JP2001161686A - Ultrasonic imaging apparatus - Google Patents

Ultrasonic imaging apparatus

Info

Publication number
JP2001161686A
JP2001161686A JP35205099A JP35205099A JP2001161686A JP 2001161686 A JP2001161686 A JP 2001161686A JP 35205099 A JP35205099 A JP 35205099A JP 35205099 A JP35205099 A JP 35205099A JP 2001161686 A JP2001161686 A JP 2001161686A
Authority
JP
Japan
Prior art keywords
examined
phase
ultrasonic
precision
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35205099A
Other languages
Japanese (ja)
Inventor
Jun Kubota
純 窪田
Ryuichi Shinomura
隆一 篠村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP35205099A priority Critical patent/JP2001161686A/en
Publication of JP2001161686A publication Critical patent/JP2001161686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic imaging apparatus simplified by adaptively controlling the phase between transmitted/received signal channels to automatically focus an ultrasonic beam on a part to be examined and limiting the precision of the structure of synthesizing an ultrasonic beam to an actually required one, and a method of imaging using the apparatus. SOLUTION: The apparatus comprises an ROI setting part 8, a contrast sampling/ setting part 7, and a correlated processing amplitude precision setting part 9. The precision of operation is adjusted to the amplitude of the echo of a subject organ as a standard signal for adaptive processing, and the brightness for the phase detection in an adaptive phase control part 5 is specified within the contrast range of the subject organ. Even when the wave surface of the echo from the part to be truly examined is disturbed by the existence of irregularity of the acoustic properties of the organism from the body surface to the part to be examined, the bit precision is specifically adjusted to the brightness of the contrast range of the subject organ to execute the signal processing operation and the focus is automatically adjusted to the part to be examined. Because of such simple structure as mentioned, the apparatus and the method for focusing the beam on the part to be examined effectively and speedily can be achieved easily at a reasonable price.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を利用して
被検体の診断部位に対して、微細な超音波変換素子の配
列の送受信信号の位相を、生体の音響特性に適応して、
同一反射体からのエコーの、配列の近接する素子間の受
信信号の位相が一致するように、回路特性を電子的に制
御することにより超音波ビームを形成し、且つ、走査
し、生体内の構造による音響インピーダンスの分布や、
それらの時間変化等を映像化する超音波映像装置に係わ
り、特に、対象臓器の画像輝度に合わせて適応的に超音
波ビームをフォーカスし、その臓器からの信号を感度よ
く受信するユニット或は手順を備える超音波映像装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of adapting the phase of a transmission / reception signal of an array of fine ultrasonic transducers to a diagnostic part of a subject by utilizing ultrasonic waves by adapting the acoustic characteristics of a living body.
An ultrasonic beam is formed and scanned by controlling circuit characteristics electronically so that the phase of the received signal between elements in the array of echoes from the same reflector matches each other. Distribution of acoustic impedance by structure,
The present invention relates to an ultrasonic imaging apparatus that visualizes such a time change and the like, and in particular, a unit or procedure for adaptively focusing an ultrasonic beam in accordance with the image brightness of a target organ and receiving signals from the organ with high sensitivity. The present invention relates to an ultrasonic imaging apparatus including:

【0002】[0002]

【従来の技術】従来の適応像再生式超音波映像装置は、
上記微細な超音波変換素子の配列の送受信信号の位相
を、生体からの強度の高いエコー信号に照準を合わせ、
配列の近接する素子の受信した上記エコー信号波形間の
位相が一致するように、回路特性を電子的に制御するこ
とにより超音波ビームを形成し、且つ、走査し、生体内
の構造による音響インピーダンスの分布や、体液の流速
や臓器の動きの分布、或は、それらの時間変化等を映像
化していた。
2. Description of the Related Art A conventional adaptive image reproducing type ultrasonic imaging apparatus comprises:
The phase of the transmission / reception signal of the array of the fine ultrasonic transducers is aimed at a high intensity echo signal from a living body,
An ultrasonic beam is formed and scanned by electronically controlling the circuit characteristics so that the phases of the echo signal waveforms received by the adjacent elements of the array coincide with each other. And visualized the distribution of body fluids, the distribution of body fluid velocity and the movement of organs, or their temporal changes.

【0003】第4図において、自然数N個の微細振動子
配列からなるアレイ探触子1は、ビームが若干収束する
ように、超音波回路部2の送波回路21の発生する、N
に含まれる自然数mチャンネルの、振幅と位相とを制御
されたバースト波形に従って、探触子切り替え走査部23
で選択された各素子で超音波に変換して生体内に放射・
伝播させる。
[0003] In FIG. 4, an array probe 1 composed of an array of N natural number of micro-vibrators generates an N beam generated by a transmission circuit 21 of an ultrasonic circuit section 2 so that a beam is slightly converged.
Probe switching scanning unit 23 according to a burst waveform of which the amplitude and phase are controlled for the natural number m channels included in
Converted to ultrasonic waves by each element selected in step
Propagate.

【0004】生体内で反射され戻ってきたエコー信号
を、該探触子1はその各素子で電気信号に逆変換し、探
触子切り替え走査部23と送受分離回路22とを経て、受信
信号として受波回路24へ出力する。
The probe 1 reversely converts the echo signal reflected back in the living body into an electric signal by each element thereof, and passes through a probe switching scanning section 23 and a transmission / reception separating circuit 22 to receive a reception signal. Is output to the receiving circuit 24.

【0005】探触子切り替え走査部23は、N個の素子か
らm個を選択して超音波送受波ビームの開口を形成しつ
つ、それをリニア、コンベックス等の並進走査を行う。
The probe switching and scanning section 23 selects m elements from N elements and forms an aperture for an ultrasonic transmission / reception beam, while performing translational scanning such as linear or convex.

【0006】送受分離回路22は、送波回路21の出力する
送波信号パワーを、探触子切り替え走査部23を通じて探
触子1へ効率よく伝達すると共に、受波回路24に流入す
るのを阻止してそのフロントエンドにあるプリアンプ
(第2図の241-1〜241-m)を保護し、且つ、探触子1によ
り受信され走査回路2を通じて入力されるエコー信号を
そのプリアンプに効率よく伝達する働きをする。
The transmission / reception separation circuit 22 efficiently transmits the transmission signal power output from the transmission circuit 21 to the probe 1 through the probe switching scanning unit 23, and controls the transmission signal power flowing into the reception circuit 24. Preamplifier at its front end
(241-1 to 241-m in FIG. 2), and efficiently transmits the echo signal received by the probe 1 and input through the scanning circuit 2 to the preamplifier.

【0007】プリアンプ(241-1〜241-m)は、受信したm
チャンネルのエコー信号の各々を深度毎に制御して増幅
し、それらエコー信号のレベルをADC(アナログデジタル
変換器)(242-1〜242-m)の入力レンジに適合させる。A
DC(242-1〜242-m)によってデジタル変換されたそれら
エコー信号は、フォーカス点迄の距離に応じて素子毎に
異なる各チャンネル毎受信信号間の位相を揃える位相補
償(243-1〜243-m)により、深度毎に整相され(各チャ
ンネル間の位相を揃えられ)て、加算器244により診断
部位に焦点の合った超音波ビームの波形に合成される。
[0007] The preamplifier (241-1 to 241-m)
Each of the echo signals of the channels is controlled and amplified for each depth, and the levels of the echo signals are adapted to the input range of an ADC (analog-to-digital converter) (242-1 to 242-m). A
These echo signals digitally converted by DC (242-1 to 242-m) are phase-compensated (243-1 to 243) to make the phases of the reception signals for each channel different for each element according to the distance to the focus point. -m), the phase is adjusted for each depth (the phase between the channels is made uniform), and the adder 244 synthesizes the waveform of the ultrasonic beam focused on the diagnosis site.

【0008】ここに、位相補償とは、時間遅延回路とし
ても実現されているものも利用できるし、メモリーし読
み出し或は書き込みのアドレスを変えることによっても
実現されている。位相補償(243-1〜243-m)の程度は、
ビーム・フォーカス偏向用位相データメモリ6のデータに
より制御される。
Here, the phase compensation can be realized by a circuit which is also realized as a time delay circuit, or is realized by changing a memory address for reading or writing. The degree of phase compensation (243-1 to 243-m)
It is controlled by data in the beam focus deflection phase data memory 6.

【0009】その合成されたビームの波形は、基本周波
のエコー強度の分布はAM検波・ビデオ信号処理25により
検波・対数圧縮され、構造体からのエコーの分布とし
て、また、側帯波成分の分布はFM検波・ドプラ信号処理2
6によりフィルター抽出され、何れもDSC部3のスキャン
コンバータ31によって、断層像等の映像に変換されて、
画像表示部4に表示される。
In the combined beam waveform, the distribution of the echo intensity of the fundamental frequency is detected and logarithmically compressed by the AM detection and video signal processing 25, and the distribution of the echo from the structure and the distribution of the sideband component are obtained. Is FM detection and Doppler signal processing 2
The filter is extracted by 6 and all are converted into images such as tomographic images by the scan converter 31 of the DSC unit 3,
It is displayed on the image display unit 4.

【0010】制御回路32は、DSC部3の動作に従って、超
音波回路部2が協調して動作するように制御する。生体
の音速不均一によるチャンネル間位相誤差を適応的に補
償するため、例えば、受波回路24には相関処理部245-1
〜245-mを備え、適応位相制御部5で、隣接チャンネル間
位相差を監視し、ビーム・フォーカス偏向用位相データ
を補正して、位相補償243-1〜243-mを制御する。
The control circuit 32 controls the ultrasonic circuit section 2 to operate in a coordinated manner according to the operation of the DSC section 3. In order to adaptively compensate for the phase error between channels due to non-uniform sound velocity in the living body, for example, the reception circuit 24 includes a correlation processing unit 245-1.
The adaptive phase control unit 5 monitors the phase difference between adjacent channels, corrects the beam focus deflection phase data, and controls the phase compensation 243-1 to 243-m.

【0011】[0011]

【発明が解決しようする課題】しかし、超音波画像にお
いて一般的に、診断部位のエコーは強度が中庸か、むし
ろ低い場合が多いので、検査者或は診断者が見たい部分
には焦点が合わないことが多い。その場合に、真に検査
したい部位に焦点を自動的に合わせるように、送受信信
号チャンネル間の位相を適応的に制御して超音波ビーム
を合成する。
However, in ultrasound images, echoes at diagnostic sites are generally moderate or rather low in intensity, so that the part desired by the examiner or the diagnostician is focused on. Often not. In this case, the ultrasonic beam is synthesized by adaptively controlling the phase between the transmission and reception signal channels so as to automatically focus on a part to be truly inspected.

【0012】しかし、送受信信号チャンネル間の位相を
比較する仕組みは本来のビーム形成の仕組みと同等の構
成を要するのが一般的で、そのための回路またはプログ
ラムの規模が過大となるという欠点があった。
However, a mechanism for comparing phases between transmission and reception signal channels generally requires a configuration equivalent to the original beam forming mechanism, and there is a drawback that the scale of a circuit or a program therefor becomes excessive. .

【0013】従って本発明の目的は、検査したい部位に
焦点を自動的に合わせるように、送受信信号チャンネル
間の位相を適応的に制御して超音波ビームを合成する仕
組みを真にそれを必要とする精度に限定することにより
簡略化した超音波映像装置の提供にある。
Accordingly, an object of the present invention is to truly require a mechanism for synthesizing an ultrasonic beam by adaptively controlling the phase between transmission and reception signal channels so as to automatically focus on a site to be inspected. Another object of the present invention is to provide a simplified ultrasonic imaging apparatus by limiting the accuracy of the ultrasonic imaging apparatus.

【0014】[0014]

【課題を解決するための手段】上記目的達成のために、
本発明になる超音波映像装置に於ては、超音波ビーム中
の診断対象臓器付近(ROI)の深度からの受信エコー信
号のコントラスト(輝度)を抽出し、超音波の100dB(16
bit)以上に上る広大なダイナミックレンジの中の対象臓
器からの散乱エコー信号のダイナミックレンジをカバー
するだけの演算精度で相互相関値を検出する機構或は手
順と、その深度に現れた受信信号に対して適応的に位相
を合わせるユニット或は手順とを備え、対象臓器の部分
に、適応的に位相を合わせることができる構成にしてあ
る。
In order to achieve the above object,
In the ultrasonic imaging apparatus according to the present invention, the contrast (brightness) of the received echo signal from the depth near the organ to be diagnosed (ROI) in the ultrasonic beam is extracted and 100 dB (16
bit), a mechanism or procedure to detect the cross-correlation value with sufficient computational accuracy to cover the dynamic range of the scattered echo signal from the target organ within the vast dynamic range of more than A unit or a procedure for adaptively adjusting the phase is provided so that the phase can be adaptively adjusted to the target organ.

【0015】一般に対象臓器のコントラストは、病変部
と健全部との識別が容易でしかも視野全体に健常人の臓
器の画像が識別可能な明るさとコントラストで表示され
る中で、中庸な明るさとコントラストとして観察される
ように機器のパラメータを設定するのが常識であり、装
置全体もそのように設計される。したがって、適応処理
をするための基準信号として、対象臓器のエコーの振幅
に演算精度を合わせることにより、対象臓器からのエコ
ーを用いることを可能とする。
In general, the contrast of a target organ is moderate in brightness and contrast, since it is easy to discriminate between a lesion and a healthy part, and an image of a healthy person's organ is displayed in the entire field of view with recognizable brightness and contrast. It is common sense to set the parameters of the device so as to be observed as, and the entire device is also designed to do so. Therefore, the echo from the target organ can be used as the reference signal for performing the adaptive processing by adjusting the calculation accuracy to the amplitude of the echo of the target organ.

【0016】[0016]

【発明の実施の形態】以下,本発明の実施の形態を添付
図面に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0017】第1図は、本発明の実施例となる超音波映
像装置の概略構成である。
FIG. 1 is a schematic configuration of an ultrasonic imaging apparatus according to an embodiment of the present invention.

【0018】先に従来の技術の項で説明した以外に、対
象臓器のコントラストを検出する機構として、例えばR
OI設定部8,コントラスト抽出・設定部7, および相関処
理振幅精度設定9を備え、それにより適応的位相制御部5
において位相検出する輝度を、対象臓器のコントラスト
範囲内に特定する。
As a mechanism for detecting a contrast of a target organ, for example, R
An OI setting unit 8, a contrast extraction / setting unit 7, and a correlation processing amplitude accuracy setting 9 are provided.
, The luminance for phase detection is specified within the contrast range of the target organ.

【0019】ここに、上記受波回路24は、受信信号のう
ち、相関処理振幅精度設定9の指定するコントラスト範
囲内の信号bitを抜き出して検出する。
Here, the receiving circuit 24 extracts and detects a signal bit within the contrast range designated by the correlation processing amplitude accuracy setting 9 from the received signal.

【0020】適応的位相制御部5は、第2図のように、
位相補正値演算部51がROIコントラスト抽出設定部7
のROIコントラストデータに従う輝度範囲のエコー信
号の相関のピーク時間差を位相補正値として、位相補償
データ生成部52で、ビーム・フォーカス偏向用位相デー
タを補正して、位相補償243-1〜243-mを制御する。RO
I内の補正は、そのROI内の走査線毎に位相補償値を
求め、ROI内或は全画面のビームのフォーカス・偏向
用位相データを補正することにより実現できる。或は、R
OI内の一つの走査線で検出した位相補償値で、ROI
内或は全画面のビームのフォーカス・偏向用位相データ
を補正することによっても実現できる。これにより、効
率よく診断に必要な部位に対する超音波ビームの焦点を
合わせることができるようになる。
As shown in FIG. 2, the adaptive phase control unit 5
The phase correction value calculation unit 51 is a ROI contrast extraction setting unit 7
Using the peak time difference of the correlation of the echo signals in the luminance range according to the ROI contrast data as the phase correction value, the phase compensation data generation unit 52 corrects the beam focus deflection phase data to obtain the phase compensation 243-1 to 243-m Control. RO
The correction in I can be realized by obtaining a phase compensation value for each scanning line in the ROI and correcting the focus / deflection phase data of the beam in the ROI or the entire screen. Or R
ROI is a phase compensation value detected by one scanning line in OI.
It can also be realized by correcting the focus / deflection phase data of the beam within or on the entire screen. As a result, it becomes possible to efficiently focus the ultrasonic beam on a part necessary for diagnosis.

【0021】診断部位に焦点の合った1本の超音波ビー
ムの波形を合成する加算器244の代わりに、第3図のよ
うに素子の送受信指向角と検査深度に従う範囲の複数の
ビームを生成する全ビームメモリ246を備えることも有
効である。位相補償243-1〜243-m以降を直交変調を含む
2系統の処理系にして、直交2成分として全ビームを記憶
して、複数ビームデータとしてスキャンコンバータ31に
渡せば、スキャンコンバータ31が並列演算処理できるよ
うにしておくことにより、極限の分解能を得ることがで
きる。相関処理245-1〜245-m/2を、加算247-1〜247-m処
理後に行うことにより、隣接2チャンネルの平均同士の
相関処理となり、雑音に対する耐性を高めることができ
る。
Instead of the adder 244 for synthesizing the waveform of one ultrasonic beam focused on the diagnosis site, a plurality of beams in a range according to the transmission / reception directivity angle of the element and the inspection depth are generated as shown in FIG. It is also effective to provide an all-beam memory 246 that performs the operation. Phase compensation 243-1 to 243-m and later include quadrature modulation
If all the beams are stored as two orthogonal components in a two-system processing system and passed to the scan converter 31 as multiple beam data, the scan converter 31 can perform parallel arithmetic processing to obtain the ultimate resolution. be able to. By performing the correlation processing 245-1 to 245-m / 2 after the addition 247-1 to 247-m processing, it becomes a correlation processing between the averages of two adjacent channels, and the resistance to noise can be increased.

【0022】なお以上では、位相補正値の検出方法とし
て、隣接素子間の受信信号の位相差を相関処理で求める
方式として説明したが、この方法のみにとらわれるもの
ではない。
Although the method of detecting the phase correction value has been described above as a method of determining the phase difference of the received signal between adjacent elements by the correlation process, the method is not limited to this method alone.

【0023】[0023]

【発明の効果】本発明にれば、体表から当該部位までに
生体の音響特性の不均一が存在することにより、真に検
査したい部位からのエコーの波面が乱される場合にも、
特に対象臓器のコントラスト範囲の輝度にbit精度を合
わせて信号処理演算し、対象部位に部位に焦点を自動的
に合わせる簡単な構成としたので、その部位に効率よ
く、速く焦点を合わせることの可能な装置および方法が
容易にリーズナブルな価格で実現できる。
According to the present invention, even when the acoustic wave characteristic of the living body is uneven from the body surface to the relevant part, the wavefront of the echo from the part to be truly inspected is disturbed.
In particular, since the signal processing operation is performed by adjusting the bit precision to the brightness of the contrast range of the target organ and the focus is automatically focused on the target part, the focus can be efficiently and quickly focused on that part. Simple apparatus and method can be easily realized at a reasonable price.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による超音波映像装置の実施の形態を示
すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an ultrasonic imaging apparatus according to the present invention.

【図2】超音波回路部内の受波回路の内部構成を示すブ
ロック図である。
FIG. 2 is a block diagram illustrating an internal configuration of a wave receiving circuit in the ultrasonic circuit unit.

【図3】超音波回路部内受波回路の他の実施例を示すブ
ロック図である。
FIG. 3 is a block diagram showing another embodiment of the wave receiving circuit in the ultrasonic circuit unit.

【図4】従来の超音波映像装置を示すブロック図であ
る。
FIG. 4 is a block diagram showing a conventional ultrasonic imaging apparatus.

【符号の説明】[Explanation of symbols]

1…探触子 2…超音波回路部 3…DSC部 4…画像表示部 5…適応位相制御部 6…ビーム・フォーカス偏向用位相データメモリ 7…コントラスト抽出・設定部 8…ROI設定部 9…相関処理振幅精度設定 21…送波回路 22…送受分離回路 23…探触子切替走査部 24…受波回路 25…検波・ビデオ信号処理 31…スキャンコンバータ 32…制御回路 DESCRIPTION OF SYMBOLS 1 ... Probe 2 ... Ultrasonic circuit part 3 ... DSC part 4 ... Image display part 5 ... Adaptive phase control part 6 ... Beam / focus deflection phase data memory 7 ... Contrast extraction / setting part 8 ... ROI setting part 9 ... Correlation processing amplitude accuracy setting 21 ... Transmission circuit 22 ... Transmission / reception separation circuit 23 ... Sensor switching scanning unit 24 ... Reception circuit 25 ... Detection / video signal processing 31 ... Scan converter 32 ... Control circuit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C301 AA02 BB01 BB12 BB23 EE15 HH26 HH27 HH33 HH37 HH38 HH42 JB17 JB28 JB50 KK26 KK30 5B057 AA07 BA05 BA17 CH04 DA07 DC22 DC34 DC36 5C054 AA01 AA05 CA08 ED12 HA12 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C301 AA02 BB01 BB12 BB23 EE15 HH26 HH27 HH33 HH37 HH38 HH42 JB17 JB28 JB50 KK26 KK30 5B057 AA07 BA05 BA17 CH04 DA07 DC22 DC34 DC36 5C054 AA01 AA05 CA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 適正なコントラストの臓器の画像でチャ
ンネル間の信号の相関処理を行い、適応的に像を再構成
することを特長とする超音波映像装置。
1. An ultrasonic imaging apparatus characterized in that correlation processing of signals between channels is performed on an image of an organ having an appropriate contrast, and an image is adaptively reconstructed.
【請求項2】 上記適正なコントラストを検出するた
め、画像中の対象臓器にROIを設定し表示する機構、
および、そのROI中の信号の輝度範囲を検出する機構
を備え、かつ、チャンネル間の信号位相差をその輝度範
囲の信号のみに着目して整合させる機構とを備え、適応
的に像を再構成することを特長とする超音波映像装置。
2. A mechanism for setting and displaying an ROI on a target organ in an image in order to detect the appropriate contrast.
And a mechanism for detecting a luminance range of a signal in the ROI, and a mechanism for matching a signal phase difference between channels by focusing only on signals in the luminance range, and adaptively reconstructing an image. Ultrasound imaging device characterized by doing.
JP35205099A 1999-12-10 1999-12-10 Ultrasonic imaging apparatus Pending JP2001161686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35205099A JP2001161686A (en) 1999-12-10 1999-12-10 Ultrasonic imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35205099A JP2001161686A (en) 1999-12-10 1999-12-10 Ultrasonic imaging apparatus

Publications (1)

Publication Number Publication Date
JP2001161686A true JP2001161686A (en) 2001-06-19

Family

ID=18421450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35205099A Pending JP2001161686A (en) 1999-12-10 1999-12-10 Ultrasonic imaging apparatus

Country Status (1)

Country Link
JP (1) JP2001161686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280694B2 (en) 2002-07-23 2007-10-09 Medison Co., Ltd. Apparatus and method for identifying an organ from an input ultrasound image signal
CN102813529A (en) * 2011-06-06 2012-12-12 富士胶片株式会社 Ultrasound diagnostic apparatus and ultrasound image producing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280694B2 (en) 2002-07-23 2007-10-09 Medison Co., Ltd. Apparatus and method for identifying an organ from an input ultrasound image signal
CN102813529A (en) * 2011-06-06 2012-12-12 富士胶片株式会社 Ultrasound diagnostic apparatus and ultrasound image producing method
JP2012249928A (en) * 2011-06-06 2012-12-20 Fujifilm Corp Ultrasonic diagnosis apparatus and ultrasonic image forming method

Similar Documents

Publication Publication Date Title
JP4570115B2 (en) Method and apparatus for coherence imaging
US8002704B2 (en) Method and system for determining contact along a surface of an ultrasound probe
JP4958348B2 (en) Ultrasonic imaging device
US7666142B2 (en) Ultrasound doppler diagnostic apparatus and image data generating method
US7338448B2 (en) Method and apparatus for ultrasound compound imaging with combined fundamental and harmonic signals
JP2006204923A (en) Coherence factor adaptive ultrasound imaging
EP1777543A2 (en) Aberration correction beam patterns
KR20080039446A (en) Ultrasound imaging system and method for flow imaging using real-time spatial compounding
JPH11151241A (en) Ultrasonic imaging system and method
KR101610874B1 (en) Module for Processing Ultrasonic Signal Based on Spatial Coherence and Method for Processing Ultrasonic Signal
JPH08317926A (en) Ultrasonic tomography device
US6423004B1 (en) Real-time ultrasound spatial compounding using multiple angles of view
JP7212686B2 (en) ultrasonic probe transducer test
US9855025B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image processing apparatus
JP4874497B2 (en) Wide beam imaging
JP4137237B2 (en) Ultrasound imaging device
US20110245676A1 (en) Method and apparatus for ultrasound signal acquisition and processing
WO1999044504A1 (en) Ultrasonic video apparatus
JP2006223736A (en) Ultrasonic diagnostic apparatus
JP3544722B2 (en) Ultrasound diagnostic equipment
JP2003334192A (en) Ultrasonic diagnostic equipment
JP2001161686A (en) Ultrasonic imaging apparatus
US8118745B2 (en) Ultrasound imaging apparatus
JPH08289891A (en) Ultrasonic diagnostic device
KR102220822B1 (en) Calibration for arfi imaging