JP2001151916A - Film for flexible print wiring - Google Patents

Film for flexible print wiring

Info

Publication number
JP2001151916A
JP2001151916A JP33967599A JP33967599A JP2001151916A JP 2001151916 A JP2001151916 A JP 2001151916A JP 33967599 A JP33967599 A JP 33967599A JP 33967599 A JP33967599 A JP 33967599A JP 2001151916 A JP2001151916 A JP 2001151916A
Authority
JP
Japan
Prior art keywords
film
copper
thin film
copper thin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33967599A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamada
博之 山田
Katsutaka Tateno
克孝 舘野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP33967599A priority Critical patent/JP2001151916A/en
Publication of JP2001151916A publication Critical patent/JP2001151916A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a film for flexible print wiring exhibiting very firm adhesion between a polyimide film as a substrate and a copper thin film and formation of a fine pattern by etching. SOLUTION: The film for flexible print wiring is obtained by subjecting at least one side of the polyimide film containing 0.01-2 wt.%, based on the film, of aluminum oxide or silicon dioxide in the film to a plasma treatment, forming thereon a copper thin film having a film thickness of 50-5,000 nm by an ion-plating method by a pressure gradient type discharge and further forming on the copper thin film a film of copper by an electrolytic plating method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、携帯電話、PDA(パ
ーソナル・デジタル・アシスタント)、ノートブック型
パソコンなどの携帯型機器の電子回路に利用されるフレ
キシブルプリント配線用フィルムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film for flexible printed wiring used in an electronic circuit of a portable device such as a portable telephone, a PDA (Personal Digital Assistant), and a notebook personal computer.

【0002】[0002]

【従来の技術】現在、携帯型電子機器に使用されるフレ
キシブル銅張積層板は、ポリイミドやポリエステルフィ
ルムの表面に銅箔を接着剤にて接着させた材料が主流で
ある。近年、携帯型電子機器は小型軽量化・高機能化さ
れ、その内部の電子回路は高密度化されている。そのよ
うな状況においては、線幅40μm以下といったファイ
ンパターン化が要求され、またベアチップ実装に対する
ニーズも高まっている。従来のプラスチックフィルムに
銅箔を貼り合わせたフィルムでは、接着剤の耐熱性向上
や銅箔の薄化による細線化などの対応を取っているが、
軽量化・高機能化には十分でなく、接着剤に起因する寸
法精度の低下や電気特性の低下などの問題がある。
2. Description of the Related Art At present, flexible copper-clad laminates used for portable electronic devices are mainly made of a material obtained by bonding a copper foil to the surface of a polyimide or polyester film with an adhesive. 2. Description of the Related Art In recent years, portable electronic devices have been reduced in size, weight, and function, and electronic circuits inside the electronic devices have been increased in density. In such a situation, a fine pattern with a line width of 40 μm or less is required, and the need for bare chip mounting is increasing. In a film in which copper foil is bonded to a conventional plastic film, measures such as improving the heat resistance of the adhesive and making the copper foil thinner have been taken.
It is not sufficient for weight reduction and high functionality, and there are problems such as a decrease in dimensional accuracy and a decrease in electrical characteristics due to the adhesive.

【0003】また、銅箔の薄化(厚み10μm以下)に
よるファインパターン形成方法では、基板フィルムとの
貼り合わせ工程内でのハンドリングが難しく、取り扱い
中のしわの発生が問題となる。また、特殊なプロセスを
採用したアルミ支持体付きの薄い銅箔を電着させ、基板
フィルムと貼り合わせ、回路パターンをプリントする前
にアルミ支持体をエッチングなどにより除去する方法も
あるが、非常に工程が煩雑となり、製造コストがかかる
問題もある。
Further, in a method of forming a fine pattern by thinning a copper foil (thickness: 10 μm or less), it is difficult to handle in a process of bonding with a substrate film, and there is a problem of generation of wrinkles during handling. There is also a method of electrodepositing a thin copper foil with an aluminum support that adopts a special process, bonding it to the substrate film, and removing the aluminum support by etching etc. before printing the circuit pattern, but very much There is also a problem that the process is complicated and the manufacturing cost is high.

【0004】その対策として真空蒸着法、スパッタリン
グ法、イオンプレーティング法、銅メッキ法にて、基板
フィルム上に直接銅を成膜する方法が検討されている。
しかしながら、必要な厚み5〜10μmとするのに時間
がかかることと密着強度が十分でない。また、蒸着/メ
ッキ法により、基板フィルム上に銅を成膜する方法が検
討されているが、メッキの際に酸処理を行うため、下地
の蒸着膜が剥離したりする問題がある。また、特公昭5
7−33718号公報には、ニッケル、コバルト、パラ
ジウム等の金属を蒸着後に更に銅を蒸着して密着性が改
善できることが提唱されているが、電解銅メッキを行っ
た後に過飽和水蒸気のオートクレーブ中に静置した場
合、銅蒸着膜と銅メッキ膜の界面で剥離する等の問題が
ある。また、特開平8−330728号公報には、フィ
ルム中に錫をフィルムの0.02〜1重量%含有するポ
リイミドフィルムにクロム、クロム合金などを蒸着後そ
の上に銅蒸着を行うことが提案されているが、ポリイミ
ドフィルムに導電性の錫を添加することで絶縁性が低下
し、また、銅蒸着のためのアンカー蒸着層が必要にな
り、またエッチング効率も悪くなる問題がある。
As a countermeasure, a method of forming a copper film directly on a substrate film by a vacuum deposition method, a sputtering method, an ion plating method, or a copper plating method has been studied.
However, it takes time to achieve the required thickness of 5 to 10 μm, and the adhesion strength is not sufficient. Further, a method of forming a copper film on a substrate film by a vapor deposition / plating method has been studied. However, since an acid treatment is performed at the time of plating, there is a problem that an underlying vapor deposited film is peeled off. In addition, Tokubo Sho 5
JP-A-7-33718 proposes that a metal such as nickel, cobalt, palladium or the like can be further vapor-deposited and then copper can be further vapor-deposited to improve the adhesion. When left at rest, there is a problem such as peeling off at the interface between the copper vapor deposition film and the copper plating film. Japanese Patent Application Laid-Open No. 8-330728 proposes that chromium, a chromium alloy, or the like is vapor-deposited on a polyimide film containing tin at 0.02 to 1% by weight of the film, and then copper is vapor-deposited thereon. However, there is a problem that the addition of conductive tin to the polyimide film lowers the insulating property, requires an anchor deposition layer for copper deposition, and lowers the etching efficiency.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上のよう
な従来技術の問題点を解決しようするものであり、フィ
ルム中に酸化アルミニウムまたは二酸化ケイ素を含むポ
リイミドフィルムを所定条件にてプラズマ処理し、その
上にイオンプレーティング法にて銅薄膜を成膜後、電解
メッキ法にて銅膜を成膜することにより、密着性が非常
に強固でエッチングによるファインパターン化が可能な
フレキシブルプリント配線フィルムを提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and comprises subjecting a polyimide film containing aluminum oxide or silicon dioxide to plasma treatment under predetermined conditions. After forming a copper thin film on it by ion plating and then depositing a copper film by electrolytic plating, the adhesion is very strong and a flexible printed wiring film that can be fine-patterned by etching Is to provide.

【課題を解決するための手段】[Means for Solving the Problems]

【0006】本発明のフレキシブルプリント配線フィル
ムは、以下の各技術事項によって、上記のような課題を
解決した。 (1)ポリイミドフィルムの少なくとも片面に、膜厚が
50nm〜5000nmの銅薄膜を形成し、さらにその
銅薄膜上に電解メッキ法にて銅が成膜されたフレキシブ
ルプリント配線用フィルムにおいて、該ポリイミドフィ
ルム中に酸化アルミニウムまたは二酸化ケイ素が0.0
1〜2重量%含まれることを特徴とするフレキシブルプ
リント配線用フィルム。
[0006] The flexible printed wiring film of the present invention has solved the above-mentioned problems by the following technical items. (1) A film for flexible printed wiring in which a copper thin film having a thickness of 50 nm to 5000 nm is formed on at least one side of a polyimide film, and copper is formed on the copper thin film by an electrolytic plating method. Aluminum oxide or silicon dioxide in 0.0
1 to 2% by weight of a flexible printed wiring film.

【0007】(2)前記銅薄膜層が、ポリイミドフィル
ムの少なくとも片面に、プラズマ処理を行った後、圧力
勾配型放電によるイオンプレーティング法により連続的
に作成された銅薄膜であり、その銅薄膜の結晶格子面指
数<200>/<111>でのX線相対強度比が0.3
7〜0.46であることを特徴とする前項(1)記載のフ
レキシブルプリント配線用フィルム。
(2) The copper thin film layer is a copper thin film continuously formed by an ion plating method using a pressure gradient discharge after performing a plasma treatment on at least one surface of a polyimide film. Has an X-ray relative intensity ratio of 0.3 at a crystal lattice plane index of <200> / <111>.
7. The flexible printed wiring film according to the above (1), wherein the thickness is 7 to 0.46.

【0008】[0008]

【発明の実施の形態】本発明で使用されるポリイミドフ
ィルムとしては、カプトン(東レ・デユポン(株))、ユー
ピレックス(宇部興産(株))、アピカル(鐘淵化学工業
(株))などの商品名として市場で入手できるフィルムを
有効に用いることができる。通常は、芳香族四塩基酸と
芳香族ジアミンとを極性溶媒中にて反応させ、ポリアミ
ド酸フィルムを生成し、さらに熱的または化学的に脱水
イミド化することにより得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The polyimide film used in the present invention includes Kapton (Toray DuPont), Upilex (Ube Industries, Ltd.), Apical (Kanebuchi Chemical Industry)
Films available on the market as trade names such as Co., Ltd. can be effectively used. Usually, it is obtained by reacting an aromatic tetrabasic acid and an aromatic diamine in a polar solvent to form a polyamic acid film and thermally or chemically dehydrating imidization.

【0009】芳香族四塩基酸としては、ピロメリット酸
二無水物、ビフェニルテトラカルボン酸無水物、ベンゾ
フェノンテトラカルボン酸無水物、オキシジフタル酸無
水物、ハイドロフランジフタル酸無水物などがあり、芳
香族ジアミンとしては、4,4‘−ジアミノジフェニル
エーテル、パラフェニレンジアミン、ジメチルベンジジ
ン、ジアミノジフェニルメタン、トルイレンジアミン、
3,3‘−ジアミノベンゾフェノン、メトキシジアミノ
ベンゼン、p、p−アミノフェノキシベンゼン、p、m
−アミノフェノキシベンゼン、m、p−アミノフェノキ
シベンゼン、m、m−アミノフェノキシベンゼンなどが
ある。
The aromatic tetrabasic acids include pyromellitic dianhydride, biphenyltetracarboxylic anhydride, benzophenonetetracarboxylic anhydride, oxydiphthalic anhydride, hydrofurandiphthalic anhydride and the like. Examples thereof include 4,4′-diaminodiphenyl ether, paraphenylenediamine, dimethylbenzidine, diaminodiphenylmethane, toluylenediamine,
3,3'-diaminobenzophenone, methoxydiaminobenzene, p, p-aminophenoxybenzene, p, m
-Aminophenoxybenzene, m, p-aminophenoxybenzene, m, m-aminophenoxybenzene and the like.

【0010】極性溶媒としては、N,N−ジメチルホル
ムアミド、N,N−ジメチルアセトアミド、N−メチル
−2−ピロリドンなどがある。製膜は、この溶液を流延
・溶媒除去しつつ加熱して、閉環脱水反応させて行う。
これら一連の工程は連続的で、閉環も低温から400℃
以上の高温まで数段階の炉を通過することで、短時間で
行われる。フィルムの厚さは、必要に応じて適宜の厚さ
のものを使用すれば良く、25μm〜125μmのもの
が使用される。また、必要に応じて、ポリイミドフィル
ムの少なくとも片面に公知のアンカーコート処理が施さ
れたものでも構わない。
The polar solvent includes N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. The film is formed by heating this solution while casting and removing the solvent to cause a ring closure dehydration reaction.
These series of steps are continuous and the ring closure is from low temperature to 400 ° C.
It is performed in a short time by passing through a furnace in several stages up to the above high temperature. The film may have an appropriate thickness as needed, and a film having a thickness of 25 μm to 125 μm is used. If necessary, at least one surface of the polyimide film may be subjected to a known anchor coating treatment.

【0011】本発明では、芳香族四塩基酸と芳香族ジア
ミンからなる樹脂中に含有する酸化アルミニウムまたは
二酸化ケイ素は、粒子径が 0.1〜5μmで0.01
〜2重量%の範囲のものである。望ましくは、0.1〜
1重量%の範囲ものが好適である。0.01重量%未満
では、密着性が悪く好ましくない。また、2重量%を超
えた場合には、加工性が劣るため好ましくない。製膜
は、ポリイミドフィルム製膜時に酸化アルミニウムまた
は二酸化ケイ素を添加して作成するかまたはポリイミド
フィルム製膜後ポリイミドフィルム上に酸化アルミニウ
ムまたは二酸化ケイ素を含む溶液を少なくとも片面に塗
工することにより、溶媒を除去しつつ加熱して、閉環脱
水反応させて行う。
In the present invention, aluminum oxide or silicon dioxide contained in a resin comprising an aromatic tetrabasic acid and an aromatic diamine has a particle size of 0.1 to 5 μm and 0.01 to 0.01 μm.
22% by weight. Desirably, 0.1 to
A range of 1% by weight is preferred. If the content is less than 0.01% by weight, the adhesion is poor, which is not preferable. On the other hand, if it exceeds 2% by weight, the workability is poor, which is not preferable. The film formation is performed by adding aluminum oxide or silicon dioxide at the time of forming the polyimide film, or applying a solution containing aluminum oxide or silicon dioxide on at least one surface of the polyimide film after forming the polyimide film, thereby forming a solvent. Is carried out while removing the compound to cause a ring-closing dehydration reaction.

【0012】本発明においては、上記したポリイミドフ
ィルムの表面が、プラズマ処理される。プラズマ処理に
あたっては、真空容器内で減圧雰囲気下において無機系
のガスを導入し、内部電極に高周波電圧を印加し、放電
させる事によって生じたプラズマ(イオン、電子、励起
分子、ラジカル、紫外光等)をフィルムの表面に衝突さ
せる事によって行う。表面処理を行う装置としては、真
空容器内に誘導結合型電極または容量結合型電極を設
け、マッチングボックスを介して、高周波電源に接続さ
れているものが好適である。この処理は、バッチ式、連
続式いずれによっても良い。
In the present invention, the surface of the above-mentioned polyimide film is subjected to plasma treatment. In the plasma treatment, an inorganic gas is introduced in a vacuum vessel under a reduced pressure atmosphere, a high-frequency voltage is applied to an internal electrode, and a plasma (ion, electron, excited molecule, radical, ultraviolet light, etc.) is generated by discharging. ) Is made to collide with the surface of the film. As a device for performing the surface treatment, a device provided with an inductively coupled electrode or a capacitively coupled electrode in a vacuum vessel and connected to a high frequency power supply via a matching box is preferable. This process may be performed by either a batch system or a continuous system.

【0013】本発明において、ポリイミドフィルムの表
面に対するプラズマ処理は、0.01〜5Paの減圧雰
囲気下で行う。雰囲気圧が0.01Paより低い時は、
ポリイミドフィルムからの脱ガスの影響で圧力が変動し
やすく、また、5Paを超える時は、放電が不安定とな
るので好ましくない。放電電力は、0.1〜10W/c
2の範囲内とするのが一般的である。処理時間は、1
〜600秒の程度とする。高周波電源としては、通常数
百KHz〜数十MHzの周波数のものを用いる。たとえ
ば、実用上、13.56MHzの電源を用いるのが好適
である。プラズマ処理の雰囲気ガスとしては、種々の気
体を用いることができるが、アルゴン、ヘリウム、酸
素、窒素、炭酸ガス等が好ましい。
In the present invention, the plasma treatment on the surface of the polyimide film is performed under a reduced pressure atmosphere of 0.01 to 5 Pa. When the atmospheric pressure is lower than 0.01 Pa,
The pressure tends to fluctuate due to the effect of degassing from the polyimide film, and if it exceeds 5 Pa, the discharge becomes unstable, which is not preferable. Discharge power is 0.1 to 10 W / c
It is generally within the range of m 2 . Processing time is 1
About 600 seconds. As the high-frequency power supply, a power supply having a frequency of several hundred KHz to several tens MHz is usually used. For example, in practice, it is preferable to use a power supply of 13.56 MHz. Various gases can be used as the atmosphere gas for the plasma treatment, but argon, helium, oxygen, nitrogen, carbon dioxide, and the like are preferable.

【0014】本発明において、銅薄膜の形成方法として
は、真空蒸着法、スパッタリング法、イオンプレーティ
ング法などの物理的気相成膜法が採用できる。なかでも
特に、イオンプレーティング法が基材フィルムとの密着
性や結晶性の面で優れているので、最も好ましい。特
に、銅薄膜は、基材との密着性も重要であることから、
陰極と陽極の間に中間電極を設けて、陰極側の真空度と
陽極側の真空度との間に圧力勾配をもたせて行う圧力勾
配型放電方式によるイオンプレーティング法は、銅薄膜
と基材の密着性が極めて強いのみならず、成膜材料の蒸
発量が多く、従来の真空蒸着法やスパッタリング法に比
べてイオン化効率が高く、大面積での加工で数十倍〜数
百倍の成膜速度が得られるため生産性が高く、低温成膜
できるためフィルムであっても厚膜の作成が可能であ
り、好ましい。
In the present invention, as a method for forming a copper thin film, a physical vapor deposition method such as a vacuum deposition method, a sputtering method, and an ion plating method can be adopted. Among them, the ion plating method is most preferable because it is excellent in adhesion and crystallinity with the base film. In particular, since the copper thin film is also important for the adhesion to the substrate,
An ion plating method using a pressure gradient discharge method, in which an intermediate electrode is provided between the cathode and the anode and a pressure gradient is applied between the degree of vacuum on the cathode side and the degree of vacuum on the anode side, uses a copper thin film and a substrate. In addition to the extremely strong adhesion, the evaporation amount of the film-forming material is large, and the ionization efficiency is higher than conventional vacuum evaporation and sputtering methods. Since a film speed can be obtained, productivity is high, and a film can be formed at a low temperature.

【0015】本発明で用いられる銅は、純度99.9%
の無酸素銅を蒸発材料として薄膜化を行う。銅薄膜の厚
みとしては、50nm〜5000nmが好ましい。さら
に好ましくは、100nm〜1000nmであり、50
nm未満では、電解メッキ薄膜形成の場合に処理液の酸
にて蒸着膜が溶解剥離する。また、5000nm以上で
は、成膜時間が長くなり、生産性が悪く、熱で基材が変
形カールしてくることがある。
The copper used in the present invention has a purity of 99.9%.
Of oxygen-free copper as an evaporation material. The thickness of the copper thin film is preferably from 50 nm to 5000 nm. More preferably, it is 100 nm to 1000 nm,
If the thickness is less than nm, the deposited film is dissolved and peeled off by the acid of the treatment liquid when the electrolytic plating thin film is formed. On the other hand, when the thickness is 5000 nm or more, the film formation time becomes long, the productivity is poor, and the substrate may be deformed and curled by heat.

【0016】イオンプレーティング法により、銅膜を成
膜した場合、蒸着速度、キャンロール温度、プラズマビ
ーム電流、バイアス電圧等の成膜条件によって結晶性が
発現することが知られている。本発明の方法によって成
膜すると、X線回折パターンで銅薄膜の結晶格子面指数
<200>のピーク強度と面指数<111>のピーク強
度比が0.37〜0.46の範囲にある膜が生成する。
相対強度比が、0.37未満では、銅メッキ前に酸処理
を行った場合、浮きや剥離を生じ易い。また、0.46
はバルクの銅の相対強度であり、酸処理を行っても全く
問題なかった。本発明において銅メッキを行う方法とし
ては、溶剤脱脂、アルカリ脱脂、活性化などの化学的処
理を行った後に、水洗し硫酸銅メッキを行う。溶剤脱脂
は、汚れが激しい場合にトリクロロエチレンなどの溶剤
に浸漬または蒸気脱脂する。アルカリ脱脂は、水酸化ナ
トリウム、炭酸ナトリウム、珪酸ナトリウム、界面活性
剤からなる50〜80℃の液中に浸漬する。また、活性
化は塩酸、または硫酸に常温浸漬する。銅メッキ浴は、
硫酸銅浴、シアン化銅浴、ホウフッ化銅浴、ピロリン酸
銅浴などに分類されるが、費用が安く、かつ管理が簡単
であることから、硫酸銅浴が広く用いられている。
It is known that when a copper film is formed by an ion plating method, crystallinity is developed depending on film forming conditions such as a deposition rate, a can roll temperature, a plasma beam current, and a bias voltage. When the film is formed by the method of the present invention, a film in which the ratio of the peak intensity of the crystal lattice plane index <200> to the peak intensity of the plane index <111> in the X-ray diffraction pattern is in the range of 0.37 to 0.46. Is generated.
If the relative strength ratio is less than 0.37, lifting and peeling are liable to occur when acid treatment is performed before copper plating. Also, 0.46
Is the relative strength of the bulk copper, and there was no problem with the acid treatment. In the present invention, as a method for performing copper plating, a chemical treatment such as solvent degreasing, alkali degreasing, or activation is performed, followed by washing with water and copper sulfate plating. Solvent degreasing is performed by immersing in a solvent such as trichlorethylene or vapor degreasing when the stain is severe. Alkaline degreasing is immersed in a liquid of 50 to 80 ° C composed of sodium hydroxide, sodium carbonate, sodium silicate and a surfactant. Activation is performed by immersion in hydrochloric acid or sulfuric acid at room temperature. The copper plating bath is
It is classified into a copper sulfate bath, a copper cyanide bath, a copper borofluoride bath, a copper pyrophosphate bath, and the like. The copper sulfate bath is widely used because of its low cost and easy management.

【0017】[0017]

【実施例】以下の実施例および比較例においては、特に
ことわらない限り、部は重量部を、%は重量%を意味す
るものとする。
EXAMPLES In the following Examples and Comparative Examples, parts mean parts by weight and% means% by weight unless otherwise specified.

【0018】なお実施例および比較例で得られた銅薄膜
の評価は以下のようにして行った。 a.膜厚 銅蒸着膜の膜厚は日立製作所社製、走査型電子顕微鏡
(S−510型)で撮影した断面写真より計測した。 b.銅薄膜のX線相対強度 (株)リガク製X線回折装置(RINT2000)を用
いて、X線回折パターンで2θ=42〜53°の走査範
囲に存在する結晶格子面指数<200>のピーク強度と
面指数<111>のピーク強度の比を測定する。
The evaluation of the copper thin films obtained in Examples and Comparative Examples was performed as follows. a. Thickness The thickness of the copper vapor deposition film was measured from a cross-sectional photograph taken by a scanning electron microscope (S-510) manufactured by Hitachi, Ltd. b. X-Relative Intensity of Copper Thin Film Using a X-ray diffractometer (RINT2000) manufactured by Rigaku Corporation, peak intensity of crystal lattice plane index <200> existing in a scanning range of 2θ = 42 to 53 ° in an X-ray diffraction pattern. And the ratio of the peak intensities of the surface indices <111> are measured.

【0019】c.銅薄膜の耐薬品性 銅蒸着したサンプルをトリクロロエチレンに5分間浸漬
後、水洗し、2規定の水酸化ナトリウム水溶液に5分間
浸漬する。その後、水洗し、2規定の塩酸水溶液に5分
間浸漬後水洗する。110℃で10分間乾燥後、銅薄膜
をJISK5400に基づき、クロスカット法により、
セロテープ剥離を行い、付着状況を目視により観察し
た。評価方法としては、1mm角の100桝目中、剥が
れが全くないものを○、剥がれた面積が35%未満のも
のを△、剥がれた面積が35%以上のものを×とした。 d.銅メッキ膜の密着性 銅メッキしたサンプルを121℃、圧力2Kg/cm2
の過飽和水蒸気のオートクレーブ中で24時間静置後の
銅膜面の表面観察を行った。その後、2規定塩酸水溶液
に5分間浸漬後水洗する。110℃で10分間乾燥後、
銅膜をJISK5400に基づき、クロスカット法によ
り、セロテープ剥離を行い、付着状況を目視により観察
した。評価方法としては、1mm角の100桝目中、剥
がれが全くないものを○、剥がれた面積が35%未満の
ものを△、剥がれた面積が35%以上のものを×とし
た。
C. Chemical resistance of copper thin film A copper-deposited sample is immersed in trichlorethylene for 5 minutes, washed with water, and immersed in a 2N aqueous sodium hydroxide solution for 5 minutes. Then, it is washed with water, immersed in a 2N aqueous hydrochloric acid solution for 5 minutes, and then washed with water. After drying at 110 ° C. for 10 minutes, the copper thin film was subjected to a cross-cut method based on JIS K5400.
The cellophane tape was peeled off, and the state of adhesion was visually observed. As the evaluation method, in 100 squares of 1 mm square, those with no peeling were rated as ○, those with a peeled area of less than 35% were rated as △, and those with a peeled area of 35% or more were rated as x. d. Adhesion of Copper Plating Film A copper-plated sample was prepared at 121 ° C. under a pressure of 2 kg / cm 2.
After standing for 24 hours in an autoclave of supersaturated water vapor, the surface of the copper film surface was observed. Thereafter, the substrate is immersed in a 2N hydrochloric acid aqueous solution for 5 minutes and then washed with water. After drying at 110 ° C for 10 minutes,
The copper film was subjected to cellophane tape peeling by a cross cut method based on JIS K5400, and the state of adhesion was visually observed. As the evaluation method, in 100 squares of 1 mm square, those with no peeling were rated as ○, those with a peeled area of less than 35% were rated as △, and those with a peeled area of 35% or more were rated as x.

【0020】実施例1 酸化アルミニウムをフィルム中に0.1重量%含む厚さ
50μmのポリイミドフィルムの片面を真空度0.5P
aで酸素にてプラズマ処理を行った後、圧力勾配型放電
によるイオンプレーティング法により厚さ100nmの
銅薄膜を形成した。その時の成膜条件としては、真空度
4×10-2Paで行い、蒸発速度25.0nm/秒、キ
ャンロール温度90℃、放電電流は200A、放電電圧
60Vとした。その表面を2規定塩酸水溶液で5分間処
理を行った後、硫酸銅浴の電解メッキ法にて厚み800
0nmとした。評価結果を表1に示す。
Example 1 One side of a 50 μm-thick polyimide film containing 0.1% by weight of aluminum oxide in a film was vacuumed to 0.5 P
After performing the plasma treatment with oxygen at a, a copper thin film having a thickness of 100 nm was formed by an ion plating method using a pressure gradient discharge. The film formation conditions at that time were a vacuum of 4 × 10 −2 Pa, an evaporation rate of 25.0 nm / sec, a can roll temperature of 90 ° C., a discharge current of 200 A, and a discharge voltage of 60 V. The surface is treated with a 2N hydrochloric acid aqueous solution for 5 minutes, and then the thickness is 800 mm by electrolytic plating in a copper sulfate bath.
It was set to 0 nm. Table 1 shows the evaluation results.

【0021】実施例2 銅薄膜の厚さを1000nmとした以外は、実施例1同
様に成膜した。評価結果を表1に示す。 実施例3 酸化アルミニウムを二酸化ケイ素とした以外は、実施例
1と同様に成膜した。評価結果を表1に示す。
Example 2 A film was formed in the same manner as in Example 1 except that the thickness of the copper thin film was changed to 1000 nm. Table 1 shows the evaluation results. Example 3 A film was formed in the same manner as in Example 1 except that aluminum oxide was changed to silicon dioxide. Table 1 shows the evaluation results.

【0022】実施例4 成膜条件の蒸発速度を1.5nm/秒とした以外は、実
施例1と同様に成膜した。評価結果を表1に示す。 比較例1 フィルム中に酸化アルミニウムが含まれていないポリイ
ミドフィルムを使用した以外は、実施例1と同様にして
試料を得た。評価結果を表1に示す。
Example 4 A film was formed in the same manner as in Example 1 except that the evaporation rate under the film forming conditions was 1.5 nm / sec. Table 1 shows the evaluation results. Comparative Example 1 A sample was obtained in the same manner as in Example 1 except that a polyimide film containing no aluminum oxide was used. Table 1 shows the evaluation results.

【0023】比較例2 ポリイミドフィルムを酸素にてプラズマ処理しなかった
以外は、実施例1と同様にして試料を得た。評価結果を
表1に示す。 比較例3 イオンプレーティング法による成膜を真空蒸着法による
成膜で行った以外は、実施例1と同様にして試料を得
た。評価結果を表1に示す。
Comparative Example 2 A sample was obtained in the same manner as in Example 1 except that the polyimide film was not plasma-treated with oxygen. Table 1 shows the evaluation results. Comparative Example 3 A sample was obtained in the same manner as in Example 1 except that film formation by an ion plating method was performed by film formation by a vacuum evaporation method. Table 1 shows the evaluation results.

【0024】比較例4 イオンプレーティング法により形成した銅薄膜の厚さを
40nmとした以外は、実施例1と同様にして試料を得
た。評価結果を表1に示す。
Comparative Example 4 A sample was obtained in the same manner as in Example 1 except that the thickness of the copper thin film formed by the ion plating method was changed to 40 nm. Table 1 shows the evaluation results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように、比較例1、比較
例2、比較例3は蒸着した銅薄膜の耐薬品性が悪い。特
に、塩酸浸漬でエッジ部に浮きを生じた。比較例4は、
銅薄膜の耐薬品性は問題なかったが、銅メッキ後の密着
性評価で銅薄膜と銅メッキ膜の界面で剥離を生じた。こ
れらの比較例に対し、本発明の実施例1〜4は、銅薄膜
の耐薬品性および銅メッキ膜の密着性とも良好であり、
塩化第二鉄水溶液によるエッチングにて線幅40μmの
ファインパターン形成が可能であった。
As is evident from Table 1, in Comparative Examples 1, 2 and 3, the vapor-deposited copper thin films have poor chemical resistance. Particularly, the edge portion was lifted by immersion in hydrochloric acid. Comparative Example 4
Although there was no problem with the chemical resistance of the copper thin film, peeling occurred at the interface between the copper thin film and the copper plating film in the evaluation of adhesion after copper plating. In contrast to these comparative examples, Examples 1 to 4 of the present invention have good chemical resistance of the copper thin film and good adhesion of the copper plating film.
Fine pattern formation with a line width of 40 μm was possible by etching with an aqueous ferric chloride solution.

【0027】[0027]

【発明の効果】本発明により得られるフレキシブルプリ
ント配線用フィルムは、酸化アルミニウムまたは二酸化
ケイ素を0.01〜2重量%含有するポリイミドフィル
ムの少なくとも片面をプラズマ処理後、その表面に圧力
勾配型放電によるイオンプレーティング法により、X線
回折パターンの面指数<200>/<111>のX線相
対強度比が0.37〜0.46の銅薄膜を膜厚50nm
〜5000nmで形成したことにより、ポリイミドフィ
ルムとの密着性が良好でエッチングによるファインパタ
ーン形成が可能で実用上極めて有用である。
The film for flexible printed wiring obtained by the present invention is obtained by subjecting at least one surface of a polyimide film containing 0.01 to 2% by weight of aluminum oxide or silicon dioxide to a plasma treatment, and applying a pressure gradient discharge to the surface. By an ion plating method, a copper thin film having an X-ray diffraction pattern plane index of <200> / <111> and an X-ray relative intensity ratio of 0.37 to 0.46 was formed to a thickness of 50 nm.
Forming at a thickness of up to 5000 nm has good adhesion to the polyimide film, enables formation of a fine pattern by etching, and is extremely useful in practice.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 79/08 C08L 79/08 Z H05K 1/03 610 H05K 1/03 610N 610R 670 670A 1/09 1/09 A 3/38 3/38 A Fターム(参考) 4E351 AA04 BB01 BB32 BB33 CC02 CC03 CC21 DD04 4F006 AA39 AA55 AB73 BA07 CA08 DA00 DA01 EA03 4F100 AA19B AA19H AA20B AA20H AB17A AB17C AB17D AB33A AB33C AK49B BA04 BA07 CA23B EH66A EH66C EH71D EJ61B GB43 JK06 JL01 YY00B 4J002 CM041 DE146 DJ016 FD016 GF00 GQ00 GQ02 5E343 AA18 AA33 BB24 CC78 DD23 DD24 DD25 DD43 EE36 GG02 GG08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 79/08 C08L 79/08 Z H05K 1/03 610 H05K 1/03 610N 610R 670 670A 1/09 1 / 09 A 3/38 3/38 A F-term (reference) 4E351 AA04 BB01 BB32 BB33 CC02 CC03 CC21 DD04 4F006 AA39 AA55 AB73 BA07 CA08 DA00 DA01 EA03 4F100 AA19B AA19H AA20B AA20H AB17A AB17C AB17E AB33ABE66 BABBAC GB43 JK06 JL01 YY00B 4J002 CM041 DE146 DJ016 FD016 GF00 GQ00 GQ02 5E343 AA18 AA33 BB24 CC78 DD23 DD24 DD25 DD43 EE36 GG02 GG08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ポリイミドフィルムの少なくとも片面に、
膜厚が50nm〜5000nmの銅薄膜を形成し、さら
にその銅薄膜上に電解メッキ法にて銅が成膜されたフレ
キシブルプリント配線用フィルムにおいて、該ポリイミ
ドフィルム中に酸化アルミニウムまたは二酸化ケイ素が
0.01〜2重量%含まれることを特徴とするフレキシ
ブルプリント配線用フィルム。
(1) at least one side of a polyimide film,
In a film for flexible printed wiring in which a copper thin film having a thickness of 50 nm to 5000 nm is formed and copper is formed on the copper thin film by an electrolytic plating method, aluminum oxide or silicon dioxide is added to the polyimide film in an amount of 0. A film for flexible printed wiring, characterized in that it is contained in an amount of from 0.01 to 2% by weight.
【請求項2】前記銅薄膜層が、ポリイミドフィルムの少
なくとも片面に、プラズマ処理を行った後、圧力勾配型
放電によるイオンプレーティング法により連続的に作成
された銅薄膜であり、その銅薄膜の結晶格子面指数<2
00>/<111>でのX線相対強度比が0.37〜
0.46であることを特徴とする請求項1記載のフレキ
シブルプリント配線用フィルム。
2. The copper thin film layer is a copper thin film continuously formed by an ion plating method using a pressure gradient discharge after performing a plasma treatment on at least one surface of a polyimide film. Crystal lattice plane index <2
00> / <111> X-ray relative intensity ratio of 0.37 to
2. The flexible printed wiring film according to claim 1, wherein the thickness is 0.46.
JP33967599A 1999-11-30 1999-11-30 Film for flexible print wiring Pending JP2001151916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33967599A JP2001151916A (en) 1999-11-30 1999-11-30 Film for flexible print wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33967599A JP2001151916A (en) 1999-11-30 1999-11-30 Film for flexible print wiring

Publications (1)

Publication Number Publication Date
JP2001151916A true JP2001151916A (en) 2001-06-05

Family

ID=18329747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33967599A Pending JP2001151916A (en) 1999-11-30 1999-11-30 Film for flexible print wiring

Country Status (1)

Country Link
JP (1) JP2001151916A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105545A1 (en) * 2002-06-07 2003-12-18 松下電器産業株式会社 Flexible printed circuit board and process for producing the same
US6847448B2 (en) 2001-06-27 2005-01-25 Matsushita Electric Industrial Co., Ltd. Polarization analyzing apparatus and method for polarization analysis
JP2006297868A (en) * 2005-04-25 2006-11-02 Dainippon Printing Co Ltd Metal laminate
CN100393784C (en) * 2004-12-08 2008-06-11 三之星机带株式会社 Method for forming inorganic thin film on polyimide resin and method for producing polyimide resin having reformed surface for forming inorganic thin film
WO2008090654A1 (en) * 2007-01-24 2008-07-31 Sumitomo Metal Mining Co., Ltd. Two-layer flexible substrate, method for manufacturing the two-layer flexible substrate, and flexible printed wiring board manufactured from the two-layer flexible substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847448B2 (en) 2001-06-27 2005-01-25 Matsushita Electric Industrial Co., Ltd. Polarization analyzing apparatus and method for polarization analysis
WO2003105545A1 (en) * 2002-06-07 2003-12-18 松下電器産業株式会社 Flexible printed circuit board and process for producing the same
CN100340140C (en) * 2002-06-07 2007-09-26 松下电器产业株式会社 Flexible printed circuit board and process for producing the same
US7282255B2 (en) 2002-06-07 2007-10-16 Matsushita Electric Industrial Co., Ltd. Flexible printed circuit board and process for producing the same
CN100393784C (en) * 2004-12-08 2008-06-11 三之星机带株式会社 Method for forming inorganic thin film on polyimide resin and method for producing polyimide resin having reformed surface for forming inorganic thin film
JP2006297868A (en) * 2005-04-25 2006-11-02 Dainippon Printing Co Ltd Metal laminate
WO2008090654A1 (en) * 2007-01-24 2008-07-31 Sumitomo Metal Mining Co., Ltd. Two-layer flexible substrate, method for manufacturing the two-layer flexible substrate, and flexible printed wiring board manufactured from the two-layer flexible substrate
JPWO2008090654A1 (en) * 2007-01-24 2010-05-13 住友金属鉱山株式会社 Two-layer flexible substrate, manufacturing method thereof, and flexible printed wiring board obtained from the two-layer flexible substrate
KR101088571B1 (en) * 2007-01-24 2011-12-05 스미토모 긴조쿠 고잔 가부시키가이샤 Two-layer flexible substrate, method for manufacturing the two-layer flexible substrate, and flexible printed wiring board manufactured from the two-layer flexible substrate
TWI422300B (en) * 2007-01-24 2014-01-01 Sumitomo Metal Mining Co A two-layer flexible substrate and a method for manufacturing the same, and a flexible printed wiring board obtained from the two-layer flexible substrate

Similar Documents

Publication Publication Date Title
JP4350263B2 (en) Metallized polyimide film and method for producing the same
US8419918B2 (en) Method of surface modification of polyimide film using ethyleneimines coupling agent, manufacturing method of flexible copper clad laminate and its product thereby
KR900000865B1 (en) Copper-chromium-polyimide composite and its manufaturiring process
CN1993501B (en) Composite copper foil and method for production thereof
EP0678596A1 (en) Metallic body with vapor-deposited treatment layer(s) and adhesion-promoting layer
TWI433879B (en) Method for surface modification of polyimide resin layer and method for manufacturing sheet metal paste
JP2003181970A (en) Electrolytic copper foil with carrier foil, method of manufacturing the same, and copper-clad laminate using electrolytic copper foil with carrier foil
WO2017016395A1 (en) Method for preparing adhesive-free, polyimide flexible printed circuit board
JP3641632B1 (en) Conductive sheet, product using the same, and manufacturing method thereof
US20010030122A1 (en) Laminate comprising polyimide and conductor layer, multi-layer wiring board with the use of the same and process for producing the same
US4810326A (en) Interlaminate adhesion between polymeric materials and electrolytic copper surfaces
JP4341023B2 (en) Method for producing metal-coated liquid crystal polymer film
WO2019201145A1 (en) Easy-to-peel carrier foil, preparation method therefor, and application thereof
JP4479184B2 (en) Plastic film manufacturing method and flexible printed circuit board using the same
JP2005219259A (en) Metallized polyimide film
JP2006278371A (en) Manufacturing method of polyimide-metal layer laminate, and the polyimide-metal layer laminate obtained thereby
JP2001151916A (en) Film for flexible print wiring
JP3331153B2 (en) Method for producing composite film of polyimide film and metal thin film
JP2008311328A (en) Flexible circuit substrate and manufacturing method thereof
JPH09201900A (en) Laminate
JP2007208251A (en) Substrate for flexible board, flexible board using it, and manufacturing method thereof
JPH05299820A (en) Flexible printed wiring board
JPH069308B2 (en) Flexible printed wiring board
JP2004087548A (en) Method for manufacturing printed wiring board
JP2006007519A (en) Composite film having circuit pattern and its manufacturing method