JP2001162116A - Antibacterial treatment method and antibacterial filter medium - Google Patents

Antibacterial treatment method and antibacterial filter medium

Info

Publication number
JP2001162116A
JP2001162116A JP34612199A JP34612199A JP2001162116A JP 2001162116 A JP2001162116 A JP 2001162116A JP 34612199 A JP34612199 A JP 34612199A JP 34612199 A JP34612199 A JP 34612199A JP 2001162116 A JP2001162116 A JP 2001162116A
Authority
JP
Japan
Prior art keywords
antibacterial
filter medium
filter
antibacterial agent
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34612199A
Other languages
Japanese (ja)
Other versions
JP3784595B2 (en
Inventor
Koji Obata
耕二 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP34612199A priority Critical patent/JP3784595B2/en
Publication of JP2001162116A publication Critical patent/JP2001162116A/en
Application granted granted Critical
Publication of JP3784595B2 publication Critical patent/JP3784595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a filter medium containing extra fine fibers, a technique to realize excellent filtration performance and antibacterial property when a filter unit in which the filter medium is assembled is coated with an antibacterial agent to be immobilized, a antibacterial filter medium having a wide antibacterial spectrum and excellent filtration performance. SOLUTION: When the filter medium containing extra fine fibers having 5 μm or finer fiber diameter is coated with the antibacterial agent to be immobilized, a water-based coating liquid containing a self-cross-linking acrylic resin and the antibacterial agent is applied to the filter medium, which is then heat- treated at 60 deg.C or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気浄化に用い
られる濾材に対して抗菌性を付与するため、比較的細い
繊維で構成された濾材や、この濾材が枠材に組み込まれ
たフィルターユニットに対する抗菌処理方法と、比較的
細い繊維を含んで構成され、かつ優れた抗菌性と濾過性
能とを実現し得る濾材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter medium composed of relatively fine fibers and a filter unit in which the filter medium is incorporated in a frame material in order to impart antibacterial properties to a filter medium used for air purification. The present invention relates to an antibacterial treatment method and a filter medium which includes relatively fine fibers and which can realize excellent antibacterial properties and filtration performance.

【0002】[0002]

【従来の技術】空気浄化を目的とする濾材はフィルター
ユニットとして様々な空調機器に組み込まれ、塵埃など
の捕集に利用されている。濾材は、その要求特性に応じ
て、異なる繊維径の繊維が単独で若しくは複数を組み合
わせて用いられるが、捕集効率を高くするためには繊維
間距離を小さく採る目的でメルトブロー繊維や分割繊維
に代表される5μm以下程度の繊維径の小さいもの(以
下、極細繊維と称する)が利用され、塵埃の保持量を多
く採るためには上記繊維に較べて太い繊維を用いること
で大きな繊維間距離を確保する手法が用いられている。
その一例として、極細繊維で構成されたメルトブロー不
織布と、20μm程度以上の短繊維不織布とを積層構成
した濾材、或いは本出願人が特開平11−104417
号公報に提案するように、繊維径1μm未満のメルトブ
ロー繊維と、繊維径5〜100μmの熱融着性繊維とを
均一に混合した繊維ウエブが、上記熱融着性繊維によっ
て結合された構造の濾材などが知られている。
2. Description of the Related Art A filter medium for purifying air is incorporated in various air conditioners as a filter unit and is used for collecting dust and the like. Depending on the required characteristics of the filter medium, fibers of different fiber diameters may be used alone or in combination.However, in order to increase the collection efficiency, melt-blown fibers and split fibers are used to reduce the distance between fibers. A fiber having a small fiber diameter of about 5 μm or less (hereinafter referred to as an ultrafine fiber) is used. In order to obtain a large amount of dust, a fiber that is thicker than the above fiber is used to increase a distance between fibers. A secure approach is used.
As an example, a filter medium in which a melt-blown non-woven fabric composed of ultrafine fibers and a short-fiber non-woven fabric having a length of about 20 μm or more are laminated,
As proposed in Japanese Patent Application Laid-Open Publication No. H10-209, a fiber web in which a melt-blown fiber having a fiber diameter of less than 1 μm and a heat-fusible fiber having a fiber diameter of 5 to 100 μm are uniformly mixed is a structure in which the heat-fusible fibers are bonded by the heat-fusible fiber. Filter media and the like are known.

【0003】このように、極細繊維を含むことによって
高効率を有する濾材には塵埃の捕集に伴って空気中の様
々な細菌やカビも付着し易くなる。このため濾材を構成
する繊維素材に抗菌性を付与する技術が必要となる。係
る抗菌性付与技術の一例として、繊維を構成する樹脂に
種々の抗菌剤を予め混合添加して紡糸する技術が知られ
ている。しかしながら、この技術は比較的太い繊維に適
するものであり、紡糸時の繊維直径が比較的小さい場合
にはノズル詰まりや紡糸中或いは紡糸後の糸切れを生じ
やすい。さらには、紡糸時の樹脂温度は極めて高温であ
り、抗菌剤自体が失活してしまう場合も有った。従っ
て、紡糸による抗菌性の付与は耐熱性の高い抗菌剤に限
定されてしまい、しかも糸切れなどを考慮すれば上述の
極細繊維への当該技術の適用は著しい困難を伴う。この
ため、抗菌剤の熱安定性に関わる制約、並びに濾材を構
成する繊維の太さに関する制約を受けにくい抗菌処理技
術として、抗菌剤及びバインダーが含まれるコーティン
グ液を濾材に付着・乾燥する技術が考えられる。
[0003] As described above, various bacteria and molds in the air are liable to adhere to the filter medium having high efficiency due to the inclusion of the ultrafine fibers as dust is collected. For this reason, a technique for imparting antibacterial properties to the fiber material constituting the filter medium is required. As an example of such an antibacterial property imparting technique, there is known a technique in which various antibacterial agents are preliminarily mixed and added to a resin constituting a fiber and spinning is performed. However, this technique is suitable for relatively thick fibers, and if the fiber diameter during spinning is relatively small, nozzle clogging or yarn breakage during or after spinning is likely to occur. Further, the resin temperature during spinning is extremely high, and the antibacterial agent itself may be deactivated. Therefore, the imparting of antibacterial properties by spinning is limited to antibacterial agents having high heat resistance, and application of the technique to the above-mentioned ultrafine fibers involves considerable difficulty in consideration of thread breakage and the like. For this reason, as an antibacterial treatment technology that is not easily restricted by the heat stability of the antibacterial agent and the thickness of the fibers constituting the filter medium, a technique of attaching and drying a coating liquid containing an antibacterial agent and a binder to the filter medium is used. Conceivable.

【0004】一方、近年の環境に対する配慮、特に産業
廃棄物の減量を図るため、従来は使い捨てにしていたフ
ィルターユニットの洗浄再生技術が注目されている。こ
の様な洗浄再生は、濾材を枠材に組み込んで構成された
フィルターユニットを所定の洗浄剤に浸漬して行われ
る。従って、このような洗浄工程に続いて、抗菌剤を付
着させ、フィルターユニットを構成する部材に抗菌性を
付与することが要望されている。特に濾材は塵埃、細
菌、カビのみならず空気中の水分にも曝されるため、使
用環境によっては結露することがあり、抗菌剤の多くは
極性を持つために結露によって溶出し易い。このため、
フィルターユニットの再生時に抗菌処理を行うには、バ
インダーによる抗菌剤の被着固定が最も現実的な処理技
術となる。バインダーとして種々のものが知られている
が、バインダー自体の熱的安定性、光化学的安定性、耐
酸化性などの物理化学的な安定性に加えて、エマルジョ
ン形成による取り扱いの容易さなどの利点から、アクリ
ル樹脂が用いられている。
On the other hand, in order to reduce the amount of industrial waste in recent years, attention has been paid to a filter unit washing / recycling technique which has conventionally been disposable. Such cleaning and regeneration are performed by immersing a filter unit configured by incorporating a filter medium into a frame material in a predetermined cleaning agent. Therefore, following such a washing step, it is desired to attach an antibacterial agent to impart antibacterial properties to members constituting the filter unit. In particular, the filter medium is exposed not only to dust, bacteria, and mold but also to moisture in the air, so that dew condensation may occur depending on the use environment. Many antibacterial agents have polarities and are easily eluted by dew condensation. For this reason,
In order to perform the antibacterial treatment at the time of regeneration of the filter unit, the most practical treatment technique is to adhere and fix the antibacterial agent with a binder. Various binders are known, but in addition to the physicochemical stability such as thermal stability, photochemical stability and oxidation resistance of the binder itself, advantages such as ease of handling due to emulsion formation. Therefore, an acrylic resin is used.

【0005】[0005]

【発明が解決しようとする課題】本願発明者は前述した
極細繊維を含む濾材に対して、フィルターユニットの再
生時であっても抗菌性を付与することを可能とするた
め、種々のアクリル樹脂で抗菌剤の被着固定を行い、そ
の抗菌性と濾材性能とを検討した。その結果、反応型ア
クリル樹脂では例えば100℃以上、通常、130℃程
度の加熱を必要とするが、濾材が極細繊維を含む構成、
例えば軟化点が比較的低いポリプロピレン樹脂からなる
メルトブロー繊維とした場合、この硬化に必要なキュア
温度で処理を行うことによって、極細繊維の軟化に伴う
濾材の形態変化が生じ、濾材の圧力損失が著しく増大し
てしまうという知見を得た。この点について詳述すれ
ば、熱融着性繊維を含む繊維組成とした場合にも繊維間
接着のための熱処理を施すが、バインダーの熱硬化はエ
マルジョン液等の液状物が濾材に付着した状態での熱処
理となる。従って、繊維間接着のために行われる乾熱処
理に較べて、湿熱処理となるバインダーの熱硬化処理は
繊維に対する熱影響が大きい。このため、極細繊維を含
む濾材に対して、バインダーを高温で硬化させる技術を
適用し、濾過性能を損なうことなく抗菌性を付与するこ
とは極めて難しいという問題点が有った。
SUMMARY OF THE INVENTION The inventor of the present invention has made it possible to impart antibacterial properties to the above-described filter medium containing ultrafine fibers even during regeneration of the filter unit by using various acrylic resins. The antibacterial agent was applied and fixed, and its antibacterial properties and filter media performance were examined. As a result, a reactive acrylic resin requires heating at, for example, 100 ° C. or higher, usually about 130 ° C.
For example, in the case of a melt-blown fiber made of a polypropylene resin having a relatively low softening point, by performing the treatment at a curing temperature necessary for this curing, a morphological change of the filter medium due to the softening of the ultrafine fibers occurs, and the pressure loss of the filter medium is remarkable. It was found that it would increase. If this point is described in detail, even when a fiber composition containing heat-fusible fibers is used, a heat treatment for bonding between fibers is performed, but the thermosetting of the binder is performed in a state where a liquid material such as an emulsion liquid adheres to the filter medium. Heat treatment. Therefore, as compared with the dry heat treatment performed for the inter-fiber bonding, the heat curing treatment of the binder, which is the wet heat treatment, has a greater thermal effect on the fibers. For this reason, there has been a problem that it is extremely difficult to apply a technique of curing a binder at a high temperature to a filter medium containing ultrafine fibers and to impart antibacterial properties without impairing the filtration performance.

【0006】本出願に係る発明者は、上述した種々の問
題点を解決すべく鋭意検討した結果、特定のバインダー
を用いて抗菌処理することによって濾材としての濾過性
能低下を防止し、しかも優れた抗菌性を発揮し得る技術
を完成するに至った。従って、本発明の目的は、極細繊
維を含む濾材、並びに、これを組み込んだフィルターユ
ニットに対して抗菌剤を被着固定するに際して、優れた
濾過性能と抗菌性とを実現し得る技術を提供すると共
に、広い抗菌スペクトルを持ち、しかも優れた濾過性能
を有する抗菌性濾材を提供することにある。
The inventor of the present application has conducted intensive studies to solve the various problems described above, and as a result, by performing an antibacterial treatment using a specific binder, it was possible to prevent a decrease in filtration performance as a filter medium, and to obtain an excellent filter. We have completed a technology that can exhibit antibacterial properties. Accordingly, an object of the present invention is to provide a filter medium containing ultrafine fibers, and a technique capable of realizing excellent filtration performance and antibacterial property when applying and fixing an antibacterial agent to a filter unit incorporating the same. Another object of the present invention is to provide an antibacterial filter medium having a broad antibacterial spectrum and excellent filtering performance.

【0007】[0007]

【課題を解決するための手段】この目的の達成を図るた
め、本出願の方法発明に係る抗菌処理方法によれば、繊
維径が5μm以下の極細繊維を含む濾材に抗菌剤を被着
固定するに当たり、自己架橋型アクリル樹脂と抗菌剤と
を含む水系コーティング液を上述した濾材に付着させた
後、60℃以下の温度で熱処理することを特徴としてい
る。
In order to achieve this object, according to the antibacterial treatment method of the present invention, an antibacterial agent is fixed to a filter medium containing ultrafine fibers having a fiber diameter of 5 μm or less. In this method, an aqueous coating solution containing a self-crosslinking acrylic resin and an antibacterial agent is attached to the above-mentioned filter medium, and then heat-treated at a temperature of 60 ° C. or lower.

【0008】また、この出願の他の方法発明に係る抗菌
処理方法によれば、繊維径が5μm以下の極細繊維を含
む濾材が枠材に組み込まれたフィルターユニットに抗菌
剤を被着固定するに当たり、自己架橋型アクリル樹脂と
抗菌剤とを含む水系コーティング液を前記フィルターユ
ニットに付着させた後、60℃以下の温度で熱処理する
ことを特徴としている。
Further, according to the antibacterial treatment method according to another method invention of the present application, a method for attaching and fixing an antibacterial agent to a filter unit in which a filter medium containing ultrafine fibers having a fiber diameter of 5 μm or less is incorporated in a frame material. After adhering an aqueous coating solution containing a self-crosslinking acrylic resin and an antibacterial agent to the filter unit, heat treatment is performed at a temperature of 60 ° C. or less.

【0009】さらに、本出願に係る抗菌性濾材の構成に
よれば、繊維径が5μm以下の極細繊維を含む濾材に抗
菌性が付与された抗菌性濾材であって、銀−有機ヨード
系抗菌剤が自己架橋型アクリル樹脂の架橋によって前記
極細繊維に被着固定されていることを特徴としている。
Further, according to the constitution of the antibacterial filter medium according to the present application, the filter medium containing microfibers having a fiber diameter of 5 μm or less is provided with antibacterial properties, and the silver-organic iodine antibacterial agent is provided. Are adhered and fixed to the ultrafine fibers by crosslinking of a self-crosslinking acrylic resin.

【0010】[0010]

【発明の実施の形態】以下、本出願の方法発明に係る抗
菌処理方法に関し、好適な実施形態について説明する。
本方法発明によれば、極細繊維を含む濾材、または、こ
の濾材が組み込まれたフィルターユニットに対して、自
己架橋型アクリル樹脂と抗菌剤とを含む水系コーティン
グ液を付着させ、所定の温度で熱処理する構成としてい
る。まず、本方法発明に適用する自己架橋型アクリル樹
脂としては、濾材を構成する極細繊維の構成樹脂の軟化
温度以下で硬化し得るものを任意好適に選択することが
できるが、熱処理によってへたりを生じやすいポリプロ
ピレン樹脂の場合、60℃以下の熱処理温度で硬化する
ことが望ましく、より好ましくは、50℃以下で硬化す
るものが良い。このような低温で硬化し得る自己架橋型
アクリル樹脂としては平均分子量が1500万以上の分
子量を有するものが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of an antibacterial treatment method according to the present invention will be described below.
According to the method of the present invention, a water-based coating liquid containing a self-crosslinking acrylic resin and an antibacterial agent is applied to a filter medium containing ultrafine fibers, or a filter unit incorporating the filter medium, and heat-treated at a predetermined temperature. Configuration. First, as the self-crosslinking acrylic resin applied to the method of the present invention, a resin that can be cured at or below the softening temperature of the constituent resin of the ultrafine fibers constituting the filter medium can be arbitrarily and suitably selected. In the case of a polypropylene resin which is likely to be generated, it is desirable to cure at a heat treatment temperature of 60 ° C. or lower, and more preferable to cure at 50 ° C. or lower. As such a self-crosslinking acrylic resin that can be cured at a low temperature, one having an average molecular weight of 15,000,000 or more is desirable.

【0011】また、水系コーティング液の組成として
は、自己架橋型アクリル樹脂の固形分重量の割合を1ma
ss%以上5mass%以下、好ましくは1mass%以上3mass
%以下とするのが望ましい。この範囲を超えてアクリル
樹脂を多量に添加すると水系コーティング液の比重が上
がり、当該液を濾材に付着・乾燥する際に厚さが潰れ易
い。さらに、この範囲以下の添加量では抗菌剤を濾材に
保持することが難しくなる。
The composition of the aqueous coating liquid is such that the weight ratio of the solid content of the self-crosslinking acrylic resin is 1 ma.
ss% to 5 mass%, preferably 1 mass% to 3 mass
% Is desirable. If a large amount of acrylic resin is added beyond this range, the specific gravity of the water-based coating liquid increases, and the thickness tends to be crushed when the liquid is attached to the filter medium and dried. Further, if the amount is less than this range, it becomes difficult to hold the antibacterial agent in the filter medium.

【0012】次いで、本方法発明に適用する抗菌剤につ
いて説明する。本方法発明を適用するに際して、抗菌剤
は特に限定されるものではなく、本方法が上記自己架橋
型アクリル樹脂を適用することで60℃以下の低温で被
着固定できるため、濾材に含まれる極細繊維の形態変化
を低減し得るのみならず、抗菌剤の選択範囲を広げるこ
とが可能となる。また、本方法発明を適用するフィルタ
ーユニットに組み込まれた濾材としては、極細繊維のみ
で構成された濾材、極細繊維からなる不織布と比較的太
径の不織布とを積層構成した濾材、或いは前述の公報に
開示されるような極細繊維とこれよりも太径の繊維とが
1枚の繊維ウエブとして均一に混合された濾材であって
も良い。このうち、異径繊維の混合により構成された濾
材の場合、極細繊維の含まれる割合は特に限定されるも
のではないが、濾材に含まれる極細繊維が20mass%以
上の場合に前述した形態変化を来し易く、本方法発明の
適用による効果が期待できる。
Next, the antimicrobial agent applied to the present invention will be described. In applying the method of the present invention, the antibacterial agent is not particularly limited, and the method can be applied and fixed at a low temperature of 60 ° C. or less by applying the self-crosslinking acrylic resin. Not only can the morphological change of the fiber be reduced, but also the range of selection of the antibacterial agent can be expanded. Further, as the filter medium incorporated in the filter unit to which the present invention is applied, a filter medium composed of only ultrafine fibers, a filter medium formed by laminating a nonwoven fabric made of ultrafine fibers and a nonwoven fabric having a relatively large diameter, or the aforementioned publication May be a filter medium in which ultrafine fibers and fibers having a diameter larger than this are uniformly mixed as one fiber web. Among these, in the case of a filter medium composed of a mixture of different diameter fibers, the proportion of the ultrafine fibers is not particularly limited, but when the ultrafine fibers contained in the filter medium are 20 mass% or more, the morphological change described above occurs. It is easy to come and the effect of applying the method of the present invention can be expected.

【0013】次いで、本出願発明に係る抗菌性濾材につ
いて説明する。本濾材の構成は、上述の方法発明でも述
べた通り、繊維径5μm以下の極細繊維を含むもので有
れば、太径の繊維を含む構成としても良く、これら異な
る繊維径の繊維同志が均一に混合されたもの、或いは、
各々の繊維からなるウエブを積層構成したものであって
も良い。また、極細繊維を構成する樹脂としては、従来
知られているものであれば如何なるものでも良いが、濾
材として広く用いられている、ポリプロピレン系、ポリ
エチレン系を始めとするポリオレフィン樹脂、ポリカー
ボネート樹脂、ポリウレタン系樹脂などが挙げられ、特
に、メルトブロー繊維として繊維径の制御が容易なポリ
プロピレン系の樹脂が好適である。
Next, the antibacterial filter medium according to the present invention will be described. As described in the above method invention, the configuration of the present filter medium may include a large-diameter fiber as long as it includes ultrafine fibers having a fiber diameter of 5 μm or less. Mixed with, or
A web composed of the respective fibers may be laminated. As the resin constituting the ultrafine fibers, any resin may be used as long as it is conventionally known.Polyolefin resins such as polypropylene, polyethylene, and the like widely used as filter media, polycarbonate resins, polyurethane Examples of the melt-blown fibers include polypropylene-based resins in which the fiber diameter can be easily controlled.

【0014】また、本発明に係る濾材で利用する自己架
橋型アクリル樹脂も、上記方法発明で説明したものを利
用することができるが、特に、架橋後の固形分率、即
ち、付着したアクリル樹脂のうち、完全に架橋した樹脂
の重量割合が少なくとも60mass%以上、好ましくは8
0mass%以上とすることによって、濾材が結露した場合
であっても安定した抗菌性を維持することができる。こ
のような固形分率を求めるには周知の方法、例えばガラ
ス板に樹脂を塗布・乾燥後、この塗膜形成されたガラス
板を室温の流水に24時間流水に曝し、塗膜形成直後の
重量に対して、流水に溶出せずに残存した樹脂重量の百
分率を求めることにより算出できる。さらに、本発明の
抗菌性濾材に適用する抗菌剤を銀−有機ヨード系抗菌剤
とすることによって、後段で述べる通り、広範な抗菌ス
ペクトルを実現することができる。濾材に於ける自己架
橋型アクリル樹脂と銀−有機ヨード系抗菌剤の付着量
は、設計に応じて任意好適に設計することができる。樹
脂の付着量を上記好適範囲よりも少なくすると抗菌剤の
被着固定が難しくなり、当該範囲を超えて樹脂を付着さ
せると濾材の形態変化を助長することとなる。また抗菌
剤の付着量は、当該抗菌剤のMIC(最小阻止濃度:Min
imum Inhibitory Concentration)に基づくものであ
り、これを下回る濃度では抗菌性を期待することが難し
くなる。
The self-crosslinkable acrylic resin used in the filter medium according to the present invention may be the same as that described in the above method invention. In particular, the solid content after crosslinking, that is, the adhered acrylic resin Among them, the weight ratio of the completely crosslinked resin is at least 60 mass% or more, preferably 8 mass% or more.
By setting it to 0 mass% or more, stable antibacterial properties can be maintained even when the filter medium condenses. In order to obtain such a solid content ratio, a known method is used, for example, after coating and drying a resin on a glass plate, the coated glass plate is exposed to running water at room temperature for 24 hours, and the weight immediately after the formation of the coating film is measured. In contrast, it can be calculated by calculating the percentage of the weight of the resin remaining without being eluted in running water. Further, by using a silver-organic iodine-based antibacterial agent as the antibacterial agent applied to the antibacterial filter medium of the present invention, a wide antibacterial spectrum can be realized as described later. The adhesion amount of the self-crosslinking acrylic resin and the silver-organic iodine antibacterial agent in the filter medium can be arbitrarily and suitably designed according to the design. If the amount of resin adhered is less than the above-mentioned preferred range, it becomes difficult to adhere and fix the antibacterial agent. If the amount of resin adhered beyond this range, the morphological change of the filter will be promoted. The amount of the antibacterial agent adhered was determined by the MIC (minimum inhibitory concentration: Min.
Imum Inhibitory Concentration), and it is difficult to expect antibacterial properties at a concentration lower than this.

【0015】[0015]

【実施例】以下、実施例として、本方法発明の好適実施
例と、これにより得られた抗菌性濾材の効果確認試験と
について説明する。尚、以下に示す実施例では、特定の
条件を例示するが、本願発明はこれら実施例にのみ限定
されるものではなく、前述した目的の範囲内で任意好適
な設計の変更及び変形を行うことができる。
EXAMPLES Hereinafter, preferred examples of the present invention and a test for confirming the effect of the antibacterial filter medium obtained by the method will be described as examples. In the following embodiments, specific conditions will be exemplified. However, the present invention is not limited to only these embodiments, and any suitable design changes and modifications can be made within the above-described purpose. Can be.

【0016】まず、市販のポリプロピレンペレットを用
い、メルトブロー法によって平均繊維径約2μmの極細
繊維からなる面密度約20g/m2の不織布を調製し
た。また、ポリエチレンテレフタレートからなる3.3
デシテックスの短繊維35mass%、同樹脂からなる6.
7デシテックスの短繊維35mass%、並びに難燃剤とし
て塩ビを分散配合したモダクリル樹脂からなる7.8デ
シテックスの短繊維30mass%からなる面密度約75g
/m2のカードウエブを調製した。これら2種類の不織
布を積層し、超音波シール(シール面積5%)によって
融着一体化することにより、濾材を得た。
First, a nonwoven fabric having a surface density of about 20 g / m 2 consisting of ultrafine fibers having an average fiber diameter of about 2 μm was prepared by a melt blow method using commercially available polypropylene pellets. Also, 3.3 made of polyethylene terephthalate
5. Decitex short fiber 35 mass%, made of the same resin
35 mass% of short fibers of 7 decitex and 30 mass% of short fibers of 7.8 decitex made of modacrylic resin in which vinyl chloride is dispersed and blended as a flame retardant;
/ M 2 of card web was prepared. These two types of nonwoven fabrics were laminated and fused and integrated by an ultrasonic seal (seal area 5%) to obtain a filter medium.

【0017】次いで、抗菌処理を行うための自己架橋型
アクリル樹脂としてアクリル−スチレン系エマルジョン
(平均分子量2000万,流水法による固形分率80
%)と、市販の銀−有機ヨード系抗菌剤『MBA−C−
0520』(日本応用化学工業(株)製,商品名)とを
用い、当該自己架橋型アクリル樹脂2mass%と当該抗菌
剤0.25mass%とを含む水系コーティング液を得た。
この水系コーティング液に前述した濾材を含浸した後に
余剰なコーティング液を自然流下させ、約40℃で15
時間乾燥することによって実施例に係る抗菌性濾材を得
た。
Next, an acryl-styrene emulsion (average molecular weight: 20,000,000, solid content ratio by running water method: 80%) was used as a self-crosslinking acrylic resin for antibacterial treatment.
%) And a commercially available silver-organic iodine antibacterial agent “MBA-C-
0520 "(trade name, manufactured by Nippon Applied Chemical Industry Co., Ltd.) to obtain an aqueous coating liquid containing 2% by mass of the self-crosslinking acrylic resin and 0.25% by mass of the antibacterial agent.
After impregnating the above-mentioned filter medium with the aqueous coating solution, the excess coating solution is allowed to flow naturally, and the solution is cooled at about 40 ° C.
The antibacterial filter material according to the example was obtained by drying for an hour.

【0018】また、乾燥条件を140℃、10分間とし
たことを除いては、上記実施例と同一の条件で比較例に
係る抗菌性濾材を得た。これら実施例及び比較例の夫々
に係る抗菌性濾材の圧力損失を面風速10cm/秒の条
件で定法に従い測定した。その結果を表1に示す。尚、
「初期圧力損失」とは、水系コーティング液による処理
を施す前の測定結果を示すと共に、カッコ内は初期圧力
損失に対する抗菌処理後の圧力損失の割合を百分率で表
したものである。
Also, an antibacterial filter material according to a comparative example was obtained under the same conditions as in the above example except that the drying conditions were 140 ° C. for 10 minutes. The pressure loss of the antibacterial filter media according to each of these Examples and Comparative Examples was measured in accordance with a standard method at a surface wind speed of 10 cm / sec. Table 1 shows the results. still,
"Initial pressure loss" indicates the measurement result before the treatment with the aqueous coating liquid, and the ratio in parentheses indicates the ratio of the pressure loss after the antibacterial treatment to the initial pressure loss in percentage.

【0019】[0019]

【表1】 [Table 1]

【0020】この表1の結果から理解できるように、本
方法発明を適用し、比較的低温で抗菌処理後の加熱を行
っても初期の圧力損失と同等とすることができたのに対
し、繊維の形態変化を伴うほど高温の加熱を施した場合
には約2割の圧損上昇を来した。また、詳細な説明は省
略するが、自己架橋型アクリル樹脂の代わりに、市販の
反応型アクリル樹脂を用い、上記濾材に対して実施例及
び比較例と同一の条件で圧力損失を測定したところ、1
40℃の熱処理では明らかな圧力損失の増大が認めら
れ、表1と同様な結果が得られた。
As can be understood from the results in Table 1, the present invention was applied, and even if heating was performed after the antibacterial treatment at a relatively low temperature, the pressure loss could be equal to the initial pressure loss. When the heating was performed at such a high temperature that the fiber morphology changed, the pressure loss increased by about 20%. Although a detailed description is omitted, a commercially available reactive acrylic resin is used in place of the self-crosslinking acrylic resin, and the pressure loss is measured on the filter medium under the same conditions as in the examples and comparative examples. 1
A clear increase in pressure loss was observed in the heat treatment at 40 ° C., and the same results as in Table 1 were obtained.

【0021】続いて、抗菌処理を施していない濾材を、
各々、プリーツ加工した後、合板及びアルミニウムから
なる枠材にホットメルト樹脂で取り付けたフィルターユ
ニットを得た。然る後、このフィルターユニットを空調
装置に装着して、2150時間に渡って運転を行い、こ
の使用済みのフィルターユニットの濾材を採取し、フー
ドスタンプ法によるサンプリングの後、ポテトデキスト
ローズアガー(PDA)を培地として培養し、生育した
微生物を同定した。この際に同定されたのは主としてカ
ビであったことから、後段で述べる接種試験用の菌種と
して、以下の70種を選定した。 (1)Acuremonium charticola (2)Alternaria alternata (3)Alternaria bassicicola (4)Alternaria candidus (5)Alternaria tenuis (6)Aspergillus flavus (7)Aspergillus fumigatus (8)Aspergillus glaucus (9)Aspergillus nidulans (10)Aspergillus niger (11)Aspergillus ochraceus (12)Aspergillus oryzae (13)Aspergillus restrictus (14)Aspergillus terreus (15)Aspergillus versicolor (16)Aureobasidium pullulans (17)Botrytis cinera (18)Candida albicans (19)Cerespora beticola (20)Chaetomium globosum (21)Cladosporium cladosporioides (22)Cladosporium herbarum (23)Cladosporium resinae (24)Cladosporium shaerospermum (25)Epicoccum purpurascens (26)Eurotium tonophilum (27)Fusarium moniliforme (28)Fusarium oxysporum (29)Fusarium proliferatum (30)Fusarium roseum (31)Fusarium semitectum (32)Fusarium solani (33)Geotricham candidum (34)Geotricham lactus (35)Gliocladium virens (36)Microsporum canis (37)Monilia fructigana (38)Mucor mucedo (39)Mucor racemosus (40)Myrothecium verrucaria (41)Nigrospora oryzae (42)Penicillium citreo-viride (43)Penicillium citrinum (44)Penicillium digitatum (45)Penicillium expansum (46)Penicillium funiculosum (47)Penicillium frequentance (48)Penicillium islandicum (49)Penicillium lilacinum (50)Penicillium luteum (51)Penicillium nigricans (52)Penicillium notatum (53)Penicillium rubrum (54)Pestalotia adusta (55)Pestalotia neglecta (56)Phoma glomerata (57)Phoma terrestius (58)Pullularia pullulans (59)Rhizopus delemar (60)Rhizopus nigricans (61)Rhizopus oryzae (62)Rhizopus storonifer (63)Trichoderma koningii (64)Trichoderma viride (65)Trichophyton ajelloi (66)Trichophyton gypseum (67)Trichophyton mentagrophytes (68)Trichophyton roseum (69)Trichophyton rubrum (70)Wallemia sebi
Subsequently, the filter medium which has not been subjected to the antibacterial treatment is
After pleating each, a filter unit was obtained which was attached to a frame material made of plywood and aluminum with a hot melt resin. Thereafter, the filter unit was mounted on an air conditioner and operated for 2150 hours. The used filter medium of the filter unit was collected, sampled by a food stamp method, and then potato dextrose agar (PDA). ) Was used as a culture medium, and the grown microorganisms were identified. Since mold was mainly identified at this time, the following 70 species were selected as the bacterial species for the inoculation test described later. (1) Acuremonium charticola (2) Alternaria alternata (3) Alternaria bassicicola (4) Alternaria candidus (5) Alternaria tenuis (6) Aspergillus flavus (7) Aspergillus fumigatus (8) Aspergillus glaucus (9) Aspergillus nidulanlus (10) Aspergillus nidulanlus (10) (11) Aspergillus ochraceus (12) Aspergillus oryzae (13) Aspergillus restrictus (14) Aspergillus terreus (15) Aspergillus versicolor (16) Aureobasidium pullulans (17) Botrytis cinera (18) Candida albicans (19) Ceresspora beticola (obo) (21) Cladosporium cladosporioides (22) Cladosporium herbarum (23) Cladosporium resinae (24) Cladosporium shaerospermum (25) Epicoccum purpurascens (26) Eurotium tonophilum (27) Fusarium moniliforme (28) Fusarium oxysporium (um) (31) Fusarium semitectum ( 2) Fusarium solani (33) Geotricham candidum (34) Geotricham lactus (35) Gliocladium virens (36) Microsporum canis (37) Monilia fructigana (38) Mucor mucedo (39) Mucor racemosus (40) Myrothecium verrucaria (41) Nigrospora 42) Penicillium citreo-viride (43) Penicillium citrinum (44) Penicillium digitatum (45) Penicillium expansum (46) Penicillium funiculosum (47) Penicillium frequentance (48) Penicillium islandicum (49) Penicillium lilaciill (50) iciumium nigricans (52) Penicillium notatum (53) Penicillium rubrum (54) Pestalotia adusta (55) Pestalotia neglecta (56) Phoma glomerata (57) Phoma terrestius (58) Pullularia pullulans (59) Rhizopus delemar (60) Rhizopus ric oryzae (62) Rhizopus storonifer (63) Trichoderma koningii (64) Trichoderma viride (65) Trichophyton ajelloi (66) Trichophyton gypseum (67) Trichophyton mentagrophytes (68) Trichophyton roseum (69) Trichophyton rubrum (70) Wallemia sebi

【0022】次いで、前述の手順で得られた実施例に係
る抗菌性濾材を用いてフィルターユニットを作製し、こ
れに対して上記70種のカビを接種した。まず、定法に
従い、界面活性剤を添加した生理的食塩水に各菌種毎に
菌体を分散させ、ガラスビーズフィルターで発芽した菌
体を除去後、濾過された分散液を遠心分離、再分散を経
て濃縮し、この分散液中の胞子数を比濁法によって計数
した。この後、各菌種の胞子数が等量となるように混釈
し、接種用の胞子分散液を調製した。続いて、ポテトデ
キストローズアガー(PDA)培地を入れたシャーレを
調製し、これに所定の大きさに裁断した実施例の濾材を
離間して並べ、このシャーレ全面に上記接種用胞子分散
液を噴霧することにより行った。然る後、接種を終えた
シャーレを孵卵器(温度30℃,相対湿度95%)中に
静置培養し、開始から7日、14日、21日並びに30
日の各経過日にカビの生育状況を観察した。
Next, a filter unit was prepared using the antibacterial filter medium according to the example obtained by the above-described procedure, and the above 70 molds were inoculated to the filter unit. First, according to a standard method, cells are dispersed for each bacterial species in a physiological saline solution containing a surfactant, and after germinating cells are removed by a glass bead filter, the filtered dispersion is centrifuged and redispersed. And the number of spores in this dispersion was counted by turbidimetry. Thereafter, the spores of each bacterial species were mixed so that the number of spores became equal, to prepare a spore dispersion for inoculation. Subsequently, a petri dish containing a potato dextrose agar (PDA) medium was prepared, and the filter medium of the example cut into a predetermined size was spaced apart from the dish, and the spore dispersion liquid for inoculation was sprayed on the entire surface of the petri dish. It was done by doing. After that, the inoculated petri dish was cultivated in an incubator (temperature: 30 ° C., relative humidity: 95%) for 7 days, 14 days, 21 days and 30 days from the start.
The growth of the mold was observed on each day of the day.

【0023】その結果、濾材内部及び表面にはカビの生
育が全く認められず、実施例に係る濾材は、極めて優れ
た抗菌性を有することが判った。また、前述した接種用
胞子分散液が直接噴霧された培地部分にはカビの生育が
認められ、試験方法の適性が確認された。さらに、反応
型アクリル樹脂を用い、40℃で15時間に渡って熱処
理を施した他の比較例に係る濾材を調製し、上述の実施
例に係る濾材と共に、24時間に渡って流水に曝した。
この後、上記抗菌性試験を実施した結果、自己架橋型ア
クリル樹脂を用いた実施例の濾材では、流水暴露前と同
等の抗菌性が保たれていたのに対して、反応型アクリル
樹脂を用いた他の比較例の濾材では顕著なカビの生育が
観察された。このことから、反応型アクリル樹脂を適用
した場合、極細繊維を含む濾材の形態変化を来さない程
度の熱処理条件では硬化不足となり、結露等に対する耐
水性に欠けることが明らかとなった。
As a result, no mold growth was observed inside and on the surface of the filter medium, and it was found that the filter medium according to the examples had extremely excellent antibacterial properties. In addition, mold growth was observed in the medium portion directly sprayed with the spore dispersion liquid for inoculation, and the suitability of the test method was confirmed. Further, using a reactive acrylic resin, a filter medium according to another comparative example subjected to a heat treatment at 40 ° C. for 15 hours was prepared, and was exposed to running water for 24 hours together with the filter medium according to the above-described example. .
Thereafter, the antibacterial test was carried out. As a result, the filter medium of the example using a self-crosslinking acrylic resin had the same antibacterial property as before the exposure to running water, whereas the reactive acrylic resin was used. In the filter media of the other comparative examples, remarkable mold growth was observed. From this, it has been clarified that when a reactive acrylic resin is applied, curing is insufficient under heat treatment conditions that do not cause morphological change of a filter medium containing ultrafine fibers, and lacks water resistance to dew condensation and the like.

【0024】加えて、実施例の抗菌性濾材を組み込んだ
フィルターユニットを空調機に装着し、2150時間に
渡って運転した結果、カビの生育は認められなかった。
このことから、本実施例に係る濾材の抗菌性は長時間持
続していることが明らかとなった。
In addition, a filter unit incorporating the antibacterial filter medium of the example was attached to an air conditioner and operated for 2150 hours. As a result, no mold growth was observed.
From this, it became clear that the antibacterial property of the filter medium according to the present example was maintained for a long time.

【0025】次いで、抗菌処理を施していない前述の濾
材を用いてフィルターユニットを組み上げた後に、当該
ユニットを前述の水系エマルジョン液中に浸漬したこと
を除いては、上述の実施例と同様に抗菌処理を行い、抗
菌性のフィルターユニットを作製した。このフィルター
ユニットを構成する濾材、並びに枠材を採取して、上述
した方法により接種試験を行った。その結果、フィルタ
ーユニットの使用・未使用に関わらず、濾材のみに抗菌
処理した場合と同等の抗菌性が枠材に関しても認められ
た。このことから、本出願に係る方法発明は、使用済み
のフィルターユニットに対して適用した場合、濾材のみ
ならず、フィルターユニットを構成する部材に対しても
抗菌性を付与し得ることが明らかとなった。また、フィ
ルターユニットに対する抗菌処理の前後で圧力損失の有
意な増大は認められなかった。これらのことから、本出
願に係る方法発明は、単に濾材に対しての抗菌処理のみ
ならず、使用済みのフィルターユニットへの適用も有効
であり、環境に配慮した当該ユニットの洗浄再生にも応
用し得ることが明らかとなった。
Next, after assembling the filter unit using the above-mentioned filter medium which has not been subjected to the antibacterial treatment, the filter unit was immersed in the above-mentioned aqueous emulsion liquid, except that the unit was immersed in the above-mentioned aqueous emulsion. The treatment was performed to produce an antibacterial filter unit. A filter material and a frame material constituting the filter unit were collected and subjected to an inoculation test according to the method described above. As a result, irrespective of whether the filter unit was used or not, the same antibacterial property as that obtained when only the filter material was subjected to the antibacterial treatment was also observed for the frame material. From this, it is clear that when the method invention according to the present application is applied to a used filter unit, it is possible to impart antibacterial properties not only to the filter medium but also to the members constituting the filter unit. Was. No significant increase in pressure loss was observed before and after the antibacterial treatment of the filter unit. From these facts, the method invention according to the present application is effective not only in the antibacterial treatment of the filter medium but also in the application to the used filter unit, and is applied to the environmentally friendly cleaning and regeneration of the unit. It became clear that we could do that.

【0026】[0026]

【発明の効果】上述した説明からも明らかなように、本
出願に係る方法発明を適用することによって、抗菌処理
時に必要な熱処理に伴う極細繊維の形態変化を低減する
ことが可能となり、従って、濾過性能低下を防止し、し
かも優れた抗菌性を発揮し得る濾材並びにこの濾材を組
み込んだフィルターユニットを提供することができる。
また、本出願に係る濾材の構成により、広い抗菌スペク
トルを持ち、しかも優れた濾過性能を有する抗菌性濾材
が実現される。
As is clear from the above description, by applying the method of the present invention, it is possible to reduce the morphological change of the ultrafine fibers due to the heat treatment required during the antibacterial treatment. It is possible to provide a filter medium which can prevent a decrease in filtration performance and exhibit excellent antibacterial properties, and a filter unit incorporating the filter medium.
Further, the configuration of the filter medium according to the present application realizes an antibacterial filter medium having a broad antibacterial spectrum and excellent filtering performance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D06M 15/263 D06M 15/263 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) D06M 15/263 D06M 15/263

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 繊維径が5μm以下の極細繊維を含む濾
材に抗菌剤を被着固定するに当たり、自己架橋型アクリ
ル樹脂と抗菌剤とを含む水系コーティング液を前記濾材
に付着させた後、60℃以下の温度で熱処理することを
特徴とする濾材の抗菌処理方法。
When an antibacterial agent is adhered and fixed to a filter medium containing ultrafine fibers having a fiber diameter of 5 μm or less, a water-based coating liquid containing a self-crosslinking acrylic resin and an antibacterial agent is adhered to the filter medium. An antibacterial treatment method for a filter medium, which comprises heat-treating at a temperature of not more than ℃.
【請求項2】 繊維径が5μm以下の極細繊維を含む濾
材が枠材に組み込まれたフィルターユニットに抗菌剤を
被着固定するに当たり、自己架橋型アクリル樹脂と抗菌
剤とを含む水系コーティング液を前記フィルターユニッ
トに付着させた後、60℃以下の温度で熱処理すること
を特徴とするフィルターユニットの抗菌処理方法。
2. An aqueous coating solution containing a self-crosslinking acrylic resin and an antibacterial agent is applied when a filter medium containing ultrafine fibers having a fiber diameter of 5 μm or less is applied and fixed to a filter unit incorporated in a frame member. An antibacterial treatment method for a filter unit, comprising heat-treating the filter unit at a temperature of 60 ° C. or less after being attached to the filter unit.
【請求項3】 前記自己架橋型アクリル樹脂が平均分子
量1500万以上であることを特徴とする請求項1また
は請求項2に記載の抗菌処理方法。
3. The antibacterial treatment method according to claim 1, wherein the self-crosslinkable acrylic resin has an average molecular weight of 15,000,000 or more.
【請求項4】前記抗菌剤が銀−有機ヨード系抗菌剤であ
ることを特徴とする請求項1〜請求項3の何れかに記載
のフィルターユニットの抗菌処理方法。
4. The method according to claim 1, wherein the antibacterial agent is a silver-organic iodine antibacterial agent.
【請求項5】 繊維径が5μm以下の極細繊維を含む濾
材に抗菌性が付与された抗菌性濾材であって、銀−有機
ヨード系抗菌剤が自己架橋型アクリル樹脂の架橋によっ
て前記極細繊維に被着固定されていることを特徴とする
抗菌性濾材。
5. An antibacterial filter medium in which an antibacterial property is imparted to a filter medium containing ultrafine fibers having a fiber diameter of 5 μm or less, wherein a silver-organic iodine antibacterial agent is crosslinked by a self-crosslinking acrylic resin to the ultrafine fibers. An antibacterial filter medium which is adhered and fixed.
JP34612199A 1999-12-06 1999-12-06 Antibacterial treatment method and antibacterial filter medium Expired - Fee Related JP3784595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34612199A JP3784595B2 (en) 1999-12-06 1999-12-06 Antibacterial treatment method and antibacterial filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34612199A JP3784595B2 (en) 1999-12-06 1999-12-06 Antibacterial treatment method and antibacterial filter medium

Publications (2)

Publication Number Publication Date
JP2001162116A true JP2001162116A (en) 2001-06-19
JP3784595B2 JP3784595B2 (en) 2006-06-14

Family

ID=18381282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34612199A Expired - Fee Related JP3784595B2 (en) 1999-12-06 1999-12-06 Antibacterial treatment method and antibacterial filter medium

Country Status (1)

Country Link
JP (1) JP3784595B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039713A1 (en) * 2001-10-19 2003-05-15 Innovative Construction And Building Materials, Llc Anti-pathogenic air filtration media and air handling devices having protective capabilities against infectious airborne microorganisms
US20110262302A1 (en) * 2010-04-27 2011-10-27 Haven Gerald D Bio turbo technology of removing ethylene gas
WO2012123446A1 (en) 2011-03-15 2012-09-20 Glaxo Group Limited Filter material and face mask against pathogens
CN104043288A (en) * 2014-05-20 2014-09-17 浙江朝晖过滤技术股份有限公司 Nnano-silver diatomite antibacterial filter core and preparation method thereof
WO2020050793A3 (en) * 2018-06-04 2020-05-28 Filkim Filtre Ve Kimya Sanayi Ticaret Anonim Sirketi Ultra high efficiency organic gel microbial air filtration and production system
US20210307428A1 (en) * 2020-04-03 2021-10-07 Nanotek Instruments Group, Llc Antiviral filtration element and filtration devices containing same
JP2021164640A (en) * 2020-04-07 2021-10-14 ハーツリッチ株式会社 Infection prevention method and medicament
WO2021210956A1 (en) * 2020-04-16 2021-10-21 주식회사 아모그린텍 Antiviral filter medium, and air filter unit and air conditioner including same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039713A1 (en) * 2001-10-19 2003-05-15 Innovative Construction And Building Materials, Llc Anti-pathogenic air filtration media and air handling devices having protective capabilities against infectious airborne microorganisms
US6872241B2 (en) 2001-10-19 2005-03-29 Innovative Construction And Building Materials, Llc Anti-pathogenic air filtration media and air handling devices having protective capabilities against infectious airborne mircoorganisms
US20110262302A1 (en) * 2010-04-27 2011-10-27 Haven Gerald D Bio turbo technology of removing ethylene gas
US8293171B2 (en) * 2010-04-27 2012-10-23 Gerald D. Haven Bio turbo technology of removing ethylene gas
WO2012123446A1 (en) 2011-03-15 2012-09-20 Glaxo Group Limited Filter material and face mask against pathogens
CN104043288A (en) * 2014-05-20 2014-09-17 浙江朝晖过滤技术股份有限公司 Nnano-silver diatomite antibacterial filter core and preparation method thereof
CN104043288B (en) * 2014-05-20 2016-04-06 浙江朝晖过滤技术股份有限公司 Antibacterial filter core of a kind of Nano Silver diatomite and preparation method thereof
WO2020050793A3 (en) * 2018-06-04 2020-05-28 Filkim Filtre Ve Kimya Sanayi Ticaret Anonim Sirketi Ultra high efficiency organic gel microbial air filtration and production system
US20210307428A1 (en) * 2020-04-03 2021-10-07 Nanotek Instruments Group, Llc Antiviral filtration element and filtration devices containing same
JP2021164640A (en) * 2020-04-07 2021-10-14 ハーツリッチ株式会社 Infection prevention method and medicament
JP7029132B2 (en) 2020-04-07 2022-03-03 ハーツリッチ株式会社 Infection control method
WO2021210956A1 (en) * 2020-04-16 2021-10-21 주식회사 아모그린텍 Antiviral filter medium, and air filter unit and air conditioner including same

Also Published As

Publication number Publication date
JP3784595B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
KR100575406B1 (en) Method for the manufacture of antimicrobial articles
JP3693449B2 (en) Antibacterial antifungal agent and fibrous substance containing the same
CN104611995A (en) Air filter paper and preparation method thereof
CN107847834B (en) Method for producing filter material for air filter
JP2000070646A (en) Air purifying filter member
TW201029568A (en) Antiviral substance, antiviral fiber and antiviral fiber structure
US20100221307A1 (en) Antiviral agents, antiviral fibers and antiviral fiber structures
CN108993167A (en) A kind of preparation and application of the Electrospun nano-fibers air filting material of antibacterial
CN102711947A (en) Non-woven fabric for filter, and process for production thereof
CN106917267A (en) A kind of preparation method of antibacterial high efficiency filter non-woven fabrics
JP6951482B2 (en) Filter media for air filters, their manufacturing methods, and air filters
JP3784595B2 (en) Antibacterial treatment method and antibacterial filter medium
JP2018035478A (en) Composite nanofiber, manufacturing method of the same, and mask
JP6691497B2 (en) Method for manufacturing filter material for air filter and method for manufacturing air filter
CN208130648U (en) Composite filtering film
JP2002018216A (en) Filter
JP4030231B2 (en) Air purification filter
CN109331553A (en) The preparation method and products thereof of nano-cellulose antibacterial antifogging haze window screening
JP6979575B2 (en) Fiber aggregate and its manufacturing method
JP2014121693A (en) Air filter
JPH03234889A (en) Glass fiber sheet
JP3960440B2 (en) Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper
JP2004243233A (en) Biodegradable filtering material
CN108386120B (en) A kind of konjaku glucomannan air cleaning nanometer screen window and preparation method thereof
CN107174868A (en) A kind of vehicle-mounted air purification piece and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees