JP2001152810A - Energy-recovery apparatus for supercritical fluid thermal reaction plant - Google Patents

Energy-recovery apparatus for supercritical fluid thermal reaction plant

Info

Publication number
JP2001152810A
JP2001152810A JP33872499A JP33872499A JP2001152810A JP 2001152810 A JP2001152810 A JP 2001152810A JP 33872499 A JP33872499 A JP 33872499A JP 33872499 A JP33872499 A JP 33872499A JP 2001152810 A JP2001152810 A JP 2001152810A
Authority
JP
Japan
Prior art keywords
supercritical fluid
thermal reaction
fluid thermal
energy recovery
plant according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33872499A
Other languages
Japanese (ja)
Inventor
Atsuo Watanabe
敦雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33872499A priority Critical patent/JP2001152810A/en
Publication of JP2001152810A publication Critical patent/JP2001152810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

PROBLEM TO BE SOLVED: To provide an energy-recovery apparatus for a supercritical fluid thermal reaction plant for recovering the energy of a supercritical fluid after reaction by performing an oxidizing combustion reaction with fuel and pure oxygen in supercritical water. SOLUTION: In this energy-recovery apparatus for a supercritical fluid thermal reaction plant, a supercritical fluid thermal reaction part 2, an energy recovering part 3 and a condenser 15 are assembled with a fuel-supplying part 1, an oxidizing combustion reaction is conducted by fuel from the fuel-supplying part 1 and oxygen in the supercritical fluid thermal reaction part 2 to generate a supercritical fluid. After the energy of the supercritical fluid generated from the supercritical fluid thermal reaction part 2 is converted into power by the energy-recovering part 3, it is condensed by the condenser 15, and is returned to a raw fuel reserve tank 5 of the fuel-supplying part 1 as sodium sulfation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界流体で低品
位の燃料を酸化燃焼反応させ、酸化燃焼反応後の超臨界
流体の持つ熱エネルギを効果的に回収・活用する超臨界
流体熱反応プラントのエネルギ回収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical fluid thermal reaction in which a low-grade fuel is oxidized and combusted with a supercritical fluid, and the heat energy of the supercritical fluid after the oxidized combustion reaction is effectively recovered and utilized. The present invention relates to a plant energy recovery device.

【0002】[0002]

【従来の技術】最近の環境分野では、超臨界流体の属性
を巧みに利用して、難分解性物質、例えばイオン交換樹
脂や塩化ビニール等を分解したり、有害化合物、例えば
PCB、フロン、ダイオキシン等を無害化させる研究が
進められており、その実用化への途が期待されている。
2. Description of the Related Art In the recent environmental field, the properties of supercritical fluids are skillfully used to decompose hardly decomposable substances, such as ion-exchange resins and vinyl chloride, and harmful compounds, such as PCBs, chlorofluorocarbons, and dioxins. Research to detoxify such substances has been promoted, and it is expected that they will be put to practical use.

【0003】ここに、超臨界流体とは、臨界圧力22.
04MPa、臨界温度374.1℃以上の状態における
水を含む流体をいう。この超臨界流体は、有害物を溶解
させる溶解能力が早く、かつ高い反面、塩等の無機物に
対し、溶解能力が著しく低い属性を持っている。
[0003] Here, the supercritical fluid is defined as a critical pressure 22.
A fluid containing water at a temperature of 04 MPa and a critical temperature of 374.1 ° C. or higher. This supercritical fluid has a high dissolving ability for dissolving harmful substances and has a high property, but has an extremely low dissolving ability for inorganic substances such as salts.

【0004】このような属性を持った超臨界流体を巧み
に利用し、溶融させたプラスチック材に超臨界流体を加
え、超臨界状態でプラスチックを油化し、その油状流体
を回収する技術が、例えば特開平6−279762号公
報や特開平10−67991号公報などに開示されてい
る。
[0004] A technique of skillfully utilizing a supercritical fluid having such an attribute, adding a supercritical fluid to a molten plastic material, liquefying the plastic in a supercritical state, and recovering the oily fluid is known, for example. It is disclosed in JP-A-6-279762 and JP-A-10-67991.

【0005】[0005]

【発明が解決しようとする課題】ところで、発電プラン
トで、例えばLNG(液化天然ガス)や良質の石炭等高
品位の化石燃料の枯渇を心配して、次世代用に、例えば
低カロリーの石炭等の低品位燃料を使用した、例えば石
炭ガス化コンバインドサイクル発電プラントがテスト運
転に入っており、実用化に近付きつつある。
However, in a power plant, there is a concern that high-grade fossil fuels such as LNG (liquefied natural gas) and high-quality coal will be depleted. For example, a coal gasification combined cycle power plant using a low-grade fuel of No. 1 has entered a test operation and is approaching practical use.

【0006】石炭ガス化コンバインドサイクル発電プラ
ントは、低品位の石炭を微粉炭化し、その微粉炭をガス
化炉でガス化し、そのガス燃料を脱硫・脱塵してガスタ
ービン燃焼器に供給し、燃焼ガスを生成するものである
が、ガスタービン燃焼器に必要なガス燃料が時間当り数
百トンと膨大な量になっている。このため、ガス化炉で
生成されたガス燃料に含まれる硫黄分や塵埃物を除去す
る脱硫装置や集塵装置の容量も必然的に大規模になり、
コスト的に高価になる不具合があった。
[0006] A coal gasification combined cycle power generation plant pulverizes low-grade coal, gasifies the pulverized coal in a gasifier, desulfurizes and dedusts the gaseous fuel, and supplies it to a gas turbine combustor. Although it generates combustion gas, the amount of gas fuel required for a gas turbine combustor is enormous, several hundred tons per hour. For this reason, the capacity of desulfurizers and dust collectors that remove sulfur and dust contained in the gas fuel generated in the gasifier becomes inevitably large.
There was a problem that it became expensive in terms of cost.

【0007】また、石炭ガス化コンバインドサイクル発
電プラントは、脱硫装置や集塵装置を設け、ガス化炉か
ら生成されるガス燃料に含まれる硫黄分や塵埃を除去し
ていても、現状の技術では充分に除去できるわけではな
く、ガスタービンから排出される排ガスにNOxやSO
x等が比較的多く含まれており、環境汚染の要因になっ
ていた。
[0007] Further, even if a coal gasification combined cycle power plant is provided with a desulfurization device and a dust collection device to remove sulfur and dust contained in gas fuel generated from a gasification furnace, the current technology does not. It cannot be sufficiently removed, and NOx or SO
x and the like were contained in a relatively large amount, which caused environmental pollution.

【0008】このため、発電プラントの分野では、脱硫
装置等に代ってNOxやSOx等の環境汚染物が確実に
除去できる新たな技術の実現が望まれていた。
For this reason, in the field of power plants, it has been desired to realize a new technology capable of reliably removing environmental pollutants such as NOx and SOx in place of a desulfurization device and the like.

【0009】本発明は、このような背景技術に基づいて
なされたもので、環境汚染の要因となるNOxやSOx
等の環境汚染物を超臨界流体を用いて確実に分解・除去
するとともに、NOxやSOx等と反応後の超臨界流体
の持つ熱エネルギを効果的に回収・活用する超臨界流体
熱反応プラントのエネルギ回収装置を提供することを目
的とする。
The present invention has been made based on such background art, and NOx and SOx which cause environmental pollution are considered.
A supercritical fluid thermal reaction plant that reliably decomposes and removes environmental pollutants such as supercritical fluids using a supercritical fluid, and effectively recovers and uses the thermal energy of the supercritical fluid after reacting with NOx, SOx, etc. An object is to provide an energy recovery device.

【0010】[0010]

【課題を解決するための手段】本発明に係る超臨界流体
熱反応プラントのエネルギ回収装置は、上記目的を達成
するため、請求項1に記載したように、燃料供給部から
の燃料と酸素供給系からの酸素とで酸化燃焼反応させて
超臨界流体を発生させる超臨界流体熱反応部と、この超
臨界流体熱反応部から発生した超臨界流体のエネルギを
動力に変換し、その動力を上記燃料供給部のブースタポ
ンプ、原燃料移送ポンプおよび酸素供給系の圧縮機のそ
れぞれに与えるエネルギ回収部と、このエネルギ回収部
から排出させた超臨界流体を凝縮水にして上記燃料供給
部の原燃料貯蔵タンクに戻す凝縮器とを備えたものであ
る。
According to a first aspect of the present invention, there is provided an energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention. A supercritical fluid thermal reaction section that generates a supercritical fluid by an oxidative combustion reaction with oxygen from the system, and converts the energy of the supercritical fluid generated from the supercritical fluid thermal reaction section into power, and converts the power to the power described above. An energy recovery unit to be applied to each of a booster pump, a raw fuel transfer pump, and a compressor of an oxygen supply system of a fuel supply unit, and a supercritical fluid discharged from the energy recovery unit to condensed water to convert the raw fuel to the fuel supply unit And a condenser for returning to the storage tank.

【0011】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項2に記載したように、超臨界流体熱反応部
は、筒状に形成した反応容器と、この反応容器の外側に
同心状に形成した筒状の蒸気発生部とで構成したもので
ある。
Further, in order to achieve the above object, the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention, wherein the supercritical fluid thermal reaction section is formed in a cylindrical shape. And a cylindrical steam generating section formed concentrically outside the reaction vessel.

【0012】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項3に記載したように、超臨界流体熱反応部
は、燃料供給部からの燃料と酸素供給系からの酸素とで
酸化燃焼反応させて超臨界流体を発生させた後に生成し
た固形物を貯蔵する固形残渣物貯蔵タンクを備えたもの
である。
Further, in order to achieve the above object, the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention is configured such that the supercritical fluid thermal reaction section is connected to the fuel supply section. And a solid residue storage tank for storing a solid generated after an oxidative combustion reaction between the fuel and oxygen from the oxygen supply system to generate a supercritical fluid.

【0013】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項4に記載したように、燃料は、スラリー状の
低品位石炭であることを特徴とするものである。
[0013] In order to achieve the above object, in the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention, the fuel is a slurry-like low-grade coal. It is characterized by the following.

【0014】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項5に記載したように、蒸気発生部は、蒸気タ
ービンに蒸気を供給する蒸気口と、上記蒸気タービンで
膨張仕事をさせて発電機を駆動する蒸気を凝縮させて給
水にし、その給水を受ける給水口と凝縮器からの中和溶
液を受ける中和溶液口とを備えたものである。
According to a fifth aspect of the present invention, there is provided an energy recovery apparatus for a supercritical fluid thermal reaction plant, wherein a steam generator supplies steam to a steam turbine. A steam port, which is provided with a water supply port for receiving the water supply and a neutralization solution port for receiving the neutralization solution from the condenser by condensing steam for driving the generator by performing expansion work in the steam turbine to supply water. Things.

【0015】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項6に記載したように、エネルギ回収部は、超
臨界流体熱反応部からの超臨界流体のエネルギを動力に
変換するスクリューエンジンであることを特徴とするも
のである。
According to a sixth aspect of the present invention, an energy recovery apparatus for a thermal reaction plant for a supercritical fluid according to the present invention comprises: A screw engine that converts the energy of the supercritical fluid into power.

【0016】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項7に記載したように、スクリューエンジン
は、超臨界流体の流れに沿ってカスケード状に配置した
高圧スクリューエンジン、中圧スクリューエンジン、低
圧スクリューエンジンとのそれぞれに区分けしたもので
ある。
According to a seventh aspect of the present invention, there is provided an energy recovery apparatus for a thermal reaction plant for a supercritical fluid according to the present invention. It is divided into a high-pressure screw engine, a medium-pressure screw engine, and a low-pressure screw engine arranged in a cascade.

【0017】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項8に記載したように、高圧スクリューエンジ
ンは、燃料供給部の原燃料移送ポンプを軸動力伝達部で
接続させたものである。
In order to achieve the above object, the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention is configured such that the high-pressure screw engine is provided with a fuel supply unit for transferring raw fuel. The pump is connected by a shaft power transmission unit.

【0018】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項9に記載したように、中圧スクリューエンジ
ンは、燃料供給部のブースタポンプを軸動力伝達部で接
続させたものである。
According to a ninth aspect of the present invention, there is provided an energy recovery apparatus for a supercritical fluid thermal reaction plant, the medium pressure screw engine comprising a booster pump for a fuel supply unit. Are connected by a shaft power transmission unit.

【0019】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項10に記載したように、低圧スクリューエン
ジンは、酸素供給系の圧縮機および発電機のうち、少な
くとも一方を軸動力伝達部で接続させたものである。
Further, in order to achieve the above object, the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention is configured such that the low-pressure screw engine comprises an oxygen supply system compressor and At least one of the generators is connected by a shaft power transmission unit.

【0020】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項11に記載したように、高圧スクリューエン
ジン、中圧スクリューエンジンおよび低圧スクリューエ
ンジンは、それぞれの入口側に超臨界流体熱反応部から
供給される超臨界流体の圧力を調整する圧力調整弁を設
けたものである。
In order to achieve the above object, the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention has a high-pressure screw engine, a medium-pressure screw engine and a low-pressure screw engine. Has a pressure regulating valve for regulating the pressure of the supercritical fluid supplied from the supercritical fluid thermal reaction section at each inlet side.

【0021】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項12に記載したように、凝縮器は、エネルギ
回収部から供給される超臨界流体を中和溶液で凝縮させ
る熱交換部を収容したものである。
In order to achieve the above object, in the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention, the condenser includes a superconducting fluid supplied from an energy recovery section. It contains a heat exchange unit for condensing a critical fluid with a neutralizing solution.

【0022】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項13に記載したように、中和溶液は、水酸化
ナトリウムである。
Further, in order to achieve the above object, in the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention, the neutralizing solution is sodium hydroxide.

【0023】また、本発明に係る超臨界流体熱反応プラ
ントのエネルギ回収装置は、上記目的を達成するため
に、請求項14に記載したように、凝縮器から燃料供給
部の原燃料貯蔵タンクに戻す凝縮水は、硫酸ナトリウム
を含むものである。
Further, in order to achieve the above object, the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention, as described in claim 14, transfers the energy from the condenser to the raw fuel storage tank of the fuel supply section. The condensed water to be returned contains sodium sulfate.

【0024】[0024]

【発明の実施の形態】以下、本発明に係る超臨界流体熱
反応プラントのエネルギ回収装置の実施の形態を図面お
よび図面に付した符号を引用して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of an energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

【0025】図1は、本発明に係る超臨界流体熱反応プ
ラントのエネルギ回収装置の実施形態を示す概略系統図
である。
FIG. 1 is a schematic system diagram showing an embodiment of an energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention.

【0026】本実施形態に係る超臨界流体熱反応プラン
トは、燃料供給部1および超臨界流体熱反応部2に、エ
ネルギ回収部3および凝縮器15を組み合せた構成にな
っている。
The supercritical fluid thermal reaction plant according to the present embodiment has a configuration in which an energy recovery unit 3 and a condenser 15 are combined with a fuel supply unit 1 and a supercritical fluid thermal reaction unit 2.

【0027】燃料供給部1は、原燃料製造タンク4、原
燃料貯蔵タンク5、ブースタポンプ6、原燃料移送ポン
プ7を備え、原燃料製造タンク4で製造した、例えば低
品位の石炭をスラリー状にして原燃料貯蔵タンク5に貯
蔵させ、その貯蔵させたスラリー状の低品位石炭をブー
スタポンプ6および原燃料移送ポンプ7で昇圧させて超
臨界流体熱反応部2に供給している。
The fuel supply unit 1 includes a raw fuel production tank 4, a raw fuel storage tank 5, a booster pump 6, and a raw fuel transfer pump 7, and for example, a low-grade coal produced in the raw fuel production tank 4 is slurried. The raw slurry is stored in the raw fuel storage tank 5, and the stored low-grade slurry-like coal is pressurized by the booster pump 6 and the raw fuel transfer pump 7 and supplied to the supercritical fluid thermal reactor 2.

【0028】また、燃料供給部1は、酸素供給系8と圧
縮機9とを備え、酸素供給系8からの純酸素を圧縮機9
で高圧化し、その高圧酸素を超臨界流体熱反応部2に供
給している。
The fuel supply unit 1 includes an oxygen supply system 8 and a compressor 9, and supplies pure oxygen from the oxygen supply system 8 to the compressor 9.
The high pressure oxygen is supplied to the supercritical fluid thermal reaction section 2.

【0029】一方、超臨界流体熱反応部2は、燃料供給
部1から供給された、例えばスラリー状の低品位石炭と
酸素供給系8からの高圧純酸素とで酸化燃焼反応させ超
臨界流体にして高熱を発生させる筒状の反応容器10
と、反応容器10の外側に同心的に形成された筒状の蒸
気発生部11を備えている。
On the other hand, the supercritical fluid thermal reaction section 2 performs an oxidative combustion reaction between, for example, slurry-like low-grade coal supplied from the fuel supply section 1 and high-pressure pure oxygen from the oxygen supply system 8 to form a supercritical fluid. Reaction vessel 10 which generates high heat by heating
And a cylindrical steam generating section 11 formed concentrically outside the reaction vessel 10.

【0030】また、蒸気発生部11は、発電機を駆動す
る蒸気タービン(共に図示せず)に蒸気を供給する蒸気
口13、蒸気タービンからの給水を受ける給水口14お
よび凝縮器15の中和溶液供給ライン16からの中和溶
液を受ける中和溶液口17をそれぞれ備えている。
The steam generator 11 is provided with a steam port 13 for supplying steam to a steam turbine (both not shown) for driving a generator, a water supply port 14 for receiving water from the steam turbine, and a condenser 15 for neutralization. A neutralizing solution port 17 for receiving a neutralizing solution from a solution supply line 16 is provided.

【0031】また、超臨界流体熱反応部2は、反応容器
10でスラリー状の低品位石炭と高圧純酸素とを酸化燃
焼反応させた後に生成された固形物を貯蔵する固形残渣
物貯蔵タンク12を備えている。
The supercritical fluid thermal reaction section 2 includes a solid residue storage tank 12 for storing solids generated after oxidizing and combusting low-grade slurry and high-pressure pure oxygen in a reaction vessel 10. It has.

【0032】他方、エネルギ回収部3は、超臨界流体熱
反応部2でスラリー状の低品位石炭と高圧純酸素とを酸
化燃焼反応させる際に生成された超臨界流体を動力に変
換させた後、凝縮器15に供給している。
On the other hand, the energy recovery unit 3 converts the supercritical fluid generated when the slurry-like low-grade coal and high-pressure pure oxygen are subjected to an oxidative combustion reaction in the supercritical fluid thermal reaction unit 2 into power. , To the condenser 15.

【0033】凝縮器15は、筒状の容器18に中和溶液
注入口19、不凝縮流体排出口20、凝縮流体排出口2
1を設けるとともに、その容器18内部に熱交換部22
を収容し、エネルギ回収部3からの超臨界流体と中和溶
液注入口19からの例えば水酸化ナトリウム等の中和溶
液とを熱交換部22で熱交換させ、超臨界流体を凝縮さ
せた後、硫酸ナトリウム(ぼう晶)として燃料供給部1
の原燃料貯蔵タンク5に戻すようになっている。
The condenser 15 is provided with a neutralizing solution inlet 19, a non-condensable fluid outlet 20, and a condensed fluid outlet 2 in a cylindrical container 18.
1 and a heat exchange part 22 inside the container 18.
After the supercritical fluid from the energy recovery unit 3 and the neutralization solution such as sodium hydroxide from the neutralization solution inlet 19 are heat-exchanged in the heat exchange unit 22 to condense the supercritical fluid. , Fuel supply unit 1 as sodium sulfate
The raw fuel storage tank 5 is returned.

【0034】また、凝縮器15は、熱交換部22で超臨
界流体を凝縮させる際に生成される流体を、不凝縮流体
と凝縮流体とに区分けし、不凝縮流体を不凝縮流体排出
口20を介して他の機器に、また凝縮流体を凝縮流体排
出口21を介して他の別の機器にそれぞれ供給するとと
もに、水酸化ナトリウム等の中和溶液を熱交換部22で
熱交換させた後、中和溶液供給ライン16を介して超臨
界流体熱反応部2の蒸気発生部11に供給し、蒸気を中
和させている。
The condenser 15 separates a fluid generated when the supercritical fluid is condensed in the heat exchange section 22 into a non-condensable fluid and a condensed fluid, and discharges the non-condensable fluid into the non-condensable fluid outlet 20. After supplying the condensed fluid to another device via the condensed fluid discharge port 21 and the neutralized solution such as sodium hydroxide in the heat exchange unit 22, Is supplied to the steam generation section 11 of the supercritical fluid thermal reaction section 2 through the neutralization solution supply line 16 to neutralize the steam.

【0035】一方、超臨界流体熱反応部2から発生する
超臨界流体をエネルギ源とするエネルギ回収部3は、超
臨界流体の流れに沿ってカスケード状に配置した高圧ス
クリューエンジン23、中圧スクリューエンジン24、
低圧スクリューエンジン25を備え、超臨界流体の圧力
を大気圧まで降下させる間に動力を取り出し、その動力
を例えば回転軸等の軸動力伝達部26を介して燃料供給
部1のブースタポンプ6、原燃料移送ポンプ7、圧縮機
9のそれぞれに与えるようになっている。なお、高圧ス
クリューエンジン23は原燃料移送ポンプ7と、中圧ス
クリューエンジン24はブースタポンプ6と、低圧スク
リューエンジン25は圧縮機9と、それぞれ軸動力伝達
部26を介して機械的に接続している。また、本実施形
態は、高圧スクリューエンジン23、中圧スクリューエ
ンジン24、低圧スクリューエンジン25のそれぞれを
ブースタポンプ6、原燃料移送ポンプ7、圧縮機9のそ
れぞれに機械的に接続させたが、この例に限らず、図2
に示すように発電機27を軸直結させてもよい。
On the other hand, the energy recovery unit 3 using the supercritical fluid generated from the supercritical fluid thermal reaction unit 2 as an energy source includes a high-pressure screw engine 23, a medium-pressure screw engine 23 arranged in a cascade along the flow of the supercritical fluid. Engine 24,
A low-pressure screw engine 25 is provided, which extracts power while reducing the pressure of the supercritical fluid to atmospheric pressure, and transfers the power via a shaft power transmission unit 26 such as a rotary shaft to the booster pump 6 of the fuel supply unit 1. The fuel is supplied to each of the fuel transfer pump 7 and the compressor 9. The high-pressure screw engine 23 is mechanically connected to the raw fuel transfer pump 7, the medium-pressure screw engine 24 is connected to the booster pump 6, and the low-pressure screw engine 25 is connected to the compressor 9 via a shaft power transmission unit 26. I have. In this embodiment, the high-pressure screw engine 23, the medium-pressure screw engine 24, and the low-pressure screw engine 25 are mechanically connected to the booster pump 6, the raw fuel transfer pump 7, and the compressor 9, respectively. Not limited to the example, FIG.
The generator 27 may be directly connected to the shaft as shown in FIG.

【0036】また、エネルギ回収部3は、図2に示すよ
うに、超臨界流体の流れに沿ってカスケード状に配置し
た高圧スクリューエンジン23、中圧スクリューエンジ
ン24、低圧スクリューエンジン25のそれぞれの入口
側に圧力調整弁28a,28b,28cを設け、原燃料
移送ポンプ7、ブースタポンプ6、圧縮機9のそれぞれ
の負荷に応じて超臨界流体の圧力を調整するようになっ
ている。
As shown in FIG. 2, the energy recovery unit 3 has inlets of a high-pressure screw engine 23, a medium-pressure screw engine 24, and a low-pressure screw engine 25 arranged in a cascade along the flow of the supercritical fluid. Pressure regulating valves 28a, 28b, 28c are provided on the side, and the pressure of the supercritical fluid is adjusted according to the loads of the raw fuel transfer pump 7, the booster pump 6, and the compressor 9.

【0037】このような構成を備えた超臨界流体熱反応
プラントのエネルギ回収装置において、燃料供給部1か
らの、例えばスラリー状の低品位石炭と高圧酸素とは、
超臨界流体熱反応部2の反応容器10で酸化燃焼反応
し、その際に発生する超臨界流体の超高温熱により硫黄
や窒素等の環境汚染物質を分解して取り除くとともに、
その超高温熱により蒸気発生部11で給水口14から案
内され給水を蒸発させて蒸気にし、その蒸気を蒸気口1
3から蒸気タービン(図示せず)に供給して膨張仕事を
させ、その際、発生する動力で発電機(図示せず)を駆
動するようになっている。
In the energy recovery apparatus of the supercritical fluid thermal reaction plant having such a configuration, for example, slurry-like low-grade coal and high-pressure oxygen from the fuel supply unit 1
Oxidation and combustion reaction takes place in the reaction vessel 10 of the supercritical fluid thermal reaction section 2, and environmental pollutants such as sulfur and nitrogen are decomposed and removed by the ultra-high temperature heat of the supercritical fluid generated at that time.
The super high temperature heat guides the steam from the water supply port 14 in the steam generation unit 11 to evaporate the water supply into steam.
3 to a steam turbine (not shown) to perform expansion work, and the generated power drives a generator (not shown).

【0038】また、超臨界流体熱反応部2の反応容器1
0で発生した超臨界流体は、エネルギ回収部3の高圧ス
クリューエンジン23、中圧スクリューエンジン24、
低圧スクリューエンジン25のそれぞれを順番に流れる
間に圧力調整弁28a,28b,28cで圧力調整して
動力を発生させ、その動力を駆動源として原燃料移送ポ
ンプ7、ブースタポンプ6、圧縮機9および発電機27
を回転駆動させている。
The reaction vessel 1 of the supercritical fluid thermal reaction section 2
The supercritical fluid generated at 0 is supplied to the high-pressure screw engine 23, the medium-pressure screw engine 24,
While flowing through each of the low-pressure screw engines 25 in order, pressure is adjusted by the pressure adjusting valves 28a, 28b, and 28c to generate power, and the power is used as a drive source for the raw fuel transfer pump 7, the booster pump 6, the compressor 9, and Generator 27
Is driven to rotate.

【0039】また、エネルギ回収部3で動力を発生させ
た超臨界流体は、凝縮器15の熱交換部22で例えば水
酸化ナトリウムの中和溶液と熱交換して凝縮した後、例
えば硫酸ナトリウム(ぼう硝)として再び燃料供給部1
の原燃料貯蔵タンク5に戻され、燃料の一部として再活
用される。
The supercritical fluid generated by the energy recovery unit 3 is condensed by heat exchange with, for example, a neutralized solution of sodium hydroxide in the heat exchange unit 22 of the condenser 15 and then condensed with, for example, sodium sulfate ( Fuel supply unit 1 again
Is returned to the raw fuel storage tank 5 and reused as part of the fuel.

【0040】このように、本実施形態は、燃料供給部1
から、例えばスラリー状の低品位石炭等の燃料と高圧酸
素とを超臨界流体熱反応部2に供給し、ここで酸化燃焼
反応する際に発生する超臨界流体で硫黄や窒素等の環境
汚染物質を分解除去するとともに、その超臨界流体をエ
ネルギ回収部3に供給して動力を発生させ、その動力で
原燃料移送ポンプ7、ブースタポンプ6、圧縮機9およ
び発電機27を回転駆動させたので、エネルギの有効活
用を図ることができ、プラント熱効率を向上させて燃料
消費を少なくさせることができる。
As described above, in the present embodiment, the fuel supply unit 1
For example, a fuel such as low-grade coal in the form of slurry and high-pressure oxygen are supplied to the supercritical fluid thermal reaction section 2, where the supercritical fluid generated during the oxidative combustion reaction is an environmental pollutant such as sulfur or nitrogen. And the supercritical fluid was supplied to the energy recovery unit 3 to generate power, and the power used to drive the raw fuel transfer pump 7, booster pump 6, compressor 9 and generator 27 to rotate. In addition, it is possible to effectively utilize energy, improve the thermal efficiency of the plant, and reduce fuel consumption.

【0041】[0041]

【発明の効果】以上の説明のとおり、本発明に係る超臨
界流体熱反応プラントのエネルギ回収装置は、低品位燃
料と高圧酸素とで酸化燃焼反応させる際、発生する超臨
界流体で燃料に含まれている硫黄等の環境汚染物質を分
解して取り除くとともに、その熱エネルギで動力を発生
させ、その動力を燃料供給部の原燃料移送ポンプ、ブー
スタポンプ、圧縮機、発電機のそれぞれに与えて回転駆
動させたので、エネルギの有効活用を図ってプラント効
率を向上させることができる。
As described above, the energy recovery apparatus for a supercritical fluid thermal reaction plant according to the present invention includes the supercritical fluid generated in the oxidative combustion reaction between low-grade fuel and high-pressure oxygen, which is included in the fuel. It decomposes and removes environmental pollutants such as sulfur, and generates power using the thermal energy, and supplies the power to the raw fuel transfer pump, booster pump, compressor, and generator of the fuel supply unit. Since the rotary drive is performed, the energy can be effectively used, and the plant efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超臨界流体熱反応プラントのエネ
ルギ回収装置を示す概略系統図。
FIG. 1 is a schematic system diagram showing an energy recovery device of a supercritical fluid thermal reaction plant according to the present invention.

【図2】図1に示すエネルギ回収部の部分拡大図。FIG. 2 is a partially enlarged view of an energy recovery unit shown in FIG.

【符号の説明】[Explanation of symbols]

1 燃料供給部 2 超臨界流体熱反応部 3 エネルギ回収部 4 原燃料製造タンク 5 原燃料貯蔵タンク 6 ブースタポンプ 7 原燃料移送ポンプ 8 酸素供給系 9 圧縮機 10 反応容器 11 蒸気発生部 12 固形残渣物貯蔵タンク 13 蒸気口 14 給水口 15 凝縮器 16 中和溶液供給ライン 17 中和溶液口 18 容器 19 中和溶液注入口 20 不凝縮流体排出口 21 凝縮流体排出口 22 熱交換部 23 高圧スクリューエンジン 24 中圧スクリューエンジン 25 低圧スクリューエンジン 26 軸動力伝達部 27 発電機 28a,28b,28c 圧力調整弁 DESCRIPTION OF SYMBOLS 1 Fuel supply part 2 Supercritical fluid thermal reaction part 3 Energy recovery part 4 Raw fuel production tank 5 Raw fuel storage tank 6 Booster pump 7 Raw fuel transfer pump 8 Oxygen supply system 9 Compressor 10 Reaction vessel 11 Steam generation part 12 Solid residue Material storage tank 13 Steam port 14 Water supply port 15 Condenser 16 Neutralizing solution supply line 17 Neutralizing solution port 18 Container 19 Neutralizing solution inlet 20 Non-condensable fluid outlet 21 Condensed fluid outlet 22 Heat exchanger 23 High pressure screw engine 24 Medium-pressure screw engine 25 Low-pressure screw engine 26 Shaft power transmission unit 27 Generator 28a, 28b, 28c Pressure regulating valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 3/20 B09B 3/00 304L ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02C 3/20 B09B 3/00 304L

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 燃料供給部からの燃料と酸素供給系から
の酸素とで酸化燃焼反応させて超臨界流体を発生させる
超臨界流体熱反応部と、この超臨界流体熱反応部から発
生した超臨界流体のエネルギを動力に変換し、その動力
を上記燃料供給部のブースタポンプ、原燃料移送ポンプ
および酸素供給系の圧縮機のそれぞれに与えるエネルギ
回収部と、このエネルギ回収部から排出させた超臨界流
体を凝縮水にして上記燃料供給部の原燃料貯蔵タンクに
戻す凝縮器とを備えたことを特徴とする超臨界流体熱反
応プラントのエネルギ回収装置。
1. A supercritical fluid thermal reaction unit that generates a supercritical fluid by an oxidative combustion reaction between fuel from a fuel supply unit and oxygen from an oxygen supply system, and a supercritical fluid thermal reaction unit generated from the supercritical fluid thermal reaction unit. An energy recovery unit that converts the energy of the critical fluid into power and supplies the power to each of the booster pump, the raw fuel transfer pump, and the compressor of the oxygen supply system of the fuel supply unit. A condenser for converting the critical fluid into condensed water and returning the condensed water to the raw fuel storage tank of the fuel supply unit.
【請求項2】 超臨界流体熱反応部は、筒状に形成した
反応容器と、この反応容器の外側に同心状に形成した筒
状の蒸気発生部とで構成したことを特徴とする請求項1
記載の超臨界流体熱反応プラントのエネルギ回収装置。
2. The supercritical fluid thermal reaction section comprises a cylindrical reaction vessel and a cylindrical steam generation section formed concentrically outside the reaction vessel. 1
An energy recovery apparatus for a supercritical fluid thermal reaction plant according to claim 1.
【請求項3】 超臨界流体熱反応部は、燃料供給部から
の燃料と酸素供給系からの酸素とで酸化燃焼反応させて
超臨界流体を発生させた後に生成した固形物を貯蔵する
固形残渣物貯蔵タンクを備えたことを特徴とする請求項
1記載の超臨界流体熱反応プラントのエネルギ回収装
置。
3. The supercritical fluid thermal reaction unit is a solid residue that stores a solid produced after an oxidative combustion reaction between fuel from a fuel supply unit and oxygen from an oxygen supply system to generate a supercritical fluid. The energy recovery apparatus for a supercritical fluid thermal reaction plant according to claim 1, further comprising a material storage tank.
【請求項4】 燃料は、スラリー状の低品位石炭である
ことを特徴とする請求項1または3記載の超臨界流体熱
反応プラントのエネルギ回収装置。
4. The energy recovery device for a supercritical fluid thermal reaction plant according to claim 1, wherein the fuel is low-grade slurry-like coal.
【請求項5】 蒸気発生部は、蒸気タービンに蒸気を供
給する蒸気口と、上記蒸気タービンで膨張仕事をさせて
発電機を駆動する蒸気を凝縮させて給水にし、その給水
を受ける給水口と、凝縮器からの中和溶液を受ける中和
溶液口とを備えたことを特徴とする請求項2記載の超臨
界流体熱反応プラントのエネルギ回収装置。
5. A steam generator, comprising: a steam port for supplying steam to the steam turbine; a steam port for performing expansion work in the steam turbine to condense steam for driving the generator to supply water; 3. The energy recovery apparatus for a supercritical fluid thermal reaction plant according to claim 2, further comprising a neutralization solution port for receiving a neutralization solution from the condenser.
【請求項6】 エネルギ回収部は、超臨界流体熱反応部
からの超臨界流体のエネルギを動力に変換するスクリュ
ーエンジンであることを特徴とする請求項1記載の超臨
界流体熱反応プラントのエネルギ回収装置。
6. The energy for a supercritical fluid thermal reaction plant according to claim 1, wherein the energy recovery unit is a screw engine that converts the energy of the supercritical fluid from the supercritical fluid thermal reaction unit into power. Collection device.
【請求項7】 スクリューエンジンは、超臨界流体の流
れに沿ってカスケード状に配置した高圧スクリューエン
ジン、中圧スクリューエンジン、低圧スクリューエンジ
ンとのそれぞれに区分けしたことを特徴とする請求項6
記載の超臨界流体熱反応プラントのエネルギ回収装置。
7. The screw engine is classified into a high-pressure screw engine, a medium-pressure screw engine, and a low-pressure screw engine arranged in a cascade along the flow of the supercritical fluid.
An energy recovery apparatus for a supercritical fluid thermal reaction plant according to claim 1.
【請求項8】 高圧スクリューエンジンは、燃料供給部
の原燃料移送ポンプを軸動力伝達部で接続させたことを
特徴とする請求項7記載の超臨界流体熱反応プラントの
エネルギ回収装置。
8. The energy recovery apparatus for a supercritical fluid thermal reaction plant according to claim 7, wherein in the high-pressure screw engine, a raw fuel transfer pump of a fuel supply unit is connected by an axial power transmission unit.
【請求項9】 中圧スクリューエンジンは、燃料供給部
のブースタポンプを軸動力伝達部で接続させたことを特
徴とする請求項7記載の超臨界流体熱反応プラントのエ
ネルギ回収装置。
9. The energy recovery device for a supercritical fluid thermal reaction plant according to claim 7, wherein the medium pressure screw engine has a booster pump of a fuel supply unit connected by an axial power transmission unit.
【請求項10】 低圧スクリューエンジンは、酸素供給
系の圧縮機および発電機のうち、少なくとも一方を軸動
力伝達部で接続させたことを特徴とする請求項7記載の
超臨界流体熱反応プラントのエネルギ回収装置。
10. The supercritical fluid thermal reaction plant according to claim 7, wherein the low-pressure screw engine has at least one of a compressor and a generator of an oxygen supply system connected by a shaft power transmission unit. Energy recovery device.
【請求項11】 高圧スクリューエンジン、中圧スクリ
ューエンジンおよび低圧スクリューエンジンは、それぞ
れの入口側に超臨界流体熱反応部から供給される超臨界
流体の圧力を調整する圧力調整弁を設けたことを特徴と
する請求項7記載の超臨界流体熱反応プラントのエネル
ギ回収装置。
11. The high-pressure screw engine, the medium-pressure screw engine, and the low-pressure screw engine each have a pressure regulating valve for regulating the pressure of the supercritical fluid supplied from the supercritical fluid thermal reaction section at the inlet side. The energy recovery device for a supercritical fluid thermal reaction plant according to claim 7, characterized in that:
【請求項12】 凝縮器は、エネルギ回収部から供給さ
れる超臨界流体を中和溶液で凝縮させる熱交換部を収容
したことを特徴とする請求項1記載の超臨界流体熱反応
プラントのエネルギ回収装置。
12. The supercritical fluid thermal reaction plant according to claim 1, wherein the condenser includes a heat exchange unit for condensing the supercritical fluid supplied from the energy recovery unit with a neutralizing solution. Collection device.
【請求項13】 中和溶液は、水酸化ナトリウムである
ことをことを特徴とする請求項12記載の超臨界流体熱
反応プラントのエネルギ回収装置。
13. The energy recovery apparatus for a supercritical fluid thermal reaction plant according to claim 12, wherein the neutralizing solution is sodium hydroxide.
【請求項14】 凝縮器から燃料供給部の原燃料貯蔵タ
ンクに戻す凝縮水は、硫酸ナトリウムを含むことを特徴
とする請求項1記載の超臨界流体熱反応プラントのエネ
ルギ回収装置。
14. The energy recovery system for a supercritical fluid thermal reaction plant according to claim 1, wherein the condensed water returned from the condenser to the raw fuel storage tank of the fuel supply unit contains sodium sulfate.
JP33872499A 1999-11-29 1999-11-29 Energy-recovery apparatus for supercritical fluid thermal reaction plant Pending JP2001152810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33872499A JP2001152810A (en) 1999-11-29 1999-11-29 Energy-recovery apparatus for supercritical fluid thermal reaction plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33872499A JP2001152810A (en) 1999-11-29 1999-11-29 Energy-recovery apparatus for supercritical fluid thermal reaction plant

Publications (1)

Publication Number Publication Date
JP2001152810A true JP2001152810A (en) 2001-06-05

Family

ID=18320879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33872499A Pending JP2001152810A (en) 1999-11-29 1999-11-29 Energy-recovery apparatus for supercritical fluid thermal reaction plant

Country Status (1)

Country Link
JP (1) JP2001152810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151795A1 (en) * 2011-05-12 2012-11-15 西安交通大学 Supercritical water oxidation reaction system using auxiliary fuel to supply energy
CN111894689A (en) * 2020-08-06 2020-11-06 西安交通大学 Heat-electricity-clean water co-production system based on supercritical water oxidation
CN114300166A (en) * 2021-11-22 2022-04-08 中国原子能科学研究院 Critical device for radioactive fuel element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151795A1 (en) * 2011-05-12 2012-11-15 西安交通大学 Supercritical water oxidation reaction system using auxiliary fuel to supply energy
CN111894689A (en) * 2020-08-06 2020-11-06 西安交通大学 Heat-electricity-clean water co-production system based on supercritical water oxidation
CN114300166A (en) * 2021-11-22 2022-04-08 中国原子能科学研究院 Critical device for radioactive fuel element
CN114300166B (en) * 2021-11-22 2024-03-22 中国原子能科学研究院 Critical device for radioactive fuel elements

Similar Documents

Publication Publication Date Title
EP2562373B1 (en) Heat recovery from a gasification system
US7640745B2 (en) High-pressure fluid compression system utilizing cascading effluent energy recovery
US4202167A (en) Process for producing power
EP1247004B1 (en) Method of operating a power plant
US8537961B2 (en) Hybrid integrated energy production process
US20050126156A1 (en) Coal and syngas fueled power generation systems featuring zero atmospheric emissions
US20050241311A1 (en) Zero emissions closed rankine cycle power system
EP0460121B1 (en) Methacoal integrated combined cycle power plants
US20090019853A1 (en) Method and Arrangement for Energy Conversion in Stages
CN109441574A (en) Nearly zero carbon emission integral coal gasification cogeneration technique for peak regulation
JPH08501605A (en) Energy recovery method from combustible gas
CA2726238C (en) Method and apparatus for generating electrical power
CN102046267A (en) Carbon dioxide removal from synthesis gas at elevated pressure
CN113882955A (en) Gas turbine reheating combined cycle power generation system and operation method thereof
EP1102926B1 (en) Fuel gas turbo-expander for oxygen blown gasifiers and related method
WO2010057222A2 (en) High efficiency power generation integrated with chemical processes
JP2001152810A (en) Energy-recovery apparatus for supercritical fluid thermal reaction plant
CN216198494U (en) Novel gas turbine reheating combined cycle power generation device
Iantovski et al. Highly efficient zero emission CO2-based power plant
JP2001050010A (en) Power plant
JPH10132201A (en) Method for generating power and power plant facility
Jin et al. A Novel Multi-Functional Energy System (MES) for CO2 Removal With Zero Energy Penalty
Lehman et al. Coal Gasification/Repowering: A Means of Increasing Plant Capacity While Reducing Oil Consumption
Newby et al. Westinghouse Combustion Turbine Performance in Coal Gasification Combined Cycles
GAS-FIRED JL Haydock Vice President Acres American Incorporated AJ Giramonti Senior Sytems Engineer United Technologies Research Center