC at 30 ° C. for 1.76 alloy
-Graph showing a T curve.

【図8】Zr0.65Ti0.35(Mn0.30.14Cr
0.11Ni0.451.76合金に対する30℃での放電曲
線(放電電流密度:50mA/g)を示したグラフ。
FIG. 8: Zr 0.65 Ti 0.35 (Mn 0.3 V 0.14 Cr
0.11 Ni 0.45 ) Graph showing a discharge curve (discharge current density: 50 mA / g) at 30 ° C. for the 1.76 alloy.

【図9】Zr0.65Ti0.35(Mn0.30.14Cr
0.11Ni0.451.76合金に対する30℃での放電電
流密度による放電容量の変化を示すグラフ。
FIG. 9: Zr 0.65 Ti 0.35 (Mn 0.3 V 0.14 Cr)
0.11 Ni 0.45 ) Graph showing the change in discharge capacity with respect to the discharge current density at 30 ° C. for 1.76 alloy.

【図10】Zr0.65Ti0.35(Mn0.30.14Cr
0.11Ni0.451.76合金に対する30℃での充放電
サイクル数による放電容量の変化を示すグラフで。
FIG. 10: Zr 0.65 Ti 0.35 (Mn 0.3 V 0.14 Cr
FIG . 10 is a graph showing a change in discharge capacity according to the number of charge / discharge cycles at 30 ° C. for a 0.11 Ni 0.45 ) 1.76 alloy.

フロントページの続き (72)発明者 クク・ジン・ジャン 大韓民国、デジョン・クヮンヨク−シ、ユ ソン−ク、クソン−ドン、373−1 コリ ア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー (72)発明者 ジ・サン・ユ 大韓民国、デジョン・クヮンヨク−シ、ユ ソン−ク、クソン−ドン、373−1 コリ ア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー (72)発明者 サン・ミン・リー 大韓民国、デジョン・クヮンヨク−シ、ユ ソン−ク、クソン−ドン、373−1 コリ ア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー (72)発明者 ホ・リー 大韓民国、デジョン・クヮンヨク−シ、ユ ソン−ク、クソン−ドン、373−1 コリ ア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー (72)発明者 ソウン・ホェ・キム 大韓民国、デジョン・クヮンヨク−シ、ユ ソン−ク、クソン−ドン、373−1 コリ ア アドバンスト インスティテュート オブ サイエンス アンド テクノロジーContinuing on the front page (72) Inventor Kuk Jin Jiang South Korea, Daejeon Gwangyokshi, Yu Song-k, Guk Son-Dong, 373-1 Collia Advanced Institute of Science and Technology (72) Inventor The Sun・ U.S. Republic of Korea, Daejeon Kung-Yukshi, U-Sung-Ku, Kgu-Song-Don, 373-1 Collia Advanced Institute of Science and Technology (72) Inventor San Min-Lee -Ku, Kseong-Dong, 373-1 Korea Advanced Institute of Science and Technology (72) Inventor Ho Lee, Republic of Korea, Daejon Kwangyokshi, Yu-Sung-Ku, Kseong-Dong, 373-1 Korea Advanced Institute Of science AND TECHNOLOGY (72) Inventor Sung Hoe Kim Kim, Republic of Korea, Daejeon Kyun-yukshi, Yu Song-k, Kuseong-dong, 373-1 Collia Advanced Institute of Science and Technology

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式で表示されるZr系水素貯蔵
合金。 Zr1-xTix(MnUVCrYNi1-U-V-YZ …(I) 前記式で、X,U,V,YおよびZは各々合金組成元素
等の原子分率として、0<X≦0.4、0.3≦U≦
0.4、0.1≦V≦0.2、0.0≦Y≦0.2、
0.45≦U+V+Y≦0.65、1.6≦Z≦1.9
を満足する値である。
1. A Zr-based hydrogen storage alloy represented by the following general formula: Zr 1-x T x (Mn U V V Cr Y Ni 1-UVY ) Z (I) In the above formula, X, U, V, Y and Z are each 0% < X ≦ 0.4, 0.3 ≦ U ≦
0.4, 0.1 ≦ V ≦ 0.2, 0.0 ≦ Y ≦ 0.2,
0.45 ≦ U + V + Y ≦ 0.65, 1.6 ≦ Z ≦ 1.9
Is a value that satisfies
JP2000333637A 1999-11-05 2000-10-31 NON-STOICHIOMETRIC Zr-Ni-BASED HYDROGEN STORAGE ALLOY FOR USE IN NEGATIVE ELECTRODE OF Ni/MH SECONDARY BATTERY Pending JP2001167759A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019990048987A KR100317556B1 (en) 1999-11-05 1999-11-05 The hypo-stoichiometric Zr-Ni based hydrogen storage alloy for anode material of Ni/MH secondary battery
KR1999-48987 1999-11-05

Publications (1)

Publication Number Publication Date
JP2001167759A true JP2001167759A (en) 2001-06-22

Family

ID=19618847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333637A Pending JP2001167759A (en) 1999-11-05 2000-10-31 NON-STOICHIOMETRIC Zr-Ni-BASED HYDROGEN STORAGE ALLOY FOR USE IN NEGATIVE ELECTRODE OF Ni/MH SECONDARY BATTERY

Country Status (3)

Country Link
JP (1) JP2001167759A (en)
KR (1) KR100317556B1 (en)
DE (1) DE10053734C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958418B1 (en) * 2009-09-25 2010-05-18 김병관 Hydrogen storage alloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1218243A (en) * 1983-07-07 1987-02-24 Nippon Light Metal Co., Ltd. Device for making frozen confections
US4551400A (en) * 1984-04-18 1985-11-05 Energy Conversion Devices, Inc. Hydrogen storage materials and methods of sizing and preparing the same for electrochemical applications
JPS61132501A (en) * 1984-11-30 1986-06-20 Agency Of Ind Science & Technol Formed hydrogen storage alloy
JPS61214361A (en) * 1985-03-18 1986-09-24 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery
US4728586A (en) * 1986-12-29 1988-03-01 Energy Conversion Devices, Inc. Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell
KR920010422B1 (en) * 1987-05-15 1992-11-27 마쯔시다덴기산교 가부시기가이샤 Electrode and method of storage hidrogine
US4849205A (en) * 1987-11-17 1989-07-18 Kuochih Hong Hydrogen storage hydride electrode materials
JP2691550B2 (en) * 1988-03-01 1997-12-17 臼井国際産業株式会社 Connector for small-diameter piping connection
US5149383A (en) * 1990-04-03 1992-09-22 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode
US5205985A (en) * 1991-03-29 1993-04-27 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and hydride electrodes having c15 crystal structure
KR950009220B1 (en) * 1993-09-13 1995-08-18 한국과학기술원 Zirconium system hydrogen storage alloy

Also Published As

Publication number Publication date
DE10053734C2 (en) 2003-10-30
DE10053734A1 (en) 2001-05-31
KR100317556B1 (en) 2001-12-24
KR20010045643A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JP3965209B2 (en) Low Co hydrogen storage alloy
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
Jurczyk The progress of nanocrystalline hydride electrode materials
WO2016029861A1 (en) Rare-earth based hydrogen storage alloy and application thereof
JPH0821379B2 (en) Hydrogen storage electrode
JPH11310844A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
Takasaki et al. Synthesis of Ti-Zr-Ni amorphous and quasicrystal powders by mechanical alloying, and their electrochemical properties
JP2001167759A (en) NON-STOICHIOMETRIC Zr-Ni-BASED HYDROGEN STORAGE ALLOY FOR USE IN NEGATIVE ELECTRODE OF Ni/MH SECONDARY BATTERY
Zhang et al. Electrochemical hydrogen storage performances of the nanocrystalline and amorphous (Mg24Ni10Cu2) 100–xNdx (x= 0–20) alloys applied to Ni-MH battery
JPH0650634B2 (en) Hydrogen storage electrode
KR0137797B1 (en) Manufacturing method of electrode for the secondary battery using the hydrogen storage alloy
KR100264343B1 (en) A high-capability and high-performance hrdrogen storage alloy for secondary battery electrode which contains zirconium
US20170346086A1 (en) Activation of laves phase-related bcc metal hydride alloys for electrochemical applications
KR100207618B1 (en) Negative electrode manufacturing method and secondary battery having it
Chen et al. Electrode characteristics of nanocrystalline AB5 compounds prepared by mechanical alloying
KR100237137B1 (en) Electrode material alloy for secondary cell composed of ni/mh
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JP2000021399A (en) Hydrogen storage electrode
Balcerzak TiNi-Based Hydrogen Storage Alloys and Compounds
CN117203791A (en) High-entropy hydrogen storage alloy, negative electrode for alkaline storage battery, and alkaline storage battery
JP3011454B2 (en) Hydrogen storage alloy for secondary batteries
CA1269083A (en) Hydrogen storage materials and methods of sizing and preparing the same for electrochemical applications
JPH08511128A (en) Titanium-niobium-nickel / hydrogen storage alloy for batteries