WO2018168783A1 - Polymer optical waveguide - Google Patents

Polymer optical waveguide Download PDF

Info

Publication number
WO2018168783A1
WO2018168783A1 PCT/JP2018/009533 JP2018009533W WO2018168783A1 WO 2018168783 A1 WO2018168783 A1 WO 2018168783A1 JP 2018009533 W JP2018009533 W JP 2018009533W WO 2018168783 A1 WO2018168783 A1 WO 2018168783A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical waveguide
polymer optical
polymer
prepolymer
Prior art date
Application number
PCT/JP2018/009533
Other languages
French (fr)
Japanese (ja)
Inventor
健太 小林
盛輝 大原
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019506016A priority Critical patent/JP7036108B2/en
Publication of WO2018168783A1 publication Critical patent/WO2018168783A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind

Definitions

  • the present invention relates to a polymer optical waveguide.
  • Patent Document 1 The polymer optical waveguide can pass a large volume of signal, and can realize noiseless, space saving, and ease of assembly.
  • An object of the present invention is to provide a polymer optical waveguide that can reduce propagation loss.
  • the present invention is a polymer optical waveguide having a core and a clad having a refractive index lower than that of the core,
  • the polymer optical waveguide has a sheet shape, and in the core cross-sectional shape perpendicular to the light propagation direction of the core, when the thickness direction of the sheet shape is the core height and the direction perpendicular to the thickness direction is the core width
  • the core height is 1.0-10 ⁇ m
  • the core width is 1.0-15 ⁇ m
  • Provided is a polymer optical waveguide characterized in that the depth of a dent existing on the upper surface and / or the side surface of the core in the core cross-sectional shape is 0.33 ⁇ m or less.
  • the polymer optical waveguide of the present invention has a propagation loss ratio X / Y of 0.2 to 2 obtained by dividing the propagation loss value X [dB / cm] at a wavelength of 1550 nm by the propagation loss value Y [dB / cm] at a wavelength of 1310 nm. Preferably there is.
  • the core is obtained by curing a composition containing a fluorinated polyarylene prepolymer (A) having a crosslinkable functional group, and the clad is the fluorinated polyarylene prepolymer.
  • A It is preferable that the composition (B) containing a compound having a crosslinkable functional group having a lower refractive index is cured.
  • the composition (B) comprises the fluorine-containing polyarylene prepolymer (A) and a compound (C) having a crosslinkable functional group and having a molecular weight of 140 to 5000 and having no fluorine atom.
  • a compound (C) having a crosslinkable functional group and having a molecular weight of 140 to 5000 and having no fluorine atom are preferably included.
  • the fluorine-containing polyarylene prepolymer (A) preferably has an absorbance at a wavelength of 365 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt% of 7.5 or less.
  • the polymer optical waveguide of the present invention is preferably a single mode polymer optical waveguide.
  • the polymer optical waveguide of the present invention preferably has a coupling portion where at least a part of the core is exposed on one end side.
  • the present invention also provides a composite optical waveguide having the polymer optical waveguide of the present invention and a connector that accommodates the optical waveguide portion of the polymer optical waveguide.
  • the polymer optical waveguide of the present invention can reduce single-mode propagation loss.
  • FIG. 1 is a perspective view showing one structural example of the polymer optical waveguide of the present invention.
  • FIG. 2 is a perspective view showing an example of a usage pattern of the polymer optical waveguide of FIG.
  • FIG. 3 is a side view of FIG.
  • FIG. 4 is a perspective view showing an example of another usage pattern of the polymer optical waveguide of the present invention.
  • FIG. 5 is a side view of FIG.
  • FIG. 6 is a cross-sectional view of the polymer optical waveguide taken along line AA in FIG.
  • FIG. 7 is a diagram showing another example of the core cross-sectional shape.
  • FIG. 8 is a diagram showing still another example of the core cross-sectional shape.
  • FIG. 1 is a perspective view showing one structural example of the polymer optical waveguide of the present invention.
  • FIG. 2 is a perspective view showing an example of a usage pattern of the polymer optical waveguide of FIG.
  • FIG. 3 is a side view of FIG.
  • FIG. 4 is a perspective
  • FIG. 9 is a graph showing the absorbance of the prepolymer A used in the core material in Examples 1 and 4 near a wavelength of 400 nm.
  • FIG. 10 is a plan view of the polymer optical waveguides of Examples 1 to 4.
  • FIG. 11 is a diagram showing a core cross-sectional shape of Example 1.
  • FIG. 12 is a diagram showing the core cross-sectional shape of Example 2.
  • FIG. 13 is a diagram showing the core cross-sectional shape of Example 3.
  • FIG. 14 is a diagram showing the core cross-sectional shape of Example 4.
  • FIG. 1 is a perspective view showing one structural example of the polymer optical waveguide of the present invention.
  • a polymer optical waveguide 10 shown in FIG. 1 has a core 20 and a clad 30 having a refractive index lower than that of the core 20.
  • the clad 30 includes an under clad 31 disposed below the core 20 and an over clad 32 disposed above the core 20.
  • the polymer optical waveguide 10 has a flat sheet shape and is used as an optical interconnection or an optical waveguide device.
  • the optical interconnection include an intra-chip optical interconnection, an inter-chip optical interconnection, an intra-board optical interconnection (substrate with built-in optical circuit), and an intra-casing optical interconnection (optical backplane).
  • FIG. 2 is a perspective view showing an example of a usage pattern of the polymer optical waveguide 10 of FIG. 1, and FIG. 3 is a side view of FIG.
  • the polymer optical waveguide 10 is turned upside down, and the core exposed portion 40 is located below. 2 and 3, the polymer optical waveguide 10 is adiabatically coupled to the silicon optical waveguide 100 through a core exposed portion provided on one end side. The other end side of the polymer optical waveguide 10 is butt-coupled with the single-mode optical fiber 200 (face-to-face coupling).
  • FIG. 4 is a perspective view showing another example of usage of the polymer optical waveguide of the present invention
  • FIG. 5 is a side view of FIG. 4 and 5
  • a core exposed portion 42 is provided on one end side of the polymer optical waveguide 12, and the polymer optical waveguide 12 and the silicon optical waveguide 100 are adiabatically coupled by the core exposed portion 42.
  • the point is the same as in FIGS.
  • the number of the cores 20 is one for the clad 30, whereas in the polymer optical waveguide 12 shown in FIG. 4, a plurality of cores 22 are arrayed along one direction. A bending region is provided to widen the interval between the cores 22.
  • the other end of the polymer optical waveguide 12 is accommodated in a connector 300 for butt coupling (facing coupling) with a single mode optical fiber or the like.
  • a structure having the polymer optical waveguide 12 and the connector 300 that accommodates the optical waveguide portion of the polymer optical waveguide 12 is referred to as a composite optical waveguide in this specification.
  • the structure at both ends of the polymer optical waveguide can be appropriately selected according to the coupling method when the polymer optical waveguide is used.
  • the coupling method on one end side is an adiabatic coupling and the coupling method on the other end side is a butt coupling (face-to-face coupling)
  • a core is placed on one end side of the polymer optical waveguide.
  • An exposed part is provided.
  • core exposed portions are provided at both ends of the polymer optical waveguide.
  • the coupling method at both ends is a butt coupling (facing coupling)
  • the core exposed portion is not provided in the polymer optical waveguide.
  • the core in the polymer optical waveguide may have various structures (couplers, directional couplers, pitch changers, TO switches, etc.) according to the wiring pattern.
  • FIG. 6 is a cross-sectional view of the polymer optical waveguide cut along line AA in FIG. 1, and is a cross-sectional view of the core 20 in the direction perpendicular to the light propagation direction.
  • the cross-sectional shape of the polymer optical waveguide or the cross-sectional shape of the core or the clad constituting the polymer optical waveguide means the cross-sectional shape in the direction perpendicular to the light propagation direction of the core.
  • the cross-sectional shape of the core 20 is a shape having a recess on the rectangular upper surface.
  • the cross-sectional shape of the core is not limited to this.
  • it may be a trapezoid, a circle, an ellipse, or a shape having a dent in a part of a polygon that is a pentagon or more.
  • the corners may be rounded.
  • the thickness t direction of the sheet shape formed by the polymer optical waveguide 10 is the core height, and the direction perpendicular to the thickness direction (that is, the width w of the sheet shape formed by the polymer optical waveguide 10). (Direction) is the core width, the core height is 1.0 to 10 ⁇ m, and the core width is 1.0 to 15 ⁇ m.
  • the core height and the core width are within the above ranges, propagation loss at a wavelength of 1310 nm and a wavelength of 1550 nm, which are typical as a single mode band, is suppressed.
  • the core height is preferably 1 to 9 ⁇ m, more preferably 1 to 7 ⁇ m, further preferably 1 to 5 ⁇ m, and particularly preferably 1 to 3 ⁇ m.
  • the core width is preferably 1 to 10 ⁇ m, and more preferably 1 to 9.5 ⁇ m.
  • the core width and core height can be specified using a white light interferometer, an optical microscope, a laser microscope, and a scanning electron microscope (SEM). In the case of a core exposed part, it can be specified by directly observing the cross-sectional shape of the core. In the case of a polymer optical waveguide without a core exposed part, the polymer optical waveguide is cut and the cross-sectional shape of the core is observed. Can be specified.
  • the polymer optical waveguide of the present invention may have portions with different core heights as long as the above range is satisfied.
  • the core height may be different between one end and the other end of the polymer optical waveguide.
  • the core height may be different between both ends of the polymer optical waveguide and the intermediate portion in the light propagation direction of the core.
  • the core height may be different between the exposed core portion of the polymer optical waveguide and the other portion.
  • the polymer optical waveguide of the present invention may have a portion having a different core width as long as the above range is satisfied.
  • the core width may be different between one end and the other end of the polymer optical waveguide.
  • the core width may be different between both ends of the polymer optical waveguide and the intermediate portion in the light propagation direction of the core.
  • the core width may be different between the exposed core portion of the polymer optical waveguide and the other portions.
  • the core height and the core width must satisfy the above ranges for all of the plurality of cores.
  • core height and core width may not satisfy
  • the core 20 cross-sectional shape shown in FIG. 6 has a dent 60 on its upper surface.
  • a dent is generated on the upper surface and / or the side surface of the core cross-sectional shape. It has been conventionally considered that the recess of about 1 ⁇ m existing on the upper surface and / or the side surface in the core cross-sectional shape does not cause propagation loss in the polymer optical waveguide.
  • the depressions present on the upper surface and / or the side surface in the cross-sectional shape of the core can cause propagation loss at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode. It has also been found that if there is a recess having a specific depth or more, significant propagation loss occurs at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
  • the depth of the dent present on the upper surface and / or the side surface of the core in the core cross-sectional shape is 0.33 ⁇ m or less. That is, when a dent exists on the upper surface of the core, the depth of the dent is 0.33 ⁇ m or less. When a dent exists on the side surface of the core, the depth of the dent is 0.33 ⁇ m or less. When there are dents on the core upper surface and the core side surface, the depths of these dents are each 0.33 ⁇ m or less.
  • the depth of the dent present on the upper surface and / or the side surface of the core is 0.33 ⁇ m or less, the propagation loss is reduced at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
  • the case where there is a dent on the upper surface of the core refers to the case where there are at least two convex portions on the upper surface of the core and there are concave portions between the convex portions.
  • FIG. 7 shows another configuration example in which the recess 60 is present on the upper surface of the core.
  • the depth of the dent present on the upper surface of the core can be obtained by the following procedure.
  • FIG. 8 shows an example of a configuration in which a dent exists on the side surface of the core.
  • the depth of the dent existing on the side surface of the core can be obtained by the following procedure.
  • the maximum value of the distance between the tangential profile defined above and the core side surface is defined as the depth of the recess existing on the core side surface.
  • the depth of the dent existing on the upper surface and / or the side surface of the core can be specified by observing the cross-sectional shape of the core in the procedure described above.
  • the cross-sectional shape of the core is observed only at one point in the light propagation direction of the polymer optical waveguide.
  • the depression on the upper surface of the core and / or the side surface of the core occurs when the polymer optical waveguide is manufactured. Therefore, when there is a recess in the core upper surface and / or the core side surface at one place in the light propagation direction of the polymer optical waveguide, the core upper surface and / or the core side surface also in other portions of the polymer optical waveguide. There is a high possibility that a recess having substantially the same depth exists.
  • the depth of the dent present on the upper surface and / or the side surface of the core in the cross-sectional shape of the core is preferably 0.30 ⁇ m or less, more preferably 0.25 ⁇ m or less. It is particularly preferably 15 ⁇ m or less.
  • the depth of the recesses existing on the top surface and / or the side surface of the core is 0.33 ⁇ m or less.
  • the depth of the dent which exists in a core upper surface and / or a core side surface does not need to be 0.33 micrometer or less.
  • the polymer optical waveguide of the present invention has a propagation loss ratio X / Y of 0.2 to 2 obtained by dividing the propagation loss value X [dB / cm] at a wavelength of 1550 nm by the propagation loss value Y [dB / cm] at a wavelength of 1310 nm. Preferably there is. If the transmission loss value X / Y satisfies the above range, the design freedom of the polymer optical waveguide is increased. Further, the productivity of the polymer optical waveguide is increased.
  • polymer optical waveguides of the same design can be used for the propagation of signals in both the 1310 nm and 1550 nm wavelength bands. Further, signals in the 1310 nm and 1550 nm wavelength bands can be propagated in one polymer optical waveguide.
  • the constituent materials of the core and the clad are not particularly limited as long as the refractive index difference is such that the clad refractive index is lower than the core refractive index.
  • acrylic resins methacrylic resins such as polymethyl methacrylate (PMMA), epoxy resins, oxetane resins, phenoxy resins, benzocyclobutene resins, norbornene resins, fluorine resins, silicone resins, phenolic resins Resin, polyester resin, polycarbonate resin, polystyrene resin, polyamide resin, polyimide resin, poly (imide / isoindoloquinazolinedioneimide) resin, polyetherimide resin, polyetherketone resin, polyesterimide resin, etc.
  • fluororesins are suitable as materials for cores and clads because of their low water absorption or moisture absorption, excellent resistance to high temperature and high humidity, and high chemical stability.
  • a polymer optical waveguide using a fluororesin has stable characteristics with a small change in refractive index due to a change in external environment, particularly a change in humidity, and has high transparency in an optical communication wavelength band.
  • the polymer optical waveguide preferably has good heat resistance.
  • the adhesion between the core and the clad is good so that peeling, cracking or the like does not occur at the interface between the core and the clad due to heating, bending, temperature change or the like.
  • the core in the polymer optical waveguide of the present invention may be referred to as a fluorine-containing polyarylene prepolymer (A) (hereinafter, simply referred to as prepolymer (A)). ) Is preferably cured.
  • the clad in the polymer optical waveguide of the present invention is preferably formed by curing a composition (B) containing a compound having a crosslinkable functional group having a refractive index lower than that of the prepolymer (A).
  • the prepolymer (A) has a polyarylene structure in which a plurality of aromatic rings are bonded via a single bond or a linking group, a fluorine atom, and a crosslinkable functional group.
  • the linking group in the polyarylene structure include an ether bond (—O—), a sulfide bond (—S—), a carbonyl group (—CO—), and a divalent group (—SO 2 —) obtained by removing a hydroxyl group from a sulfonic acid group. Etc.
  • a fluorinated polyarylene ether prepolymer (A1) those having a structure in which aromatic rings are bonded with a linking group containing an ether bond (—O—) are referred to as a fluorinated polyarylene ether prepolymer (A1).
  • the prepolymer (A) in the present invention is a concept including a fluorine-containing polyarylene ether prepolymer (A1).
  • Specific examples of the linking group containing an ether bond include an ether bond (—O—) consisting only of an etheric oxygen atom, and an alkylene group containing an etheric oxygen atom in the carbon chain.
  • the crosslinkable functional group of the prepolymer (A) does not substantially react during the production of the prepolymer, reacts by applying external energy, and causes a high molecular weight by crosslinking or chain extension between prepolymer molecules. It is a group. Examples of the external energy include heat, light, and electron beam. These may be used in combination. When heat is used as external energy, a reactive functional group that reacts at a reaction temperature of 40 ° C. to 500 ° C. is preferable. If the reaction temperature is too low, stability during storage of the prepolymer or the composition containing the prepolymer cannot be ensured, and if it is too high, thermal decomposition of the prepolymer itself occurs during the reaction. It is preferable.
  • the reaction temperature is more preferably 60 ° C. to 300 ° C., further preferably 70 ° C. to 200 ° C., and particularly preferably 120 ° C. to 250 ° C.
  • light actinic radiation
  • a coating liquid curable composition
  • a photosensitizer By selectively irradiating only a desired part with actinic radiation in the exposure step, only the exposed part can be made to have a high molecular weight, and the unexposed part can be dissolved in the developer and removed. Further, if necessary, after the exposure and development, external energy such as actinic radiation or heat can be applied to further increase the molecular weight.
  • crosslinkable functional group examples include vinyl group, allyl group, allyloxy group, methacryloyl (oxy) group, acryloyl (oxy) group, vinyloxy group, trifluorovinyl group, trifluorovinyloxy group, ethynyl group, 1- Examples thereof include an oxocyclopenta-2,5-dien-3-yl group, a cyano group, an alkoxysilyl group, a diarylhydroxymethyl group, a hydroxyfluorenyl group, a cyclobutalene ring, and an oxirane ring.
  • Vinyl groups, methacryloyl (oxy) groups, acryloyl (oxy) groups, trifluorovinyloxy groups, ethynyl groups, cyclobutalene rings, and oxirane rings are preferred because of their high reactivity and high crosslink density.
  • a vinyl group and an ethynyl group are the most preferable from the viewpoint of later good heat resistance.
  • the methacryloyl (oxy) group means a methacryloyl group or a methacryloyloxy group. The same applies to the acryloyl (oxy) group.
  • the prepolymer (A) Since the prepolymer (A) has an aromatic ring, the heat resistance is good.
  • the fluorine-containing polyarylene ether prepolymer (A1) has an etheric oxygen atom, so that the molecular structure is flexible and the cured product has good flexibility. This is preferable.
  • the prepolymer (A) has a fluorine atom. That is, since the prepolymer (A) has a C—F bond in which a hydrogen atom of a C—H bond is substituted with a fluorine atom, the proportion of the C—H bond is small.
  • the prepolymer (A) having few C—H bonds can suppress light absorption in the optical communication wavelength band. Further, since the prepolymer (A) has a fluorine atom, the water absorption or hygroscopicity is low, the resistance to high temperature and high humidity is excellent, and the chemical stability is also high. Therefore, the optical waveguide using the prepolymer (A) has small refractive index fluctuation due to changes in the external environment, particularly humidity change, and has stable characteristics, and has high transparency in the optical communication wavelength band.
  • the cured product of the prepolymer (A) has high transparency in the vicinity of a wavelength of 1310 nm, an optical waveguide having good compatibility with existing optical elements can be obtained. That is, in general, in an optical transmission device using a silica-based optical fiber, a wavelength of 1310 nm is often used, so that many optical elements such as a light receiving element suitable for this wavelength are manufactured, and the reliability is high. .
  • Examples of preferred prepolymer (A) include fluorine-containing aromatic compounds such as perfluoro (1,3,5-triphenylbenzene) and perfluorobiphenyl; 1,3,5-trihydroxybenzene, 1,1,1 Reacting a phenolic compound such as tris (4-hydroxyphenyl) ethane with a crosslinkable compound such as pentafluorostyrene, acetoxystyrene or chloromethylstyrene in the presence of a dehydrohalogenating agent such as potassium carbonate; Examples include the resulting polymer.
  • fluorine-containing aromatic compounds such as perfluoro (1,3,5-triphenylbenzene) and perfluorobiphenyl
  • 1,3,5-trihydroxybenzene 1,1,1 Reacting a phenolic compound such as tris (4-hydroxyphenyl) ethane with a crosslinkable compound such as pentafluorostyrene, acetoxystyrene or chloromethyls
  • the content of the crosslinkable functional group in the prepolymer (A) is preferably 0.1 to 4 mmol, more preferably 0.2 to 3 mmol with respect to 1 g of the prepolymer.
  • the prepolymer (A) preferably has an absorbance of 7.5 or less at a wavelength of 365 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt%.
  • the absorbance at a polymer concentration of 100 wt% refers to an actually measured value of absorbance at 100 wt% polymer or an assumed value of absorbance at 100 wt% polymer.
  • a photolithography process may be used when forming the core of the polymer optical waveguide during the production of the polymer optical waveguide. For exposure in this photolithography process, i-line having a wavelength of 365 nm is usually used.
  • the prepolymer (A) When the absorbance at a wavelength of 365 nm is high, the prepolymer (A) absorbs i-line during exposure in the photolithography process, and there is a possibility that a dent will be formed in the formed core. If the prepolymer (A) has a polymer thickness of 10 mm, a polymer concentration of 100 wt% and an absorbance at a wavelength of 365 nm of 7.5 nm or less, the prepolymer (A) is less likely to be dented. As a result, propagation loss is reduced at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
  • the prepolymer (A) preferably has an absorbance at a wavelength of 365 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt% of 7.5 or less, more preferably 6.5 or less, and 6.0 or less. Is more preferable and 5.5 or less is particularly preferable.
  • the prepolymer (A) preferably has an absorbance peak value of 0.045 or less at a wavelength of 1400 nm to 1460 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt%.
  • the prepolymer (A) contains moisture, in the core formed using the prepolymer (A), propagation loss may occur at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
  • absorption at a wavelength of 1400 nm to 1460 nm increases.
  • the prepolymer (A) contains very little water, and the prepolymer (A) is used.
  • propagation loss is reduced at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
  • composition (B) The composition (B) preferably contains a prepolymer (A) and a compound (C) having a crosslinkable functional group and having a molecular weight of 140 to 5000 and having no fluorine atom.
  • the prepolymer (A) contained in the composition (B) may be the same or different from the prepolymer (A) used for forming the core. The same is preferable from the viewpoint of adhesiveness, adhesion, crack suppression, or reduction in expansion coefficient difference.
  • the compound (C) has a molecular weight of 140 to 5000, has a crosslinkable functional group, and does not have a fluorine atom. Since there are no fluorine atoms, good embedding flatness is easily obtained. If the embedded flatness is good, the surface of the clad tends to be flat. Further, the cost is likely to be lower than that of the fluorine-containing compound.
  • the molecular weight of the compound (C) is 5000 or less, the viscosity of the compound (C) is suppressed low, and a uniform composition is easily obtained when mixed with the prepolymer (A). Also, good flatness can be easily obtained.
  • the molecular weight of the compound (C) is 140 or more, good heat resistance is obtained, and decomposition and volatilization due to heating hardly occur.
  • the molecular weight range of the compound (C) is preferably 250 to 3000, particularly preferably 250 to 2500.
  • the crosslinkable functional group of the compound (C) does not contain a fluorine atom, and a reactive functional group that reacts in the same step as the step of reacting the crosslinkable functional group of the prepolymer (A) is preferable.
  • the crosslinkable functional group of compound (C) reacts with at least compound (C) to cause crosslinking or chain extension. It is preferable that the crosslinkable functional group of the compound (C) reacts with both the prepolymer (A) and the compound (C) to cause crosslinking or chain extension.
  • the crosslinkable functional group of the compound (C) is preferably a double bond or triple bond at a carbon atom-carbon atom. However, aromatic double bonds and triple bonds are not included.
  • the double bond and triple bond as the crosslinkable functional group may exist inside the molecular chain or may exist at the terminal, but preferably exist at the terminal because of high reactivity. In the case of a double bond, it may be an internal olefin or a terminal olefin, but a terminal olefin is preferred.
  • Being inside a molecular chain includes being present in a part of an aliphatic ring such as cycloolefins.
  • a vinyl group an allyl group, an ethynyl group, a vinyloxy group, an allyloxy group, an acryloyl group, an acryloyloxy group, a methacryloyl group, and a methacryloyloxy group.
  • an acryloyl group and an acryloyloxy group are preferable in that a reaction is caused by light irradiation even in the absence of a photosensitizer.
  • the compound (C) preferably has 2 or more crosslinkable functional groups, more preferably 2 to 20, more preferably 2 to 8.
  • crosslinkable functional groups more preferably 2 to 20, more preferably 2 to 8.
  • the molecules can be cross-linked, so that the heat resistance of the cured film can be improved, and the film thickness reduction due to heating in the cured film can be satisfactorily suppressed.
  • the compound (C) include dipentaerythritol triacrylate triundecylate, dipentaerythritol pentaacrylate monoundecylate, ethoxylated isocyanuric acid triacrylate, ⁇ -caprolactone modified tris- (2-acryloxyethyl) Isocyanurate, dipentaerythritol polyacrylate, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, ethoxylation Bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, propoxylated bisphenol A diacrylate Propoxylated bisphenol A dimethacrylate, 1,10-decanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-
  • polyester acrylate (compound obtained by modifying both ends of the condensate of dihydric alcohol and dibasic acid with acrylic acid: manufactured by Toagosei Co., Ltd., trade name Aronix (M-6100, M-6200, M-6250, M-6500) ); Compound obtained by modifying the hydroxyl terminal of the condensate of polyhydric alcohol and polybasic acid with acrylic acid: manufactured by Toagosei Co., Ltd., trade name Aronix (M-7100, M-7300K, M-8030, M-8060, M -8100, M-8530, M-8560, M-9050)) can also be used. These can be obtained from commercial products. Among those listed above, polypropylene glycol dimethacrylate and 1,10-decanediol diacrylate are preferable because of good moldability of the cured film.
  • the clad constituent material needs to have a lower refractive index than the core constituent material.
  • the core constituent material is a prepolymer (A) and the clad constituent material is a polymer composition including the prepolymer (A) and the compound (C)
  • the polymer is more preferable than the cured product of the prepolymer (A). What is necessary is just to adjust the mixing ratio of the kind of compound (C) and the prepolymer (A) in a polymer composition, and a compound (C) so that the refractive index of the hardened
  • the refractive index of the cured product was obtained by curing the prepolymer (A) alone.
  • the refractive index of the cladding can be made lower than the refractive index of the core.
  • the under clad 31 and the over clad 32 may be made of the same material or different materials.
  • the light confinement state in the polymer optical waveguide 10 can be controlled.
  • the method for producing the polymer optical waveguide of the present invention is not particularly limited, and various methods can be used. Specifically, replication (stamper) method, direct exposure method, method combining reactive ion etching (RIE) and photolithography process, method based on injection molding, photo bleaching method, direct drawing method, self-formation The law etc. can be used.
  • a coating solution containing the composition (B) is applied on a substrate by spin coating. Subsequently, the composition (B) is cured to form the underclad 31. Next, a coating solution containing the prepolymer (A) is applied on the underclad 31 by spin coating. Subsequently, the prepolymer (A) is patterned by a photolithography process, and the core 20 is formed on the underclad 31.
  • the core 20 can be formed. Moreover, after forming the core 20, you may post-bake as needed. Next, the coating liquid containing the composition (B) is applied onto the underclad 31 and the core 20 by spin coating. Subsequently, the composition (B) is cured to form the overclad 32. When the over clad 32 is formed, the exposed core portion 40 where the over clad 32 does not exist and the core 20 is exposed can be formed by a photolithography process.
  • the polymer optical waveguide 10 can be manufactured by the above method.
  • coating the coating liquid containing a composition (B) or the coating liquid containing a prepolymer (A) should be left still and defoamed and then applied. preferable.
  • the polymer optical waveguide 10 in which no bubble defect exists in the core 20 or in the vicinity of the interface between the core 20 and the clad 30 can be manufactured.
  • the substrate it is preferable to clean the substrate before applying the coating solution. Thereby, the foreign material on the surface of the substrate can be removed.
  • these operations are preferably performed in a clean room, and in order to prevent foreign matter from adhering to static electricity, it is more preferable to use an electrostatic remover (ionizer).
  • Examples 1 to 3 are Examples
  • Example 4 is a Comparative Example.
  • the prepolymer (A) used for forming the core was prepared by the following procedure.
  • a N, N-dimethylacetamide (hereinafter referred to as DMAc) solvent perfluorobiphenyl (67% by mass) and 1,3,5-trihydroxybenzene (12% by mass) in the presence of potassium carbonate are added to 35 to 35%.
  • DMAc N, N-dimethylacetamide
  • 4-acetoxystyrene (21% by mass) was subsequently reacted in the presence of an aqueous potassium hydroxide solution to synthesize a prepolymer.
  • the obtained DMAc solution of the prepolymer was poured into an aqueous hydrochloric acid solution for reprecipitation purification and vacuum dried to obtain a powdery prepolymer (A).
  • the light absorbency in wavelength 365nm was measured in the following procedures. It was measured with a spectrophotometer (manufactured by Shimadzu Corporation, product type: SolidSpec3700DUV). Using a quartz cell with an optical path length of 10 mm, the absorbance of three or more solutions with a prepolymer (A) concentration stepwise changed from 10 wt% to 40 wt% is measured, and the value at the time of 100% extrapolation is converted to the least square method. And approximated.
  • the measurement wavelength range was 300 to 2500 nm, the scan speed was medium, and the sampling pitch was 5 nm.
  • the detector unit measured by direct light reception. Deuterated chloroform was used as the solvent.
  • the absorbance of the prepolymer (A) is determined by subtracting the solvent absorption as a baseline.
  • FIG. 9 shows the absorbance of the prepolymer (A) obtained by the above procedure in the vicinity of a wavelength of 400 nm. Absorbance at a wavelength of 365 nm (polymer thickness: 10 mm, concentration: 100% equivalent) was 3.98. The absorbance peak value at a wavelength of 1400 nm to 1460 nm (polymer thickness 10 mm, concentration 100% conversion) was determined by the above procedure. The absorbance peak value at a wavelength of 1400 nm to 1460 nm (polymer thickness 10 mm, concentration 100% conversion) was 0.06.
  • a composition (B) used for forming the clad was prepared by the following procedure. 50 parts by mass of the prepolymer (A) obtained by the above procedure, 25 parts by mass of 1,10-decanediol diacrylate (molecular weight: 282) as the compound (C), 25 parts by mass of polypropylene glycol dimethacrylate, was put in a container and mixed at room temperature for 55 hours to obtain a composition (B).
  • a polymer optical waveguide was produced by the following procedure.
  • a silicon wafer was used as the substrate.
  • the composition (B) was applied onto the substrate by spin coating, and heated at 190 ° C. for 1 hour to form an underclad.
  • a prepolymer (A) is applied thereon, and the coating film is exposed with an ultrahigh pressure mercury lamp at an irradiation energy of 2000 mJ / cm 2 in a state where light is shielded with a metal foil except for the core portion of the coating film. did.
  • FIG. 10 is a plan view of the polymer optical waveguide obtained by the above procedure.
  • reference numeral 120 denotes a core
  • reference numeral 132 denotes a clad (over clad).
  • the symbol a is a core in a region where no overcladding exists. In Examples 1 to 4, the core was observed at the position of the symbol a.
  • Reference numeral b denotes an overclad in which the optical measurement core on the input side exists below
  • reference numeral c denotes an overclad in which the optical measurement core on the output side exists below.
  • the core exposed portion (input side) indicated by symbol a has a core height of 2.5 ⁇ m and a core width of 7.5 ⁇ m.
  • the core for optical measurement (input side) indicated by symbol b has a core height of 2.5 ⁇ m and a core width of 2.5 ⁇ m.
  • the core for optical measurement (output side) indicated by symbol c has a core height of 2.5 ⁇ m and a core width of 2.5 ⁇ m.
  • the thickness of the underclad is 25 ⁇ m, and the thickness of the overclad is 25 ⁇ m.
  • the cross-sectional shape of the core was measured at a point of about 1300 ⁇ m from the input side end portion.
  • a white interferometer manufactured by ZYGO, product type: three-dimensional optical profiler system Newview 7300 was used to measure the cross-sectional shape of the core. The objective lens used 50 times.
  • plot data of the core shape with a white interferometer create data with the undercladding part corrected horizontally, and draw a baseline at the height of the undercladding part at a distance of 25 ⁇ m on both sides from the core center. Using the baseline as the origin, the highest value of the core protrusions was defined as the core height.
  • FIG. 11 is a diagram showing a core cross-sectional shape in the core exposed portion. As shown in the figure, a recess is present on the upper surface of the core. When a tangent line is drawn between two adjacent convex portions existing on the core upper surface, the maximum height difference in the core thickness direction between the tangent line and the concave portion located between the two convex portions exists on the core upper surface. The depth of the dent to be. The depth of the dent existing on the upper surface of the core was 0.07 ⁇ m.
  • Propagation loss measurement was performed using the optical measurement core (input side) indicated by symbol b and the optical measurement core indicated by symbol c (output side).
  • the propagation loss measurement was performed using the method described in the JPCA standard (2008) 4.6.2.1 cutback method.
  • the mode combination of the incident side optical fiber and the optical waveguide is a combination corresponding to the combination number 6 described in the JPCA standard, Table 4.6.1-1.
  • a mode fiber was used.
  • the fiber used for the insertion loss measurement was a single mode fiber (manufactured by Corning, product number: SMF-28, NA 0.14, core diameter 8.2 um) on both the incident side and the outgoing side.
  • a unit (product name: AQ2140, manufactured by Ando Electric Co., Ltd.) having an LD light source (product name: AQ4213) was used.
  • a power meter manufactured by Advantest, product name: Q8221 unit
  • a sensor unit manufactured by Advantest, product name: Q82208
  • the propagation loss value X at a wavelength of 1550 nm was 0.32 [dB / cm]
  • the propagation loss value Y at a wavelength of 1310 nm was 0.61 [dB / cm]
  • the propagation loss ratio X / Y was 0.52.
  • Example 2 In the polymer optical waveguide shown in FIG. 10, the core exposed portion (input side) indicated by symbol a has a core height of 2.5 ⁇ m, a core width of 9.3 ⁇ m, and optical measurement indicated by symbol b in the polymer optical waveguide shown in FIG. Core (input side) is 2.5 ⁇ m in core height and 2.5 ⁇ m in core width, and the core for optical measurement (output side) indicated by symbol c is 2.5 ⁇ m in core height, 2.5 ⁇ m in core width, and under cladding
  • the same procedure as in Example 1 was performed except that the thickness of the overcladding was 25 ⁇ m and the thickness of the overclad was 25 ⁇ m.
  • FIG. 12 is a diagram showing a core cross-sectional shape in the core exposed portion. As shown in the figure, a recess is present on the upper surface of the core. The depth of the recess existing on the upper surface of the core was 0.15 ⁇ m.
  • Propagation loss measurement was performed in the same procedure as in Example 1 using the optical measurement core (input side) indicated by symbol b and the optical measurement core (output side) indicated by symbol c.
  • the propagation loss value X at 1550 nm was 0.29 [dB / cm]
  • the propagation loss value Y at 1310 nm was 0.61 [dB / cm]
  • the propagation loss ratio X / Y was 0.47.
  • the heat resistance of the polymer optical waveguide obtained in Example 2 was evaluated by the following three methods.
  • the measurement apparatus, measurement procedure, measurement conditions, and the like were performed under the same conditions as the above-described propagation loss measurement.
  • the measurement result of the insertion loss was within the range of measurement error before and after the temperature cycle test, and the change in insertion loss before and after the temperature cycle test was 0.1 dB or less.
  • Heat resistance (high temperature storage test) A high temperature storage test described in the JPCA standard (2008), 6.2.1 was performed to evaluate heat resistance. Assuming that the optical waveguide is soldered, it is preferable that the optical waveguide is stable against heating at 200 ° C. or higher. In this test, the sample was placed in an oven, heated from room temperature to 260 ° C. over 5 minutes, held at 260 ° C. for 30 seconds, and then allowed to stand naturally until the temperature reached room temperature. In the evaluation, the difference in insertion loss was measured before and after being put into the oven. The difference in insertion loss was as small as 0.1 dB or less, and the heat resistance was good.
  • Heat resistance high temperature and high humidity storage test
  • the test condition was “Test condition 3”. That is, in this test, after being put in a high temperature and high humidity condition of 85 ° C. and 85% RH for 140 hours, it was allowed to stand until the temperature naturally reached room temperature. The difference in insertion loss before and after charging under high temperature and high humidity conditions was measured. As a result, the change in insertion loss due to being held under high temperature and high humidity conditions was 0.2 dB or less.
  • Prepolymer A used for core formation was prepared by the following procedure.
  • DMAc N-dimethylacetamide
  • perfluorobiphenyl 67% by mass
  • 1,3,5-trihydroxybenzene 12% by mass
  • potassium carbonate a solvent of N
  • 4-acetoxystyrene 21% by mass was subsequently reacted in the presence of an aqueous potassium hydroxide solution to synthesize a prepolymer.
  • the obtained DMAc solution of the prepolymer was poured into an aqueous hydrochloric acid solution for reprecipitation purification and vacuum dried to obtain a powdery prepolymer A.
  • the absorbance at a wavelength of 365 nm (polymer thickness: 10 mm, converted to 100% concentration) is 4.86
  • the absorbance peak value at a wavelength of 1400 nm to 1460 nm (polymer thickness: 10 mm, converted to 100% concentration) is 0.12.
  • the same procedure as in Example 1 was carried out except that it was used.
  • the core exposed portion (input side) indicated by symbol a is 2.5 ⁇ m in core height
  • the core width is 7.4 ⁇ m
  • the optical measurement core indicated by symbol b (input side) is the core height.
  • the thickness is 2.5 ⁇ m and the core width is 2.5 ⁇ m.
  • the core for optical measurement (output side) indicated by symbol c has a core height of 2.5 ⁇ m, a core width of 2.5 ⁇ m, an underclad thickness of 25 ⁇ m, and an overclad thickness of 25 ⁇ m.
  • the cross-sectional shape of the core was measured in the same procedure as in Example 1 at a point of about 1300 ⁇ m from the input side end.
  • FIG. 13 is a diagram showing a core cross-sectional shape in the core exposed portion. As shown in the figure, a recess is present on the upper surface of the core. The depth of the dent existing on the upper surface of the core was 0.13 ⁇ m.
  • Propagation loss measurement was performed in the same procedure as in Example 1 using the optical measurement core (input side) indicated by symbol b and the optical measurement core (output side) indicated by symbol c.
  • the propagation loss value X at 1550 nm was 0.40 [dB / cm]
  • the propagation loss value Y at 1310 nm was 0.61 [dB / cm]
  • the propagation loss ratio X / Y was 0.66.
  • Prepolymer A used for core formation was prepared by the following procedure.
  • DMAc N-dimethylacetamide
  • perfluorobiphenyl 67% by mass
  • 1,3,5-trihydroxybenzene 12% by mass
  • potassium carbonate a solvent of N
  • 4-acetoxystyrene 21% by mass was subsequently reacted in the presence of an aqueous potassium hydroxide solution to synthesize a prepolymer.
  • Prepolymer A having an absorbance at a wavelength of 365 nm (polymer thickness of 10 mm, converted to 100% concentration) of 7.9, and an absorbance peak value at a wavelength of 1400 nm to 1460 nm (polymer thickness of 10 mm, converted to a concentration of 100%) of 0.26
  • the exposed core portion (input side) indicated by reference symbol a has a core height of 2.5 ⁇ m, a core width of 9.4 ⁇ m, and reference symbol b. 1.
  • An optical measurement core (input side) shown in FIG. 2 has a core height of 2.5 ⁇ m and a core width of 2.5 ⁇ m
  • an optical measurement core shown by reference c (output side) has a core height of 2.5 ⁇ m, and a core width of 2.
  • the same procedure as in Example 1 was performed except that the thickness was 5 ⁇ m.
  • FIG. 9 shows the absorbance of the prepolymer (A) used in Example 4 around a wavelength of 400 nm.
  • the cross-sectional shape of the core was measured in the same procedure as in Example 1 at a point of about 1300 ⁇ m from the input side end.
  • FIG. 14 is a diagram showing a core cross-sectional shape in the core exposed portion.
  • a recess is present on the upper surface of the core.
  • the depth of the dent existing on the upper surface of the core was 0.36 ⁇ m.
  • Propagation loss measurement was performed in the same procedure as in Example 1 using the optical measurement core (input side) indicated by symbol b and the optical measurement core (output side) indicated by symbol c.
  • the propagation loss value X at 1550 nm was 0.69 [dB / cm]
  • the propagation loss value Y at 1310 nm was 0.82 [dB / cm]
  • the propagation loss ratio X / Y was 0.83.
  • Examples 1 to 3 in which the depth of the dent existing on the upper surface of the core is 0.33 ⁇ m or less, are representative of wavelength bands in the single mode compared to Example 4 in which the depth of the dent existing on the upper surface of the core is greater than 0.33 ⁇ m.
  • Propagation losses X and Y at 1310 nm and 1550 nm are reduced.
  • the propagation loss ratio X / Y is in the range of 0.2 to 2, the design freedom of the polymer optical waveguide is high, and the productivity of the polymer optical waveguide is high.
  • Example 4 since the prepolymer A used for core formation had an absorbance at a wavelength of 365 nm (concentration of 100%) of 7.5 or less, 1310 nm, which is a typical wavelength band in a single mode, And propagation losses X and Y at 1550 nm are reduced. Moreover, it is estimated that it has influenced that the depth of the dent which exists in a core upper surface is 0.33 micrometer or less.
  • Example 4 as the prepolymer A used for core formation, one having an absorbance at a wavelength of 365 nm (polymer thickness 10 mm, concentration 100% equivalent) of more than 7.5 is representative of the wavelength band in the single mode. The propagation losses X and Y at the typical 1310 nm and 1550 nm are increased. Further, it is assumed that the depth of the dent existing on the upper surface of the core is affected by being over 0.33 ⁇ m.

Abstract

The present invention relates to a polymer optical waveguide which comprises a core and a cladding that has a lower refractive index than the core, and which is characterized in that: the polymer optical waveguide has a sheet form; if the thickness direction of the sheet form is taken as the core height and a direction perpendicular to the thickness direction is taken as the core width in a cross-section of the core in a direction perpendicular to the direction of propagation of light, the core height is 0.5-10 μm and the core width is 0.5-15 μm; and the depth of a recess that is present in the core upper surface and/or the core lateral surface of the cross-section of the core is 0.33 μm or less.

Description

ポリマー光導波路Polymer optical waveguide
 本発明は、ポリマー光導波路に関する。 The present invention relates to a polymer optical waveguide.
 通信機器の分野等で機器の小型化及び通信の高速化に伴い、信号の伝送にポリマー製の光導波路を用いることが注目されている(特許文献1)。
 ポリマー光導波路は、大容量の信号を通すことができ、ノイズレス、省スペース化、アッセンブリ容易性を実現できる。
With the miniaturization of devices and the speeding up of communication in the field of communication devices and the like, attention has been paid to the use of polymer optical waveguides for signal transmission (Patent Document 1).
The polymer optical waveguide can pass a large volume of signal, and can realize noiseless, space saving, and ease of assembly.
日本国特開2002-2298号公報Japanese Unexamined Patent Publication No. 2002-2298
 本発明は、伝搬損失を低減できるポリマー光導波路を提供することを目的とする。 An object of the present invention is to provide a polymer optical waveguide that can reduce propagation loss.
 上記した目的を達成するため、本願発明は、コアと前記コアよりも屈折率が低いクラッドとを有するポリマー光導波路であって、
 前記ポリマー光導波路はシート形状をなしており、コアの光伝搬方向と垂直方向のコア断面形状において、シート形状の厚さ方向をコア高さ、厚さ方向と垂直の方向をコア幅とするとき、コア高さは1.0~10μm、コア幅は1.0~15μmであり、
 前記コア断面形状におけるコア上面、および/またはコア側面に存在する凹みの深さが0.33μm以下であることを特徴とするポリマー光導波路を提供する。
In order to achieve the above object, the present invention is a polymer optical waveguide having a core and a clad having a refractive index lower than that of the core,
The polymer optical waveguide has a sheet shape, and in the core cross-sectional shape perpendicular to the light propagation direction of the core, when the thickness direction of the sheet shape is the core height and the direction perpendicular to the thickness direction is the core width The core height is 1.0-10 μm, the core width is 1.0-15 μm,
Provided is a polymer optical waveguide characterized in that the depth of a dent existing on the upper surface and / or the side surface of the core in the core cross-sectional shape is 0.33 μm or less.
 本発明のポリマー光導波路は、波長1550nmの伝搬損失値X[dB/cm]を、波長1310nmの伝搬損失値Y[dB/cm]で除した伝搬損失比X/Yが0.2~2であることが好ましい。 The polymer optical waveguide of the present invention has a propagation loss ratio X / Y of 0.2 to 2 obtained by dividing the propagation loss value X [dB / cm] at a wavelength of 1550 nm by the propagation loss value Y [dB / cm] at a wavelength of 1310 nm. Preferably there is.
 本発明のポリマー光導波路において、前記コアは、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含む組成物を硬化させたものであり、前記クラッドは、前記含フッ素ポリアリーレンプレポリマー(A)より屈折率が低い架橋性官能基を有する化合物を含む組成物(B)を硬化させたものであることが好ましい。 In the polymer optical waveguide of the present invention, the core is obtained by curing a composition containing a fluorinated polyarylene prepolymer (A) having a crosslinkable functional group, and the clad is the fluorinated polyarylene prepolymer. (A) It is preferable that the composition (B) containing a compound having a crosslinkable functional group having a lower refractive index is cured.
 本発明のポリマー光導波路において、前記組成物(B)は、前記含フッ素ポリアリーレンプレポリマー(A)と、架橋性官能基を有する分子量が140~5000のフッ素原子を有さない化合物(C)とを含むことが好ましい。 In the polymer optical waveguide of the present invention, the composition (B) comprises the fluorine-containing polyarylene prepolymer (A) and a compound (C) having a crosslinkable functional group and having a molecular weight of 140 to 5000 and having no fluorine atom. Are preferably included.
 本発明のポリマー光導波路において、前記含フッ素ポリアリーレンプレポリマー(A)は、ポリマー厚み10mm、ポリマー濃度100wt%での波長365nmにおける吸光度が7.5以下であることが好ましい。 In the polymer optical waveguide of the present invention, the fluorine-containing polyarylene prepolymer (A) preferably has an absorbance at a wavelength of 365 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt% of 7.5 or less.
 本発明のポリマー光導波路は、シングルモード用のポリマー光導波路であることが好ましい。 The polymer optical waveguide of the present invention is preferably a single mode polymer optical waveguide.
 本発明のポリマー光導波路は、一端側に前記コアの少なくとも一部が露出した結合部を有することが好ましい。 The polymer optical waveguide of the present invention preferably has a coupling portion where at least a part of the core is exposed on one end side.
 また、本発明は、本発明のポリマー光導波路と、前記ポリマー光導波路の光導波部を収容するコネクタと、を有する、複合光導波路を提供する。 The present invention also provides a composite optical waveguide having the polymer optical waveguide of the present invention and a connector that accommodates the optical waveguide portion of the polymer optical waveguide.
 本発明のポリマー光導波路は、シングルモードの伝搬損失を低減できる。 The polymer optical waveguide of the present invention can reduce single-mode propagation loss.
図1は、本発明のポリマー光導波路の一構成例を示した斜視図である。FIG. 1 is a perspective view showing one structural example of the polymer optical waveguide of the present invention. 図2は、図1のポリマー光導波路の使用形態の一例を示した斜視図である。FIG. 2 is a perspective view showing an example of a usage pattern of the polymer optical waveguide of FIG. 図3は、図2の側面図である。FIG. 3 is a side view of FIG. 図4は、本発明のポリマー光導波路の別の使用形態の例を示した斜視図である。FIG. 4 is a perspective view showing an example of another usage pattern of the polymer optical waveguide of the present invention. 図5は、図4の側面図である。FIG. 5 is a side view of FIG. 図6は、図1のA-A線で切断したポリマー光導波路の断面図である。FIG. 6 is a cross-sectional view of the polymer optical waveguide taken along line AA in FIG. 図7は、コア断面形状の別の一例を示した図である。FIG. 7 is a diagram showing another example of the core cross-sectional shape. 図8は、コア断面形状のさらに別の一例を示した図である。FIG. 8 is a diagram showing still another example of the core cross-sectional shape. 図9は、例1、例4でコア材料に用いたプレポリマーAの波長400nm付近の吸光度を示した図である。FIG. 9 is a graph showing the absorbance of the prepolymer A used in the core material in Examples 1 and 4 near a wavelength of 400 nm. 図10は、例1~4のポリマー光導波路の平面図である。FIG. 10 is a plan view of the polymer optical waveguides of Examples 1 to 4. 図11は、例1のコア断面形状を示した図である。FIG. 11 is a diagram showing a core cross-sectional shape of Example 1. 図12は、例2のコア断面形状を示した図である。FIG. 12 is a diagram showing the core cross-sectional shape of Example 2. 図13は、例3のコア断面形状を示した図である。FIG. 13 is a diagram showing the core cross-sectional shape of Example 3. 図14は、例4のコア断面形状を示した図である。FIG. 14 is a diagram showing the core cross-sectional shape of Example 4.
 以下、図面を参照して本発明を説明する。
 図1は、本発明のポリマー光導波路の一構成例を示した斜視図である。
 図1に示すポリマー光導波路10は、コア20と、該コア20よりも屈折率が低いクラッド30とを有している。クラッド30は、コア20の下方に配されるアンダークラッド31と、コア20の上方に配されるオーバークラッド32とで構成されている。
 ポリマー光導波路10の一端側には、オーバークラッド32が存在せずコア20が露出したコア露出部40が設けられている。
The present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing one structural example of the polymer optical waveguide of the present invention.
A polymer optical waveguide 10 shown in FIG. 1 has a core 20 and a clad 30 having a refractive index lower than that of the core 20. The clad 30 includes an under clad 31 disposed below the core 20 and an over clad 32 disposed above the core 20.
On one end side of the polymer optical waveguide 10, there is provided a core exposed portion 40 where the over clad 32 is not present and the core 20 is exposed.
 ポリマー光導波路10は平坦なシート形状をなしており、光インターコネクションや光導波路デバイスとして用いられる。光インターコネクションとしては、例えば、チップ内光インターコネクション、チップ間光インターコネクション、ボード内光インターコネクション(光回路内蔵基板)、筐体内光インターコネクション(光バックプレーン)がある。 The polymer optical waveguide 10 has a flat sheet shape and is used as an optical interconnection or an optical waveguide device. Examples of the optical interconnection include an intra-chip optical interconnection, an inter-chip optical interconnection, an intra-board optical interconnection (substrate with built-in optical circuit), and an intra-casing optical interconnection (optical backplane).
 図2は、図1のポリマー光導波路10の使用形態の一例を示した斜視図であり、図3は、図2の側面図である。但し、ポリマー光導波路10は上下反転させており、コア露出部40が下に位置している。
 図2、3において、ポリマー光導波路10は、一端側に設けられたコア露出部により、シリコン光導波路100とアディアバティック結合している。ポリマー光導波路10の他端側は、シングルモード光ファイバ200とバット結合(正対結合)している。
FIG. 2 is a perspective view showing an example of a usage pattern of the polymer optical waveguide 10 of FIG. 1, and FIG. 3 is a side view of FIG. However, the polymer optical waveguide 10 is turned upside down, and the core exposed portion 40 is located below.
2 and 3, the polymer optical waveguide 10 is adiabatically coupled to the silicon optical waveguide 100 through a core exposed portion provided on one end side. The other end side of the polymer optical waveguide 10 is butt-coupled with the single-mode optical fiber 200 (face-to-face coupling).
 図4は、本発明のポリマー光導波路の別の使用形態の例を示した斜視図であり、図5は、図4の側面図である。図4、5において、ポリマー光導波路12の一端側にコア露出部42が設けられており、該コア露出部42により、ポリマー光導波路12と、シリコン光導波路100と、がアディアバティック結合している点は、図2、3と同一である。
 図1に示すポリマー光導波路10では、クラッド30に対しコア20の数が一つであるのに対し、図4に示すポリマー光導波路12では、一方向に沿って複数のコア22がアレイ状に設けられており、コア22同士の間隔を広げるため、曲げ領域を有している。
 図4、5において、ポリマー光導波路12の他端側は、シングルモード光ファイバ等とのバット結合(正対結合)用のコネクタ300に収容されている。
 図4、5に示す形態のように、ポリマー光導波路12と、ポリマー光導波路12の光導波部を収容するコネクタ300と、を有する構造を、本明細書において、複合光導波路とする。
FIG. 4 is a perspective view showing another example of usage of the polymer optical waveguide of the present invention, and FIG. 5 is a side view of FIG. 4 and 5, a core exposed portion 42 is provided on one end side of the polymer optical waveguide 12, and the polymer optical waveguide 12 and the silicon optical waveguide 100 are adiabatically coupled by the core exposed portion 42. The point is the same as in FIGS.
In the polymer optical waveguide 10 shown in FIG. 1, the number of the cores 20 is one for the clad 30, whereas in the polymer optical waveguide 12 shown in FIG. 4, a plurality of cores 22 are arrayed along one direction. A bending region is provided to widen the interval between the cores 22.
4 and 5, the other end of the polymer optical waveguide 12 is accommodated in a connector 300 for butt coupling (facing coupling) with a single mode optical fiber or the like.
As shown in FIGS. 4 and 5, a structure having the polymer optical waveguide 12 and the connector 300 that accommodates the optical waveguide portion of the polymer optical waveguide 12 is referred to as a composite optical waveguide in this specification.
 ポリマー光導波路の両端の構造は、ポリマー光導波路の使用時の結合方式により、適宜選択することができる。図2~5に示した形態のように、一端側の結合方式をアディアバティック結合とし、他端側の結合方式をバット結合(正対結合)とする場合は、ポリマー光導波路の一端側にコア露出部を設ける。両端の結合方式をアディアバティック結合とする場合はポリマー光導波路の両端にコア露出部を設ける。両端の結合方式をバット結合(正対結合)とする場合は、ポリマー光導波路にコア露出部を設けない。 The structure at both ends of the polymer optical waveguide can be appropriately selected according to the coupling method when the polymer optical waveguide is used. As shown in FIGS. 2 to 5, when the coupling method on one end side is an adiabatic coupling and the coupling method on the other end side is a butt coupling (face-to-face coupling), a core is placed on one end side of the polymer optical waveguide. An exposed part is provided. When the coupling method at both ends is an adiabatic coupling, core exposed portions are provided at both ends of the polymer optical waveguide. When the coupling method at both ends is a butt coupling (facing coupling), the core exposed portion is not provided in the polymer optical waveguide.
 ポリマー光導波路におけるコアは、配線パターンに応じた各種構造(結合器、方向性結合器、ピッチチェンジャ、T-Oスイッチ等)を有していてもよい。 The core in the polymer optical waveguide may have various structures (couplers, directional couplers, pitch changers, TO switches, etc.) according to the wiring pattern.
 図6は、図1のA-A線で切断したポリマー光導波路の断面図であり、コア20の光伝搬方向と垂直方向の断面図である。以下、本明細書において、ポリマー光導波路の断面形状、若しくは、ポリマー光導波路を構成するコアもしくはクラッドの断面形状と言った場合、コアの光伝搬方向と垂直方向の断面形状を意味する。
 図6において、コア20の断面形状は矩形の上面に凹みがある形状をなしている。但し、本発明のポリマー光導波路において、コアの断面形状はこれに限定されない。たとえば、台形、円形、楕円形、五角形以上の多角形の一部に凹みがある形状であってもよい。コアの断面形状が多角形である場合、その角が丸みを帯びていてもよい。
FIG. 6 is a cross-sectional view of the polymer optical waveguide cut along line AA in FIG. 1, and is a cross-sectional view of the core 20 in the direction perpendicular to the light propagation direction. Hereinafter, in this specification, the cross-sectional shape of the polymer optical waveguide or the cross-sectional shape of the core or the clad constituting the polymer optical waveguide means the cross-sectional shape in the direction perpendicular to the light propagation direction of the core.
In FIG. 6, the cross-sectional shape of the core 20 is a shape having a recess on the rectangular upper surface. However, in the polymer optical waveguide of the present invention, the cross-sectional shape of the core is not limited to this. For example, it may be a trapezoid, a circle, an ellipse, or a shape having a dent in a part of a polygon that is a pentagon or more. When the cross-sectional shape of the core is a polygon, the corners may be rounded.
 図6に示すコア20の断面形状において、ポリマー光導波路10がなすシート形状の厚さt方向をコア高さ、厚さ方向と垂直の方向(すなわち、ポリマー光導波路10がなすシート形状の幅w方向)をコア幅とするとき、コア高さは1.0~10μm、コア幅は1.0~15μmである。コア高さおよびコア幅が上記範囲であることにより、シングルモードでの帯域として代表的な波長1310nm、および波長1550nmでの伝播損失が抑制される。上記コア高さは、1~9μmが好ましく、1~7μmがより好ましく、1~5μmがさらに好ましく、1~3μmであることが特に好ましい。上記コア幅は1~10μmが好ましく、1~9.5μmがより好ましい。
 上記のコア幅、コア高さは、白色光干渉計、光学顕微鏡、レーザ顕微鏡、走査型電子顕微鏡(SEM)を用いて特定することができる。コア露出部の場合はコアの断面形状を直接観察することにより特定することができ、コア露出部が設けられていないポリマー光導波路の場合は、ポリマー光導波路を切断してコアの断面形状を観察することにより特定することができる。
In the cross-sectional shape of the core 20 shown in FIG. 6, the thickness t direction of the sheet shape formed by the polymer optical waveguide 10 is the core height, and the direction perpendicular to the thickness direction (that is, the width w of the sheet shape formed by the polymer optical waveguide 10). (Direction) is the core width, the core height is 1.0 to 10 μm, and the core width is 1.0 to 15 μm. When the core height and the core width are within the above ranges, propagation loss at a wavelength of 1310 nm and a wavelength of 1550 nm, which are typical as a single mode band, is suppressed. The core height is preferably 1 to 9 μm, more preferably 1 to 7 μm, further preferably 1 to 5 μm, and particularly preferably 1 to 3 μm. The core width is preferably 1 to 10 μm, and more preferably 1 to 9.5 μm.
The core width and core height can be specified using a white light interferometer, an optical microscope, a laser microscope, and a scanning electron microscope (SEM). In the case of a core exposed part, it can be specified by directly observing the cross-sectional shape of the core. In the case of a polymer optical waveguide without a core exposed part, the polymer optical waveguide is cut and the cross-sectional shape of the core is observed. Can be specified.
 本発明のポリマー光導波路は、上記範囲を満たす限りコア高さが異なる部位を有していてもよい。たとえば、ポリマー光導波路の一端と他端とでコア高さが異なっていてもよい。また、ポリマー光導波路の両端と、コアの光伝搬方向における中間部位と、でコア高さが異なっていてもよい。また、ポリマー光導波路のコア露出部と、それ以外の部位と、でコア高さが異なっていてもよい。 The polymer optical waveguide of the present invention may have portions with different core heights as long as the above range is satisfied. For example, the core height may be different between one end and the other end of the polymer optical waveguide. Further, the core height may be different between both ends of the polymer optical waveguide and the intermediate portion in the light propagation direction of the core. Further, the core height may be different between the exposed core portion of the polymer optical waveguide and the other portion.
 また、本発明のポリマー光導波路は、上記範囲を満たす限りコア幅が異なる部位を有していてもよい。たとえば、ポリマー光導波路の一端と他端とでコア幅が異なっていてもよい。また、ポリマー光導波路の両端と、コアの光伝搬方向における中間部位と、でコア幅が異なっていてもよい。また、ポリマー光導波路のコア露出部と、それ以外の部位と、でコア幅が異なっていてもよい。 Further, the polymer optical waveguide of the present invention may have a portion having a different core width as long as the above range is satisfied. For example, the core width may be different between one end and the other end of the polymer optical waveguide. Further, the core width may be different between both ends of the polymer optical waveguide and the intermediate portion in the light propagation direction of the core. In addition, the core width may be different between the exposed core portion of the polymer optical waveguide and the other portions.
 また、クラッドに対し複数のコアが並列配置されたポリマー光導波路の場合、複数のコアの全てについて、コア高さおよびコア幅が上記範囲を満たす必要がある。但し、全てのコアが信号の伝播目的で使用されるとは限らず、ポリマー光導波路の接続時の位置決め用のコアが存在する場合もある。このような目的で設けられたコアについては、コア高さおよびコア幅が上記範囲を満たしていなくてもよい。 Further, in the case of a polymer optical waveguide in which a plurality of cores are arranged in parallel with respect to the clad, the core height and the core width must satisfy the above ranges for all of the plurality of cores. However, not all cores are used for the purpose of signal propagation, and there may be a core for positioning when connecting polymer optical waveguides. About the core provided for such a purpose, core height and core width may not satisfy | fill the said range.
 図6に示すコア20断面形状は、その上面に凹み60が存在する。後述するように、ポリマー光導波路の製造方法には種々の方法が存在するが、いずれの方法を採用する場合でも、コア断面形状における上面および/または側面に凹みが生じる。
 コア断面形状における上面および/または側面に存在する1μm前後の凹みはポリマー光導波路において伝播損失を生じることはないと従来考えられていた。
 しかしながら、本願発明者らが鋭意検討した結果、コア断面形状における上面および/または側面に存在する凹みが、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおいて伝播損失を生じさせうること、および、特定の深さ以上の凹みが存在すると、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおいて有意な伝播損失を生じることを見出した。
The core 20 cross-sectional shape shown in FIG. 6 has a dent 60 on its upper surface. As will be described later, there are various methods for producing the polymer optical waveguide, but in any case, a dent is generated on the upper surface and / or the side surface of the core cross-sectional shape.
It has been conventionally considered that the recess of about 1 μm existing on the upper surface and / or the side surface in the core cross-sectional shape does not cause propagation loss in the polymer optical waveguide.
However, as a result of intensive studies by the inventors of the present application, it is possible that the depressions present on the upper surface and / or the side surface in the cross-sectional shape of the core can cause propagation loss at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode, It has also been found that if there is a recess having a specific depth or more, significant propagation loss occurs at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
 本発明のポリマー光導波路は、コア断面形状におけるコア上面および/またはコア側面に存在する凹みの深さが0.33μm以下である。すなわち、コア上面に凹みが存在する場合、該凹みの深さが0.33μm以下である。コア側面に凹みが存在する場合、該凹みの深さが0.33μm以下である。コア上面とコア側面にそれぞれ凹みが存在する場合、これらの凹みの深さが、それぞれ0.33μm以下である。
 コア上面および/またはコア側面に存在する凹みの深さが0.33μm以下であれば、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおいて伝播損失が低減される。
 なお、本明細書において、コア上面に凹みが存在する場合とは、コア上面に少なくとも2つの凸部が存在し、該凸部間に凹部が存在する場合を指す。
 コア上面に凹み60が存在する別の一構成例を図7に示す。
 コア上面に存在する凹みの深さは以下の手順で求めることができる。
 コア上面に存在する2つの隣接する凸部間に接線を引いた際に、該接線と、2つの凸部間に位置する凹部との、コア厚み方向における高低差の最大値をコア上面に存在する凹みの深さとする。
In the polymer optical waveguide of the present invention, the depth of the dent present on the upper surface and / or the side surface of the core in the core cross-sectional shape is 0.33 μm or less. That is, when a dent exists on the upper surface of the core, the depth of the dent is 0.33 μm or less. When a dent exists on the side surface of the core, the depth of the dent is 0.33 μm or less. When there are dents on the core upper surface and the core side surface, the depths of these dents are each 0.33 μm or less.
If the depth of the dent present on the upper surface and / or the side surface of the core is 0.33 μm or less, the propagation loss is reduced at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
In the present specification, the case where there is a dent on the upper surface of the core refers to the case where there are at least two convex portions on the upper surface of the core and there are concave portions between the convex portions.
FIG. 7 shows another configuration example in which the recess 60 is present on the upper surface of the core.
The depth of the dent present on the upper surface of the core can be obtained by the following procedure.
When a tangent line is drawn between two adjacent convex portions existing on the core upper surface, the maximum height difference in the core thickness direction between the tangent line and the concave portion located between the two convex portions exists on the core upper surface. The depth of the dent to be made.
 本明細書において、コア側面に凹みが存在する場合とは、側面の出っ張った2点を結ぶように接線を引いた際に、接線プロファイルよりも内側にコア側面の一部が位置している場合を指す。
 コア側面に凹みが存在する一構成例を図8に示す。
 コア側面に存在する凹みの深さは以下の手順で求めることができる。
 上記で定義した接線プロファイルと、コア側面、との距離の最大値をコア側面に存在する凹みの深さとする。
In this specification, the case where there is a dent on the core side surface means that when a tangent line is drawn so as to connect two protruding points on the side surface, a part of the core side surface is located inside the tangential profile. Point to.
FIG. 8 shows an example of a configuration in which a dent exists on the side surface of the core.
The depth of the dent existing on the side surface of the core can be obtained by the following procedure.
The maximum value of the distance between the tangential profile defined above and the core side surface is defined as the depth of the recess existing on the core side surface.
 コア上面および/またはコア側面に存在する凹みの深さは、上述した手順でコアの断面形状を観察することにより特定することができる。
 なお、後述する実施例では、ポリマー光導波路の光伝播方向における一個所でのみコアの断面形状を観察しているが、コア上面および/またはコア側面に凹みが生じるのはポリマー光導波路の製造時の条件に起因するため、ポリマー光導波路の光伝播方向における一個所において、コア上面および/またはコア側面に凹みが存在する場合、ポリマー光導波路の他の部位においても、コア上面および/またはコア側面に実質的に同程度の深さの凹みが存在する可能性が高い。
The depth of the dent existing on the upper surface and / or the side surface of the core can be specified by observing the cross-sectional shape of the core in the procedure described above.
In the examples described later, the cross-sectional shape of the core is observed only at one point in the light propagation direction of the polymer optical waveguide. However, the depression on the upper surface of the core and / or the side surface of the core occurs when the polymer optical waveguide is manufactured. Therefore, when there is a recess in the core upper surface and / or the core side surface at one place in the light propagation direction of the polymer optical waveguide, the core upper surface and / or the core side surface also in other portions of the polymer optical waveguide. There is a high possibility that a recess having substantially the same depth exists.
 本発明のポリマー光導波路は、コア断面形状におけるコア上面および/またはコア側面に存在する凹みの深さが0.30μm以下であることが好ましく、0.25μm以下であることがより好ましく、0.15μm以下であることが特に好ましい。 In the polymer optical waveguide of the present invention, the depth of the dent present on the upper surface and / or the side surface of the core in the cross-sectional shape of the core is preferably 0.30 μm or less, more preferably 0.25 μm or less. It is particularly preferably 15 μm or less.
 クラッドに対し複数のコアが並列配置されたポリマー光導波路の場合、複数のコアの全てについて、コア上面および/またはコア側面に存在する凹みの深さが0.33μm以下であることが求められる。但し、全てのコアが信号の伝播目的で使用されるとは限らず、ポリマー光導波路の接続時の位置決め用のコアが存在する場合もある。このような目的で設けられたコアについては、コア上面および/またはコア側面に存在する凹みの深さが0.33μm以下でなくてもよい。 In the case of a polymer optical waveguide in which a plurality of cores are arranged in parallel to the clad, it is required that the depth of the recesses existing on the top surface and / or the side surface of the core is 0.33 μm or less. However, not all cores are used for the purpose of signal propagation, and there may be a core for positioning when connecting polymer optical waveguides. About the core provided for such a purpose, the depth of the dent which exists in a core upper surface and / or a core side surface does not need to be 0.33 micrometer or less.
 上述したように、本発明のポリマー光導波路によれば、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおいて伝播損失が低減される。
 本発明のポリマー光導波路は、波長1550nmの伝搬損失値X[dB/cm]を、波長1310nmの伝搬損失値Y[dB/cm]で除した伝搬損失比X/Yが0.2~2であることが好ましい。伝達損失値X/Yが上記範囲を満たしていれば、ポリマー光導波路の設計自由度が高くなる。また、ポリマー光導波路の生産性が高くなる。すなわち、同じデザインのポリマー光導波路を1310nm、および1550nmの両方の波長帯域の信号の伝播に使用できる。また、1つのポリマー光導波路において、1310nm、および1550nm波長帯の信号を伝搬できる。
As described above, according to the polymer optical waveguide of the present invention, propagation loss is reduced at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
The polymer optical waveguide of the present invention has a propagation loss ratio X / Y of 0.2 to 2 obtained by dividing the propagation loss value X [dB / cm] at a wavelength of 1550 nm by the propagation loss value Y [dB / cm] at a wavelength of 1310 nm. Preferably there is. If the transmission loss value X / Y satisfies the above range, the design freedom of the polymer optical waveguide is increased. Further, the productivity of the polymer optical waveguide is increased. That is, polymer optical waveguides of the same design can be used for the propagation of signals in both the 1310 nm and 1550 nm wavelength bands. Further, signals in the 1310 nm and 1550 nm wavelength bands can be propagated in one polymer optical waveguide.
 本発明のポリマー光導波路において、コアおよびクラッドの構成材料は、コアの屈折率よりもクラッドの屈折率が低くなるような屈折率の差が生じる材料であれば特に限定されない。例えば、アクリル系樹脂、ポリメチルメタクリレート(PMMA)のようなメタクリル系樹脂、エポキシ系樹脂、オキセタン系樹脂、フェノキシ樹脂、ベンゾシクロブテン系樹脂、ノルボルネン系樹脂、フッ素系樹脂、シリコーン系樹脂、フェノール系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド樹脂、ポリ(イミド・イソインドロキナゾリンジオンイミド)樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリエステルイミド樹脂等のようなポリイミド系樹脂、ポリベンゾオキサゾール系樹脂、ポリシラン、ポリシラザンゾイミダゾール系樹脂、のような各種の樹脂材料や、有機無機ハイブリット材料を用いることができる。
 これらの材料のうち、フッ素系樹脂は、吸水率又は吸湿率が低く、高温高湿に対する耐性に優れ、化学的な安定性が高いため、コアやクラッドの材料として好適である。フッ素系樹脂を用いたポリマー光導波路は、外的環境の変化、特に湿度の変化による屈折率の変動が小さくて特性が安定しており、また、光通信波長帯域における透明性が高い。
In the polymer optical waveguide of the present invention, the constituent materials of the core and the clad are not particularly limited as long as the refractive index difference is such that the clad refractive index is lower than the core refractive index. For example, acrylic resins, methacrylic resins such as polymethyl methacrylate (PMMA), epoxy resins, oxetane resins, phenoxy resins, benzocyclobutene resins, norbornene resins, fluorine resins, silicone resins, phenolic resins Resin, polyester resin, polycarbonate resin, polystyrene resin, polyamide resin, polyimide resin, poly (imide / isoindoloquinazolinedioneimide) resin, polyetherimide resin, polyetherketone resin, polyesterimide resin, etc. Various resin materials such as polyimide resin, polybenzoxazole resin, polysilane, polysilazane imidazole resin, and organic-inorganic hybrid materials can be used.
Of these materials, fluororesins are suitable as materials for cores and clads because of their low water absorption or moisture absorption, excellent resistance to high temperature and high humidity, and high chemical stability. A polymer optical waveguide using a fluororesin has stable characteristics with a small change in refractive index due to a change in external environment, particularly a change in humidity, and has high transparency in an optical communication wavelength band.
 一方、ポリマー光導波路は、耐熱性が良好であることが好ましい。また加熱、曲げ、温度変化等により、コアとクラッドとの界面において剥離やクラック等が生じないよう、コアとクラッドとの密着性が良好であることが好ましい。
 耐熱性、および、コアとクラッドとの密着性の観点からは、本発明のポリマー光導波路におけるコアは、含フッ素ポリアリーレンプレポリマー(A)(以下、単にプレポリマー(A)ということもある。)を硬化させて形成されることが好ましい。
 一方、本発明のポリマー光導波路におけるクラッドは、プレポリマー(A)より屈折率が低い架橋性官能基を有する化合物を含む組成物(B)を硬化させて形成されることが好ましい。
On the other hand, the polymer optical waveguide preferably has good heat resistance. In addition, it is preferable that the adhesion between the core and the clad is good so that peeling, cracking or the like does not occur at the interface between the core and the clad due to heating, bending, temperature change or the like.
From the viewpoint of heat resistance and adhesion between the core and the clad, the core in the polymer optical waveguide of the present invention may be referred to as a fluorine-containing polyarylene prepolymer (A) (hereinafter, simply referred to as prepolymer (A)). ) Is preferably cured.
On the other hand, the clad in the polymer optical waveguide of the present invention is preferably formed by curing a composition (B) containing a compound having a crosslinkable functional group having a refractive index lower than that of the prepolymer (A).
(プレポリマー(A))
 プレポリマー(A)は、複数の芳香族環が単結合または連結基を介して結合しているポリアリーレン構造を有するとともに、フッ素原子を有し、かつ架橋性官能基を有する。
 ポリアリーレン構造における連結基は、例えばエーテル結合(-O-)、スルフィド結合(-S-)、カルボニル基(-CO-)、スルホン酸基から水酸基を除いた二価基(-SO2-)等が挙げられる。プレポリマー(A)のうち、特に芳香族環どうしがエーテル結合(-O-)を含む連結基で結合されている構造を有するものを含フッ素ポリアリーレンエーテルプレポリマー(A1)という。本発明におけるプレポリマー(A)は含フッ素ポリアリーレンエーテルプレポリマー(A1)を含む概念である。
 該エーテル結合を含む連結基の具体例としては、エーテル性酸素原子のみからなるエーテル結合(-O-)、炭素鎖中にエーテル性酸素原子を含むアルキレン基等が例示される。
(Prepolymer (A))
The prepolymer (A) has a polyarylene structure in which a plurality of aromatic rings are bonded via a single bond or a linking group, a fluorine atom, and a crosslinkable functional group.
Examples of the linking group in the polyarylene structure include an ether bond (—O—), a sulfide bond (—S—), a carbonyl group (—CO—), and a divalent group (—SO 2 —) obtained by removing a hydroxyl group from a sulfonic acid group. Etc. Among the prepolymers (A), those having a structure in which aromatic rings are bonded with a linking group containing an ether bond (—O—) are referred to as a fluorinated polyarylene ether prepolymer (A1). The prepolymer (A) in the present invention is a concept including a fluorine-containing polyarylene ether prepolymer (A1).
Specific examples of the linking group containing an ether bond include an ether bond (—O—) consisting only of an etheric oxygen atom, and an alkylene group containing an etheric oxygen atom in the carbon chain.
 プレポリマー(A)の架橋性官能基は、プレポリマー製造時には実質上反応を起こさず、外部エネルギーを与えることにより反応し、プレポリマー分子間の架橋又は鎖延長により高分子量化を引き起こす反応性官能基である。
 外部エネルギーとしては、熱、光、電子線等が挙げられる。これらを併用してもよい。 外部エネルギーとして熱を用いる場合、40℃~500℃の反応温度で反応する反応性官能基が好ましい。反応温度が低すぎると、プレポリマー又は該プレポリマーを含む組成物の保存時における安定性が確保できず、高すぎると反応時にプレポリマー自体の熱分解が発生してしまうので、前記範囲にあることが好ましい。該反応温度は60℃~300℃がより好ましく、70℃~200℃がさらに好ましく、120℃~250℃が特に好ましい。
 また、外部エネルギーとして光(化学線)を用いる場合は、プレポリマー(A)と感光剤を共存させた状態で露光することが好ましい。具体的にはプレポリマー(A)を含む塗布液(硬化性組成物)を調製し、これに感光剤を含有させることが好ましい。露光工程において所望の部分にのみ化学線を選択的に照射すれば、露光部のみを高分子量化させ、未露光部分を現像液に溶解させて除去することができる。また必要に応じて、露光、現像の後にも、化学線または熱等の外部エネルギーを与えてさらに高分子量化させることができる。
The crosslinkable functional group of the prepolymer (A) does not substantially react during the production of the prepolymer, reacts by applying external energy, and causes a high molecular weight by crosslinking or chain extension between prepolymer molecules. It is a group.
Examples of the external energy include heat, light, and electron beam. These may be used in combination. When heat is used as external energy, a reactive functional group that reacts at a reaction temperature of 40 ° C. to 500 ° C. is preferable. If the reaction temperature is too low, stability during storage of the prepolymer or the composition containing the prepolymer cannot be ensured, and if it is too high, thermal decomposition of the prepolymer itself occurs during the reaction. It is preferable. The reaction temperature is more preferably 60 ° C. to 300 ° C., further preferably 70 ° C. to 200 ° C., and particularly preferably 120 ° C. to 250 ° C.
Moreover, when using light (actinic radiation) as external energy, it is preferable to expose in the state where the prepolymer (A) and the photosensitizer coexist. Specifically, it is preferable to prepare a coating liquid (curable composition) containing the prepolymer (A) and to contain a photosensitizer. By selectively irradiating only a desired part with actinic radiation in the exposure step, only the exposed part can be made to have a high molecular weight, and the unexposed part can be dissolved in the developer and removed. Further, if necessary, after the exposure and development, external energy such as actinic radiation or heat can be applied to further increase the molecular weight.
 架橋性官能基の具体例としては、ビニル基、アリル基、アリルオキシ基、メタクリロイル(オキシ)基、アクリロイル(オキシ)基、ビニルオキシ基、トリフルオロビニル基、トリフルオロビニルオキシ基、エチニル基、1-オキソシクロペンタ-2,5-ジエン-3-イル基、シアノ基、アルコキシシリル基、ジアリールヒドロキシメチル基、ヒドロキシフルオレニル基、シクロブタレン環、オキシラン環等が挙げられる。反応性が高く、高い架橋密度が得られる点で、ビニル基、メタクリロイル(オキシ)基、アクリロイル(オキシ)基、トリフルオロビニルオキシ基、エチニル基、シクロブタレン環、およびオキシラン環が好ましく、高分子量化後の耐熱性が良好となる点から、ビニル基、およびエチニル基が最も好ましい。
 なおメタクリロイル(オキシ)基とは、メタクリロイル基またはメタクリロイルオキシ基を意味する。アクリロイル(オキシ)基も同様である。
Specific examples of the crosslinkable functional group include vinyl group, allyl group, allyloxy group, methacryloyl (oxy) group, acryloyl (oxy) group, vinyloxy group, trifluorovinyl group, trifluorovinyloxy group, ethynyl group, 1- Examples thereof include an oxocyclopenta-2,5-dien-3-yl group, a cyano group, an alkoxysilyl group, a diarylhydroxymethyl group, a hydroxyfluorenyl group, a cyclobutalene ring, and an oxirane ring. Vinyl groups, methacryloyl (oxy) groups, acryloyl (oxy) groups, trifluorovinyloxy groups, ethynyl groups, cyclobutalene rings, and oxirane rings are preferred because of their high reactivity and high crosslink density. A vinyl group and an ethynyl group are the most preferable from the viewpoint of later good heat resistance.
The methacryloyl (oxy) group means a methacryloyl group or a methacryloyloxy group. The same applies to the acryloyl (oxy) group.
 プレポリマー(A)は、芳香族環を有するため、耐熱性が良好である。
 プレポリマー(A)のうちでも、特に、含フッ素ポリアリーレンエーテルプレポリマー(A1)は、エーテル性酸素原子を有するため、分子構造が柔軟性を有し、硬化物の可とう性が良好である点で好ましい。
 プレポリマー(A)はフッ素原子を有する。すなわちプレポリマー(A)はC-H結合の水素原子がフッ素原子に置換されたC-F結合を有するため、C-H結合の存在割合が少なくなっている。C-H結合は光通信波長帯域(1250~1650nm)において吸収を有するため、C-H結合が少ないプレポリマー(A)は、光通信波長帯域における光の吸収が抑えられる。またプレポリマー(A)はフッ素原子を有するため、吸水性または吸湿性が低く、高温高湿に対する耐性に優れるとともに、化学的にも安定性が高い。したがって、プレポリマー(A)を用いた光導波路は、外的環境の変化、特に湿度変化、による屈折率変動が小さく特性が安定しており、また光通信波長帯域における透明性が高い。
 またプレポリマー(A)の硬化物は、波長1310nm付近における透明性が高いため、既存の光学素子との適合性が良い光導波路が得られる。すなわち、一般に石英系光ファイバを用いた光伝送装置においては、1310nmを使用波長とする場合が多いため、この使用波長に適合する受光素子等の光学素子が多く製造されており、信頼性も高い。
Since the prepolymer (A) has an aromatic ring, the heat resistance is good.
Among the prepolymers (A), in particular, the fluorine-containing polyarylene ether prepolymer (A1) has an etheric oxygen atom, so that the molecular structure is flexible and the cured product has good flexibility. This is preferable.
The prepolymer (A) has a fluorine atom. That is, since the prepolymer (A) has a C—F bond in which a hydrogen atom of a C—H bond is substituted with a fluorine atom, the proportion of the C—H bond is small. Since the C—H bond has absorption in the optical communication wavelength band (1250 to 1650 nm), the prepolymer (A) having few C—H bonds can suppress light absorption in the optical communication wavelength band. Further, since the prepolymer (A) has a fluorine atom, the water absorption or hygroscopicity is low, the resistance to high temperature and high humidity is excellent, and the chemical stability is also high. Therefore, the optical waveguide using the prepolymer (A) has small refractive index fluctuation due to changes in the external environment, particularly humidity change, and has stable characteristics, and has high transparency in the optical communication wavelength band.
Moreover, since the cured product of the prepolymer (A) has high transparency in the vicinity of a wavelength of 1310 nm, an optical waveguide having good compatibility with existing optical elements can be obtained. That is, in general, in an optical transmission device using a silica-based optical fiber, a wavelength of 1310 nm is often used, so that many optical elements such as a light receiving element suitable for this wavelength are manufactured, and the reliability is high. .
 好ましいプレポリマー(A)の例としては、ペルフルオロ(1,3,5-トリフェニルベンゼン)、ペルフルオロビフェニル等の含フッ素芳香族化合物と;1,3,5-トリヒドロキシベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン等のフェノール系化合物と;ペンタフルオロスチレン、アセトキシスチレン、クロルメチルスチレン等の架橋性化合物と;を炭酸カリウム等の脱ハロゲン化水素剤の存在下で反応させて得られるポリマーが挙げられる。 Examples of preferred prepolymer (A) include fluorine-containing aromatic compounds such as perfluoro (1,3,5-triphenylbenzene) and perfluorobiphenyl; 1,3,5-trihydroxybenzene, 1,1,1 Reacting a phenolic compound such as tris (4-hydroxyphenyl) ethane with a crosslinkable compound such as pentafluorostyrene, acetoxystyrene or chloromethylstyrene in the presence of a dehydrohalogenating agent such as potassium carbonate; Examples include the resulting polymer.
 プレポリマー(A)における架橋性官能基の含有量は、プレポリマー1gに対して架橋性官能基が0.1~4ミリモルが好ましく、0.2~3ミリモルがより好ましい。この範囲を0.1ミリモル以上とすることで硬化物の耐熱性及び耐溶剤性を高くでき、また4ミリモル以下とすることで、脆性を小さく抑え、比誘電率の上昇を抑制することができる。    The content of the crosslinkable functional group in the prepolymer (A) is preferably 0.1 to 4 mmol, more preferably 0.2 to 3 mmol with respect to 1 g of the prepolymer. By setting this range to 0.1 mmol or more, the heat resistance and solvent resistance of the cured product can be increased, and by setting it to 4 mmol or less, brittleness can be reduced and an increase in the dielectric constant can be suppressed. . *
 プレポリマー(A)は、ポリマー厚み10mm、ポリマー濃度100wt%での波長365nmにおける吸光度が7.5以下であることが好ましい。本明細書において、ポリマー濃度100wt%での吸光度とは、ポリマー100wt%での吸光度の実測値、またはポリマー100wt%での吸光度の想定値を指す。
 詳しくは後述するが、ポリマー光導波路の作製時において、ポリマー光導波路のコアを形成する際にフォトリソグラフィプロセスを用いる場合がある。このフォトリソグラフィプロセスでの露光には波長365nmのi線が通常使用される。波長365nmにおける吸光度が高いと、フォトリソグラフィプロセスの露光時にプレポリマー(A)がi線を吸収して、形成されるコアに凹みが生じるおそれがある。プレポリマー(A)は、ポリマー厚み10mm、ポリマー濃度100wt%での波長365nmにおける吸光度が7.5以下であれば、形成されるコアに凹みが生じるおそれが少ない。
 これにより、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおいて伝播損失が低減される。
 プレポリマー(A)は、ポリマー厚み10mm、ポリマー濃度100wt%での波長365nmにおける吸光度が7.5以下であることが好ましく、6.5以下であることがより好ましく、6.0以下であることがさらに好ましく、5.5以下であることが特に好ましい。
The prepolymer (A) preferably has an absorbance of 7.5 or less at a wavelength of 365 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt%. In this specification, the absorbance at a polymer concentration of 100 wt% refers to an actually measured value of absorbance at 100 wt% polymer or an assumed value of absorbance at 100 wt% polymer.
As will be described in detail later, a photolithography process may be used when forming the core of the polymer optical waveguide during the production of the polymer optical waveguide. For exposure in this photolithography process, i-line having a wavelength of 365 nm is usually used. When the absorbance at a wavelength of 365 nm is high, the prepolymer (A) absorbs i-line during exposure in the photolithography process, and there is a possibility that a dent will be formed in the formed core. If the prepolymer (A) has a polymer thickness of 10 mm, a polymer concentration of 100 wt% and an absorbance at a wavelength of 365 nm of 7.5 nm or less, the prepolymer (A) is less likely to be dented.
As a result, propagation loss is reduced at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
The prepolymer (A) preferably has an absorbance at a wavelength of 365 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt% of 7.5 or less, more preferably 6.5 or less, and 6.0 or less. Is more preferable and 5.5 or less is particularly preferable.
 プレポリマー(A)は、ポリマー厚み10mm、ポリマー濃度100wt%での波長1400nm~1460nmにおける吸光度のピーク値が0.045以下であることが好ましい。
 プレポリマー(A)が水分を含有すると、該プレポリマー(A)を用いて形成されるコアにおいて、シングルモードでの波長帯域として代表的な1310nm、および1550nmで伝播損失が生じるおそれがある。
 プレポリマー(A)が水分を含有すると、波長1400nm~1460nmにおける吸収が大きくなる。ポリマー厚み10mm、ポリマー濃度100wt%での波長1400nm~1460nmにおける吸光度のピーク値が0.045以下であれば、プレポリマー(A)が含有する水分がきわめて少なく、該プレポリマー(A)を用いて形成されるコアにおいて、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおいて伝播損失が低減される。
The prepolymer (A) preferably has an absorbance peak value of 0.045 or less at a wavelength of 1400 nm to 1460 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt%.
When the prepolymer (A) contains moisture, in the core formed using the prepolymer (A), propagation loss may occur at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
When the prepolymer (A) contains moisture, absorption at a wavelength of 1400 nm to 1460 nm increases. If the peak value of absorbance at a wavelength of 1400 nm to 1460 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt% is 0.045 or less, the prepolymer (A) contains very little water, and the prepolymer (A) is used. In the core to be formed, propagation loss is reduced at 1310 nm and 1550 nm, which are typical wavelength bands in the single mode.
 なお、後述する実施例に示すように、プレポリマー(A)では、波長365nmにおける吸収と、波長1400nm~1460nmにおける吸収と、の間に相関性が認められる。そのため、波長365nmにおける吸光度と、波長1400nm~1460nmにおける吸光度のピーク値のうち、一方を測定することで、他方の傾向を推定することができる。例えば、波長1400nm~1460nmにおける吸光度のピーク値から、波長365nmにおける吸光度の高低を推定することができる。 In addition, as shown in the Example mentioned later, in prepolymer (A), a correlation is recognized between the absorption in wavelength 365nm and the absorption in wavelength 1400nm-1460nm. Therefore, by measuring one of the absorbance at a wavelength of 365 nm and the peak value of the absorbance at a wavelength of 1400 nm to 1460 nm, the other tendency can be estimated. For example, the level of absorbance at a wavelength of 365 nm can be estimated from the absorbance peak value at a wavelength of 1400 nm to 1460 nm.
(組成物(B))
 組成物(B)は、プレポリマー(A)と、架橋性官能基を有する分子量が140~5000のフッ素原子を有さない化合物(C)とを含むことが好ましい。
 組成物(B)に含まれるプレポリマー(A)は、コアの形成に用いるプレポリマー(A)は、同じであってもよく、異なっていてもよい。接着性、密着性、クラック抑制、または膨張率差の低減の点からは同じであることが好ましい。
(Composition (B))
The composition (B) preferably contains a prepolymer (A) and a compound (C) having a crosslinkable functional group and having a molecular weight of 140 to 5000 and having no fluorine atom.
The prepolymer (A) contained in the composition (B) may be the same or different from the prepolymer (A) used for forming the core. The same is preferable from the viewpoint of adhesiveness, adhesion, crack suppression, or reduction in expansion coefficient difference.
(化合物(C))
 化合物(C)は分子量が140~5000であり、架橋性官能基を有し、フッ素原子を有していない。フッ素原子を有していないため、良好な埋め込み平坦性が得られやすい。埋め込み平坦性が良いと、クラッドの表面が平坦になりやすい。また含フッ素化合物に比べて低コストになりやすい。
(Compound (C))
The compound (C) has a molecular weight of 140 to 5000, has a crosslinkable functional group, and does not have a fluorine atom. Since there are no fluorine atoms, good embedding flatness is easily obtained. If the embedded flatness is good, the surface of the clad tends to be flat. Further, the cost is likely to be lower than that of the fluorine-containing compound.
 化合物(C)の分子量が5000以下であると、化合物(C)の粘度が低く抑えられ、プレポリマー(A)と混合したときに均一な組成物が得られやすい。また良好な平坦性が得られやすい。
 化合物(C)の分子量が140以上であると、良好な耐熱性が得られ、加熱による分解、揮発が生じ難い。化合物(C)の分子量の範囲は250~3000が好ましく、250~2500が特に好ましい。
When the molecular weight of the compound (C) is 5000 or less, the viscosity of the compound (C) is suppressed low, and a uniform composition is easily obtained when mixed with the prepolymer (A). Also, good flatness can be easily obtained.
When the molecular weight of the compound (C) is 140 or more, good heat resistance is obtained, and decomposition and volatilization due to heating hardly occur. The molecular weight range of the compound (C) is preferably 250 to 3000, particularly preferably 250 to 2500.
 化合物(C)の架橋性官能基は、フッ素原子を含有せず、上記プレポリマー(A)の架橋性官能基を反応させる工程と同工程で反応する反応性官能基が好ましい。
 化合物(C)の架橋性官能基は、少なくとも化合物(C)と反応して架橋又は鎖延長を引き起こす。化合物(C)の架橋性官能基が、プレポリマー(A)および化合物(C)の両方と反応して架橋又は鎖延長を引き起こすことが好ましい。
 化合物(C)の架橋性官能基としては、炭素原子-炭素原子における二重結合または三重結合が好ましい。ただし芳香族性の二重結合、三重結合は含まない。
 架橋性官能基としての二重結合、三重結合は、分子鎖の内部に存在してもよく、末端に存在してもよいが、反応性が高いことから末端に存在することが好ましい。二重結合の場合には、内部オレフィンであっても、末端オレフィンであってもよいが、末端オレフィンが好ましい。分子鎖の内部にあるとは、シクロオレフィン類のように脂肪族環の一部に存在することも含む。
 具体的には、ビニル基、アリル基、エチニル基、ビニルオキシ基、アリルオキシ基、アクリロイル基、アクリロイルオキシ基、メタクリロイル基、メタクリロイルオキシ基からなる群から選ばれる1種以上を含むことが好ましい。これらのうちで、感光剤の存在下でなくても光照射により反応を生じる点でアクリロイル基、アクリロイルオキシ基が好ましい。
The crosslinkable functional group of the compound (C) does not contain a fluorine atom, and a reactive functional group that reacts in the same step as the step of reacting the crosslinkable functional group of the prepolymer (A) is preferable.
The crosslinkable functional group of compound (C) reacts with at least compound (C) to cause crosslinking or chain extension. It is preferable that the crosslinkable functional group of the compound (C) reacts with both the prepolymer (A) and the compound (C) to cause crosslinking or chain extension.
The crosslinkable functional group of the compound (C) is preferably a double bond or triple bond at a carbon atom-carbon atom. However, aromatic double bonds and triple bonds are not included.
The double bond and triple bond as the crosslinkable functional group may exist inside the molecular chain or may exist at the terminal, but preferably exist at the terminal because of high reactivity. In the case of a double bond, it may be an internal olefin or a terminal olefin, but a terminal olefin is preferred. Being inside a molecular chain includes being present in a part of an aliphatic ring such as cycloolefins.
Specifically, it is preferable to include at least one selected from the group consisting of a vinyl group, an allyl group, an ethynyl group, a vinyloxy group, an allyloxy group, an acryloyl group, an acryloyloxy group, a methacryloyl group, and a methacryloyloxy group. Among these, an acryloyl group and an acryloyloxy group are preferable in that a reaction is caused by light irradiation even in the absence of a photosensitizer.
 化合物(C)は架橋性官能基を2個以上有することが好ましく、2~20個有することがより好ましく、2~8個有することが特に好ましい。架橋性官能基を2個以上有していると、分子間を架橋させることができるため、硬化膜における耐熱性を向上させ、硬化膜における加熱による膜厚減少を良好に抑えることができる。 The compound (C) preferably has 2 or more crosslinkable functional groups, more preferably 2 to 20, more preferably 2 to 8. When two or more crosslinkable functional groups are present, the molecules can be cross-linked, so that the heat resistance of the cured film can be improved, and the film thickness reduction due to heating in the cured film can be satisfactorily suppressed.
 化合物(C)の具体例としては、ジペンタエリスリトールトリアクリレートトリウンデシレート、ジペンタエリスリトールペンタアクリレートモノウンデシレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールポリアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート、プロポキシ化ビスフェノールAジアクリレート、プロポキシ化ビスフェノールAジメタクリレート、1,10-デカンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,3-ブタンジオールジメタクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、1,9-ノナンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタアリルイソシアヌレート、1,4-ブタンジオールジビニルエーテル、1,9-ノナンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリエチレングリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、アクリル酸2-(2-ビニロキシエトキシ)エチル、メタクリル酸2-(2-ビニロキシエトキシ)エチル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、下記式(1)で表されるエトキシ化ペンタエリスリトールテトラアクリレート、下記式(2)で表されるプロポキシ化ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、トリシクロデカンジメタノールジアクリレート、トリシクロデカンジメタノールメタクリレート、下記式(3)で表される化合物等が挙げられる。またポリエステルアクリレート(二価アルコールと二塩基酸との縮合物の両末端をアクリル酸で修飾した化合物:東亞合成社製、商品名アロニックス(M-6100、M-6200、M-6250、M-6500);多価アルコールと多塩基酸との縮合物の水酸基末端をアクリル酸で修飾した化合物:東亞合成社製、商品名アロニックス(M-7100、M-7300K、M-8030、M-8060、M-8100、M-8530、M-8560、M-9050))も利用できる。これらは市販品から入手できる。
 上記に挙げた中でも、ポリプロピレングリコールジメタクリレート、1,10-デカンジオールジアクリレートが硬化膜の成形性が良好であるので好ましい。
Specific examples of the compound (C) include dipentaerythritol triacrylate triundecylate, dipentaerythritol pentaacrylate monoundecylate, ethoxylated isocyanuric acid triacrylate, ε-caprolactone modified tris- (2-acryloxyethyl) Isocyanurate, dipentaerythritol polyacrylate, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, ethoxylation Bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, propoxylated bisphenol A diacrylate Propoxylated bisphenol A dimethacrylate, 1,10-decanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,4-butanediol dimethacrylate, 1,3-butanediol diacrylate Methacrylate, hydroxypivalate neopentyl glycol diacrylate, 1,9-nonanediol diacrylate, 1,9-nonanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, pentaerythritol triacrylate, trimethylolpropane tri Acrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, triallyl cyanurate, Triallyl isocyanurate, trimethallyl isocyanurate, 1,4-butanediol divinyl ether, 1,9-nonanediol divinyl ether, cyclohexane dimethanol divinyl ether, triethylene glycol divinyl ether, trimethylolpropane trivinyl ether, pentaerythritol tetra Vinyl ether, 2- (2-vinyloxyethoxy) ethyl acrylate, 2- (2-vinyloxyethoxy) ethyl methacrylate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, dipentaerythritol hexaacrylate, pentaerythritol tetraacrylate , Ethoxylated pentaerythritol tetraacrylate represented by the following formula (1), pro represented by the following formula (2) Carboxymethyl pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, tricyclodecane dimethanol diacrylate, tricyclodecane dimethanol methacrylate, compounds represented by the following formula (3). In addition, polyester acrylate (compound obtained by modifying both ends of the condensate of dihydric alcohol and dibasic acid with acrylic acid: manufactured by Toagosei Co., Ltd., trade name Aronix (M-6100, M-6200, M-6250, M-6500) ); Compound obtained by modifying the hydroxyl terminal of the condensate of polyhydric alcohol and polybasic acid with acrylic acid: manufactured by Toagosei Co., Ltd., trade name Aronix (M-7100, M-7300K, M-8030, M-8060, M -8100, M-8530, M-8560, M-9050)) can also be used. These can be obtained from commercial products.
Among those listed above, polypropylene glycol dimethacrylate and 1,10-decanediol diacrylate are preferable because of good moldability of the cured film.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上述したように、クラッドの構成材料は、コアの構成材料よりも屈折率が低いことが必要である。コアの構成材料をプレポリマー(A)とし、クラッドの構成材料をプレポリマー(A)と、化合物(C)とを含むポリマー組成物とする場合、プレポリマー(A)の硬化物よりも上記ポリマー組成物の硬化物の屈折率が低くなるように、化合物(C)の種類、および、ポリマー組成物におけるプレポリマー(A)と化合物(C)との混合比率を調整すればよい。
 硬化物の屈折率がプレポリマー(A)を単独で硬化させた硬化物の屈折率より高い化合物(C)を用いる場合は、硬化物の屈折率がプレポリマー(A)を単独で硬化させた硬化物の屈折率より低い別の化合物(C)と組み合わせて使用することによって、クラッドの屈折率を、コアの屈折率よりも低くできる。
As described above, the clad constituent material needs to have a lower refractive index than the core constituent material. When the core constituent material is a prepolymer (A) and the clad constituent material is a polymer composition including the prepolymer (A) and the compound (C), the polymer is more preferable than the cured product of the prepolymer (A). What is necessary is just to adjust the mixing ratio of the kind of compound (C) and the prepolymer (A) in a polymer composition, and a compound (C) so that the refractive index of the hardened | cured material of a composition may become low.
When using the compound (C) in which the refractive index of the cured product is higher than the refractive index of the cured product obtained by curing the prepolymer (A) alone, the refractive index of the cured product was obtained by curing the prepolymer (A) alone. By using it in combination with another compound (C) lower than the refractive index of the cured product, the refractive index of the cladding can be made lower than the refractive index of the core.
 図1に示すポリマー光導波路10において、アンダークラッド31と、オーバークラッド32の構成材料は同じ材料を用いてもよく、異なる材料を用いてもよい。例えば、アンダークラッド31と、オーバークラッド32とで屈折率が異なる材料を用いると、ポリマー光導波路10における光の閉じ込め状態を制御できる。 In the polymer optical waveguide 10 shown in FIG. 1, the under clad 31 and the over clad 32 may be made of the same material or different materials. For example, when materials having different refractive indexes are used for the underclad 31 and the overclad 32, the light confinement state in the polymer optical waveguide 10 can be controlled.
 本発明のポリマー光導波路の製造方法は特に限定されず、各種方法を用いることができる。具体的には、複製(スタンパ)法、直接露光法、反応性イオンエッチング(RIE)とフォトリソグラフィプロセスを組み合わせる方法、射出成形をもとにした方法、フォトブリーチング法、直接描画法、自己形成法等を用いることができる。 The method for producing the polymer optical waveguide of the present invention is not particularly limited, and various methods can be used. Specifically, replication (stamper) method, direct exposure method, method combining reactive ion etching (RIE) and photolithography process, method based on injection molding, photo bleaching method, direct drawing method, self-formation The law etc. can be used.
 本発明のポリマー光導波路10の製造方法の一例について説明する。
 まず、スピンコート法により、基板の上に組成物(B)を含有する塗布液を塗布する。続いて、組成物(B)を硬化させてアンダークラッド31を形成する。
 次に、スピンコート法により、アンダークラッド31の上にプレポリマー(A)を含有する塗布液を塗布する。続いて、フォトリソグラフィプロセスにより、プレポリマー(A)をパターニングし、アンダークラッド31の上にコア20を形成する。このとき、コア20の幅が光の伝搬方向に沿って異なる形状を形成する場合、コア20の幅が光の伝搬方向に沿って異なる形状のフォトマスクを用いて露光を行った後、現像することによってコア20を形成することができる。また、コア20を形成した後、必要に応じてポストベークを行ってもよい。
 次に、スピンコート法により、アンダークラッド31及びコア20の上に組成物(B)を含有する塗布液を塗布する。続いて、組成物(B)を硬化させてオーバークラッド32を形成する。オーバークラッド32を形成する際、フォトリソグラフィプロセスにより、オーバークラッド32が存在せずコア20が露出したコア露出部40を形成することができる。
 以上の方法により、ポリマー光導波路10を製造することができる。なお、組成物(B)を含有する塗布液、若しくは、プレポリマー(A)を含有する塗布液を塗布する際、これらの塗布液を十分に静置して脱泡した後、塗布することが好ましい。これにより、コア20の内部やコア20とクラッド30との界面近傍に泡欠陥が存在しないポリマー光導波路10を製造することができる。また、塗布液を十分に静置して脱泡することに加えて又は代えて、脱泡装置を利用して脱泡を行うことが好ましい。また、塗布液を塗布する前に、塗布液のろ過を行うことが好ましい。これにより、塗布液内の異物を取り除くことができる。また、塗布液を塗布する前に、基板の洗浄を行うことが好ましい。これにより、基板の表面の異物を取り除くことができる。また、空気中の異物の付着を防ぐため、これらの作業をクリーンルーム内で行うことが好ましく、静電気による異物の付着を防ぐため、静電気除去器(イオナイザー)を使用することが更に好ましい。
An example of the manufacturing method of the polymer optical waveguide 10 of the present invention will be described.
First, a coating solution containing the composition (B) is applied on a substrate by spin coating. Subsequently, the composition (B) is cured to form the underclad 31.
Next, a coating solution containing the prepolymer (A) is applied on the underclad 31 by spin coating. Subsequently, the prepolymer (A) is patterned by a photolithography process, and the core 20 is formed on the underclad 31. At this time, when forming a shape in which the width of the core 20 is different along the light propagation direction, development is performed after performing exposure using a photomask having a shape in which the width of the core 20 is different along the light propagation direction. Thus, the core 20 can be formed. Moreover, after forming the core 20, you may post-bake as needed.
Next, the coating liquid containing the composition (B) is applied onto the underclad 31 and the core 20 by spin coating. Subsequently, the composition (B) is cured to form the overclad 32. When the over clad 32 is formed, the exposed core portion 40 where the over clad 32 does not exist and the core 20 is exposed can be formed by a photolithography process.
The polymer optical waveguide 10 can be manufactured by the above method. In addition, when apply | coating the coating liquid containing a composition (B) or the coating liquid containing a prepolymer (A), these coating liquids should be left still and defoamed and then applied. preferable. Thereby, the polymer optical waveguide 10 in which no bubble defect exists in the core 20 or in the vicinity of the interface between the core 20 and the clad 30 can be manufactured. Moreover, it is preferable to defoam using a defoaming apparatus in addition to or in place of sufficiently leaving the coating solution to defoam. Moreover, it is preferable to filter the coating solution before coating the coating solution. Thereby, the foreign material in a coating liquid can be removed. Further, it is preferable to clean the substrate before applying the coating solution. Thereby, the foreign material on the surface of the substrate can be removed. In order to prevent foreign matter from adhering to the air, these operations are preferably performed in a clean room, and in order to prevent foreign matter from adhering to static electricity, it is more preferable to use an electrostatic remover (ionizer).
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。以下において例1~3は実施例、例4は比較例である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following, Examples 1 to 3 are Examples, and Example 4 is a Comparative Example.
(例1)
 コアの形成に用いるプレポリマー(A)を以下の手順で調製した。
 N,N-ジメチルアセトアミド(以下、DMAcという)溶媒中で、ペルフルオロビフェニル(67質量%)と、1,3,5-トリヒドロキシベンゼン(12質量%)とを炭酸カリウムの存在下に、35~42℃で5時間反応させた後、続けて4-アセトキシスチレン(21質量%)を水酸化カリウム水溶液の存在下に反応させてプレポリマーを合成した。得られたプレポリマーのDMAc溶液を塩酸水溶液に投入することで再沈精製し、真空乾燥して粉末状のプレポリマー(A)を得た。
(Example 1)
The prepolymer (A) used for forming the core was prepared by the following procedure.
In a N, N-dimethylacetamide (hereinafter referred to as DMAc) solvent, perfluorobiphenyl (67% by mass) and 1,3,5-trihydroxybenzene (12% by mass) in the presence of potassium carbonate are added to 35 to 35%. After reacting at 42 ° C. for 5 hours, 4-acetoxystyrene (21% by mass) was subsequently reacted in the presence of an aqueous potassium hydroxide solution to synthesize a prepolymer. The obtained DMAc solution of the prepolymer was poured into an aqueous hydrochloric acid solution for reprecipitation purification and vacuum dried to obtain a powdery prepolymer (A).
 上記の手順で得られたプレポリマー(A)について、波長365nmにおける吸光度を以下の手順で測定した。
 分光光度計(島津製作所社製、製品型式:SolidSpec3700DUV)で測定した。光路長10mmの石英セルを使用し、プレポリマー(A)濃度を10wt%~40wt%で段階的に変えた溶液3つ以上の吸光度を測定し、100%外挿時の値を最小二乗法にて近似して算出した。測定波長範囲は300~2500nm、スキャンスピードは中速、サンプリングピッチは5nmで測定を行った。検出器ユニットは直接受光で測定を行った。溶媒には重クロロホルムを使用した。なお、プレポリマー(A)の吸光度は、溶剤の吸収をベースラインとして差し引いて求める。上記の手順で得られたプレポリマー(A)の波長400nm付近の吸光度を図9に示す。波長365nmにおける吸光度(ポリマー厚み10mm、濃度100%換算)は3.98であった。
 なお、上記の手順により、波長1400nm~1460nmにおける吸光度のピーク値(ポリマー厚み10mm、濃度100%換算)を求めた。波長1400nm~1460nmにおける吸光度のピーク値(ポリマー厚み10mm、濃度100%換算)は0.06であった。
About the prepolymer (A) obtained by said procedure, the light absorbency in wavelength 365nm was measured in the following procedures.
It was measured with a spectrophotometer (manufactured by Shimadzu Corporation, product type: SolidSpec3700DUV). Using a quartz cell with an optical path length of 10 mm, the absorbance of three or more solutions with a prepolymer (A) concentration stepwise changed from 10 wt% to 40 wt% is measured, and the value at the time of 100% extrapolation is converted to the least square method. And approximated. The measurement wavelength range was 300 to 2500 nm, the scan speed was medium, and the sampling pitch was 5 nm. The detector unit measured by direct light reception. Deuterated chloroform was used as the solvent. The absorbance of the prepolymer (A) is determined by subtracting the solvent absorption as a baseline. FIG. 9 shows the absorbance of the prepolymer (A) obtained by the above procedure in the vicinity of a wavelength of 400 nm. Absorbance at a wavelength of 365 nm (polymer thickness: 10 mm, concentration: 100% equivalent) was 3.98.
The absorbance peak value at a wavelength of 1400 nm to 1460 nm (polymer thickness 10 mm, concentration 100% conversion) was determined by the above procedure. The absorbance peak value at a wavelength of 1400 nm to 1460 nm (polymer thickness 10 mm, concentration 100% conversion) was 0.06.
 クラッドの形成に用いる組成物(B)を以下の手順で調製した。
 上記手順で得られたプレポリマー(A)を50質量部と、化合物(C)として1,10-デカンジオールジアクリレート(分子量:282)を25質量部と、ポリプロピレングリコールジメタクリレートを25質量部とを容器に入れ、室温で55時間混合して、組成物(B)を得た。
A composition (B) used for forming the clad was prepared by the following procedure.
50 parts by mass of the prepolymer (A) obtained by the above procedure, 25 parts by mass of 1,10-decanediol diacrylate (molecular weight: 282) as the compound (C), 25 parts by mass of polypropylene glycol dimethacrylate, Was put in a container and mixed at room temperature for 55 hours to obtain a composition (B).
 上記手順で得られたプレポリマー(A)、および組成物(B)を用いて、以下の手順でポリマー光導波路を作製した。
 基材としてはシリコン製のウエハを用いた。基材上に、組成物(B)をスピンコートにより塗布し、190℃、1時間の加熱を行って、アンダークラッドを形成した。
 次いで、その上にプレポリマー(A)を塗布し、該塗膜のコアとなる部分以外を金属箔で遮光した状態で、該塗膜に対し、超高圧水銀灯で照射エネルギー2000mJ/cm2で露光した。その後、現像液として、PGMEAと乳酸エチルの混合液を用いて現像を行い、塗膜の未露光部分を除去した後、乾燥させた。190℃、1時間のポストベークを行って、コアを形成した。
 続いて、コアおよびアンダークラッド上に、組成物(B)をスピンコート法により塗布して塗膜を形成した。該塗膜のうち、オーバークラッドとなる部分以外を金属箔で遮光した状態で、該塗膜に対し、超高圧水銀灯で照射エネルギー2000mJ/cm2で露光した。その後、現像液として、PGMEAを用いて現像を行い、塗膜の未露光部分を除去した後、乾燥させた。さらに190℃、2時間のポストベークを行って、オーバークラッドと、オーバークラッドが存在せずコアが露出したコア露出部を形成した。
Using the prepolymer (A) obtained by the above procedure and the composition (B), a polymer optical waveguide was produced by the following procedure.
A silicon wafer was used as the substrate. The composition (B) was applied onto the substrate by spin coating, and heated at 190 ° C. for 1 hour to form an underclad.
Next, a prepolymer (A) is applied thereon, and the coating film is exposed with an ultrahigh pressure mercury lamp at an irradiation energy of 2000 mJ / cm 2 in a state where light is shielded with a metal foil except for the core portion of the coating film. did. Then, it developed using the liquid mixture of PGMEA and ethyl lactate as a developing solution, and it was made to dry after removing the unexposed part of a coating film. Post-baking was performed at 190 ° C. for 1 hour to form a core.
Subsequently, the composition (B) was applied by spin coating on the core and the underclad to form a coating film. The coated film was exposed with an ultrahigh pressure mercury lamp at an irradiation energy of 2000 mJ / cm 2 in a state in which the portion other than the overcladding portion was shielded from light with a metal foil. Then, it developed using PGMEA as a developing solution, and it was made to dry after removing the unexposed part of a coating film. Further, post-baking at 190 ° C. for 2 hours was performed to form an overclad and a core exposed portion where the overclad was not present and the core was exposed.
 図10は、上記の手順で得られたポリマー光導波路の平面図である。図10のポリマー光導波路において、符号120はコアを示し、符号132はクラッド(オーバークラッド)を示す。図10に示すポリマー光導波路において、符号aはオーバークラッドが存在しない領域のコアであり、例1~4において、コアの観察は符号aの位置で実施した。符号bはinput側の光学測定用のコアが下に存在するオーバークラッド、符号cはoutput側の光学測定用コアが下に存在するオーバークラッドをそれぞれ示す。
 (例1)において、符号aで示すコア露出部(input側)は、コア高さが2.5μmであり、コア幅が7.5μmである。符号bで示す光学測定用のコア(input側)は、コア高さが2.5μmであり、コア幅が2.5μmである。符号cで示す光学測定用のコア(output側)は、コア高さが2.5μmであり、コア幅が2.5μmである。アンダークラッドの厚みは25μm、オーバークラッドの厚みは25μmである。
FIG. 10 is a plan view of the polymer optical waveguide obtained by the above procedure. In the polymer optical waveguide of FIG. 10, reference numeral 120 denotes a core, and reference numeral 132 denotes a clad (over clad). In the polymer optical waveguide shown in FIG. 10, the symbol a is a core in a region where no overcladding exists. In Examples 1 to 4, the core was observed at the position of the symbol a. Reference numeral b denotes an overclad in which the optical measurement core on the input side exists below, and reference numeral c denotes an overclad in which the optical measurement core on the output side exists below.
In (Example 1), the core exposed portion (input side) indicated by symbol a has a core height of 2.5 μm and a core width of 7.5 μm. The core for optical measurement (input side) indicated by symbol b has a core height of 2.5 μm and a core width of 2.5 μm. The core for optical measurement (output side) indicated by symbol c has a core height of 2.5 μm and a core width of 2.5 μm. The thickness of the underclad is 25 μm, and the thickness of the overclad is 25 μm.
 符号aで示すコア露出部(input側)について、input側端部から約1300μmの地点でコアの断面形状を測定した。コアの断面形状の測定には、白色干渉計(ZYGO社製、製品型式:3次元光学プロファイラーシステムNewview7300)を使用した。対物レンズは50倍を使用した。
 コア高さは白色干渉計でコア形状のプロットデータをとり、アンダークラッド部分を水平に補正したデータを作成し、コア中心から両側に25μmの距離にあるアンダークラッド部分の高さでベースラインを引き、そのベースラインを原点として、コア凸部のうち最も高い値をコア高さとした。断面形状におけるコア幅は、コア高さが半値となる位置での幅をコア幅とした。
 図11は、コア露出部におけるコア断面形状を示した図である。図示するように、コア上面には凹みが存在している。
 コア上面に存在する2つの隣接する凸部間に接線を引いた際に、該接線と、2つの凸部間に位置する凹部との、コア厚み方向における高低差の最大値をコア上面に存在する凹みの深さとした。
 コア上面に存在する凹みの深さは0.07μmであった。
With respect to the core exposed portion (input side) indicated by symbol a, the cross-sectional shape of the core was measured at a point of about 1300 μm from the input side end portion. A white interferometer (manufactured by ZYGO, product type: three-dimensional optical profiler system Newview 7300) was used to measure the cross-sectional shape of the core. The objective lens used 50 times.
For the core height, plot data of the core shape with a white interferometer, create data with the undercladding part corrected horizontally, and draw a baseline at the height of the undercladding part at a distance of 25 μm on both sides from the core center. Using the baseline as the origin, the highest value of the core protrusions was defined as the core height. The core width in the cross-sectional shape was defined as the width at the position where the core height becomes half value.
FIG. 11 is a diagram showing a core cross-sectional shape in the core exposed portion. As shown in the figure, a recess is present on the upper surface of the core.
When a tangent line is drawn between two adjacent convex portions existing on the core upper surface, the maximum height difference in the core thickness direction between the tangent line and the concave portion located between the two convex portions exists on the core upper surface. The depth of the dent to be.
The depth of the dent existing on the upper surface of the core was 0.07 μm.
 符号bで示す光学測定用のコア(input側)、および符号cで示す光学測定用のコア(output側)を用いて伝搬損失測定を行った。伝搬損失測定は、JPCA規格(2008年)4.6.2.1カットバック方法に記載されている方法を用いて行った。入射側光ファイバと光導波路のモードの組み合わせは、JPCA規格、表4.6.1-1に記載されている組み合わせナンバ6に相当する組み合わせである、入射側にシングルモードファイバ、出射側にシングルモードファイバを使用した。挿入損失測定の時に使用したファイバは、入射側出射側ともにシングルモードファイバ(コーニング社製、品番:SMF―28、NA0.14、コア径8.2um)を使用した。
 光学測定系で用いた発光側の光源としては、LD光源(安藤電気社製、製品名:AQ4213)を有するユニット(安藤電気社製、製品名:AQ2140)を使用した。受光側には、パワーメーター(アドバンテスト社製、製品名:Q8221ユニット)とセンサーユニット(アドバンテスト社製、製品名:Q82208)を使用した。
 波長1550nmの伝搬損失値Xは0.32[dB/cm]、波長1310nmの伝搬損失値Yは0.61[dB/cm]、伝搬損失比X/Yは0.52であった。
Propagation loss measurement was performed using the optical measurement core (input side) indicated by symbol b and the optical measurement core indicated by symbol c (output side). The propagation loss measurement was performed using the method described in the JPCA standard (2008) 4.6.2.1 cutback method. The mode combination of the incident side optical fiber and the optical waveguide is a combination corresponding to the combination number 6 described in the JPCA standard, Table 4.6.1-1. The single mode fiber on the incident side and the single mode on the output side. A mode fiber was used. The fiber used for the insertion loss measurement was a single mode fiber (manufactured by Corning, product number: SMF-28, NA 0.14, core diameter 8.2 um) on both the incident side and the outgoing side.
As a light source on the light emission side used in the optical measurement system, a unit (product name: AQ2140, manufactured by Ando Electric Co., Ltd.) having an LD light source (product name: AQ4213) was used. On the light receiving side, a power meter (manufactured by Advantest, product name: Q8221 unit) and a sensor unit (manufactured by Advantest, product name: Q82208) were used.
The propagation loss value X at a wavelength of 1550 nm was 0.32 [dB / cm], the propagation loss value Y at a wavelength of 1310 nm was 0.61 [dB / cm], and the propagation loss ratio X / Y was 0.52.
(例2)
 コア形成時の露光条件を変えて、図10に示すポリマー光導波路において、符号aで示すコア露出部(input側)がコア高さ2.5μm、コア幅9.3μm、符号bで示す光学測定用のコア(input側)がコア高さ2.5μm、コア幅2.5μm、符号cで示す光学測定用のコア(output側)がコア高さ2.5μm、コア幅2.5μm、アンダークラッドの厚みが25μm、オーバークラッドの厚みが25μmとした以外は例1と同様の手順を実施した。
 符号aで示すコア露出部(input側)について、input側端部から約1300μmの地点でコアの断面形状を実施例1と同様の手順で測定した。
 図12は、コア露出部におけるコア断面形状を示した図である。図示するように、コア上面には凹みが存在している。コア上面に存在する凹みの深さは0.15μmであった。 符号bで示す光学測定用のコア(input側)、および符号cで示す光学測定用のコア(output側)を用いて実施例1と同様の手順で伝搬損失測定を行った。
 1550nmの伝搬損失値Xは0.29[dB/cm]、1310nmの伝搬損失値Yは0.61[dB/cm]、伝搬損失比X/Yは0.47であった。
(Example 2)
In the polymer optical waveguide shown in FIG. 10, the core exposed portion (input side) indicated by symbol a has a core height of 2.5 μm, a core width of 9.3 μm, and optical measurement indicated by symbol b in the polymer optical waveguide shown in FIG. Core (input side) is 2.5 μm in core height and 2.5 μm in core width, and the core for optical measurement (output side) indicated by symbol c is 2.5 μm in core height, 2.5 μm in core width, and under cladding The same procedure as in Example 1 was performed except that the thickness of the overcladding was 25 μm and the thickness of the overclad was 25 μm.
For the core exposed portion (input side) indicated by symbol a, the cross-sectional shape of the core was measured in the same procedure as in Example 1 at a point of about 1300 μm from the input side end portion.
FIG. 12 is a diagram showing a core cross-sectional shape in the core exposed portion. As shown in the figure, a recess is present on the upper surface of the core. The depth of the recess existing on the upper surface of the core was 0.15 μm. Propagation loss measurement was performed in the same procedure as in Example 1 using the optical measurement core (input side) indicated by symbol b and the optical measurement core (output side) indicated by symbol c.
The propagation loss value X at 1550 nm was 0.29 [dB / cm], the propagation loss value Y at 1310 nm was 0.61 [dB / cm], and the propagation loss ratio X / Y was 0.47.
 例2で得られたポリマー光導波路について下記の3つの方法で耐熱性を評価した。 The heat resistance of the polymer optical waveguide obtained in Example 2 was evaluated by the following three methods.
[ヒートサイクル試験]
 JPCA規格(2008年)、6.2.5に記載されている温度サイクル試験を行った。本試験では、室温(25℃)から55分かけて-50℃に温度降下させ、30分間保持した後、30分かけて25℃に温度上昇させ、20分間保持した後に30分かけて125℃に温度上昇させ、30分間保持した後に45分かけて25℃に温度降下させ20分間保持する、という温度サイクルを1サイクルとして、35サイクル繰り返した。試験前と試験後とで挿入損失の差を測定した。
 挿入損失の測定は、JPCA規格、4.6.1に記載されている挿入損失の測定方法により行った。測定装置、測定手順、測定条件等は上述した伝播損失測定と同様の条件で行った。
 挿入損失の測定結果は、温度サイクル試験前後で測定誤差の範囲内であり、温度サイクル試験前後の挿入損失の変化は0.1dB以下であった。
[Heat cycle test]
The temperature cycle test described in the JPCA standard (2008), 6.2.5 was performed. In this test, the temperature was lowered from room temperature (25 ° C.) to −50 ° C. over 55 minutes, held for 30 minutes, then raised to 25 ° C. over 30 minutes, held for 20 minutes, and then 125 ° C. over 30 minutes. The temperature cycle of raising the temperature to 25 ° C. and holding it for 30 minutes and then lowering the temperature to 25 ° C. over 45 minutes and holding it for 20 minutes was repeated 35 cycles. The difference in insertion loss was measured before and after the test.
The insertion loss was measured by the insertion loss measuring method described in the JPCA standard, 4.6.1. The measurement apparatus, measurement procedure, measurement conditions, and the like were performed under the same conditions as the above-described propagation loss measurement.
The measurement result of the insertion loss was within the range of measurement error before and after the temperature cycle test, and the change in insertion loss before and after the temperature cycle test was 0.1 dB or less.
[耐熱性(高温放置試験)]
 JPCA規格(2008年)、6.2.1に記載されている高温放置試験を行い、耐熱性を評価した。光導波路が半田付けされることを想定すると、200℃以上の加熱に対して安定であることが好ましい。
 本試験では、オーブンに投入して室温から5分かけて260℃まで昇温し、260℃に30秒間保持した後、自然に温度が室温になるまで放置した。評価はオーブンに投入する前後で挿入損失の差を測定した。挿入損失の差は0.1dB以下と小さく耐熱性は良好であった。
[Heat resistance (high temperature storage test)]
A high temperature storage test described in the JPCA standard (2008), 6.2.1 was performed to evaluate heat resistance. Assuming that the optical waveguide is soldered, it is preferable that the optical waveguide is stable against heating at 200 ° C. or higher.
In this test, the sample was placed in an oven, heated from room temperature to 260 ° C. over 5 minutes, held at 260 ° C. for 30 seconds, and then allowed to stand naturally until the temperature reached room temperature. In the evaluation, the difference in insertion loss was measured before and after being put into the oven. The difference in insertion loss was as small as 0.1 dB or less, and the heat resistance was good.
[耐熱性(高温高湿放置試験)]
 JPCA規格(2008年)、6.2.3に記載されている高温高湿放置試験を行い、耐熱性を評価した。試験条件は「試験条件3」とした。すなわち、本試験では85℃、85%RHの高温高湿条件下に140時間投入した後、自然に温度が室温になるまで放置した。高温高湿条件下に投入する前後の挿入損失の差を測定した。その結果、高温高湿条件下に保持されたことによる挿入損失の変化は0.2dB以下であった。
[Heat resistance (high temperature and high humidity storage test)]
A high temperature and high humidity leaving test described in the JPCA standard (2008), 6.2.3 was performed to evaluate heat resistance. The test condition was “Test condition 3”. That is, in this test, after being put in a high temperature and high humidity condition of 85 ° C. and 85% RH for 140 hours, it was allowed to stand until the temperature naturally reached room temperature. The difference in insertion loss before and after charging under high temperature and high humidity conditions was measured. As a result, the change in insertion loss due to being held under high temperature and high humidity conditions was 0.2 dB or less.
(例3)
コアの形成に用いるプレポリマーAを以下の手順で調製した。
 N,N-ジメチルアセトアミド(以下、DMAcという)溶媒中で、ペルフルオロビフェニル(67質量%)と、1,3,5-トリヒドロキシベンゼン(12質量%)とを炭酸カリウムの存在下に、40~43℃で5時間反応させた後、続けて4-アセトキシスチレン(21質量%)を水酸化カリウム水溶液の存在下に反応させてプレポリマーを合成した。得られたプレポリマーのDMAc溶液を塩酸水溶液に投入することで再沈精製し、真空乾燥して粉末状のプレポリマーAを得た。
 プレポリマーAとして、波長365nmにおける吸光度(ポリマー厚み10mm、濃度100%換算)が4.86、波長1400nm~1460nmにおける吸光度のピーク値(ポリマー厚み10mm、濃度100%換算)が0.12のものを使用した以外は実施例1と同様の手順を実施した。図10に示すポリマー光導波路において、符号aで示すコア露出部(input側)がコア高さ2.5μm、コア幅7.4μm、符号bで示す光学測定用のコア(input側)がコア高さ2.5μm、コア幅が2.5μmである。符号cで示す光学測定用のコア(output側)がコア高さ2.5μm、コア幅2.5μm、アンダークラッドの厚みが25μm、オーバークラッドの厚みが25μmとした。
 符号aで示すコア露出部(input側)について、input側端部から約1300μmの地点でコアの断面形状を実施例1と同様の手順で測定した。
 図13は、コア露出部におけるコア断面形状を示した図である。図示するように、コア上面には凹みが存在している。コア上面に存在する凹みの深さは0.13μmであった。 符号bで示す光学測定用のコア(input側)、および符号cで示す光学測定用のコア(output側)を用いて実施例1と同様の手順で伝搬損失測定を行った。
 1550nmの伝搬損失値Xは0.40[dB/cm]、1310nmの伝搬損失値Yは0.61[dB/cm]、伝搬損失比X/Yは0.66であった。
(Example 3)
Prepolymer A used for core formation was prepared by the following procedure.
In a solvent of N, N-dimethylacetamide (hereinafter referred to as DMAc), perfluorobiphenyl (67% by mass) and 1,3,5-trihydroxybenzene (12% by mass) in the presence of potassium carbonate were added in an amount of 40 to 40 After reacting at 43 ° C. for 5 hours, 4-acetoxystyrene (21% by mass) was subsequently reacted in the presence of an aqueous potassium hydroxide solution to synthesize a prepolymer. The obtained DMAc solution of the prepolymer was poured into an aqueous hydrochloric acid solution for reprecipitation purification and vacuum dried to obtain a powdery prepolymer A.
As prepolymer A, the absorbance at a wavelength of 365 nm (polymer thickness: 10 mm, converted to 100% concentration) is 4.86, and the absorbance peak value at a wavelength of 1400 nm to 1460 nm (polymer thickness: 10 mm, converted to 100% concentration) is 0.12. The same procedure as in Example 1 was carried out except that it was used. In the polymer optical waveguide shown in FIG. 10, the core exposed portion (input side) indicated by symbol a is 2.5 μm in core height, the core width is 7.4 μm, and the optical measurement core indicated by symbol b (input side) is the core height. The thickness is 2.5 μm and the core width is 2.5 μm. The core for optical measurement (output side) indicated by symbol c has a core height of 2.5 μm, a core width of 2.5 μm, an underclad thickness of 25 μm, and an overclad thickness of 25 μm.
For the core exposed portion (input side) indicated by symbol a, the cross-sectional shape of the core was measured in the same procedure as in Example 1 at a point of about 1300 μm from the input side end.
FIG. 13 is a diagram showing a core cross-sectional shape in the core exposed portion. As shown in the figure, a recess is present on the upper surface of the core. The depth of the dent existing on the upper surface of the core was 0.13 μm. Propagation loss measurement was performed in the same procedure as in Example 1 using the optical measurement core (input side) indicated by symbol b and the optical measurement core (output side) indicated by symbol c.
The propagation loss value X at 1550 nm was 0.40 [dB / cm], the propagation loss value Y at 1310 nm was 0.61 [dB / cm], and the propagation loss ratio X / Y was 0.66.
(例4)
コアの形成に用いるプレポリマーAを以下の手順で調製した。
 N,N-ジメチルアセトアミド(以下、DMAcという)溶媒中で、ペルフルオロビフェニル(67質量%)と、1,3,5-トリヒドロキシベンゼン(12質量%)とを炭酸カリウムの存在下に、40~46℃で5時間反応させた後、続けて4-アセトキシスチレン(21質量%)を水酸化カリウム水溶液の存在下に反応させてプレポリマーを合成した。得られたプレポリマーのDMAc溶液を塩酸水溶液に投入することで再沈精製し、真空乾燥して粉末状のプレポリマーAを得た。
 プレポリマーAとして、波長365nmにおける吸光度(ポリマー厚み10mm、濃度100%換算)が7.9、波長1400nm~1460nmにおける吸光度のピーク値(ポリマー厚み10mm、濃度100%換算)が0.26のものを使用し、かつコア形成時の露光条件を変えて、図10に示すポリマー光導波路において、符号aで示すコア露出部(input側)をコア高さ2.5μm、コア幅9.4μm、符号bで示す光学測定用のコア(input側)をコア高さ2.5μm、コア幅2.5μm、符号cで示す光学測定用のコア(output側)をコア高さ2.5μm、コア幅2.5μmとした以外は実施例1と同様の手順を実施した。
 例4で使用したプレポリマー(A)の波長400nm付近の吸光度を図9に示す。
 符号aで示すコア露出部(input側)について、input側端部から約1300μmの地点でコアの断面形状を実施例1と同様の手順で測定した。
 図14は、コア露出部におけるコア断面形状を示した図である。図示するように、コア上面には凹みが存在している。コア上面に存在する凹みの深さは0.36μmであった。
 符号bで示す光学測定用のコア(input側)、および符号cで示す光学測定用のコア(output側)を用いて実施例1と同様の手順で伝搬損失測定を行った。
 1550nmの伝搬損失値Xは0.69[dB/cm]、1310nmの伝搬損失値Yは0.82[dB/cm]、伝搬損失比X/Yは0.83であった。
(Example 4)
Prepolymer A used for core formation was prepared by the following procedure.
In a solvent of N, N-dimethylacetamide (hereinafter referred to as DMAc), perfluorobiphenyl (67% by mass) and 1,3,5-trihydroxybenzene (12% by mass) in the presence of potassium carbonate were added in an amount of 40 to 40 After reacting at 46 ° C. for 5 hours, 4-acetoxystyrene (21% by mass) was subsequently reacted in the presence of an aqueous potassium hydroxide solution to synthesize a prepolymer. The obtained DMAc solution of the prepolymer was poured into an aqueous hydrochloric acid solution for reprecipitation purification and vacuum dried to obtain a powdery prepolymer A.
Prepolymer A having an absorbance at a wavelength of 365 nm (polymer thickness of 10 mm, converted to 100% concentration) of 7.9, and an absorbance peak value at a wavelength of 1400 nm to 1460 nm (polymer thickness of 10 mm, converted to a concentration of 100%) of 0.26 In the polymer optical waveguide shown in FIG. 10, the exposed core portion (input side) indicated by reference symbol a has a core height of 2.5 μm, a core width of 9.4 μm, and reference symbol b. 1. An optical measurement core (input side) shown in FIG. 2 has a core height of 2.5 μm and a core width of 2.5 μm, an optical measurement core shown by reference c (output side) has a core height of 2.5 μm, and a core width of 2. The same procedure as in Example 1 was performed except that the thickness was 5 μm.
FIG. 9 shows the absorbance of the prepolymer (A) used in Example 4 around a wavelength of 400 nm.
For the core exposed portion (input side) indicated by symbol a, the cross-sectional shape of the core was measured in the same procedure as in Example 1 at a point of about 1300 μm from the input side end.
FIG. 14 is a diagram showing a core cross-sectional shape in the core exposed portion. As shown in the figure, a recess is present on the upper surface of the core. The depth of the dent existing on the upper surface of the core was 0.36 μm.
Propagation loss measurement was performed in the same procedure as in Example 1 using the optical measurement core (input side) indicated by symbol b and the optical measurement core (output side) indicated by symbol c.
The propagation loss value X at 1550 nm was 0.69 [dB / cm], the propagation loss value Y at 1310 nm was 0.82 [dB / cm], and the propagation loss ratio X / Y was 0.83.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 コア上面に存在する凹みの深さが0.33μm以下の例1~3は、コア上面に存在する凹みの深さが0.33μm超の例4に比べて、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおける伝播損失X、Yが低減されている。例1~3は、伝播損失比X/Yが0.2~2の範囲内であるため、ポリマー光導波路の設計自由度が高く、また、ポリマー光導波路の生産性が高い。
 例1~3は、コア形成に使用するプレポリマーAとして、波長365nmにおける吸光度(濃度100%換算)が7.5以下であるものを使用したため、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおける伝播損失X、Yが低減されている。また、コア上面に存在する凹みの深さが0.33μm以下であることに影響していると推測する。
 例4は、コア形成に使用するプレポリマーAとして、波長365nmにおける吸光度(ポリマー厚み10mm、濃度100%換算)が7.5超であるものを使用したことが、シングルモードでの波長帯域として代表的な1310nm、および1550nmにおける伝播損失X、Yを高くしている。また、コア上面に存在する凹みの深さが0.33μm超であることに影響していると推測する。
Examples 1 to 3, in which the depth of the dent existing on the upper surface of the core is 0.33 μm or less, are representative of wavelength bands in the single mode compared to Example 4 in which the depth of the dent existing on the upper surface of the core is greater than 0.33 μm. Propagation losses X and Y at 1310 nm and 1550 nm are reduced. In Examples 1 to 3, since the propagation loss ratio X / Y is in the range of 0.2 to 2, the design freedom of the polymer optical waveguide is high, and the productivity of the polymer optical waveguide is high.
In Examples 1 to 3, since the prepolymer A used for core formation had an absorbance at a wavelength of 365 nm (concentration of 100%) of 7.5 or less, 1310 nm, which is a typical wavelength band in a single mode, And propagation losses X and Y at 1550 nm are reduced. Moreover, it is estimated that it has influenced that the depth of the dent which exists in a core upper surface is 0.33 micrometer or less.
In Example 4, as the prepolymer A used for core formation, one having an absorbance at a wavelength of 365 nm (polymer thickness 10 mm, concentration 100% equivalent) of more than 7.5 is representative of the wavelength band in the single mode. The propagation losses X and Y at the typical 1310 nm and 1550 nm are increased. Further, it is assumed that the depth of the dent existing on the upper surface of the core is affected by being over 0.33 μm.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2017年3月15日付で出願された日本特許出願(特願2017-049960)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on March 15, 2017 (Japanese Patent Application No. 2017-049960), which is incorporated by reference in its entirety.
10:ポリマー光導波路
20:コア
30:クラッド
31:アンダークラッド
32:オーバークラッド
40:コア露出部
60:凹み
100:シリコン光導波路
200:シングルモード光ファイバ
10: polymer optical waveguide 20: core 30: clad 31: under clad 32: over clad 40: core exposed portion 60: dent 100: silicon optical waveguide 200: single mode optical fiber

Claims (8)

  1.  コアと前記コアよりも屈折率が低いクラッドとを有するポリマー光導波路であって、
     前記ポリマー光導波路はシート形状をなしており、前記コアの光伝搬方向と垂直方向のコア断面形状において、前記シート形状の厚さ方向をコア高さ、前記厚さ方向と垂直の方向をコア幅とするとき、前記コア高さは1.0~10μm、前記コア幅は1.0~15μmであり、
     前記コア断面形状におけるコア上面、および/またはコア側面に存在する凹みの深さが0.33μm以下であることを特徴とするポリマー光導波路。
    A polymer optical waveguide having a core and a clad having a refractive index lower than that of the core,
    The polymer optical waveguide has a sheet shape, and in the core cross-sectional shape perpendicular to the light propagation direction of the core, the thickness direction of the sheet shape is the core height, and the direction perpendicular to the thickness direction is the core width. The core height is 1.0 to 10 μm, the core width is 1.0 to 15 μm,
    A polymer optical waveguide, wherein a depth of a dent existing on the upper surface and / or the side surface of the core in the core cross-sectional shape is 0.33 μm or less.
  2.  波長1550nmの伝搬損失値X[dB/cm]を、波長1310nmの伝搬損失値Y[dB/cm]で除した伝搬損失比X/Yが0.2~2である、請求項1に記載のポリマー光導波路。 The propagation loss ratio X / Y obtained by dividing the propagation loss value X [dB / cm] at a wavelength of 1550 nm by the propagation loss value Y [dB / cm] at a wavelength of 1310 nm is 0.2 to 2. Polymer optical waveguide.
  3.  前記コアは、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含む組成物を硬化させたものであり、前記クラッドは、前記含フッ素ポリアリーレンプレポリマー(A)より屈折率が低い架橋性官能基を有する化合物を含む組成物(B)を硬化させたものである、請求項1または2に記載のポリマー光導波路。 The core is obtained by curing a composition containing a fluorinated polyarylene prepolymer (A) having a crosslinkable functional group, and the clad has a lower refractive index than the fluorinated polyarylene prepolymer (A). The polymer optical waveguide according to claim 1 or 2, wherein the composition (B) containing a compound having a crosslinkable functional group is cured.
  4.  前記組成物(B)は、前記含フッ素ポリアリーレンプレポリマー(A)と、架橋性官能基を有する分子量が140~5000のフッ素原子を有さない化合物(C)とを含む、請求項3に記載のポリマー光導波路。 The composition (B) contains the fluorine-containing polyarylene prepolymer (A) and a compound (C) having a crosslinkable functional group and having a molecular weight of 140 to 5000 and having no fluorine atom. The polymer optical waveguide described.
  5.  前記含フッ素ポリアリーレンプレポリマー(A)は、ポリマー厚み10mm、ポリマー濃度100wt%での波長365nmにおける吸光度が7.5以下である、請求項3または4に記載のポリマー光導波路。 The polymer optical waveguide according to claim 3 or 4, wherein the fluorine-containing polyarylene prepolymer (A) has an absorbance at a wavelength of 365 nm at a polymer thickness of 10 mm and a polymer concentration of 100 wt% of 7.5 or less.
  6.  シングルモード用のポリマー光導波路である、請求項1~5のいずれか一項に記載のポリマー光導波路。 The polymer optical waveguide according to any one of claims 1 to 5, which is a single-mode polymer optical waveguide.
  7.  一端側に前記コアの少なくとも一部が露出した結合部を有する、請求項1~6のいずれか一項に記載のポリマー光導波路。 The polymer optical waveguide according to any one of claims 1 to 6, wherein the polymer optical waveguide has a coupling portion where at least a part of the core is exposed on one end side.
  8.  請求項1~7のいずれか一項に記載のポリマー光導波路と、前記ポリマー光導波路の光導波部を収容するコネクタと、を有する、複合光導波路。 A composite optical waveguide comprising the polymer optical waveguide according to any one of claims 1 to 7 and a connector that accommodates an optical waveguide portion of the polymer optical waveguide.
PCT/JP2018/009533 2017-03-15 2018-03-12 Polymer optical waveguide WO2018168783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019506016A JP7036108B2 (en) 2017-03-15 2018-03-12 Polymer optical waveguide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049960 2017-03-15
JP2017-049960 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168783A1 true WO2018168783A1 (en) 2018-09-20

Family

ID=63523055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009533 WO2018168783A1 (en) 2017-03-15 2018-03-12 Polymer optical waveguide

Country Status (3)

Country Link
JP (1) JP7036108B2 (en)
TW (1) TW201837078A (en)
WO (1) WO2018168783A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134799A (en) * 2019-02-22 2020-08-31 Agc株式会社 Polymer optical waveguide
WO2020226120A1 (en) * 2019-05-09 2020-11-12 Agc株式会社 Polymer optical waveguide and composite optical waveguide
JP7415653B2 (en) 2020-02-25 2024-01-17 Agc株式会社 Curable resin composition, polymer optical waveguide, method for producing polymer optical waveguide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033047A1 (en) * 2001-08-30 2004-02-19 Clemson University Fluoropolymer compositions, optical devices, and methods for fabricating optical devices
JP2005010770A (en) * 2003-05-22 2005-01-13 Sanyo Chem Ind Ltd Composition for forming optical waveguide, and optical waveguide
JP2005043747A (en) * 2003-07-24 2005-02-17 Fuji Xerox Co Ltd Method for manufacturing macromolecule optical waveguide
WO2008044654A1 (en) * 2006-10-11 2008-04-17 Sumitomo Electric Industries, Ltd. Ferrule, method of manufacturing optical waveguide connector using the ferrule, and optical waveguide connector
JP2014006490A (en) * 2012-05-31 2014-01-16 Kyocera Corp Optical element mount and optical wiring module
WO2016133074A1 (en) * 2015-02-20 2016-08-25 旭硝子株式会社 Polymer optical waveguide composite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438369B2 (en) 2003-03-18 2010-03-24 Jsr株式会社 Radiation curable composition, optical waveguide and method for forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033047A1 (en) * 2001-08-30 2004-02-19 Clemson University Fluoropolymer compositions, optical devices, and methods for fabricating optical devices
JP2005010770A (en) * 2003-05-22 2005-01-13 Sanyo Chem Ind Ltd Composition for forming optical waveguide, and optical waveguide
JP2005043747A (en) * 2003-07-24 2005-02-17 Fuji Xerox Co Ltd Method for manufacturing macromolecule optical waveguide
WO2008044654A1 (en) * 2006-10-11 2008-04-17 Sumitomo Electric Industries, Ltd. Ferrule, method of manufacturing optical waveguide connector using the ferrule, and optical waveguide connector
JP2014006490A (en) * 2012-05-31 2014-01-16 Kyocera Corp Optical element mount and optical wiring module
WO2016133074A1 (en) * 2015-02-20 2016-08-25 旭硝子株式会社 Polymer optical waveguide composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKENOBU, S. ET AL.: "Ultra-Wide-Band Low Loss and High Reliability Polymer Optical Waveguide", OPTICAL COMMUNICATION (ECOC), 2007 33RD EUROPEAN CONFERENCE AND EXHIBITION OF, 2007, pages 1 - 2, XP032173976, DOI: doi:10.1049/ic:20070119 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134799A (en) * 2019-02-22 2020-08-31 Agc株式会社 Polymer optical waveguide
WO2020226120A1 (en) * 2019-05-09 2020-11-12 Agc株式会社 Polymer optical waveguide and composite optical waveguide
US11886006B2 (en) 2019-05-09 2024-01-30 AGC Inc. Polymer optical waveguide and composite optical waveguide
JP7415653B2 (en) 2020-02-25 2024-01-17 Agc株式会社 Curable resin composition, polymer optical waveguide, method for producing polymer optical waveguide

Also Published As

Publication number Publication date
TW201837078A (en) 2018-10-16
JPWO2018168783A1 (en) 2020-01-16
JP7036108B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
US5850498A (en) Low stress optical waveguide having conformal cladding and fixture for precision optical interconnects
JP5459310B2 (en) Optical waveguide and method for manufacturing the same
EP0420592B1 (en) Planar plastics optical waveguide
US7660503B2 (en) Flexible optical waveguide and optical module
WO2018168783A1 (en) Polymer optical waveguide
KR20070108354A (en) Resin composition for optical material, resin film for optical material and optical waveguide using same
JP2011081424A (en) Planar waveguide with patterned cladding and method for producing the same
KR102396005B1 (en) Method for manufacturing optical waveguide
WO2015033893A1 (en) Photosensitive resin composition for forming member having curved shape, photosensitive resin film for forming member having curved shape using said composition, and lens member manufactured using said composition or said film
WO2015029261A1 (en) Resin composition for forming optical waveguide, resin film for forming optical waveguide, and optical waveguide using same
JP5003506B2 (en) Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP3206638B2 (en) Flexible polymer optical waveguide
JP2009175244A (en) Resin composition for optical material, resin film for optical material, and optical waveguide using them
JP2007084772A (en) Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP2000081519A (en) Optical waveguide
JP2007033776A (en) Manufacturing method of stacked type optical waveguide
JP2018059955A (en) Polymer optical waveguide composite
Streppel et al. Multilayer optical fan-out device composed of stacked monomode waveguides
US20200271856A1 (en) Polymer optical waveguide
Takenobu et al. Long spiral optical waveguides using ultra low loss perfluorinated polymer for optical interconnect
JP2005165133A (en) Method for manufacturing optical waveguide
Kahlenberg Structure-property correlations in fluoroaryl functionalized inorganic-organic hybrid polymers for telecom applications
JP2005165132A (en) Manufacturing method of light guide
KR20040025330A (en) Fluorinated polyarylene ether Compound, Preparing Method of the Same and Optical Waveguide Material Using the Same
Watanabe et al. Fabrication and optical properties of the multilayered waveguide made by photobleaching process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767123

Country of ref document: EP

Kind code of ref document: A1