JP2001166166A - Polymer optical waveguide film - Google Patents

Polymer optical waveguide film

Info

Publication number
JP2001166166A
JP2001166166A JP2000337209A JP2000337209A JP2001166166A JP 2001166166 A JP2001166166 A JP 2001166166A JP 2000337209 A JP2000337209 A JP 2000337209A JP 2000337209 A JP2000337209 A JP 2000337209A JP 2001166166 A JP2001166166 A JP 2001166166A
Authority
JP
Japan
Prior art keywords
optical waveguide
polymer
substrate
polymer optical
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000337209A
Other languages
Japanese (ja)
Inventor
Akemasa Kaneko
明正 金子
Makoto Hikita
真 疋田
Akiyuki Yoshimura
了行 吉村
Saburo Imamura
三郎 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000337209A priority Critical patent/JP2001166166A/en
Publication of JP2001166166A publication Critical patent/JP2001166166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer optical waveguide which has sufficient flexibility and is low in loss and high in reliability. SOLUTION: This polymer optical waveguide film is composed of a high polymer alone, has at least a core 4 and an upper clad 5 and lower clad 3 having the refractive index lower than the refractive index of the core and has a UV absorption layer 6 in the upper part of the upper clad 5 and the lower part of the lower clad 3. Accordingly, the polymer waveguide film maintains the sufficient optical waveguide characteristic before peeling of the substrate and there is an effect of greatly improving the deterioration in waveguide characteristics by irradiation with UV rays by adding the absorption layer to the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子光導波路フ
ィルムに関し、特に光インターコネクションや光合波、
分波等の光部品において、それに用いるときに、好適な
屈曲性のある低損失高分子光導波路フィルムのに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer optical waveguide film, and more particularly, to optical interconnection, optical multiplexing, and the like.
The present invention relates to a low-loss polymer optical waveguide film having flexibility and being suitable for use in optical components such as demultiplexing.

【0002】[0002]

【従来の技術】光部品、あるいは光ファイバの基材とし
ては、光伝搬損失が小さく、伝送帯域が広いという特徴
を有する石英ガラスや多成分ガラス等の無機系の材料が
広く使用されているが、最近では高分子系の材料も開発
され、無機系の材料に比べて加工性や価格の点で優れて
いることから、光導波路用材料として注目されている。
例えば、ポリメチルメタクリレート(PMMA)あるい
は、ポリスチレンのような透明性に優れた高分子をコア
とし、そのコア材料よりも屈折率の低いプラスチックを
クラッド材料としたコア−クラッド構造からなる平板型
光導波路が作製されている(特開平3−188402
号)。また、耐熱性の高い透明性高分子であるポリイミ
ドやポリシロキサンを用いた平板型光導波路も作製され
ている。更に、高分子光導波路の特徴は、容易に屈曲可
能な状態に形成できることである。高分子光導波路に、
充分な屈曲性を持たせ、しかも伝搬損失の低減が実現す
れば、本来の柔軟な性質を積極的に利用してフレキシブ
ルな光配線、分岐などが可能となり、光インターコネク
ションへの応用が充分可能である。しかしながら、従来
は、作製上の制約からガラス基板、シリコン基板、アク
リル基板等の厚い高分子基板上に導波路が形成されたた
め、ほとんど屈曲性はなく、屈曲性が積極的に生かされ
ていなかったのが現状である。充分な屈曲性を有する高
分子光導波路を作製するためには、まずガラス基板、シ
リコン基板、厚手の高分子基板上に比較的薄い高分子光
導波路を形成し、その後、高分子光導波路部分を基板よ
りはく離すれば良い。しかし、作製当初より、基板と高
分子の密着性を弱くしておくと、作製途中に基板からは
く離してしまう。また逆に、基板との密着性を強固にす
ると、後のはく離が困難になる。高分子光導波路の作製
中は基板との密着が強固であり、導波路作製後に基板か
らはく離するときは、容易に基板からはずれることが望
ましいが、そのような方法が簡単には無いのが現状であ
る。また高分子導波路特有の欠点として紫外線に対する
安定性が悪いことが挙げられる。すなわち日照により酸
化あるいは解重合等の反応が起こり次第に劣化してい
く。
2. Description of the Related Art As an optical component or a base material of an optical fiber, inorganic materials such as quartz glass and multi-component glass having characteristics of small light propagation loss and a wide transmission band are widely used. Recently, a polymer-based material has also been developed and has been attracting attention as a material for an optical waveguide because it is superior in workability and price as compared with an inorganic material.
For example, a planar optical waveguide having a core-clad structure in which a polymer having excellent transparency such as polymethyl methacrylate (PMMA) or polystyrene is used as a core and a plastic having a lower refractive index than the core material is used as a cladding material. (Japanese Unexamined Patent Publication No. 3-188402)
issue). In addition, a planar optical waveguide using polyimide or polysiloxane, which is a transparent polymer having high heat resistance, has also been manufactured. Further, a characteristic of the polymer optical waveguide is that it can be formed to be easily bent. For polymer optical waveguides,
Providing sufficient flexibility and reducing propagation loss will enable flexible optical wiring and branching by making active use of the original flexible properties, making it fully applicable to optical interconnection. It is. However, conventionally, since the waveguide was formed on a thick polymer substrate such as a glass substrate, a silicon substrate, and an acrylic substrate due to manufacturing restrictions, the waveguide had little flexibility, and the flexibility was not actively utilized. is the current situation. In order to fabricate a polymer optical waveguide having sufficient flexibility, first, a relatively thin polymer optical waveguide is formed on a glass substrate, a silicon substrate, and a thick polymer substrate, and then the polymer optical waveguide portion is formed. What is necessary is just to separate from a board | substrate. However, if the adhesion between the substrate and the polymer is weakened from the beginning of the fabrication, the polymer may be separated from the substrate during the fabrication. Conversely, if the adhesion to the substrate is strengthened, subsequent peeling becomes difficult. During the fabrication of polymer optical waveguides, the adhesion to the substrate is strong, and it is desirable to easily detach from the substrate when peeling off the substrate after fabricating the waveguide, but such a method is not easy at present. It is. Another drawback inherent to polymer waveguides is that they have poor stability to ultraviolet light. That is, the reaction gradually deteriorates due to sunlight, such as oxidation or depolymerization.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、充分
な屈曲性を有する低損失で高信頼性の高分子光導波路を
提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a low-loss and high-reliability polymer optical waveguide having sufficient flexibility.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明は高分子光導波路フィルムに関する発明であって、
高分子のみで構成され、少なくともコア及び該コアより
屈折率の低い上部クラッド及び下部クラッドを有する高
分子光導波路フィルムにおいて、該上部クラッドの上部
及び該下部クラッドの下部に紫外線吸収層を有すること
を特徴とする。
SUMMARY OF THE INVENTION In general, the present invention relates to a polymer optical waveguide film,
In a polymer optical waveguide film composed of only a polymer and having at least a core and an upper clad and a lower clad having a lower refractive index than the core, an ultraviolet absorbing layer is provided above the upper clad and below the lower clad. Features.

【0005】[0005]

【発明の実施の形態】以下、本発明を具体的に説明す
る。本発明の高分子光導波路フィルムは、例えば以下の
ようにして製造することができる。銅を最上層に有する
基板上に、少なくともクラッド及び該クラッドより屈折
率の高いコアを有する高分子光導波路フィルムを作製す
る光導波層作製工程と、その後、塩酸水溶液又は水酸化
カリウム水溶液に浸漬することにより、該高分子光導波
路フィルムを、該基板からはく離するはく離工程と、該
はく離工程に引続き、該クラッド層の上部及び下部に紫
外線吸収層を形成する保護層作製工程を有する。銅薄膜
を最上層に有する基板の例には、上記の、ガラスやシリ
コンウエハー上に、蒸着やスパッタリング法等により数
10から数100nmの厚さの銅薄膜を付着した基板が
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The polymer optical waveguide film of the present invention can be manufactured, for example, as follows. On a substrate having copper as an uppermost layer, an optical waveguide layer producing step of producing a polymer optical waveguide film having at least a clad and a core having a higher refractive index than the clad, and thereafter, immersed in a hydrochloric acid aqueous solution or a potassium hydroxide aqueous solution. Thus, the method includes a peeling step of peeling the polymer optical waveguide film from the substrate, and, following the peeling step, a protective layer forming step of forming an ultraviolet absorbing layer above and below the clad layer. As an example of a substrate having a copper thin film as the uppermost layer, there is a substrate in which a copper thin film having a thickness of several tens to several hundreds of nm is attached on a glass or silicon wafer by vapor deposition or sputtering.

【0006】また、該高分子フィルムを該基板上に密着
形成するには、スピンコート法、ドクターブレード法、
またフリースタンディグフィルムを機械的に密着する等
によっても行うことができる。いずれの場合も、導波路
作製プロセス中に、はく離しない程度の密着力を有する
ことが必要であることから、基板上にシランカップリン
グ剤等の接着補助剤をコーティング後、上記高分子フィ
ルムを形成する場合が多い。
In order to form the polymer film in close contact with the substrate, a spin coating method, a doctor blade method,
Alternatively, the free standing film can be mechanically adhered. In any case, since it is necessary to have an adhesive force that does not separate during the waveguide fabrication process, the above-mentioned polymer film is formed after coating an adhesion auxiliary agent such as a silane coupling agent on the substrate. Often do.

【0007】また、塩酸の濃度は、10〜20%程度で
あり、水酸化カリウム水溶液と同様に、基板と高分子導
波路フィルムを分離することができる。水酸化カリウム
水溶液は、基板と高分子光導波路フィルム間に浸透して
双方の密着力を弱めるように働く。また、高分子光導波
路フィルムの端部に傷を付けて塩酸溶液に浸すと、基板
と高分子光導波路フィルム間への溶液の浸透が短時間で
起こるため、極めて迅速にはく離することができる。基
板からはく離した高分子光導波路フィルムは、塩酸や水
酸化カリウム水溶液を純水で充分に洗浄することが必要
である。
[0007] The concentration of hydrochloric acid is about 10 to 20%, and the substrate and the polymer waveguide film can be separated similarly to the aqueous potassium hydroxide solution. The aqueous potassium hydroxide solution penetrates between the substrate and the polymer optical waveguide film and acts to weaken the adhesion between them. In addition, if the edge of the polymer optical waveguide film is damaged and immersed in a hydrochloric acid solution, the solution permeates between the substrate and the polymer optical waveguide film in a short time, so that the film can be released very quickly. The polymer optical waveguide film separated from the substrate needs to be sufficiently washed with an aqueous solution of hydrochloric acid or potassium hydroxide with pure water.

【0008】更に上記の方法により得たフレキシブル高
分子光導波路素子に紫外線吸収層を付加することにより
紫外線照射による導波路特性劣化を著しく改善する効果
があった。
Further, by adding an ultraviolet absorbing layer to the flexible polymer optical waveguide device obtained by the above-mentioned method, there is an effect of remarkably improving the deterioration of the waveguide characteristics due to the ultraviolet irradiation.

【0009】以下、図面を参照して本発明を具体的に説
明する。まず、前記の現状の問題点について、更に具体
的に説明する。図1に基板上に作製された高分子光導波
路の構成を示す。1は、基板であって、高分子フィルム
支持体である。従って、導波路の作製プロセス中に熱変
形がみられず、具体的には、鏡面仕上げをした金属、ガ
ラス、シリコンウエハー等がある。2は本発明の特徴と
する、すなわち従来技術では見られない銅スパッタリン
グ層である。3は、下層クラッド層であって、溶媒中に
溶かした溶液状の透明性高分子をスピンコート法で基板
上に所望の厚さに形成する。4は、高分子光導波路のコ
ア層であり、クラッドの屈折率よりわずかに屈折率の高
い材料を用いる必要がある。下部クラッド層上に、この
コア層用高分子をスピンコートで所望の厚さに形成した
後、フォトリソグラフィー、反応性イオンエッチング等
で、コア部分を形成する。その後、下層クラッド層と同
様の高分子を所望の厚さにスピンコートし、5の上部ク
ラッド層を形成する。その後、この高分子光導波路部分
を基板からはく離し、フィルム状の高分子光導波路とす
る。コアを作製するためのフォトプロセスでは、レジス
トの現像工程において、基板ごと現像液中に浸漬しなけ
ればならない。そのため、現像液浸漬中に基板と下部ク
ラッド層間にはく離しない程度の密着力が、必要であ
る。また現像液浸漬後は、蒸留水による基板洗浄工程も
あり、この工程中にも基板から下層クラッドのはく離が
あってはならない。本発明によれば、符号2の層を設け
ることにより、前記従来技術の問題点が解決された。図
2は本発明の紫外線吸収層付高分子導波路の概念図であ
る。図2において符号3〜5は図1と同義であり、6は
紫外線吸収層を意味する。
Hereinafter, the present invention will be described in detail with reference to the drawings. First, the above current problems will be described more specifically. FIG. 1 shows a configuration of a polymer optical waveguide fabricated on a substrate. 1 is a substrate, which is a polymer film support. Therefore, no thermal deformation is observed during the manufacturing process of the waveguide, and specific examples include mirror-finished metal, glass, and silicon wafer. Reference numeral 2 denotes a copper sputtering layer which is a feature of the present invention, that is, is not found in the prior art. Reference numeral 3 denotes a lower clad layer, which is formed by forming a solution-type transparent polymer dissolved in a solvent to a desired thickness on a substrate by spin coating. Reference numeral 4 denotes a core layer of the polymer optical waveguide, and it is necessary to use a material having a refractive index slightly higher than that of the cladding. After forming the core layer polymer to a desired thickness on the lower cladding layer by spin coating, a core portion is formed by photolithography, reactive ion etching, or the like. Thereafter, the same polymer as the lower clad layer is spin-coated to a desired thickness to form an upper clad layer 5. Thereafter, the polymer optical waveguide portion is peeled off from the substrate to form a film-shaped polymer optical waveguide. In a photo process for producing a core, in a resist development step, the substrate must be immersed in a developer. Therefore, an adhesive force that does not separate between the substrate and the lower clad layer during immersion in the developer is required. After the immersion in the developer, there is also a step of cleaning the substrate with distilled water. During this step, the lower clad must not be separated from the substrate. According to the present invention, the problem of the related art is solved by providing the layer denoted by reference numeral 2. FIG. 2 is a conceptual diagram of a polymer waveguide with an ultraviolet absorbing layer according to the present invention. In FIG. 2, reference numerals 3 to 5 have the same meaning as in FIG. 1, and 6 denotes an ultraviolet absorbing layer.

【0010】以上説明したように、本発明によれば比較
的大面積の屈曲性を有する高安定の高分子光導波路フィ
ルムを提供することができる。
As described above, according to the present invention, a highly stable polymer optical waveguide film having a relatively large area and flexibility can be provided.

【0011】[0011]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0012】実施例1 シリコン基板上に、スパッタリング法により銅を100
nm程度形成する。この基板上に、埋め込み型高分子光
導波路を作製した。クラッド層高分子としては、重水素
化ポリメチルメタクリレートとフッ素化メタクリレート
(モル比=96.5:3.5)の共重合体を、コア層高
分子としては重水素化ポリメチルメタクリレートを用い
た。この高分子を、それぞれ、クロロベンゼンとキシレ
ンの混合溶液に溶かし、溶液状とした。銅の着いたシリ
コン基板上に、クラッド層高分子を、約25μm厚にス
ピンコートした。ベーク乾燥処理後、コア層高分子を約
8μm厚にスピンコートした。次に、フォトリソグラフ
ィーとドライエッチングにより、幅8μm、高さ8μm
の矩形断面を有する直線パターンに加工した。最後に、
25μm厚にクラッド用高分子をスピンコートし埋め込
み型導波路を作製した。この導波路を塩酸(塩化水素2
0%)中に浸し、基板より高分子導波路部分をはく離し
た。上記のはく離した屈曲性を有する高分子光導波路フ
ィルムと、はく離する前の基板に着いた高分子光導波路
の波長1.31μmにおける損失測定結果(導波路長:
50mm、結合損失を含む)を表1に示す。
Example 1 Copper was sputtered on a silicon substrate by 100%.
It is formed on the order of nm. An embedded polymer optical waveguide was formed on this substrate. A copolymer of deuterated polymethyl methacrylate and fluorinated methacrylate (molar ratio = 96.5: 3.5) was used as the cladding layer polymer, and deuterated polymethyl methacrylate was used as the core layer polymer. . Each of the polymers was dissolved in a mixed solution of chlorobenzene and xylene to form a solution. A cladding layer polymer was spin-coated to a thickness of about 25 μm on a silicon substrate with copper. After the bake drying treatment, the core layer polymer was spin-coated to a thickness of about 8 μm. Next, by photolithography and dry etching, a width of 8 μm and a height of 8 μm
Was processed into a linear pattern having a rectangular cross section. Finally,
A buried waveguide was prepared by spin coating a cladding polymer to a thickness of 25 μm. This waveguide is immersed in hydrochloric acid (hydrogen chloride 2).
0%) to separate the polymer waveguide portion from the substrate. Loss measurement results at a wavelength of 1.31 μm of the polymer optical waveguide film having peeled flexibility and the polymer optical waveguide attached to the substrate before peeling (waveguide length:
50 mm, including coupling loss) are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】両者の結果が、ほぼ一致することから、本
発明法により基板よりはく離しても、高分子光導波路特
性には悪影響を与えず、本発明法は、屈曲性を有する高
分子光導波路の作製法として有効であることが明らかに
なった。また、はく離した高分子導波路の曲がり(曲率
半径50mm)による損失は、1.6dBとなり顕著な
変化はみられなかった。
Since the results are almost the same, even if the polymer optical waveguide is separated from the substrate by the method of the present invention, the characteristics of the polymer optical waveguide are not adversely affected. It was proved to be effective as a method for producing. Further, the loss due to the bending (radius of curvature: 50 mm) of the separated polymer waveguide was 1.6 dB, and no remarkable change was observed.

【0015】実施例2 銅の着いたシリコン基板上に、実施例1と同様の埋め込
み型光導波路を作製した。この導波路を10%水酸化カ
リウム水溶液中に浸し、基板より高分子光導波路フィル
ム部分をはく離した。上記のはく離した屈曲性を有する
高分子光導波路フィルムと、はく離する前の基板に着い
た高分子光導波路の波長1.31μmにおける損失測定
結果(導波路長:50mm、結合損失を含む)を表2に
示す。
Example 2 An embedded optical waveguide similar to that of Example 1 was fabricated on a silicon substrate to which copper had adhered. This waveguide was immersed in a 10% aqueous solution of potassium hydroxide to release the polymer optical waveguide film from the substrate. Table 1 shows the loss measurement results (wavelength: 50 mm, including coupling loss) at a wavelength of 1.31 μm of the polymer optical waveguide film having peeled flexibility and the polymer optical waveguide attached to the substrate before peeling. It is shown in FIG.

【0016】[0016]

【表2】 [Table 2]

【0017】両者の結果が、ほぼ一致することから、本
発明法により基板よりはく離しても、高分子光導波路特
性には悪影響を与えず、本発明法は、屈曲性を有する高
分子光導波路の作製法として有効であることが明らかに
なった。
Since the results of the two methods are almost the same, even if they are separated from the substrate by the method of the present invention, the characteristics of the polymer optical waveguide are not adversely affected. It was proved to be effective as a method for producing.

【0018】実施例3 図2を用いて本発明の他の実施例を示す。実施例1のフ
レキシブル高分子光導波路の上下に紫外線吸収層6をラ
ミネートすることで紫外線保護膜付フレキシブル導波路
を作製した。ポリエチレンフィルムなどの透明材料で保
護したフレキシブル導波路と紫外線吸収層で保護したフ
レキシブル導波路を作製し、波長350nmの紫外線を
100時間照射した後の波長1.3μmにおける導波路
特性を比較したところ、50mmの導波路の損失(結合
損失を含む)は、透明保護膜付フレキシブル導波路の場
合3.0dBと増大し、一方紫外線吸収層付フレキシブ
ル導波路の場合1.6dBとほぼ変化がなかった。以上
の結果から明らかなように従来の透明保護膜付フレキシ
ブル高分子光導波路素子と比べて紫外線吸収層付フレキ
シブル高分子光導波路は、紫外線照射による導波路特性
劣化を著しく改善する効果があった。
Embodiment 3 Another embodiment of the present invention will be described with reference to FIG. A flexible waveguide with an ultraviolet protection film was manufactured by laminating the ultraviolet absorbing layers 6 above and below the flexible polymer optical waveguide of Example 1. A flexible waveguide protected by a transparent material such as a polyethylene film and a flexible waveguide protected by an ultraviolet absorbing layer were produced, and the waveguide characteristics at a wavelength of 1.3 μm after irradiation with ultraviolet light of 350 nm for 100 hours were compared. The loss (including the coupling loss) of the 50 mm waveguide increased to 3.0 dB in the case of the flexible waveguide with the transparent protective film, while it was almost unchanged at 1.6 dB in the case of the flexible waveguide with the ultraviolet absorbing layer. As is clear from the above results, the flexible polymer optical waveguide with the ultraviolet absorbing layer has an effect of remarkably improving the deterioration of the waveguide characteristics due to the irradiation of ultraviolet rays, as compared with the conventional flexible polymer optical waveguide device with the transparent protective film.

【0019】[0019]

【発明の効果】以上説明したように、本発明による屈曲
性を有する高分子光導波路フィルムは、基板はく離前の
光導波路特性を充分に保っており、また有色保護膜を付
加することにより、紫外線照射による導波路特性劣化を
著しく改善する効果があった。
As described above, the polymer optical waveguide film having flexibility according to the present invention sufficiently maintains the optical waveguide characteristics before the substrate is peeled off. There was an effect of remarkably improving the deterioration of the waveguide characteristics due to the irradiation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の中間製品の製造方法の概念図である。FIG. 1 is a conceptual diagram of a method for producing an intermediate product according to the present invention.

【図2】本発明の紫外線吸収層付高分子光導波路の概念
図である。
FIG. 2 is a conceptual diagram of a polymer optical waveguide with an ultraviolet absorbing layer according to the present invention.

【符号の説明】[Explanation of symbols]

1:基板、2:銅スパッタリング膜、3:下部クラッド
層、4:コア層、5:上部クラッド層、6:紫外線吸収
1: substrate, 2: copper sputtering film, 3: lower cladding layer, 4: core layer, 5: upper cladding layer, 6: ultraviolet absorbing layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉村 了行 東京都新宿区西新宿3丁目20番2号 日本 電信電話株式会社内 (72)発明者 今村 三郎 東京都新宿区西新宿3丁目20番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Ryoyuki Yoshimura 3-20-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Saburo Imamura 3-20 Nishishinjuku, Shinjuku-ku, Tokyo No. 2 Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高分子のみで構成され、少なくともコア
及び該コアより屈折率の低い上部クラッド及び下部クラ
ッドを有する高分子光導波路フィルムにおいて、該上部
クラッドの上部及び該下部クラッドの下部に紫外線吸収
層を有することを特徴とする高分子光導波路フィルム。
1. A polymer optical waveguide film comprising only a polymer and having at least a core and an upper clad and a lower clad having a lower refractive index than the core, wherein ultraviolet light is absorbed on the upper part of the upper clad and the lower part of the lower clad. A polymer optical waveguide film having a layer.
JP2000337209A 2000-11-06 2000-11-06 Polymer optical waveguide film Pending JP2001166166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000337209A JP2001166166A (en) 2000-11-06 2000-11-06 Polymer optical waveguide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000337209A JP2001166166A (en) 2000-11-06 2000-11-06 Polymer optical waveguide film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12741495A Division JP3147284B2 (en) 1995-04-28 1995-04-28 Method for producing polymer optical waveguide film

Publications (1)

Publication Number Publication Date
JP2001166166A true JP2001166166A (en) 2001-06-22

Family

ID=18812631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000337209A Pending JP2001166166A (en) 2000-11-06 2000-11-06 Polymer optical waveguide film

Country Status (1)

Country Link
JP (1) JP2001166166A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086841A1 (en) * 2005-02-15 2006-08-24 Rpo Pty Limited Photolithographic patterning of polymeric materials
US7162134B2 (en) 2001-12-28 2007-01-09 Hitachi Chemical Co., Ltd. Polymeric optical waveguide film
JP2008203687A (en) * 2007-02-22 2008-09-04 Jsr Corp Method of manufacturing film-like optical waveguide
CN100437172C (en) * 2004-03-17 2008-11-26 三洋电机株式会社 Optical waveguide and the method of fabricating the same
US7558446B2 (en) 2005-10-12 2009-07-07 Koninklijke Philips Electronics N.V. All polymer optical waveguide sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162134B2 (en) 2001-12-28 2007-01-09 Hitachi Chemical Co., Ltd. Polymeric optical waveguide film
US7373064B2 (en) 2001-12-28 2008-05-13 Hitachi Chemical Co., Ltd. Polymeric optical waveguide film
CN100437172C (en) * 2004-03-17 2008-11-26 三洋电机株式会社 Optical waveguide and the method of fabricating the same
WO2006086841A1 (en) * 2005-02-15 2006-08-24 Rpo Pty Limited Photolithographic patterning of polymeric materials
JP2008530317A (en) * 2005-02-15 2008-08-07 アールピーオー プロプライエタリー リミテッド Photolithographic patterning of polymer materials
US7558446B2 (en) 2005-10-12 2009-07-07 Koninklijke Philips Electronics N.V. All polymer optical waveguide sensor
JP2008203687A (en) * 2007-02-22 2008-09-04 Jsr Corp Method of manufacturing film-like optical waveguide

Similar Documents

Publication Publication Date Title
EP1621904B1 (en) Process for producing flexible optical waveguide
EP0961139B1 (en) Polymer optical waveguide, optica integrated circuit , optical module and optical communication apparatus
US6037105A (en) Optical waveguide device fabricating method
EP0932844B1 (en) Optical guide
JP3147284B2 (en) Method for producing polymer optical waveguide film
KR20100110350A (en) Opto-electric hybrid board and electronic device
JP3204359B2 (en) Flexible polymer optical waveguide
US6801703B2 (en) Freestanding athermal polymer optical waveguide
JP2001166166A (en) Polymer optical waveguide film
WO2018168783A1 (en) Polymer optical waveguide
KR101665740B1 (en) Method for producing optical waveguide, optical waveguide, and photoelectric composite wiring board
Cook et al. Stable, low-loss optical waveguides and micromirrors fabricated in acrylate polymers
JP3327356B2 (en) Fluorinated polyimide optical waveguide and method for manufacturing the same
JP3249340B2 (en) Method for manufacturing polymer flexible optical waveguide
JP3206638B2 (en) Flexible polymer optical waveguide
JP4487297B2 (en) Resin optical waveguide provided with protective layer, method for manufacturing the same, and optical component
JP2000162460A (en) Organic optical waveguide, manufacture thereof, and optical part using it
JP2001074952A (en) Optical waveguide made of resin having protective layer, its production and optical parts
JP2009103860A (en) Optical waveguide, and method for manufacturing the same
JP2001033640A (en) Optical waveguide
TW200945006A (en) Electronic machine
JPH06347658A (en) Plastic optical waveguide
JP2005221556A (en) Optical waveguide manufacturing method
KR100491053B1 (en) Method of manufacturing polymeric optical device
JP3566281B2 (en) Organic optical waveguide, optical component, and method for manufacturing optical component