JP2001160648A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2001160648A
JP2001160648A JP2000287712A JP2000287712A JP2001160648A JP 2001160648 A JP2001160648 A JP 2001160648A JP 2000287712 A JP2000287712 A JP 2000287712A JP 2000287712 A JP2000287712 A JP 2000287712A JP 2001160648 A JP2001160648 A JP 2001160648A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser chip
base substrate
laser device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000287712A
Other languages
Japanese (ja)
Inventor
Yoshikazu Yamada
義和 山田
Atsushi Okubo
敦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2000287712A priority Critical patent/JP2001160648A/en
Publication of JP2001160648A publication Critical patent/JP2001160648A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high output semiconductor laser device which oscillates stably in a transverse mode for a long term. SOLUTION: In this semiconductor laser device, a semiconductor laser chip whose maximum output is at least 300 mW is mounted on a base substrate. In the semiconductor laser chip, a compound semiconductor thin film is formed on a semiconductor substrate, and transverse single mode oscillation is obtained. The length of a resonator of the laser chip is at least 1.5 mm, and the base substrate is composed of CuW.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高出力で長期信頼
性の高い半導体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device having high output and high long-term reliability.

【0002】[0002]

【従来の技術】半導体レーザ装置を組み立てる途中の一
形態として、外部との電気接続をするための配線をした
り、あるいはハンドリングのために、レーザ光を発振す
る半導体レーザチップをベース基板に搭載することが行
われている。従来の半導体レーザ装置では、半導体レー
ザチップは、窒化アルミニウム(AlN)からなるベー
ス基板に搭載されている。搭載のしかたとしては半導体
レーザチップの半導体基板側とベース基板を接着するい
わゆるジャンクションアップが一般的である。
2. Description of the Related Art As one mode of assembling a semiconductor laser device, a semiconductor laser chip for oscillating laser light is mounted on a base substrate for wiring for electrical connection with the outside or for handling. That is being done. In a conventional semiconductor laser device, a semiconductor laser chip is mounted on a base substrate made of aluminum nitride (AlN). As a mounting method, a so-called junction-up for bonding a semiconductor substrate side of a semiconductor laser chip and a base substrate is generally used.

【0003】[0003]

【発明が解決しようとする課題】本発明者の研究による
と、このような従来の構造は、横単一モードで200m
W程度までの低いレーザパワーで発振する半導体レーザ
チップでは使用可能であるが、横単一モードで高い出力
が得られる半導体レーザチップに用いると長期信頼性に
問題があることがわかってきた。すなわち耐久テストを
行うと短時間で発振特性が大きく変化するものが多いこ
とがわかった。
According to the study of the present inventor, such a conventional structure has a lateral single mode of 200 m.
Although it can be used with a semiconductor laser chip that oscillates at a laser power as low as about W, it has been found that there is a problem in long-term reliability when used in a semiconductor laser chip that can obtain high output in a transverse single mode. In other words, it has been found that in many cases, the durability characteristic greatly changes in a short time after the durability test.

【0004】本発明は、長期にわたり安定して発振する
横単一モードで高出力の半導体レーザ装置を提供するこ
とを目的とする。
An object of the present invention is to provide a high-output semiconductor laser device in a transverse single mode that oscillates stably for a long period of time.

【0005】[0005]

【課題を解決する手段】本発明者は、横単一モードで発
振する高出力の半導体レーザ装置から長期にわたって安
定な出力が得られるための手段を検討をしたところ、半
導体レーザチップをベース基板に搭載する形態に最適な
形態があることを見出し、本発明に至った。すなわち、
本発明は半導体基板上に化合物半導体薄膜が形成され横
単一モードで発振する最大出力が300mW以上の半導
体レーザチップがベース基板に搭載された半導体レーザ
装置であり、半導体レーザチップの半導体レーザチップ
の共振器長が1.5mm以上で、前記ベース基板がCu
Wからなることを特徴とする半導体レーザ装置である。
Means for Solving the Problems The present inventor studied means for obtaining a stable output for a long period from a high-output semiconductor laser device oscillating in a transverse single mode, and found that a semiconductor laser chip was mounted on a base substrate. The present inventors have found that there is an optimum form for mounting, and have reached the present invention. That is,
The present invention is a semiconductor laser device in which a compound semiconductor thin film is formed on a semiconductor substrate and a semiconductor laser chip oscillating in a transverse single mode and having a maximum output of 300 mW or more is mounted on a base substrate. The resonator length is 1.5 mm or more, and the base substrate is made of Cu.
A semiconductor laser device comprising W.

【0006】本発明においては、半導体レーザチップの
共振器長は長ければ、具体的には1.5mm以上であれ
ば注入電流密度が低減され、さらにベース基板に固着し
たときの放熱面積が大きくなるので、高出力化しやすい
だけでなく長期にわたって連続発振させても出力特性が
安定になることがわかった。共振器長の上限値は素子の
内部損失で制限されるが、共振器長は7mm以下が望ま
しく、4mm以下であることがより望ましい。
In the present invention, if the cavity length of the semiconductor laser chip is long, specifically, if it is 1.5 mm or more, the injection current density is reduced, and the heat radiation area when the semiconductor laser chip is fixed to the base substrate is increased. Therefore, it was found that the output characteristics were stable not only when the output was easily increased, but also when continuous oscillation was performed for a long period of time. Although the upper limit of the resonator length is limited by the internal loss of the element, the resonator length is preferably 7 mm or less, more preferably 4 mm or less.

【0007】また半導体レーザチップの出力が高い方が
本発明の効果が顕著となり、具体的には横単一モードで
発振する最大出力は300mW以上が好ましく、さらに
は400mW以上がより好ましい。横単一モード発振す
る最大出力は、室温(25℃)で注入電流−光出力特性
を測定したときに、キンクが発生する出力とした。
The effect of the present invention becomes more remarkable when the output of the semiconductor laser chip is higher. Specifically, the maximum output oscillating in the transverse single mode is preferably 300 mW or more, and more preferably 400 mW or more. The maximum output for transverse single mode oscillation was an output at which kink was generated when the injection current-light output characteristics were measured at room temperature (25 ° C.).

【0008】半導体レーザチップのベース基板の搭載方
法としてはジャンクションダウンが好ましい。ここでベ
ース基板に用いるCuW(銅−タングステン)中のCu
の比率は、1wt%から20wt%の範囲が好ましく、
特に半導体レーザチップにGaAs基板を用いる場合
は、8wt%から20wt%の範囲が、GaAs基板と
熱膨張率の差が小さくなるのでより好ましい。またCu
Wの比率は上記の範囲で均一でもよいが、その組成を連
続的にまたは段階的に変化させた傾斜材料を用いること
ができる。この場合、例えばCuWのうち半導体レーザ
チップが実装される部分のみを他の部分よりCuが多い
材料を用いれば、よりCuに近い熱伝導率、電気伝導率
と、CuWに近い熱膨張率の両方を享受できる。
As a method for mounting the base substrate of the semiconductor laser chip, junction down is preferable. Here, Cu in CuW (copper-tungsten) used for the base substrate
Is preferably in the range of 1 wt% to 20 wt%,
In particular, when a GaAs substrate is used for the semiconductor laser chip, the range of 8 wt% to 20 wt% is more preferable because the difference between the GaAs substrate and the coefficient of thermal expansion is reduced. Cu
The ratio of W may be uniform within the above range, but a gradient material whose composition is changed continuously or stepwise can be used. In this case, for example, if only a portion of the CuW in which the semiconductor laser chip is mounted is made of a material having more Cu than the other portions, both the thermal conductivity and electrical conductivity closer to Cu and the thermal expansion coefficient closer to CuW are obtained. You can enjoy.

【0009】このような半導体レーザチップは、活性層
と上下の導波層との間にそれぞれキャリアブロック層が
設けられていることが好ましい。このキャリアブロック
層は活性層で発光した光が導波層へもれるだけの薄さ
で、かつ反対側から活性層に注入されたキャリアは導波
層側へあふれないような厚さとエネルギー準位を有して
いる。この構造により導波モードが導波層にまで十分に
広がるので、導波モードの尖頭値をさげて大きなレーザ
出力が得られる。あるいは半導体レーザチップはキャリ
アブロック層が形成されていなくても、活性層がエネル
ギギャップが小さい井戸により形成されていて導波層を
大きくできる構造であることが好ましい。これにより導
波モードの尖頭値をさげて大きなレーザ出力が得られ
る。
In such a semiconductor laser chip, a carrier block layer is preferably provided between the active layer and the upper and lower waveguide layers. The carrier block layer is thin enough to allow light emitted from the active layer to leak into the waveguide layer, and the thickness and energy level of the carrier injected into the active layer from the opposite side are such that the carrier does not overflow into the waveguide layer. have. With this structure, the waveguide mode sufficiently spreads to the waveguide layer, so that the peak value of the waveguide mode is reduced and a large laser output is obtained. Alternatively, it is preferable that the semiconductor laser chip has a structure in which the active layer is formed by a well having a small energy gap and the waveguide layer can be enlarged even if the carrier block layer is not formed. Thereby, a large laser output can be obtained by reducing the peak value of the waveguide mode.

【0010】[0010]

【発明の実施の形態】本発明を実施の形態により説明す
る。図1は本発明の半導体レーザ装置の1例を示す図で
ある。この装置の基本構成は半導体レーザチップ1とベ
ース基板2と配線基板3からなっている。半導体レーザ
チップはGaAs半導体基板上に活性層を含む化合物半導体
結晶層の積層が形成されている。この半導体レーザチッ
プ1は、図1(b)のようにCu1090(wt%)からな
るベース基板2上に、半導体レーザチップの化合物半導
体層が形成された側をベース基板の搭載面に向けたいわ
ゆるジャンクションダウンで半田により固着されてい
る。配線基板3は図1(a)のように、その表面にパター
ニングで区画された複数の導電部4a、4b、4cを有
している。CuWからなり半導体レーザチップを搭載し
たベース基板が配線基板の第1の導電部4aに固着さ
れ、半導体レーザチップの半導体基板と配線基板の第2
の導電部4bとは複数のワイヤ5を用いてワイヤボンデ
ィングして電気接続している。さらにこの配線基板上に
半導体レーザチップからの出力モニター用にフォトダイ
オード6を搭載することもできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to embodiments. FIG. 1 is a view showing one example of a semiconductor laser device of the present invention. The basic configuration of this device includes a semiconductor laser chip 1, a base substrate 2, and a wiring substrate 3. The semiconductor laser chip has a structure in which a compound semiconductor crystal layer including an active layer is laminated on a GaAs semiconductor substrate. As shown in FIG. 1 (b), the semiconductor laser chip 1 has, on a base substrate 2 made of Cu 10 W 90 (wt%), the side on which the compound semiconductor layer of the semiconductor laser chip is formed on the mounting surface of the base substrate. It is fixed by solder at the so-called junction down. As shown in FIG. 1A, the wiring substrate 3 has a plurality of conductive portions 4a, 4b, 4c partitioned on the surface thereof by patterning. A base substrate made of CuW and having a semiconductor laser chip mounted thereon is fixed to the first conductive portion 4a of the wiring substrate, and a semiconductor substrate of the semiconductor laser chip and a second substrate of the wiring substrate
Is electrically connected to the conductive portion 4b by wire bonding using a plurality of wires 5. Further, the photodiode 6 can be mounted on the wiring board for monitoring the output from the semiconductor laser chip.

【0011】さらにこの配線基板を、図には示してない
が光ファイバーの入力端を固定した別の基板に設置して
半導体レーザ装置とすることもできる。図2に別の半導
体レーザ装置の例を示す。この半導体レーザ装置は、電
子部品で広く用いられる外部との導電リード7を有す丸
型パッケージ8の基台11に、CuWからなり半導体レ
ーザチップ9を搭載したベース基板10を実装してい
る。図2でレーザ光は左方向に出力される。
Further, although not shown in the figure, this wiring board may be installed on another board to which the input end of the optical fiber is fixed, to form a semiconductor laser device. FIG. 2 shows another example of a semiconductor laser device. In this semiconductor laser device, a base substrate 10 made of CuW and having a semiconductor laser chip 9 mounted thereon is mounted on a base 11 of a round package 8 having conductive leads 7 to the outside, which is widely used for electronic components. In FIG. 2, the laser light is output to the left.

【0012】[0012]

【実施例】図2に示した半導体レーザ装置の長期信頼性
テストを行った。テストに用いた半導体レーザチップ
は、GaAs基板の上にInGaAs活性層と上下の導
波層を含む化合物半導体結晶層が形成されており、活性
層と上下の導波層の間にそれぞれキャリアブロック層を
備えている。そしてレーザ光の発振方向の両端面間の距
離である共振器長が1.8mmであり、ストライプ幅が
4μmで、単一横モード発振するように設計されてい
る。この半導体レーザチップ9を、Cu1090からなる
ベース基板10に固定した。固定方法は半導体レーザチ
ップの基板側を上にし、化合物半導体層が形成された側
をCuWの搭載面に向けて固着するいわゆるジャンクシ
ョンダウンで行った。CuWの搭載面には予めAuSn
合金が蒸着されており、この面に半導体レーザチップの
p型電極面を接触させ、窒素雰囲気中で250℃の温度
で15秒保持した後、室温にもどすことで半導体レーザチ
ップをベース基板に固着した。
EXAMPLE A long-term reliability test of the semiconductor laser device shown in FIG. 2 was performed. The semiconductor laser chip used for the test has a compound semiconductor crystal layer including an InGaAs active layer and upper and lower waveguide layers formed on a GaAs substrate, and a carrier block layer between the active layer and the upper and lower waveguide layers. It has. The resonator length, which is the distance between both end faces in the oscillation direction of the laser light, is 1.8 mm, the stripe width is 4 μm, and a single transverse mode oscillation is designed. This semiconductor laser chip 9 was fixed on a base substrate 10 made of Cu 10 W 90 . The fixing was performed by so-called junction-down in which the substrate side of the semiconductor laser chip was turned up and the side on which the compound semiconductor layer was formed was fixed to the mounting surface of CuW. AuSn is mounted on the CuW mounting surface in advance.
The p-type electrode surface of the semiconductor laser chip is brought into contact with the alloy and kept at 250 ° C for 15 seconds in a nitrogen atmosphere, and then returned to room temperature to fix the semiconductor laser chip to the base substrate. did.

【0013】ここで用いた半導体レーザチップは、図3
のような注入電流−光出力特性を示し、700mWを越
えたところでキンクが発生し、700mWまでは横単一
モード発振することが分る。
The semiconductor laser chip used here is shown in FIG.
Injection current vs. light output characteristics as shown in FIG. 5 show that a kink occurs when the power exceeds 700 mW, and that a transverse single mode oscillation occurs up to 700 mW.

【0014】この半導体レーザチップを搭載したベース
基板10を、図2の丸型パッケージ8に実装した。ベー
ス基板10を丸型パッケージの銅からなる基台11に鉛
すず半田で接着したのち、半導体レーザチップに電流を
注入するためのワイヤボンディングを行った。これをテ
ストサンプルとして8個を用意して、恒温層にいれて耐
久テストを行った。テストサンプルはパッケージの蓋は
はずしたままとした。50℃に保持した恒温層内で、8
個のテストサンプルのそれぞれの出力が300mWにな
るように電流制御して、その電流値の時間変化を測定し
た。図4に600時間までの結果を示す。600時間ま
で連続発振させても、注入電流値の変化は10%以内で
あった。なおここでは耐久テストの加速のために雰囲気
温度を50℃、レーザ出力300mWでおこなったが、
この時にテストサンプルに加わる負荷は、雰囲気温度を
室温とした場合は、レーザ出力として300mW以上に
相当する。
The base substrate 10 on which the semiconductor laser chip is mounted is mounted on the round package 8 shown in FIG. After bonding the base substrate 10 to the base 11 made of copper in a round package with lead-tin solder, wire bonding for injecting current into the semiconductor laser chip was performed. Eight specimens were prepared as test samples, and placed in a constant temperature layer to perform a durability test. The test sample was left with the package lid removed. In a thermostatic chamber maintained at 50 ° C, 8
The current was controlled so that the output of each of the test samples became 300 mW, and the time change of the current value was measured. FIG. 4 shows the results up to 600 hours. Even when continuous oscillation was performed for up to 600 hours, the change in the injection current value was within 10%. In this case, in order to accelerate the durability test, the ambient temperature was set to 50 ° C. and the laser output was set to 300 mW.
The load applied to the test sample at this time corresponds to a laser output of 300 mW or more when the ambient temperature is room temperature.

【0015】[0015]

【比較例】ベース基板10にAlNを用いた以外は実施
例と同じ条件の比較サンプル8個を実施例のテストサン
プルと一緒に恒温層にいれた。その時300mWのレー
ザ光を出力する電流値の時間変化を図5に示す。早い時
間で注入電流が激増するサンプルがあり、また注入電流
がなだらかに変化するサンプルであっても、いずれも実
施例のテストサンプルに比べて変化の傾きが大きいこと
がわかった。
COMPARATIVE EXAMPLE Eight comparative samples under the same conditions as in the example except that AlN was used for the base substrate 10 were placed in a thermostatic layer together with the test sample of the example. FIG. 5 shows a time change of a current value for outputting a laser beam of 300 mW at that time. It was found that there was a sample in which the injection current sharply increased in an early time, and even in the case of the sample in which the injection current changed gradually, the change gradient was larger than that of the test sample of the example.

【0016】[0016]

【発明の効果】本発明によれば、長期にわたって連続発
振させても横単一モードで特性が安定な高出力の半導体
レーザ装置が得られる。
According to the present invention, a high-power semiconductor laser device having stable characteristics in a transverse single mode even when continuous oscillation is performed for a long period of time can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体レーザ装置の一例を示す図。 (a)上から見た図。(b)主要部を横から見た図。FIG. 1 is a diagram showing an example of a semiconductor laser device of the present invention. (a) View seen from above. (b) The figure which looked at the principal part from the side.

【図2】本発明の半導体レーザ装置の別の例を示す図。FIG. 2 is a diagram showing another example of the semiconductor laser device of the present invention.

【図3】実施例に用いた半導体レーザチップの注入電流
−光出力特性。
FIG. 3 shows an injection current-optical output characteristic of the semiconductor laser chip used in the example.

【図4】実施例のテストサンプルの注入電流の変化を示
す図。
FIG. 4 is a diagram showing a change in injection current of a test sample of an example.

【図5】比較例サンプルの注入電流の変化を示す図。FIG. 5 is a diagram showing a change in injection current of a comparative example sample.

【符号の説明】[Explanation of symbols]

1、9 ・・半導体レーザチップ 2、10 ・・ベ
ース基板 3 ・・配線基板 4a,4b、4c ・・
導電部 5 ・・ワイヤ 6 ・・フォトダイオー
ド 7 ・・導電リード 8 ・・丸型パッケージ 11 ・・基台
1, 9 ··· semiconductor laser chip 2, 10 ··· base substrate 3 ··· wiring substrate 4a, 4b, 4c ···
Conductive part 5 ··· Wire 6 ··· Photodiode 7 ··· Conductive lead 8 ··· Round package 11 ··· Base

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に化合物半導体薄膜が形成さ
れ横単一モードで発振する最大出力が300mW以上の
半導体レーザチップをベース基板に搭載した半導体レー
ザ装置であり、前記半導体レーザチップの共振器長が
1.5mm以上で、前記ベース基板がCuWからなるこ
とを特徴とする半導体レーザ装置。
1. A semiconductor laser device comprising: a semiconductor laser chip having a compound semiconductor thin film formed on a semiconductor substrate and oscillating in a transverse single mode and having a maximum output of 300 mW or more mounted on a base substrate; and a resonator of the semiconductor laser chip. A semiconductor laser device having a length of at least 1.5 mm and the base substrate made of CuW.
【請求項2】前記半導体レーザチップが、ジャンクショ
ンダウンによりベース基板に固着されていることを特徴
とする請求項1に記載の半導体レーザ装置。
2. The semiconductor laser device according to claim 1, wherein said semiconductor laser chip is fixed to a base substrate by junction down.
【請求項3】前記半導体基板がGaAsであることを特
徴とする請求項1または2に記載の半導体レーザ装置。
3. The semiconductor laser device according to claim 1, wherein said semiconductor substrate is GaAs.
JP2000287712A 1999-09-24 2000-09-21 Semiconductor laser device Pending JP2001160648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000287712A JP2001160648A (en) 1999-09-24 2000-09-21 Semiconductor laser device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26982899 1999-09-24
JP11-269828 1999-09-24
JP2000287712A JP2001160648A (en) 1999-09-24 2000-09-21 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JP2001160648A true JP2001160648A (en) 2001-06-12

Family

ID=26548932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000287712A Pending JP2001160648A (en) 1999-09-24 2000-09-21 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2001160648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179494A (en) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp Semiconductor laser apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187991A (en) * 1988-01-22 1989-07-27 Nec Corp Semiconductor laser device
JPH04120786A (en) * 1990-09-12 1992-04-21 Furukawa Electric Co Ltd:The Quantum well semiconductor laser element
JPH11103121A (en) * 1997-09-25 1999-04-13 Yokogawa Electric Corp Semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187991A (en) * 1988-01-22 1989-07-27 Nec Corp Semiconductor laser device
JPH04120786A (en) * 1990-09-12 1992-04-21 Furukawa Electric Co Ltd:The Quantum well semiconductor laser element
JPH11103121A (en) * 1997-09-25 1999-04-13 Yokogawa Electric Corp Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179494A (en) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp Semiconductor laser apparatus

Similar Documents

Publication Publication Date Title
US8031751B2 (en) Nitride semiconductor laser device
JP3348024B2 (en) Semiconductor laser device
JP2001168442A (en) Method of manufacturing semiconductor laser element, installation substrate, and support substrate
US6301279B1 (en) Semiconductor diode lasers with thermal sensor control of the active region temperature
US4284963A (en) Etalon laser diode
JP2001085767A (en) Electro-optical system based on microlaser and manufacturing method thereof
US7359416B2 (en) Optical semiconductor device
JP2007250739A (en) Optical semiconductor device
JPH09307181A (en) Semiconductor laser device
US20050190806A1 (en) Semiconductor laser and manufacturing method therefor
JP2002009385A (en) Contact method of high-output diode laser bar and high- output diode laser bar, contact part and device provided with electrical contact part having thermally secondary function
JP2003198051A (en) Semiconductor laser device and module thereof
JPH08220358A (en) Waveguide type optical element
US6967982B2 (en) Semiconductor laser device with a strain reduction cushion function, semiconductor laser module, and semiconductor laser device fabrication method
JP2001160648A (en) Semiconductor laser device
JP4974563B2 (en) Optical semiconductor device
JP2001135886A (en) Semiconductor laser element, semiconductor laser module and fiber module
JPH05183239A (en) Semiconductor laser
EP1079484A2 (en) Semiconductor laser device, semiconductor laser module, and fiber module
JP2003258365A (en) Semiconductor laser device, manufacturing method of thereof and semiconductor laser module
US7873086B2 (en) Semiconductor device
JP2002111137A (en) Semiconductor laser device
JP2005026333A (en) Semiconductor laser equipment
JPH10144990A (en) Waveguide-type optical element
JPH1022570A (en) Nitride semiconductor laser element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109