JP2001155732A - Method for preparing carbon material for negative electrode of lithium ion secondary cell - Google Patents

Method for preparing carbon material for negative electrode of lithium ion secondary cell

Info

Publication number
JP2001155732A
JP2001155732A JP33686899A JP33686899A JP2001155732A JP 2001155732 A JP2001155732 A JP 2001155732A JP 33686899 A JP33686899 A JP 33686899A JP 33686899 A JP33686899 A JP 33686899A JP 2001155732 A JP2001155732 A JP 2001155732A
Authority
JP
Japan
Prior art keywords
graphite powder
negative electrode
lithium ion
ion secondary
graphitization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33686899A
Other languages
Japanese (ja)
Other versions
JP4531174B2 (en
Inventor
Katsuhiro Nagayama
勝博 長山
Hitomi Hatano
仁美 羽多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33686899A priority Critical patent/JP4531174B2/en
Publication of JP2001155732A publication Critical patent/JP2001155732A/en
Application granted granted Critical
Publication of JP4531174B2 publication Critical patent/JP4531174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a carbon material for a negative electrode of a lithium ion secondary cell which can stably prepare the carbon material for the negative electrode of the lithium ion secondary cell and which has a high discharge capacity at unit volume of the cell. SOLUTION: A method for preparing a carbon material for a negative electrode of a lithium ion secondary cell comprising graphitization of a carbonate obtained after a carbonization of an organic material comprises using, as an organic material, 1 or 2 or more of materials selected from (A) a coal tar, (B) a petroleum tar, (C) a coal tar pitch, (D) a petroleum pitch, (E) a mesophase microphase formed by heating a coal tar pitch, (F) a bulk meso-phase and (G) a mesophase containing pitch obtained by polymerizing condensed polycyclic aromatic hydrocarbon, preserving the hydrocarbon before graphitization in an atmosphere which does not contain substantially oxygen, and carrying out graphitization of the hydrocarbon after preservation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池の負極用炭素材料の製造方法に関し、特に、放電
容量が大きいリチウムイオン二次電池の負極用炭素材料
の製造方法に関する。
The present invention relates to a method for producing a carbon material for a negative electrode of a lithium ion secondary battery, and more particularly to a method for producing a carbon material for a negative electrode of a lithium ion secondary battery having a large discharge capacity.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、小型で軽
量、放電容量が大きい、高電圧・大電流が取り出せ
る、サイクル寿命に優れる、などさまざまな特徴を有
している。また環境汚染上の問題が少ないことから、従
来の携帯用電気製品の電池の主流であったニッケル・カ
ドミウム電池に取って代わり、携帯電話、ノート型パソ
コン用バッテリーなどとして大幅な需要増加が期待され
ている。
2. Description of the Related Art A lithium ion secondary battery has various features such as small size, light weight, large discharge capacity, high voltage and large current, and excellent cycle life. In addition, since there are few problems with environmental pollution, the demand for nickel-cadmium batteries, which have been the mainstream of batteries for portable electronic products, is expected to increase significantly as batteries for mobile phones and notebook computers. ing.

【0003】リチウムイオン二次電池は、正極、負極と
それらを絶縁するセパレータ、電解質を溶解した有機電
解液である非水電解液もしくは固体電解質である非水電
解質、および各種の安全装置とから構成されている。リ
チウムイオン二次電池は、充電の際にリチウムが金属と
して析出せずイオンとして負極に吸蔵(ドープ)される
ので、金属リチウムの発火の危険性がない安全性の高い
二次電池である。
A lithium ion secondary battery is composed of a positive electrode, a negative electrode, a separator that insulates them, a non-aqueous electrolyte that is an organic electrolyte in which an electrolyte is dissolved or a non-aqueous electrolyte that is a solid electrolyte, and various safety devices. Have been. A lithium ion secondary battery is a highly safe secondary battery having no danger of ignition of lithium metal because lithium does not precipitate as a metal during charging and is stored (doped) as an ion in a negative electrode.

【0004】上記した、負極用の材料としては、主に、
リチウムイオンの吸蔵、脱離能力を有する黒鉛粉末が用
いられる。一方、炭素質粉末をリチウムイオン二次電池
負極用材料に用いる場合、下記に示すように、高度の
黒鉛化度、粒状(非鱗片状、非針状)の粒子形状が要
求される。
As the above-mentioned materials for the negative electrode, mainly,
Graphite powder having the ability to insert and extract lithium ions is used. On the other hand, when the carbonaceous powder is used as a material for a negative electrode of a lithium ion secondary battery, a high degree of graphitization and a granular (non-scale, non-needle) particle shape are required as shown below.

【0005】高度の黒鉛化度:黒鉛中におけるリチウ
ムイオンの吸蔵、脱離の基本的なメカニズムは、黒鉛層
間へのリチウムイオンの挿入と層間からの脱離であり、
分子式LiC6におけるLiとCの量論比で最大の吸蔵量とな
る。したがって、放電容量の向上のためには、層状構造
が十分発達した高度の黒鉛化度を有する黒鉛を用いるこ
とが必要である。
High degree of graphitization: The basic mechanism of insertion and extraction of lithium ions in graphite is insertion of lithium ions between graphite layers and desorption from the layers.
The maximum storage amount becomes the stoichiometric ratio of Li and C in the molecular formula LiC 6 . Therefore, in order to improve the discharge capacity, it is necessary to use graphite having a high degree of graphitization with a sufficiently developed layered structure.

【0006】粒状(非鱗片状、非針状)の粒子形状:
リチウムイオン二次電池負極用材料としての黒鉛粉末に
おいては、放電容量以外に粒子形状が重要視される。す
なわち、リチウムイオン二次電池負極を製造する場合、
黒鉛粉末を集電板上に塗布した後プレスするが、この際
に粒子形状が天然黒鉛のように薄片状あるいは針状であ
ると、一方向に配列し易くなるため、電解液の浸透性に
劣るかあるいはリチウムイオンの吸蔵、脱離に伴う膨張
収縮による黒鉛粒子の集電板からの剥離などが生じる。
[0006] Granular (non-scale, non-needle) particle shape:
In graphite powder as a material for a negative electrode of a lithium ion secondary battery, the particle shape is regarded as important in addition to the discharge capacity. That is, when manufacturing a negative electrode of a lithium ion secondary battery,
After applying the graphite powder on the current collector plate, press it.If the particle shape is flake or needle like natural graphite, it will be easier to arrange in one direction, so that the electrolyte permeability The graphite particles are inferior or exfoliate from the current collector due to expansion and contraction due to occlusion and desorption of lithium ions.

【0007】すなわち、リチウムイオン二次電池負極用
材料としての黒鉛粉末は、高度の黒鉛化度と粒状(非鱗
片状、非針状)の粒子形状を有することが要求される。
上記した負極用材料である黒鉛粉末を円筒または角型電
池に充填する場合は、銅箔などの薄い金属シートに結着
剤を用いて塗布し、正極と負極のシートでセパレータを
挟みコイル状に巻いて用いられる。
That is, graphite powder as a material for a negative electrode of a lithium ion secondary battery is required to have a high degree of graphitization and a granular (non-scale, non-needle) particle shape.
When filling the cylindrical or prismatic battery with the graphite powder, which is the above-described negative electrode material, apply it to a thin metal sheet such as a copper foil using a binder, sandwich the separator between the positive and negative electrode sheets, and form a coil. Used by winding.

【0008】このコイルの形状は、円筒型電池の場合は
真の円筒、角型電池の場合は偏平なものとなる。これら
の電池においてセル単位体積当たりの放電容量を高める
ためには、負極用材料の封入量を高める必要があり、そ
の方法としては、負極用材料を銅箔に塗布する際の結着
剤の量をできるだけ少なくする、或いはできるだけ高密
度に加圧成形するなどの方法が挙げられる。
The shape of the coil is a true cylinder in the case of a cylindrical battery, and is flat in the case of a square battery. In order to increase the discharge capacity per cell unit volume in these batteries, it is necessary to increase the amount of the negative electrode material enclosed, and the method is to use the amount of the binder when applying the negative electrode material to the copper foil. And press molding at as high a density as possible.

【0009】また、電極シートの表面積が小さいと電池
内に発生する電界を効率よく集電できず、セル単位体積
当たりの放電容量が低下するため、電極の表面積を大き
くするためにできるだけ薄い箔状に成型する必要があ
る。以上述べたように、リチウムイオン二次電池におい
ては、放電容量を高めるために種々の方法が用いられて
いる。
If the surface area of the electrode sheet is small, the electric field generated in the battery cannot be efficiently collected, and the discharge capacity per unit volume of the cell decreases. Need to be molded. As described above, in the lithium ion secondary battery, various methods are used to increase the discharge capacity.

【0010】一方、前記した負極用材料として用いられ
る黒鉛粉末に対しては、前記したように、放電容量の向
上のために、層状構造が十分に発達した高度の黒鉛化度
を有することが要求される。しかしながら、リチウムイ
オン二次電池の負極用炭素材料の製造において、高度の
黒鉛化度を有する黒鉛粉末を製造した場合においても、
黒鉛化度の指標である真比重のロット間のばらつきが大
きく、放電容量が安定して大きいリチウムイオン二次電
池を得ることが困難であった。
On the other hand, as described above, the graphite powder used as the material for the negative electrode is required to have a high degree of graphitization in which the layered structure is sufficiently developed in order to improve the discharge capacity. Is done. However, in the production of a carbon material for a negative electrode of a lithium ion secondary battery, even when producing a graphite powder having a high degree of graphitization,
Lot-to-lot variation in the true specific gravity, which is an indicator of the degree of graphitization, was large, and it was difficult to obtain a stable lithium ion secondary battery with a large discharge capacity.

【0011】[0011]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、真比重のロット間のばらつき
を小さくし、電池セル単位体積当たりの放電容量が高い
リチウムイオン二次電池を安定して製造することが可能
な、リチウムイオン二次電池の負極用炭素材料の製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, reduces the variation of the true specific gravity between lots, and has a high discharge capacity per unit volume of a battery cell. It is an object of the present invention to provide a method for producing a carbon material for a negative electrode of a lithium ion secondary battery, which can stably produce a carbon material.

【0012】[0012]

【課題を解決するための手段】本発明は、有機物を炭素
化した後、得られた炭素化物に黒鉛化処理を施すリチウ
ムイオン二次電池の負極用炭素材料の製造方法におい
て、黒鉛化処理を施す前の炭素化物を実質的に酸素を含
まない雰囲気中で保存し、該保存後の炭素化物を黒鉛化
処理することを特徴とするリチウムイオン二次電池の負
極用炭素材料の製造方法である。
SUMMARY OF THE INVENTION The present invention provides a method for producing a carbon material for a negative electrode of a lithium ion secondary battery in which an organic substance is carbonized and then the obtained carbonized substance is graphitized. A method for producing a carbon material for a negative electrode of a lithium ion secondary battery, wherein the carbonized material before application is stored in an atmosphere substantially free of oxygen, and the carbonized material after the storage is graphitized. .

【0013】前記した本発明においては、前記した実質
的に酸素を含まない雰囲気中で保存する方法が、前記炭
素化物を、(A) 酸素非透過性の材料からなる容器中およ
び/または酸素非透過性の材料からなる袋中で保存する
か、もしくは(B) 不活性ガスおよび/または還元性ガス
の雰囲気中で保存するか、もしくは前記した(A) および
(B) 両者の組み合わせであることが好ましい(本発明の
第1の好適態様)。
In the above-mentioned present invention, the method for storing in an atmosphere substantially free of oxygen includes the step of storing the carbonized material in a container made of (A) an oxygen-impermeable material and / or Stored in a bag of permeable material, or (B) stored in an atmosphere of inert gas and / or reducing gas, or as described in (A) and
(B) It is preferable to use a combination of both (first preferred embodiment of the present invention).

【0014】また、前記した本発明の第1の好適態様に
おいては、前記した酸素非透過性の材料からなる容器中
および/または酸素非透過性の材料からなる袋中で保存
する方法が、前記炭素化物を、前記した容器中、袋中で
脱酸素剤共存下で保存する方法であることが好ましい
(本発明の第2の好適態様)。また、前記した本発明、
本発明の第1の好適態様、第2の好適態様においては、
前記した有機物が、(A) コールタール、(B) 石油系ター
ル、(C) 石炭ピッチ(コールタールピッチ)、(D) 石油
ピッチ、(E) 石炭ピッチ(コールタールピッチ)を加熱
処理して生成したメソフェーズ小球体、(F) バルクメソ
フェーズおよび(G) 縮合多環芳香族炭化水素を触媒の存
在下で重合して得られるメソフェーズ含有ピッチから選
ばれる1種または2種以上であることが好ましい(本発
明の第3の好適態様〜第5の好適態様)。
[0014] In the first preferred embodiment of the present invention, the method for storing in the container made of the above-described oxygen impermeable material and / or in the bag made of the oxygen impermeable material is as follows. It is preferable to store the carbonized material in the above-described container or bag in the presence of an oxygen scavenger (second preferred embodiment of the present invention). Further, the present invention described above,
In the first preferred embodiment and the second preferred embodiment of the present invention,
The above-mentioned organic matter heat-treats (A) coal tar, (B) petroleum tar, (C) coal pitch (coal tar pitch), (D) petroleum pitch, (E) coal pitch (coal tar pitch). It is preferably one or two or more selected from the generated mesophase microspheres, (F) bulk mesophase, and (G) a mesophase-containing pitch obtained by polymerizing a condensed polycyclic aromatic hydrocarbon in the presence of a catalyst. (Third preferred embodiment to fifth preferred embodiment of the present invention).

【0015】また、前記した本発明、本発明の第1の好
適態様〜第5の好適態様においては、前記した炭素化物
が、有機物を非酸化性雰囲気下で300 ℃以上、より好ま
しくは300 〜1100℃に加熱して得られた炭素化物である
ことが好ましい(本発明の第6の好適態様〜第11の好適
態様)。さらに、前記した本発明、本発明の第1の好適
態様〜第11の好適態様においては、前記した黒鉛化処理
における処理温度が2000℃以上であることが好ましく、
さらには黒鉛化処理における処理温度が2500〜3100℃で
あることがより好ましい。
In the present invention and the first to fifth preferred embodiments of the present invention, the above-mentioned carbonized compound is obtained by converting an organic substance into a non-oxidizing atmosphere at a temperature of 300 ° C. or more, more preferably 300 to 400 ° C. It is preferably a carbonized product obtained by heating to 1100 ° C. (the sixth preferred embodiment to the eleventh preferred embodiment of the present invention). Furthermore, in the present invention described above, in the first preferred embodiment to the eleventh preferred embodiment of the present invention, the treatment temperature in the graphitization treatment is preferably 2000 ° C. or more,
Furthermore, the processing temperature in the graphitization processing is more preferably 2500 to 3100 ° C.

【0016】[0016]

【発明の実施の形態】以下、本発明についてさらに詳細
に説明する。本発明者らは、電池セル単位体積当たりの
放電容量が高いリチウムイオン二次電池を安定して製造
することが可能なリチウムイオン二次電池の負極用炭素
材料の製造方法に関して鋭意検討した結果、下記知見を
見出し本発明に至った。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present inventors have conducted intensive studies on a method for producing a carbon material for a negative electrode of a lithium ion secondary battery capable of stably producing a lithium ion secondary battery having a high discharge capacity per unit volume of a battery cell, The following findings have been found and the present invention has been made.

【0017】すなわち、同一原料、同一の製造方法で製
造した黒鉛粉末を用いた場合においても、黒鉛粉末の黒
鉛化度の指標ともなる真比重が低い黒鉛粉末が得られ、
この黒鉛粉末を用いたリチウムイオン二次電池の放電容
量が低下することが見出された。図2に、上記した黒鉛
粉末の各製造ロット(A〜E)毎の真比重(サンプル
数:各3本)を示す。
That is, even when graphite powder produced by the same raw material and the same production method is used, graphite powder having a low true specific gravity, which is an index of the degree of graphitization of the graphite powder, is obtained.
It has been found that the discharge capacity of a lithium ion secondary battery using this graphite powder decreases. FIG. 2 shows the true specific gravity (the number of samples: three each) for each of the production lots (A to E) of the graphite powder.

【0018】なお、上記した黒鉛粉末は下記の製造方法
で製造した黒鉛粉末である。〔黒鉛粉末の製造方法:〕 コールタールピッチを加熱処理して生成したメソフェ
ーズ小球体をタール中油で抽出 上記で得られた球晶を 400℃に加熱 上記で得られた炭素粉末を1000℃で焼成 上記で得られた炭素粉末を3000℃で黒鉛化 図2に示されるように、製造ロットDの真比重が、製造
ロットA〜C、Eに対して低い。
The above graphite powder is a graphite powder produced by the following production method. [Production method of graphite powder:] Mesophase spherules generated by heat treatment of coal tar pitch are extracted with oil in tar Heat the spherulite obtained above to 400 ° C Firing the carbon powder obtained above at 1000 ° C Graphitization of the carbon powder obtained above at 3000 ° C. As shown in FIG. 2, the true specific gravity of the production lot D is lower than the production lots A to C and E.

【0019】本発明者らは、上記した原因に関して鋭意
検討した結果、製造ロットA〜C、Eの黒鉛粉末は、球
晶を 400℃に加熱して得られた炭素粉末を、炭素粉末の
製造直後に黒鉛化処理した黒鉛粉末であるのに対して、
製造ロットDの黒鉛粉末は、得られた炭素粉末を、上部
が大気開放のフレコンバック中に収納し、2か月間保管
した後黒鉛化処理した黒鉛粉末であり、製造ロットDの
黒鉛粉末は、フレコンバック中で保管時に酸化が進行し
真比重が低下したものと推定した。
The present inventors have conducted intensive studies on the above-mentioned causes. As a result, the graphite powders of the production lots A to C and E were produced by heating the spherulite to 400 ° C. to obtain the carbon powder. Immediately after the graphite powder was graphitized,
The graphite powder of the production lot D is a graphite powder obtained by storing the obtained carbon powder in a flexible container bag whose upper part is open to the atmosphere, storing the carbon powder for two months, and then graphitizing the carbon powder. It is presumed that the oxidation proceeded during storage in the flexible container bag and the true specific gravity decreased.

【0020】このため、本発明者らは、メソフェーズ小
球体などの有機物を炭素化して得られた炭素粉末を、実
質的に酸素を含まない雰囲気中で保存し、保存後の炭素
粉末を黒鉛化処理する実験を行った。この結果、後記の
実施例に示されるように、黒鉛粉末の真比重の低下を招
くことなく、電池セル単位体積当たりの放電容量が高い
リチウムイオン二次電池を安定して製造することが可能
なリチウムイオン二次電池の負極用炭素材料を製造する
ことが可能となった。
For this reason, the present inventors store carbon powder obtained by carbonizing organic substances such as mesophase microspheres in an atmosphere substantially free of oxygen, and graphitize the carbon powder after storage. An experiment of processing was performed. As a result, as shown in Examples described later, it is possible to stably manufacture a lithium ion secondary battery having a high discharge capacity per unit volume of a battery cell without causing a decrease in the true specific gravity of the graphite powder. It has become possible to produce a carbon material for a negative electrode of a lithium ion secondary battery.

【0021】すなわち、本発明は、有機物を炭素化した
後、得られた炭素化物に黒鉛化処理を施すリチウムイオ
ン二次電池の負極用炭素材料の製造方法において、黒鉛
化処理を施す前の炭素化物を実質的に酸素を含まない雰
囲気中で保存し、保存後の炭素化物を黒鉛化処理するリ
チウムイオン二次電池の負極用炭素材料の製造方法であ
る。
That is, the present invention provides a method for producing a carbon material for a negative electrode of a lithium ion secondary battery in which an organic substance is carbonized and then the obtained carbonized substance is graphitized. This is a method for producing a carbon material for a negative electrode of a lithium ion secondary battery in which a nitride is stored in an atmosphere substantially free of oxygen, and the stored carbon is graphitized.

【0022】以下、本発明における[1] 原料、[2] 製造
工程、[3] 製造条件について述べる。 [1] 原料:本発明における原料である有機物は、加熱も
しくは加熱後粉砕することによって、炭素粉末を得るこ
とが可能な有機物であればその種類は特に制限されるも
のではないが、前記した有機物が、(A) コールタール、
(B) 石油系タール、(C) 石炭ピッチ(コールタールピッ
チ)、(D) 石油ピッチ、(E) 石炭ピッチを加熱処理して
生成したメソフェーズ小球体、(F) バルクメソフェーズ
および(G) 縮合多環芳香族炭化水素を触媒の存在下で重
合して得られるメソフェーズ含有ピッチから選ばれる1
種または2種以上であることが好ましい。
Hereinafter, [1] raw materials, [2] manufacturing steps, and [3] manufacturing conditions in the present invention will be described. [1] Raw material: The type of the organic substance as the raw material in the present invention is not particularly limited as long as it is an organic substance capable of obtaining carbon powder by heating or pulverizing after heating. But (A) coal tar,
(B) Petroleum tar, (C) Coal pitch (coal tar pitch), (D) Petroleum pitch, (E) Mesophase spheres produced by heat treatment of coal pitch, (F) Bulk mesophase and (G) condensation 1 selected from a mesophase-containing pitch obtained by polymerizing a polycyclic aromatic hydrocarbon in the presence of a catalyst
It is preferable that the number of species is two or more.

【0023】これは、上記した有機物は、芳香族分子を
含有しているため優れた易黒鉛化性を示し、炭素化、黒
鉛化の過程で、芳香族分子が積層し、黒鉛化度の高い黒
鉛粉末を得ることができるためである。さらに、前記し
た有機物としては、石炭ピッチ(コールタールピッ
チ)、石炭ピッチ(コールタールピッチ)を加熱処理
して生成したメソフェーズ小球体、および縮合多環芳
香族炭化水素を触媒の存在下で重合して得られるメソフ
ェーズ含有ピッチから選ばれる1種または2種以上を用
いることがより好ましい。
This is because the above-mentioned organic substances show excellent graphitization properties because they contain aromatic molecules, and in the process of carbonization and graphitization, the aromatic molecules are laminated and the degree of graphitization is high. This is because graphite powder can be obtained. Further, as the above-mentioned organic substances, coal pitch (coal tar pitch), mesophase small spheres produced by heat treatment of coal pitch (coal tar pitch), and condensed polycyclic aromatic hydrocarbons are polymerized in the presence of a catalyst. It is more preferable to use one or more selected from the mesophase-containing pitch obtained by the above method.

【0024】これは、上記した有機物を原料とすること
によって、球状または粒状の黒鉛粉末を得ることがで
き、前記したリチウムイオン二次電池負極用材料として
要求される粒子形状〔粒状(非鱗片状、非針状)〕の条
件を満足するためである。なお、上記したメソフェーズ
小球体、縮合多環芳香族炭化水素を重合して得られるメ
ソフェーズ含有ピッチは下記の製造方法で製造すること
ができる。
By using the above-mentioned organic material as a raw material, spherical or granular graphite powder can be obtained, and the particle shape [granular (non-flaky) which is required as a material for the negative electrode of a lithium ion secondary battery described above. , Non-needle shape)]. The mesophase-containing pitch obtained by polymerizing the above-mentioned mesophase small spheres and condensed polycyclic aromatic hydrocarbons can be produced by the following production method.

【0025】(メソフェーズ小球体:)コールタールピ
ッチを加熱処理して生成したメソフェーズ小球体を、タ
ール中油などの有機溶媒を用いてマトリックスピッチか
ら抽出、分離し、メソフェーズ小球体(球晶、メソカー
ボンマイクロビーズ)を得る。なお、上記したメソフェ
ーズ小球体は、偏光顕微鏡で観察した異方性分率が、5
〜100 面積%であることが好ましい。
(Mesophase microspheres) Mesophase microspheres produced by heat treatment of coal tar pitch are extracted and separated from matrix pitch using an organic solvent such as tar medium oil, and the resulting mesophase microspheres (spherulites, mesocarbons). Microbeads). The mesophase microspheres described above had an anisotropic fraction of 5 observed with a polarizing microscope.
Preferably, it is about 100% by area.

【0026】これは、異方性分率が5面積%未満の場
合、高度の黒鉛化度を有する黒鉛粉末を得ることが困難
なためである。(縮合多環芳香族炭化水素を重合して得
られるメソフェーズ含有ピッチ:)上記したメソフェー
ズ含有ピッチは、触媒の存在下で縮合多環芳香族炭化水
素を重合することによって得られる。
This is because it is difficult to obtain a graphite powder having a high degree of graphitization when the anisotropic fraction is less than 5 area%. (Mesophase-containing pitch obtained by polymerizing condensed polycyclic aromatic hydrocarbon :) The above-mentioned mesophase-containing pitch is obtained by polymerizing condensed polycyclic aromatic hydrocarbon in the presence of a catalyst.

【0027】メソフェーズ含有ピッチの原料である縮合
多環芳香族炭化水素としては、ナフタレン、メチルナフ
タレン、アントラセン、フェナントレン、アセナフテ
ン、アセナフチレン、およびピレンなどから選ばれる1
種または2種以上の縮合多環芳香族炭化水素を用いるこ
とが好ましい。また、縮合多環芳香族炭化水素として、
コールタール蒸留で得られる縮合多環芳香族炭化水素の
混合物であるタール蒸留油を用いることもできる。
The condensed polycyclic aromatic hydrocarbon which is a raw material of the mesophase-containing pitch is selected from naphthalene, methylnaphthalene, anthracene, phenanthrene, acenaphthene, acenaphthylene, pyrene and the like.
It is preferable to use one or more kinds of condensed polycyclic aromatic hydrocarbons. Also, as a condensed polycyclic aromatic hydrocarbon,
Tar distillation oil, which is a mixture of condensed polycyclic aromatic hydrocarbons obtained by coal tar distillation, can also be used.

【0028】触媒としては、ルイス酸系触媒が好まし
い。ルイス酸系触媒としては、超強酸触媒および/また
はルイス酸触媒が挙げられる。超強酸触媒としては、ル
イス酸とブレンステッド酸を組み合わせた弗化水素・三
弗化硼素触媒(:HF/BF3)が挙げられ、ルイス酸触媒と
しては、AlCl3 、CuCl 2 などが挙げられる。
As the catalyst, a Lewis acid catalyst is preferred.
No. As the Lewis acid catalyst, a super strong acid catalyst and / or
Is a Lewis acid catalyst. As a super strong acid catalyst,
Hydrogen fluoride combining isocyanic acid and Bronsted acid
Boron fluoride catalyst (: HF / BFThree), And a Lewis acid catalyst.
AlClThree, CuCl TwoAnd the like.

【0029】なお、上記した縮合多環芳香族炭化水素を
原料とするメソフェーズ含有ピッチは、偏光顕微鏡で観
察した異方性分率が、80〜100 面積%であることが好ま
しい。これは、異方性分率が80面積%未満の場合、高度
の黒鉛化度を有する黒鉛材料を得ることが困難なためで
ある。
The mesophase-containing pitch using the above-mentioned condensed polycyclic aromatic hydrocarbon as a raw material preferably has an anisotropic fraction of 80 to 100 area% as observed by a polarizing microscope. This is because when the anisotropic fraction is less than 80 area%, it is difficult to obtain a graphite material having a high degree of graphitization.

【0030】また、本発明においては、触媒の存在下で
縮合多環芳香族炭化水素を重合して得られるメソフェー
ズ含有ピッチから、複素環式化合物および/または多環
芳香族炭化水素を用いて軽質成分を抽出除去し、得られ
たメソフェーズ含有ピッチを用いることがより好まし
い。これは、上記したメソフェーズ含有ピッチは、等方
性ピッチおよび分子量の低いメソフェーズ成分である軽
質成分を含み、炭素化、黒鉛化時に溶融、粒子同士の融
着および発泡が生じ、予め軽質成分を抽出除去すること
によって、これらの問題が解消されるためである。
In the present invention, a mesophase-containing pitch obtained by polymerizing a condensed polycyclic aromatic hydrocarbon in the presence of a catalyst is used to obtain a light-weight mixture using a heterocyclic compound and / or a polycyclic aromatic hydrocarbon. It is more preferable to extract and remove the components and use the obtained mesophase-containing pitch. This is because the above-mentioned mesophase-containing pitch contains an isotropic pitch and a light component that is a mesophase component having a low molecular weight, and is melted during carbonization and graphitization, fusion between particles and foaming occur, and the light component is extracted in advance. This is because these problems can be solved by removing them.

【0031】[2] 製造工程:図1に、本発明におけるリ
チウムイオン二次電池の負極用炭素材料(以下、負極用
炭素材料と記す)の製造工程の例を示す。図1(a) に示
す負極用炭素材料の製造工程においては、石炭ピッチ
(コールタールピッチ)を例えば450 ℃に加熱し、光学
的に異方性を示すメソフェーズ小球体を生成せしめる。
[2] Manufacturing Process: FIG. 1 shows an example of a manufacturing process of a carbon material for a negative electrode (hereinafter, referred to as a carbon material for a negative electrode) of a lithium ion secondary battery according to the present invention. In the production process of the carbon material for a negative electrode shown in FIG. 1A, coal pitch (coal tar pitch) is heated to, for example, 450 ° C. to produce optically anisotropic mesophase spheres.

【0032】次に、得られたメソフェーズ小球体を、ピ
ッチマトリックス中からタール中油などの有機溶媒を用
いた溶媒抽出によって抽出分離する。得られたメソフェ
ーズ小球体は、必要に応じて乾燥した後、好ましくは30
0 〜1100℃、より好ましくは400 〜700 ℃の温度条件下
で仮焼し、炭素化物(炭素粉末)を得る。
Next, the obtained mesophase microspheres are extracted and separated from the pitch matrix by solvent extraction using an organic solvent such as oil in tar. The obtained mesophase microspheres are dried, if necessary, preferably 30
Calcination is carried out at a temperature of 0 to 1100 ° C, more preferably 400 to 700 ° C, to obtain a carbonized product (carbon powder).

【0033】次に、得られた炭素化物(炭素粉末)を、
実質的に酸素を含まない雰囲気中で保存し、保存中にお
ける炭素化物の酸化の進行を防止する。次に、保存後の
炭素化物を好ましくは500 〜1100℃の温度条件下で焼成
した後、好ましくは2000℃以上、より好ましくは2000〜
3100℃の温度条件下で黒鉛化処理し、黒鉛粉末を得る。
Next, the obtained carbonized product (carbon powder) is
It is stored in an atmosphere substantially free of oxygen to prevent the progress of oxidation of the carbonized material during storage. Next, the carbonized product after storage is preferably calcined at a temperature of 500 to 1100 ° C., and is preferably 2000 ° C. or more, more preferably 2000 to 1100 ° C.
Graphitization is performed at a temperature of 3100 ° C to obtain a graphite powder.

【0034】なお、500 〜1100℃の温度条件下で焼成し
た後にも、実質的に酸素を含まない雰囲気下で焼成物を
保存してもよい。また、図1(a) に示す製造工程におい
ては、抽出分離して得られたメソフェーズ小球体、仮焼
後に得られた炭素化物、焼成後に得られた炭素化物、保
存後の炭素化物、黒鉛化処理して得られた黒鉛粉末を、
適宜、解砕もしくは粉砕し、さらに必要に応じて分級
し、最終的に得られる黒鉛粉末の粒度調整を行ってもよ
い。
After firing at a temperature of 500 to 1100 ° C., the fired product may be stored in an atmosphere containing substantially no oxygen. In the manufacturing process shown in FIG. 1 (a), the mesophase spheres obtained by extraction and separation, the carbonized product obtained after calcination, the carbonized product obtained after calcination, the carbonized product obtained after storage, The graphite powder obtained by the treatment is
The graphite powder may be crushed or pulverized as appropriate, further classified as needed, and the particle size of the finally obtained graphite powder may be adjusted.

【0035】上記した製造工程で得られる黒鉛粉末は、
常に安定して高い真比重を有し、本発明の製造工程で得
られる黒鉛粉末を用いることによって、電池セル単位体
積当たりの放電容量が高いリチウムイオン二次電池を安
定して製造することができる。図1(b) に示す負極用炭
素材料の製造工程においては、石炭ピッチ(コールター
ルピッチ)を例えば450 ℃に加熱し、光学的に異方性を
示すメソフェーズ小球体を生成せしめる。
The graphite powder obtained in the above-described manufacturing process is
A lithium ion secondary battery having a stable and high true specific gravity and having a high discharge capacity per unit volume of a battery cell can be stably manufactured by using the graphite powder obtained in the manufacturing process of the present invention. . In the manufacturing process of the carbon material for a negative electrode shown in FIG. 1 (b), coal pitch (coal tar pitch) is heated to, for example, 450 ° C. to produce optically anisotropic mesophase microspheres.

【0036】次に、得られたメソフェーズ小球体含有熱
処理ピッチを、前記した図1(a) に示す製造工程と同様
の方法で仮焼し、炭素化物を得る。次に、得られた炭素
化物を、実質的に酸素を含まない雰囲気中で保存し、保
存中における炭素化物の酸化の進行を防止する。次に、
保存後の炭素化物を、前記した図1(a) に示す製造工程
と同様の方法で焼成、黒鉛化処理し、黒鉛粉末を得る。
Next, the obtained mesophase microsphere-containing heat-treated pitch is calcined in the same manner as in the manufacturing process shown in FIG. 1A to obtain a carbonized product. Next, the obtained carbonized material is stored in an atmosphere substantially free of oxygen to prevent progress of oxidation of the carbonized material during storage. next,
The carbonized product after storage is calcined and graphitized in the same manner as in the production process shown in FIG. 1A to obtain a graphite powder.

【0037】なお、焼成物を実質的に酸素を含まない雰
囲気下で保存してもよい。図1(b) に示す製造工程にお
いては、メソフェーズ小球体含有熱処理ピッチ、仮焼後
に得られた炭素化物、焼成後に得られた炭素化物、保存
後の炭素化物、黒鉛化処理して得られた黒鉛粉末を、適
宜、粉砕もしくは解砕し、さらに必要に応じて分級し、
最終的に得られる黒鉛粉末の粒度調整を行ってもよい。
The fired product may be stored in an atmosphere containing substantially no oxygen. In the manufacturing process shown in FIG. 1 (b), the mesophase microsphere-containing heat-treated pitch, the carbonized material obtained after calcination, the carbonized material obtained after calcination, the carbonized material obtained after storage, and the graphitized material were obtained. The graphite powder is pulverized or crushed as appropriate, and further classified as necessary,
The particle size of the graphite powder finally obtained may be adjusted.

【0038】図1(a)(b)に示す製造工程では仮焼段階で
得られた炭素化物を、実質的に酸素を含まない雰囲気中
で保存することが好ましい。これは、仮焼で得られた炭
素化物の方が、焼成で得られた炭素化物よりも酸化の進
行が進む傾向が見られるためである。図1(c) に示す負
極用炭素材料の製造工程においては、石炭ピッチ(コー
ルタールピッチ)を、好ましくは300 〜1100℃、より好
ましくは400 〜600 ℃の温度条件下で焼成(加熱)し、
炭素化物を得る。
In the production process shown in FIGS. 1 (a) and 1 (b), it is preferable that the carbonized material obtained in the calcining step is stored in an atmosphere substantially free of oxygen. This is because the carbonized material obtained by the calcination tends to progress in the oxidation more than the carbonized material obtained by the calcination. In the production process of the carbon material for a negative electrode shown in FIG. 1 (c), coal pitch (coal tar pitch) is calcined (heated) at a temperature of preferably 300 to 1100 ° C, more preferably 400 to 600 ° C. ,
Obtain carbonized material.

【0039】次に、得られた炭素化物を、実質的に酸素
を含まない雰囲気中で保存し、保存中における炭素化物
の酸化の進行を防止する。次に、保存後の炭素化物を、
前記した図1(a) に示す製造工程と同様の方法で黒鉛化
処理し、黒鉛粉末を得る。なお、図1(c) に示す製造工
程においては、焼成後に得られた炭素化物、保存後の炭
素化物、黒鉛化処理して得られた黒鉛粉末を、適宜、粉
砕もしくは解砕し、さらに必要に応じて分級し、最終的
に得られる黒鉛粉末の粒度調整を行ってもよい。
Next, the obtained carbonized material is stored in an atmosphere substantially free of oxygen to prevent the progress of oxidation of the carbonized material during storage. Next, the carbonized material after storage is
Graphitization is performed in the same manner as in the manufacturing process shown in FIG. 1A to obtain graphite powder. In the manufacturing process shown in FIG. 1 (c), the carbonized material obtained after firing, the carbonized material after storage, and the graphite powder obtained by the graphitization treatment are appropriately ground or crushed, and And the particle size of the graphite powder finally obtained may be adjusted.

【0040】図1(d) に示す負極用炭素材料の製造工程
においては、前記した縮合多環芳香族炭化水素を原料と
するメソフェーズ含有ピッチを、好ましくは300 〜1100
℃、より好ましくは400 〜600 ℃の温度条件下で焼成
(加熱)し、炭素化物を得る。次に、得られた炭素化物
を、実質的に酸素を含まない雰囲気中で保存し、保存中
における炭素化物の酸化の進行を防止する。
In the step of manufacturing the carbon material for the negative electrode shown in FIG.
C., more preferably 400-600.degree. C., and calcined (heated) to obtain a carbonized product. Next, the obtained carbonized material is stored in an atmosphere substantially free of oxygen to prevent progress of oxidation of the carbonized material during storage.

【0041】次に、保存後の炭素化物を、前記した図1
(a) に示す製造工程と同様の方法で黒鉛化処理し、黒鉛
粉末を得る。なお、図1(d) に示す製造工程において
は、原料のメソフェーズ含有ピッチ、焼成後に得られた
炭素化物、保存後の炭素化物、黒鉛化処理して得られた
黒鉛粉末を、適宜、粉砕もしくは解砕し、さらに必要に
応じて分級し、最終的に得られる黒鉛粉末の粒度調整を
行ってもよい。
Next, the carbonized product after storage was replaced with the above-mentioned FIG.
Graphitization is performed in the same manner as in the production process shown in (a) to obtain graphite powder. In the manufacturing process shown in FIG. 1 (d), the mesophase-containing pitch of the raw material, the carbonized material obtained after firing, the carbonized material after storage, and the graphite powder obtained by the graphitization treatment were appropriately ground or pulverized. It may be crushed, further classified if necessary, and the particle size of the graphite powder finally obtained may be adjusted.

【0042】[3] 製造条件:以下、本発明における好適
な製造条件を述べる。 (1) 仮焼(焼成)工程:前記したように、本発明におい
ては、前記したメソフェーズ小球体、石炭ピッチ(コー
ルタールピッチ)、縮合多環芳香族炭化水素を重合して
得られるメソフェーズ含有ピッチなどの有機物を、仮焼
または焼成する。
[3] Manufacturing conditions: Preferred manufacturing conditions in the present invention are described below. (1) Calcining (firing) step: As described above, in the present invention, the mesophase-containing pitch obtained by polymerizing the above-mentioned mesophase spherules, coal pitch (coal tar pitch), and condensed polycyclic aromatic hydrocarbon. An organic material such as is calcined or fired.

【0043】この場合の仮焼(焼成)温度は、好ましく
は300 〜1100℃、さらには300 〜700 ℃であることがよ
り好ましい。これは、仮焼(焼成)温度が300 ℃未満の
場合、原料中の軽質成分の除去が不十分となり、その後
のさらなる炭素化、黒鉛化時に炭素化物の溶融、粒子同
士の融着、発泡が生じ、必要とされる粒子形状を有する
黒鉛粉末を製造することが困難となるためである。
The calcining (firing) temperature in this case is preferably from 300 to 1100 ° C, more preferably from 300 to 700 ° C. This is because if the calcining (firing) temperature is lower than 300 ° C, the removal of the light components in the raw material becomes insufficient, and the subsequent carbonization, graphitization, melting of carbonized materials, fusion of particles, and foaming occur. This is because it is difficult to produce graphite powder having the required particle shape.

【0044】なお、本工程においては、仮焼物、焼成物
の酸化防止のために、非酸化性雰囲気下で加熱処理を行
う。 (2) 炭素化物の保存方法:本発明においては、前記した
ように、上記で得られた炭素化物を、実質的に酸素を含
まない雰囲気中で保存する。
In this step, heat treatment is performed in a non-oxidizing atmosphere in order to prevent oxidation of the calcined product and the calcined product. (2) Method for storing carbonized material: In the present invention, as described above, the obtained carbonized material is stored in an atmosphere substantially free of oxygen.

【0045】これは、リチウムイオン二次電池の負極用
炭素材料である黒鉛粉末は、炭素化物を2000℃以上、さ
らに好ましくは2500〜3100℃という高温で黒鉛化するた
め、生産性および設備面から、炭素化工程、黒鉛化処理
工程を別個に設け、焼成(仮焼)炉と黒鉛化炉を別個に
配設することに起因する。すなわち、上記した工程、生
産スケジュールおよび生産効率の面から、炭素化物を短
期間で多量に製造し、保存後に黒鉛化処理を行う場合が
生じ、本発明においては、炭素化物を、実質的に酸素を
含まない雰囲気中で保存し、保存中の前記した炭素化物
の酸化を防止する。
This is because graphite powder, which is a carbon material for a negative electrode of a lithium ion secondary battery, graphitizes a carbonized material at a high temperature of 2000 ° C. or more, more preferably 2500 to 3100 ° C. This is because the carbonization step and the graphitization step are provided separately, and the firing (calcination) furnace and the graphitization furnace are separately provided. That is, from the viewpoint of the above-described steps, production schedule and production efficiency, a case where a large amount of carbonized material is produced in a short period of time and a graphitization treatment is performed after storage occurs, and in the present invention, the carbonized material is substantially converted into oxygen. To prevent oxidation of the carbonized material during storage.

【0046】上記した保存方法としては、炭素化物を、
(A) 酸素非透過性の材料からなる容器中および/または
酸素非透過性の材料からなる袋中で保存するか、もしく
は(B) 不活性ガスおよび/または還元性ガスの雰囲気中
で保存するか、もしくは前記した(A) および(B) の両者
を組み合わせて保存することが好ましい。また、炭素化
物を、前記した容器中、袋中で保存する場合、脱酸素剤
共存下で保存することがより好ましい。
As the above-mentioned preservation method,
(A) Store in a container made of oxygen-impermeable material and / or in a bag made of oxygen-impermeable material, or (B) Store in an atmosphere of inert gas and / or reducing gas. Alternatively, it is preferable to store both of the above (A) and (B) in combination. When the carbonized product is stored in the above-mentioned container or bag, it is more preferable to store it in the presence of an oxygen scavenger.

【0047】酸素非透過性の材料からなる容器としては
ドラム缶などを用いることができ、この場合ドラム缶内
を密閉状態とする。また、酸素非透過性の材料からなる
袋としては、例えば大気雰囲気中でのO2透過度が5cm3
/(m2-24h-0.098MPa) 以下、より好ましくは大気雰囲気
中でのO2透過度が2cm3/(m2-24h-0.098MPa) 以下のガ
スシール性のラミネート袋を用いることができる。
As a container made of a material impermeable to oxygen, a drum can or the like can be used. In this case, the inside of the drum is sealed. Further, as a bag made of a material impermeable to oxygen, for example, O 2 permeability in an air atmosphere is 5 cm 3.
/ (m 2 -24h-0.098MPa) or less, more preferably a gas-sealable laminate bag having an O 2 permeability of 2 cm 3 / (m 2 -24h-0.098MPa) or less in the atmosphere can be used. .

【0048】また、不活性ガスとしては、N2ガス、Heガ
ス、Arガスまたはこれらの混合ガスなどを用いることが
でき、経済性の面からN2ガスを用いることが好ましい。
また、還元性ガスとしては、H2ガス、プロパンガスまた
はこれらの混合ガスなどを用いることができる。また、
脱酸素剤としては、炭素化物より酸素との反応速度が速
い物質、酸素の吸着剤、酸素の吸収剤であれば特に制限
を受けるものではないが、実用的な観点から鉄粉などの
金属粉末を用いることが好ましい。
As the inert gas, N 2 gas, He gas, Ar gas or a mixed gas thereof can be used, and it is preferable to use N 2 gas from the viewpoint of economy.
Further, as the reducing gas, H 2 gas, propane gas, a mixed gas thereof, or the like can be used. Also,
The oxygen scavenger is not particularly limited as long as it is a substance having a higher reaction rate with oxygen than a carbonized material, an oxygen adsorbent, and an oxygen absorber, but from a practical viewpoint, metal powder such as iron powder. It is preferable to use

【0049】(3) 黒鉛化工程:本発明においては、保存
後の炭素化物を、好ましくは2000℃以上の温度で黒鉛化
処理を行う。本発明においては、黒鉛化度を上げる観点
から黒鉛化時の温度が高いほど好ましい。
(3) Graphitization step: In the present invention, the carbonized material after storage is subjected to a graphitization treatment, preferably at a temperature of 2000 ° C. or higher. In the present invention, from the viewpoint of increasing the degree of graphitization, the higher the temperature during graphitization, the more preferable.

【0050】また、リチウムイオン二次電池の負極用炭
素材料として要求される層状構造が十分発達した高度の
黒鉛化度を有する黒鉛材料を製造するために、非酸化性
雰囲気下で、より好ましくは2500℃以上、さらに好まし
くは2800℃以上の温度で黒鉛化処理を行う。なお、黒鉛
化度を上げる観点から、黒鉛化時の処理温度の上限は特
に制限されるものではないが、黒鉛化炉の設備上の面か
ら、黒鉛化処理時の処理温度は、3100℃以下であること
が好ましい。
Further, in order to produce a graphite material having a high degree of graphitization, in which a layered structure required as a carbon material for a negative electrode of a lithium ion secondary battery is sufficiently developed, it is more preferable to use a non-oxidizing atmosphere, The graphitization treatment is performed at a temperature of 2500 ° C. or more, more preferably 2800 ° C. or more. In addition, from the viewpoint of increasing the degree of graphitization, the upper limit of the processing temperature during the graphitization is not particularly limited, but from the viewpoint of the equipment of the graphitization furnace, the processing temperature during the graphitization processing is 3100 ° C or less. It is preferred that

【0051】図1(a)(b)の説明で述べたように、実質的
に酸素を含まない雰囲気中で保存した炭素化物を、500
〜1100℃で焼成(加熱)後、上記した黒鉛化処理を行っ
てもよい。この焼成温度は、より好ましくは700 〜1100
℃である。
As described in the description of FIGS. 1 (a) and 1 (b), the carbonized material stored in an atmosphere containing substantially no oxygen
After calcination (heating) at 1100 ° C., the above-described graphitization treatment may be performed. The firing temperature is more preferably 700 to 1100
° C.

【0052】[0052]

【実施例】以下、本発明を実施例に基づいてさらに具体
的に説明する。 (実施例1)前記した図1(a) の工程にしたがって黒鉛
粉末を製造した。すなわち、先ず、石炭ピッチ(コール
タールピッチ)を450 ℃に加熱し、メソフェーズ小球体
を生成せしめ、得られたメソフェーズ小球体を、ピッチ
マトリクス中からタール中油を用いて抽出分離した。
EXAMPLES The present invention will be described below more specifically based on examples. (Example 1) Graphite powder was manufactured according to the above-described process of FIG. That is, first, coal pitch (coal tar pitch) was heated to 450 ° C. to produce mesophase microspheres, and the obtained mesophase microspheres were extracted and separated from the pitch matrix using oil in tar.

【0053】なお、得られたメソフェーズ小球体の偏光
顕微鏡で観察した異方性分率は30面積%であった。次
に、得られたメソフェーズ小球体(球晶)を乾燥した
後、400 ℃で1時間仮焼した。次に、得られた炭素化物
(炭素粉末)を、ガスシール性のラミネート袋〔日本マ
タイ(株)社製防湿タイプ特殊型〕中に収納し、3ケ月
間保存した。
Incidentally, the anisotropy fraction of the obtained mesophase microspheres observed by a polarizing microscope was 30 area%. Next, the obtained mesophase microspheres (spherulites) were dried and calcined at 400 ° C. for 1 hour. Next, the obtained carbonized product (carbon powder) was stored in a gas-sealable laminate bag [special type of moisture-proof type manufactured by Nippon Matai Co., Ltd.] and stored for 3 months.

【0054】なお、上記したラミネート袋の大気雰囲気
中でのO2 透透過度は 1.2cm3/(m2-24h-0.098MPa) であ
った。次に、保存後の炭素化物(炭素粉末)を、1000℃
で5時間焼成後、黒鉛化炉を用いて非酸化性雰囲気中で
3000℃に加熱し黒鉛化処理を行い、黒鉛粉末を製造し
た。
The O 2 permeability of the above-mentioned laminated bag in the air atmosphere was 1.2 cm 3 / (m 2 -24h-0.098 MPa). Next, the carbonized material (carbon powder) after storage is stored at 1000 ° C.
For 5 hours in a non-oxidizing atmosphere using a graphitizing furnace
The mixture was heated to 3000 ° C. and subjected to a graphitization treatment to produce a graphite powder.

【0055】次に、得られた黒鉛粉末の真比重を、JIS
R 7222(ブタノール液、ピクノメータ使用)に準じて測
定した。また、得られた黒鉛粉末を用い、下記に示す三
極式電池を組み立て、ドライボックス中で、アルゴンガ
ス流通下、下記条件で放電容量を測定した。 〔セル形式:〕3極式ビーカーセル 対極および参照極:金属リチウム 作用極:黒鉛粉末を銅箔上に塗布、さらにプレスしたも
の 作用極の製法: 黒鉛粉末:100 重量部に、10重量部のPVDF(ポリビニリ
デンジフロライド)を混合した後、得られた混合物にN
−メチルピロリドンを添加し、PVDFを十分に溶解し、銅
箔上に塗布した。
Next, the true specific gravity of the obtained graphite powder was determined according to JIS.
It was measured according to R 7222 (butanol solution, using a pycnometer). Using the obtained graphite powder, a three-electrode battery shown below was assembled, and the discharge capacity was measured in a dry box under argon gas flow under the following conditions. [Cell type:] 3-electrode beaker cell Counter electrode and reference electrode: Lithium metal Working electrode: Graphite powder applied on copper foil and pressed further Working electrode production method: Graphite powder: 100 parts by weight, 10 parts by weight After mixing PVDF (polyvinylidene difluoride), N was added to the resulting mixture.
-Methylpyrrolidone was added to dissolve PVDF sufficiently and applied on copper foil.

【0056】100 ℃で予備乾燥後、ロールプレスを用い
てプレスし、さらに、100 ℃、真空条件下でN−メチル
ピロリドンを除去し、作用極とした。 〔電解液:〕電解液としては、エチレンカーボネートお
よび炭酸ジエチルを1:1(重量比)で混合した溶媒に
1Mの過塩素酸リチウムを溶解した電解液を用いた。
After preliminary drying at 100 ° C., the roll was pressed using a roll press, and N-methylpyrrolidone was removed under vacuum conditions at 100 ° C. to obtain a working electrode. [Electrolyte:] As the electrolyte, 1 M lithium perchlorate was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1 (weight ratio).

【0057】〔充放電試験:〕上記の三極式電池を用
い、充電、放電とも電流密度:1.0mA/cm2 、電圧:2.5
〜0Vの条件下で定電流充放電試験を行った。得られた
試験結果を、表1に示す。 (実施例2)前記した実施例1において、仮焼温度を35
0 ℃とした以外は実施例1と同様の方法で黒鉛粉末を製
造した。
[Charge / Discharge Test:] Using the above three-electrode battery, current density: 1.0 mA / cm 2 and voltage: 2.5 for both charging and discharging.
A constant current charge / discharge test was performed under the conditions of 0 V. Table 1 shows the obtained test results. (Example 2) In Example 1 described above, the calcination temperature was set to 35.
A graphite powder was produced in the same manner as in Example 1 except that the temperature was changed to 0 ° C.

【0058】次に、得られた黒鉛粉末の真比重を、前記
した実施例1と同様の方法で測定した。また、得られた
黒鉛粉末を用い、前記した実施例1と同様の方法で三極
式電池を組み立て、実施例1と同一の条件下で定電流充
放電試験を行った。得られた試験結果を、表1に示す。
Next, the true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above. Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results.

【0059】(実施例3)前記した図1(c) の工程にし
たがって黒鉛粉末を製造した。すなわち、先ず、石炭ピ
ッチ(コールタールピッチ)を、500 ℃で5時間焼成し
た。次に、得られた炭素化物を、粉砕後、N2雰囲気の容
器中で3ケ月間保存した。
(Example 3) Graphite powder was produced according to the process shown in FIG. That is, first, coal pitch (coal tar pitch) was fired at 500 ° C. for 5 hours. Next, the obtained carbonized product was pulverized and stored for 3 months in a container of N 2 atmosphere.

【0060】次に、保存後の炭素化物(炭素粉末)を、
黒鉛化炉を用いて3000℃に加熱し黒鉛化処理を行い、黒
鉛粉末を製造した。次に、得られた黒鉛粉末の真比重
を、前記した実施例1と同様の方法で測定した。また、
得られた黒鉛粉末を用い、前記した実施例1と同様の方
法で三極式電池を組み立て、実施例1と同一の条件下で
定電流充放電試験を行った。
Next, the carbonized product (carbon powder) after storage is
The mixture was heated to 3000 ° C. using a graphitization furnace to perform a graphitization treatment, thereby producing a graphite powder. Next, the true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above. Also,
Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1.

【0061】得られた試験結果を、表1に示す。 (実施例4)前記した図1(d) の工程にしたがって黒鉛
粉末を製造した。すなわち、先ず、ナフタレンをHF/BF3
の存在下で重合して得られた下記に示すメソフェーズ含
有ピッチを60mesh以下に粉砕した。
Table 1 shows the test results obtained. (Example 4) Graphite powder was manufactured according to the above-described process of FIG. 1 (d). That is, first, naphthalene was converted to HF / BF 3
The mesophase-containing pitch shown below, obtained by polymerization in the presence of, was ground to 60 mesh or less.

【0062】得られた粉末の粒子形状は、粒状(非鱗片
状、非針状)であった。 〔メソフェーズ含有ピッチ:〕 TI(トルエン不溶分量): 75 % QI(キノリン不溶分量): 31 % 偏光顕微鏡で観察した異方性分率:100 面積%次に、得
られたメソフェーズ含有ピッチの粉末を、500 ℃で3時
間焼成した。
The particle shape of the obtained powder was granular (non-scale, non-needle). [Mesophase-containing pitch:] TI (toluene-insoluble content): 75% QI (quinoline-insoluble content): 31% Anisotropic fraction observed with a polarizing microscope: 100 area% And calcined at 500 ° C. for 3 hours.

【0063】次に、得られた炭素化物(炭素粉末)を、
前記した実施例1と同様の方法で、ガスシール性のラミ
ネート袋中に収納し、3ケ月間保存した。次に、保存後
の炭素化物(炭素粉末)を、黒鉛化炉を用いて3000℃に
加熱し黒鉛化処理を行い、黒鉛粉末を製造した。次に、
得られた黒鉛粉末の真比重を、前記した実施例1と同様
の方法で測定した。
Next, the obtained carbonized product (carbon powder) is
In the same manner as in Example 1 described above, it was stored in a gas-sealable laminate bag and stored for 3 months. Next, the carbonized material (carbon powder) after storage was heated to 3000 ° C. using a graphitization furnace to perform a graphitization treatment, thereby producing a graphite powder. next,
The true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above.

【0064】また、得られた黒鉛粉末を用い、前記した
実施例1と同様の方法で三極式電池を組み立て、実施例
1と同一の条件下で定電流充放電試験を行った。得られ
た試験結果を、表1に示す。 (実施例5)前記した実施例4において、炭素化物(炭
素粉末)をドラム缶中に収納し密閉して保存した以外は
実施例4と同様の方法で黒鉛粉末を製造した。
Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results. (Example 5) A graphite powder was produced in the same manner as in Example 4 except that the carbonized material (carbon powder) was stored in a drum and sealed and stored.

【0065】次に、得られた黒鉛粉末の真比重を、前記
した実施例1と同様の方法で測定した。また、得られた
黒鉛粉末を用い、前記した実施例1と同様の方法で三極
式電池を組み立て、実施例1と同一の条件下で定電流充
放電試験を行った。得られた試験結果を、表1に示す。
Next, the true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above. Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results.

【0066】(実施例6)前記した実施例4において、
炭素化物(炭素粉末)を、脱酸素剤と共にドラム缶中に
収納し密閉して保存した以外は実施例4と同様の方法で
黒鉛粉末を製造した。なお、脱酸素剤としては、エージ
レスS-2000〔商品名、三菱瓦斯化学(株)社製、主成
分:金属鉄粉〕を用いた。
(Embodiment 6) In Embodiment 4 described above,
A graphite powder was produced in the same manner as in Example 4, except that the carbonized product (carbon powder) was stored in a drum and sealed and stored together with a deoxidizer. In addition, Ageless S-2000 (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd., main component: metallic iron powder) was used as the oxygen scavenger.

【0067】次に、得られた黒鉛粉末の真比重を、前記
した実施例1と同様の方法で測定した。また、得られた
黒鉛粉末を用い、前記した実施例1と同様の方法で三極
式電池を組み立て、実施例1と同一の条件下で定電流充
放電試験を行った。得られた試験結果を、表1に示す。
Next, the true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above. Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results.

【0068】(比較例1)前記した実施例1において、
仮焼した炭素化物(炭素粉末)を、大気雰囲気中で3ケ
月間保存後、黒鉛化処理を行った以外は実施例1と同様
の方法で黒鉛粉末を製造した。次に、得られた黒鉛粉末
の真比重を、前記した実施例1と同様の方法で測定し
た。
(Comparative Example 1) In Example 1 described above,
A graphite powder was produced in the same manner as in Example 1 except that the calcined carbonized material (carbon powder) was stored in an air atmosphere for three months and then subjected to a graphitization treatment. Next, the true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above.

【0069】また、得られた黒鉛粉末を用い、前記した
実施例1と同様の方法で三極式電池を組み立て、実施例
1と同一の条件下で定電流充放電試験を行った。得られ
た試験結果を、表1に示す。 (比較例2)前記した実施例2において、仮焼した炭素
化物(炭素粉末)を、大気雰囲気中で3ケ月間保存後、
黒鉛化処理を行った以外は実施例2と同様の方法で黒鉛
粉末を製造した。
Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results. (Comparative Example 2) In Example 2, the calcined carbonized material (carbon powder) was stored in an air atmosphere for three months,
A graphite powder was produced in the same manner as in Example 2 except that the graphitization was performed.

【0070】次に、得られた黒鉛粉末の真比重を、前記
した実施例1と同様の方法で測定した。また、得られた
黒鉛粉末を用い、前記した実施例1と同様の方法で三極
式電池を組み立て、実施例1と同一の条件下で定電流充
放電試験を行った。得られた試験結果を、表1に示す。
Next, the true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above. Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results.

【0071】(比較例3)前記した実施例3において、
炭素化物(炭素粉末)を、大気雰囲気中で3ケ月間保存
後、黒鉛化処理を行った以外は実施例3と同様の方法で
黒鉛粉末を製造した。次に、得られた黒鉛粉末の真比重
を、前記した実施例1と同様の方法で測定した。
Comparative Example 3 In Example 3 described above,
A graphite powder was produced in the same manner as in Example 3 except that the carbonized material (carbon powder) was stored in an air atmosphere for three months and then subjected to a graphitization treatment. Next, the true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above.

【0072】また、得られた黒鉛粉末を用い、前記した
実施例1と同様の方法で三極式電池を組み立て、実施例
1と同一の条件下で定電流充放電試験を行った。得られ
た試験結果を、表1に示す。 (比較例4)前記した実施例4において、炭素化物(炭
素粉末)を、大気雰囲気中で3ケ月間保存後、黒鉛化処
理を行った以外は実施例4と同様の方法で黒鉛粉末を製
造した。
Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results. (Comparative Example 4) A graphite powder was produced in the same manner as in Example 4 except that the carbonized material (carbon powder) was stored in an air atmosphere for 3 months and then subjected to a graphitization treatment. did.

【0073】次に、得られた黒鉛粉末の真比重を、前記
した実施例1と同様の方法で測定した。また、得られた
黒鉛粉末を用い、前記した実施例1と同様の方法で三極
式電池を組み立て、実施例1と同一の条件下で定電流充
放電試験を行った。得られた試験結果を、表1に示す。
Next, the true specific gravity of the obtained graphite powder was measured in the same manner as in Example 1 described above. Using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1, and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results.

【0074】表1に示されるように、本発明によれば、
従来問題となっていたリチウムイオン二次電池の負極用
炭素材料としての黒鉛粉末の品質のばらつきを極めて効
果的に低減し、真比重が2.20以上の黒鉛粉末を安定して
製造することが可能となった。この結果、本発明によれ
ば、電池セル単位体積当たりの放電容量が高いリチウム
イオン二次電池を安定して製造することが可能となっ
た。
As shown in Table 1, according to the present invention,
It was possible to extremely effectively reduce the variation in the quality of graphite powder as a carbon material for negative electrodes of lithium ion secondary batteries, which had been a problem in the past, and to stably produce graphite powder with a true specific gravity of 2.20 or more. became. As a result, according to the present invention, it has become possible to stably manufacture a lithium ion secondary battery having a high discharge capacity per unit volume of a battery cell.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【発明の効果】本発明によれば、従来問題となっていた
リチウムイオン二次電池の負極用炭素材料としての黒鉛
粉末の品質のばらつきを極めて効果的に低減し、高真比
重の黒鉛粉末を安定して製造することが可能となった。
この結果、本発明によれば、電池セル単位体積当たりの
放電容量が高いリチウムイオン二次電池を安定して製造
することが可能となった。
According to the present invention, the variation in the quality of graphite powder as a carbon material for a negative electrode of a lithium ion secondary battery, which has been a problem in the past, can be extremely effectively reduced, and graphite powder having a high specific gravity can be obtained. It became possible to manufacture stably.
As a result, according to the present invention, it has become possible to stably manufacture a lithium ion secondary battery having a high discharge capacity per unit volume of a battery cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウムイオン二次電池の負極用炭素
材料の製造工程の例を示す工程図である。
FIG. 1 is a process chart showing an example of a process for producing a carbon material for a negative electrode of a lithium ion secondary battery of the present invention.

【図2】製造ロット毎の黒鉛粉末の真比重を示すグラフ
である。
FIG. 2 is a graph showing the true specific gravity of graphite powder for each production lot.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機物を炭素化した後、得られた炭素化
物に黒鉛化処理を施すリチウムイオン二次電池の負極用
炭素材料の製造方法において、黒鉛化処理を施す前の炭
素化物を実質的に酸素を含まない雰囲気中で保存し、該
保存後の炭素化物を黒鉛化処理することを特徴とするリ
チウムイオン二次電池の負極用炭素材料の製造方法。
In a method for producing a carbon material for a negative electrode of a lithium ion secondary battery in which an organic substance is carbonized and then the obtained carbonized substance is graphitized, the carbonized substance before the graphitizing treatment is substantially removed. A method for producing a carbon material for a negative electrode of a lithium ion secondary battery, comprising storing the carbonized material after storage in an atmosphere containing no oxygen.
JP33686899A 1999-11-26 1999-11-26 Method for producing carbon material for negative electrode of lithium ion secondary battery Expired - Fee Related JP4531174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33686899A JP4531174B2 (en) 1999-11-26 1999-11-26 Method for producing carbon material for negative electrode of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33686899A JP4531174B2 (en) 1999-11-26 1999-11-26 Method for producing carbon material for negative electrode of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2001155732A true JP2001155732A (en) 2001-06-08
JP4531174B2 JP4531174B2 (en) 2010-08-25

Family

ID=18303399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33686899A Expired - Fee Related JP4531174B2 (en) 1999-11-26 1999-11-26 Method for producing carbon material for negative electrode of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4531174B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106395810A (en) * 2016-08-26 2017-02-15 上海杉杉科技有限公司 Preparation method of graphite negative electrode material used for low graphitization degree HEV
CN109449367A (en) * 2018-10-09 2019-03-08 合肥国轩电池材料有限公司 A kind of lithium ion battery negative material and preparation method thereof
CN110265660A (en) * 2019-06-21 2019-09-20 内蒙古大学 A kind of preparation method of cell negative electrode material sulfonated gilsonite base hard charcoal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247486A (en) * 1988-03-30 1989-10-03 Kawasaki Steel Corp Prevention of deterioration of self-sinterable powdery carbonaceous material with time
JPH08298111A (en) * 1995-04-25 1996-11-12 Kureha Chem Ind Co Ltd Preserving method for carbon material for secondary battery electrode
JPH09251855A (en) * 1996-03-15 1997-09-22 Sumitomo Metal Ind Ltd Manufacture of carbon powder for negative electrode of lithium ton secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247486A (en) * 1988-03-30 1989-10-03 Kawasaki Steel Corp Prevention of deterioration of self-sinterable powdery carbonaceous material with time
JPH08298111A (en) * 1995-04-25 1996-11-12 Kureha Chem Ind Co Ltd Preserving method for carbon material for secondary battery electrode
JPH09251855A (en) * 1996-03-15 1997-09-22 Sumitomo Metal Ind Ltd Manufacture of carbon powder for negative electrode of lithium ton secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106395810A (en) * 2016-08-26 2017-02-15 上海杉杉科技有限公司 Preparation method of graphite negative electrode material used for low graphitization degree HEV
CN109449367A (en) * 2018-10-09 2019-03-08 合肥国轩电池材料有限公司 A kind of lithium ion battery negative material and preparation method thereof
CN109449367B (en) * 2018-10-09 2022-05-17 合肥国轩电池材料有限公司 Lithium ion battery cathode material and preparation method thereof
CN110265660A (en) * 2019-06-21 2019-09-20 内蒙古大学 A kind of preparation method of cell negative electrode material sulfonated gilsonite base hard charcoal

Also Published As

Publication number Publication date
JP4531174B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
Zheng et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene‐like nanosheets for Li‐S batteries
TWI357678B (en)
US8394530B2 (en) Carbon material and a process for its manufacture
KR100317697B1 (en) Carbonaceous electrode material for non-aqueous secondary battery
JP5563578B2 (en) Composite graphite particles and lithium secondary battery using the same
JP4161376B2 (en) Non-aqueous electrolyte secondary battery
JP5225690B2 (en) Composite graphite particles and lithium secondary battery using the same
JP6279713B2 (en) Carbonaceous molded body for electrode and method for producing the same
WO2000013245A1 (en) Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
JPWO2002093666A1 (en) Non-aqueous electrolyte secondary battery and method for producing cathode material thereof
EP1565404A2 (en) Active carbon, production method thereof and polarizable electrode
WO2004001880A1 (en) Electrode and cell comprising the same
Han et al. Optimization of the preparation conditions for pitch based anode to enhance the electrochemical properties of LIBs
KR20170046114A (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
JP3540085B2 (en) Carbonaceous material for battery electrode, method for producing the same, electrode structure, and battery
He et al. Sustainable Polyvinyl Chloride‐Derived Soft Carbon Anodes for Potassium‐Ion Storage: Electrochemical Behaviors and Mechanism
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP4531174B2 (en) Method for producing carbon material for negative electrode of lithium ion secondary battery
KR101860069B1 (en) Method of preparing negative electrode material from petroleum source and negative electrode material using the same
JP5636786B2 (en) A negative electrode material for a lithium secondary battery, a negative electrode for a lithium secondary battery using the same, and a lithium secondary battery.
Liang et al. High‐performance LiMn0. 8Fe0. 2PO4/C cathode prepared by using the toluene‐soluble component of pitch as a carbon source
JP2001006670A (en) Bulk mesophase and manufacture thereof
KR20170008056A (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
TWI701215B (en) Method for manufacturing negative-electrode material for li-ion secondary cell
JPWO2019171796A1 (en) Method for producing negative electrode material for lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Ref document number: 4531174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees