JP2001151718A - Method for producing tertiary butoxybenzene derivative - Google Patents

Method for producing tertiary butoxybenzene derivative

Info

Publication number
JP2001151718A
JP2001151718A JP33414899A JP33414899A JP2001151718A JP 2001151718 A JP2001151718 A JP 2001151718A JP 33414899 A JP33414899 A JP 33414899A JP 33414899 A JP33414899 A JP 33414899A JP 2001151718 A JP2001151718 A JP 2001151718A
Authority
JP
Japan
Prior art keywords
isobutylene
derivative
butoxybenzene
reaction
tertiary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33414899A
Other languages
Japanese (ja)
Other versions
JP4432172B2 (en
Inventor
Yasuhiro Oda
康弘 小田
Hisao Eguchi
久雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP33414899A priority Critical patent/JP4432172B2/en
Publication of JP2001151718A publication Critical patent/JP2001151718A/en
Application granted granted Critical
Publication of JP4432172B2 publication Critical patent/JP4432172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a tertiary butoxybenzene derivative by reacting a phenol compound with isobutylene in the presence of an acid catalyst, by which the unreacted isobutylene can quantitatively and efficiently be removed, recovered from the reaction solution and recycled. SOLUTION: This method for producing the tertiary butoxybenzene derivative by reacting a phenol compound with isobutylene in the presence of an acid catalyst, comprises (1) quantitatively dropping the reaction solution on a hot alkali aqueous solution to remove the unreacted raw materials and then distilling the residue to obtain the tertiary butoxybenzene derivative, or (2) quantitatively dropping the alkali-treated reaction solution on a heating medium to remove the unreacted raw materials and then distillingthe residue to obtain the tertiary butoxybenzene derivative.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医農薬及び機能材
料の中間原料として有用な第3級−ブトキシベンゼン誘
導体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a tertiary-butoxybenzene derivative useful as an intermediate material for medicinal and agricultural chemicals and functional materials.

【0002】[0002]

【従来の技術】フェノール化合物に、酸触媒存在下イソ
ブチレンを反応させて、第3級−ブトキシベンゼン誘導
体を製造する方法は種々提案されており、その中で反応
液から第3級−ブトキシベンゼン誘導体を分離する方法
についても開示されている。
2. Description of the Related Art There have been proposed various methods for producing a tertiary-butoxybenzene derivative by reacting a phenol compound with isobutylene in the presence of an acid catalyst. Are also disclosed.

【0003】例えば、米国特許第2655546号明細
書では、反応液に水酸化ナトリウム水溶液を添加し、未
反応のフェノール化合物を水酸化ナトリウム水溶液相に
抽出除去し、有機相の未反応イソブチレンは加熱除去
し、蒸留によって第3級−ブトキシベンゼン誘導体を分
離する方法が示されている。
For example, in US Pat. No. 2,655,546, an aqueous sodium hydroxide solution is added to a reaction solution, unreacted phenol compounds are extracted and removed into an aqueous sodium hydroxide solution phase, and unreacted isobutylene in an organic phase is removed by heating. And a method for separating a tertiary-butoxybenzene derivative by distillation.

【0004】[0004]

【発明が解決しようとする課題】イソブチレンは、常
温、常圧では引火し易く爆発範囲の広いガスであり、安
全面から、反応はもとより、除去、回収操作においても
安定的な処理操作の必要がある。
Isobutylene is a gas that easily ignites at normal temperature and pressure and has a wide explosion range. From the viewpoint of safety, it is necessary to perform a stable treatment operation not only in the reaction but also in the removal and recovery operations. is there.

【0005】しかしながら、米国特許第2655546
号明細書に記載の除去方法では、反応液中の未反応イソ
ブチレンが、未反応のフェノール化合物とアルカリとの
反応熱による発熱のあるアルカリ添加処理及び有機相の
加熱処理中、不規則に気相に放出され、安定した除去、
回収が困難になり、操作上問題となる。また、有機相を
単純に加熱するだけでは未反応イソブチレンの除去効率
が劣り有機相に残存する割合も多くなり、第3級−ブト
キシベンゼン誘導体を蒸留分離する場合、液発泡、イソ
ブチレントラップ等の操作及びそれらに伴う蒸留時間の
延長等、蒸留の際に極めて負担となる。これらのこと
は、工業的規模の製造において大きな問題となる。
However, US Pat. No. 2,655,546
In the removal method described in the specification, unreacted isobutylene in a reaction solution is irregularly vaporized during an alkali addition treatment and a heat treatment of an organic phase due to heat of reaction between an unreacted phenol compound and an alkali. Released, stable removal,
Recovery becomes difficult and causes operational problems. Further, simply heating the organic phase results in inefficient removal of unreacted isobutylene and an increased proportion of the unreacted isobutylene remaining in the organic phase. When the tertiary-butoxybenzene derivative is separated by distillation, operations such as liquid foaming and isobutylene trapping are performed. In addition, it is extremely burdensome at the time of distillation, such as extension of the distillation time associated therewith. These are major problems in industrial-scale production.

【0006】本発明は、上記の課題に鑑みてなされたも
のであり、その目的は、フェノール化合物を、酸触媒存
在下イソブチレンと反応させた反応液から定量的かつ効
率的に未反応イソブチレンを除去、回収、リサイクルす
る方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to quantitatively and efficiently remove unreacted isobutylene from a reaction solution obtained by reacting a phenol compound with isobutylene in the presence of an acid catalyst. , Collecting and recycling methods.

【0007】[0007]

【課題を解決するための手段】本発明者らは、従来の問
題点を解決すべく鋭意検討した結果、フェノール化合物
を、酸触媒存在下イソブチレンと反応させた反応液を、
熱アルカリ水溶液に定量滴下するか、又はアルカリ
処理後、熱媒体に定量滴下することにより、未反応イソ
ブチレンが定量的かつ効率的に気相に放出除去されるこ
とを見出し本発明を完成させるに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the conventional problems, and as a result, a reaction solution obtained by reacting a phenol compound with isobutylene in the presence of an acid catalyst was obtained.
It has been found that unreacted isobutylene is quantitatively and efficiently released and removed to the gas phase by dropping a fixed amount into a hot alkali aqueous solution or by dropping a fixed amount into a heat medium after the alkali treatment, thereby completing the present invention. Was.

【0008】すなわち、本発明は、フェノール化合物
を、酸触媒存在下イソブチレンと反応させて、第3級−
ブトキシベンゼンを製造する方法において、 反応液を熱アルカリ水溶液に定量滴下し未反応原料を
除去した後、蒸留により第3級−ブトキシベンゼン誘導
体を得ることを特徴とする第3級−ブトキシベンゼン誘
導体の製造方法、又は アルカリ処理した反応液を熱媒体に定量滴下して未反
応原料を除去した後、蒸留により第3級−ブトキシベン
ゼン誘導体を得ることを特徴とする第3級−ブトキシベ
ンゼン誘導体の製造方法、である。
That is, the present invention provides a tertiary compound by reacting a phenol compound with isobutylene in the presence of an acid catalyst.
In the method for producing butoxybenzene, a tertiary-butoxybenzene derivative is obtained by removing the unreacted raw material by quantitatively dropping the reaction solution into a hot alkali aqueous solution and then obtaining a tertiary-butoxybenzene derivative by distillation. A method for producing a tertiary-butoxybenzene derivative, characterized in that a tertiary-butoxybenzene derivative is obtained by distillation after removing unreacted raw materials by quantitatively dropping a reaction solution subjected to an alkali treatment into a heating medium and then distilling the reaction solution. The way.

【0009】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】本発明に使用される熱アルカリ水溶液や熱
媒体としては、未反応イソブチレンが気相に放出除去さ
れる温度であれば特に限定するものではないが、好まし
くは70℃以上に保持されたものが好ましい。なお、熱
媒体としては、熱水又は熱有機溶媒から選ばれる。有機
溶媒としては、ヘプタン、オクタン等の飽和炭化水素
類、ジクロロエタン、トリクロロエタン等のハロゲン化
脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の
芳香族炭化水素類、クロロベンゼン、ブロモベンゼン等
のハロゲン化芳香族炭化水素類等が使用可能である。
The hot alkaline aqueous solution or heat medium used in the present invention is not particularly limited as long as unreacted isobutylene is released and removed in the gas phase, but is preferably maintained at 70 ° C. or higher. Are preferred. The heating medium is selected from hot water or a hot organic solvent. Examples of the organic solvent include saturated hydrocarbons such as heptane and octane, halogenated aliphatic hydrocarbons such as dichloroethane and trichloroethane, aromatic hydrocarbons such as benzene, toluene and xylene, and halogenated aromatics such as chlorobenzene and bromobenzene. Group hydrocarbons and the like can be used.

【0011】本発明において重要なことは、未反応イソ
ブチレンを定量かつ効率的に気相に放出させることであ
る。上述したとおり、反応液を単純に加熱するだけでは
未反応イソブチレンを定量かつ効率的に気相に放出させ
ることは困難であり、反応液の定量滴下によりそれが可
能となる。処理中の液温は、高いほど未反応イソブチレ
ンの除去効率が高くなるため好ましいが、使用反応溶媒
及び熱アルカリ水溶液、熱媒体により制限を受ける。第
3級−ブトキシベンゼン誘導体を蒸留分離する際の負担
にならないようにするには、処理後の有機相の残存イソ
ブチレンを0.1重量%以下とすることが好ましいが、
そのためには、処理液の温度は70℃以上に保持するこ
とが好ましい。また、処理中に反応溶媒又は熱媒体がリ
フラックス状態であればより効率的に未反応イソブチレ
ンを除去することができる。
What is important in the present invention is to release unreacted isobutylene into the gas phase quantitatively and efficiently. As described above, it is difficult to release unreacted isobutylene into the gas phase quantitatively and efficiently by simply heating the reaction solution, and this can be achieved by dropwise addition of the reaction solution. The liquid temperature during the treatment is preferably higher as the unreacted isobutylene removal efficiency increases, but is limited by the reaction solvent used, the hot alkaline aqueous solution, and the heating medium. In order not to burden the distillation and separation of the tertiary-butoxybenzene derivative, the residual isobutylene of the organic phase after the treatment is preferably 0.1% by weight or less.
For this purpose, it is preferable that the temperature of the processing liquid is maintained at 70 ° C. or higher. Further, if the reaction solvent or the heat medium is in a reflux state during the treatment, unreacted isobutylene can be removed more efficiently.

【0012】本発明の第3級−ブトキシベンゼン誘導体
の原料となるフェノール化合物としては、フェノール、
クレゾール、クロロフェノール、ニトロフェノール等が
例示されるが、これらは直接又は溶媒に溶解させて反応
に反応に供する。なお、本発明の方法は、パラ−クロロ
フェノールを原料として第三級−ブトキシクロロベンゼ
ンを製造する場合に特に有効である。
The phenol compound used as a raw material of the tertiary-butoxybenzene derivative of the present invention includes phenol,
Cresol, chlorophenol, nitrophenol and the like are exemplified, and these are used for the reaction directly or after being dissolved in a solvent. The method of the present invention is particularly effective when producing tertiary-butoxychlorobenzene using para-chlorophenol as a raw material.

【0013】本発明で使用される溶媒としては、通常、
ヘプタン、オクタン等の飽和脂肪族炭化水素類、ジクロ
ロエタン、トリ−クロロエタン等のハロゲン化脂肪族炭
化水素類、ベンゼン、トルエン、キシレン等の芳香族炭
化水素類、クロロベンゼン、ブロモベンゼン等のハロゲ
ン化芳香族炭化水素類から選ばれる。本発明において
は、反応液中の未反応イソブチレンを効率的に除去する
ため、使用溶媒の沸点は可能なかぎり高い方が好ましい
が、あまり高すぎると蒸留分離に負担がかかる。原料フ
ェノール化合物の溶解性も含めて考慮すると、クロロベ
ンゼン、トルエンが好適に使用される。その使用量は、
設定反応温度において原料フェノール化合物が溶解する
量で良いが、原料フェノール化合物の濃度は高いほど良
い。例えば、クロロベンゼン使用の場合は、原料フェノ
ール化合物の濃度として40〜70重量%が好適であ
る。
The solvent used in the present invention is usually
Saturated aliphatic hydrocarbons such as heptane and octane; halogenated aliphatic hydrocarbons such as dichloroethane and tri-chloroethane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aromatics such as chlorobenzene and bromobenzene Selected from hydrocarbons. In the present invention, the boiling point of the solvent used is preferably as high as possible in order to efficiently remove unreacted isobutylene from the reaction solution. However, if it is too high, the distillation separation is burdensome. Considering the solubility of the raw material phenol compound, chlorobenzene and toluene are preferably used. Its usage is
The amount of the starting phenol compound to be dissolved at the set reaction temperature may be sufficient, but the higher the starting phenol compound concentration, the better. For example, when chlorobenzene is used, the concentration of the starting phenol compound is preferably from 40 to 70% by weight.

【0014】本発明で使用される酸触媒としては、通
常、硫酸、メタンスルホン酸等の脂肪族スルホン酸、パ
ラトルエンスルホン酸等の芳香族スルホン酸から選ばれ
るが、特に硫酸、メタンスルホン酸が好適に使用され
る。その使用量は、酸触媒の種類によって相違があり、
例えば、メタンスルホン酸の場合は、原料フェノール化
合物に対して0.01〜1モル%の間から選ばれるが、
特に、0.05〜0.5モル%が好適である。
The acid catalyst used in the present invention is usually selected from aliphatic sulfonic acids such as sulfuric acid and methanesulfonic acid, and aromatic sulfonic acids such as paratoluenesulfonic acid. Particularly, sulfuric acid and methanesulfonic acid are used. It is preferably used. The amount used depends on the type of acid catalyst,
For example, in the case of methanesulfonic acid, it is selected from the range of 0.01 to 1 mol% based on the raw phenol compound,
In particular, 0.05 to 0.5 mol% is preferable.

【0015】本発明における反応温度は、通常、−10
℃〜50℃の間から選ばれるが、特に、0℃〜30℃が
好適である。
The reaction temperature in the present invention is usually -10
The temperature is selected from the range of 0 ° C to 50 ° C, and 0 ° C to 30 ° C is particularly preferable.

【0016】本発明における原料イソブチレンは、酸触
媒を含有するフェノール化合物溶液を攪拌しながら、ガ
ス状又は液状で溶液内に導入し反応させる。その使用量
は原料フェノール化合物に対して等モル以上であれば良
いが、少ないと収率が低下し、多すぎると反応系外にリ
ークして、除去する未反応イソブチレン量が多くなり好
ましくない。本発明における好適な使用量は、原料フェ
ノール化合物に対して1.1〜1.6倍モルである。
The raw material isobutylene in the present invention is introduced into the solution in a gaseous or liquid state while stirring a phenol compound solution containing an acid catalyst, and reacted. The use amount thereof may be at least equimolar to the starting phenol compound, but if it is too small, the yield decreases, and if it is too large, it leaks out of the reaction system, and the amount of unreacted isobutylene to be removed is undesirably large. The preferred amount used in the present invention is 1.1 to 1.6 times the molar amount of the starting phenol compound.

【0017】本発明における反応時間は、イソブチレン
導入時間に関しては反応温度が制御でき、反応系外にリ
ークしない範囲で短時間で導入したほうが良い。導入後
は長時間熟成したほうが良い。
Regarding the reaction time in the present invention, it is better to introduce the isobutylene in a short time as long as the reaction temperature can be controlled and the leak does not leak out of the reaction system. It is better to ripen for a long time after introduction.

【0018】本反応は平衡反応であり、上記の反応条件
及び操作で得られた反応液には多量の未反応イソブチレ
ン及びフェノール化合物が残存しているが、本発明の熱
媒体処理を実施すれば未反応原料を定量的かつ効率的に
除去、回収することが可能となる。
This reaction is an equilibrium reaction, and a large amount of unreacted isobutylene and phenol compounds remain in the reaction solution obtained under the above reaction conditions and operations. It is possible to quantitatively and efficiently remove and recover unreacted raw materials.

【0019】本発明の方法を、熱アルカリ水溶液を用い
て実施する場合は、処理槽の材質に制限を受けガラス質
の処理槽は使用出来ない。熱アルカリ水溶液処理の特徴
は、未反応イソブチレン及びフェノール化合物の同時除
去が可能なことである。すなわち未反応イソブチレンは
気相に放出除去され、未反応のフェノール化合物はアル
カリ塩となりアルカリ水溶液相に抽出除去される。ま
た、処理後に分液した有機相から直接第3級−ブトキシ
ベンゼン誘導体を蒸留分離できる利点がある。
When the method of the present invention is carried out using a hot alkaline aqueous solution, a vitreous processing tank cannot be used because the material of the processing tank is limited. A feature of the hot alkali aqueous solution treatment is that unreacted isobutylene and a phenol compound can be removed simultaneously. That is, unreacted isobutylene is released and removed in the gas phase, and the unreacted phenol compound becomes an alkali salt and is extracted and removed in the aqueous alkaline solution phase. Further, there is an advantage that the tertiary-butoxybenzene derivative can be directly separated by distillation from the organic phase separated after the treatment.

【0020】本発明の方法を熱アルカリ水溶液で実施す
る場合に使用されるアルカリは、水酸化ナトリウム、水
酸化カリウムから選ばれるが、経済性等から水酸化ナト
リウムが好適に使用される。その使用量は、反応液中未
反応フェノール化合物に対して等倍モル以上であれば良
いが、再現性よく除去するためには1.2倍モル以上が
好ましい。水酸化ナトリウム水溶液濃度は高いほど良い
が、あまり高すぎると水溶液相に、抽出されたフェノー
ル化合物のナトリウム塩が含まれてくるために、基質濃
度が高くなり水酸化ナトリウム及びフェノール化合物の
ナトリウム塩が固体として析出し有機相との分液に問題
が発生してくる。このために、本発明における水酸化ナ
トリウム水溶液濃度は30重量%以下から選ばれるが、
特に10重量%〜20重量%が好適である。
The alkali used when the method of the present invention is carried out with a hot alkaline aqueous solution is selected from sodium hydroxide and potassium hydroxide, but sodium hydroxide is preferably used from the viewpoint of economy and the like. The amount of the phenol compound to be used may be equal to or more than 1 mole of the unreacted phenol compound in the reaction solution, but is preferably equal to or more than 1.2 mole to remove the phenol compound with good reproducibility. The higher the concentration of the aqueous sodium hydroxide solution, the better, but if the concentration is too high, the aqueous solution phase contains the extracted sodium salt of the phenol compound. It precipitates as a solid and causes problems in liquid separation with the organic phase. For this purpose, the concentration of the aqueous sodium hydroxide solution in the present invention is selected from 30% by weight or less.
Particularly, 10 to 20% by weight is suitable.

【0021】本発明の方法を、熱水や熱有機溶媒等の熱
媒体で実施する場合は、反応液に残存する酸触媒により
加熱処理液が酸性となり、生成した第3級−ブトキシベ
ンゼン誘導体が分解するため、あらかじめ反応液を少量
のアルカリで処理した後、滴下する必要がある。使用さ
れるアルカリとしては、水酸化ナトリウム、水酸化カリ
ウムが例示されるが、経済性等から水酸化ナトリウムが
好適に使用される。またその使用量は、反応液が中和さ
れる程度使用することが好ましい。なお、アルカリ処理
による発熱はほとんど認められない。未反応イソブチレ
ンを除去処理した後の反応液には、第3級−ブトキシベ
ンゼン誘導体と蒸留分離困難な未反応フェノール化合物
が存在しているため、冷却し室温付近でアルカリ水溶液
を添加して未反応フェノール化合物を抽出除去した後、
その有機相から第3級−ブトキシベンゼン誘導体を蒸留
分離することが好ましい。使用されるアルカリとして
は、水酸化ナトリウム、水酸化カリウムが例示される。
When the method of the present invention is carried out using a heat medium such as hot water or a hot organic solvent, the heat treatment solution becomes acidic due to the acid catalyst remaining in the reaction solution, and the generated tertiary-butoxybenzene derivative is produced. In order to decompose, it is necessary to treat the reaction solution with a small amount of alkali before dropping it. Examples of the alkali used include sodium hydroxide and potassium hydroxide, and sodium hydroxide is preferably used from the viewpoint of economy and the like. Further, it is preferable that the amount used is such that the reaction solution is neutralized. In addition, heat generation by the alkali treatment is hardly recognized. After the unreacted isobutylene is removed, the reaction solution contains an unreacted phenol compound which is difficult to separate by distillation from the tertiary-butoxybenzene derivative. After extracting and removing phenolic compounds,
Preferably, the tertiary-butoxybenzene derivative is separated by distillation from the organic phase. Examples of the alkali used include sodium hydroxide and potassium hydroxide.

【0022】本発明の方法で、除去されたイソブチレン
ガスを回収すると、その中には、反応で副生する低沸点
物及び水分と反応溶媒が数%含まれてくる場合がある。
この回収イソブチレンガスを次の反応にリサイクルする
場合、水分は使用する酸触媒の酸強度を低下させ反応に
悪影響を与え問題となる場合がある。回収イソブチレン
ガス中の水分は、低温のコンデンサ−を通過させること
により反応に悪影響を与えない程度まで除去可能であ
る。コンデンサ−の温度は低温ほど除去能力及び効率は
良いが、0℃以下になるとコンデンサ−に氷として付着
し空間部を閉塞してしまうので良くない。反応に悪影響
を与えない程度まで水分除去可能なコンデンサ−の温度
は15℃以下であるが、特に0〜5℃が好ましい。低温
のコンデンサ−を通過した回収イソブチレンガスは、直
接又は反応溶媒に吸収させ次の反応に好適にリサイクル
使用可能となる。
When the removed isobutylene gas is recovered by the method of the present invention, it may contain low-boiling substances, water and a reaction solvent by-produced by the reaction in several percent.
When this recovered isobutylene gas is recycled to the next reaction, water may lower the acid strength of the acid catalyst used, adversely affect the reaction, and cause a problem. The moisture in the recovered isobutylene gas can be removed by passing it through a low-temperature condenser to such an extent that the reaction is not adversely affected. The lower the temperature of the condenser, the better the removal capacity and efficiency. However, if the temperature is lower than 0 ° C., it is not good because it adheres to the condenser as ice and blocks the space. The temperature of the condenser capable of removing moisture to such an extent that the reaction is not adversely affected is 15 ° C. or lower, and particularly preferably 0 to 5 ° C. The recovered isobutylene gas that has passed through the low-temperature condenser is absorbed directly or in a reaction solvent and can be suitably recycled for the next reaction.

【0023】[0023]

【発明の効果】以上の説明から明らかなように本発明の
方法によれば、フェノール化合物を、酸触媒存在下イソ
ブチレンと反応させて、第3級−ブトキシベンゼン誘導
体を製造する方法において、反応液から定量的かつ効率
的に未反応イソブチレンを除去することができる。
As is apparent from the above description, according to the method of the present invention, a phenol compound is reacted with isobutylene in the presence of an acid catalyst to produce a tertiary-butoxybenzene derivative. Unreacted isobutylene can be quantitatively and efficiently removed from the mixture.

【0024】なお、本発明の方法は、極めて簡便で工業
的な利用価値が大きく実用性に富むものである。
The method of the present invention is extremely simple, has a large industrial value, and is highly practical.

【0025】[0025]

【実施例】以下に、本発明の方法を実施例により具体的
に説明するが、本発明はこれら実施例のみに限定される
ものではない。
EXAMPLES Hereinafter, the method of the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

【0026】実施例1 温度計、攪拌機、還流冷却管及び原料導入管を有する3
00mlの丸底フラスコに、クロロベンゼン(以下Ph
Clと略記する)85.6gと加温して溶解させたパラ
クロロフェノール(以下PCPと略記する)128.6
g(1.00モル)とメタンスルホン酸(以下MSAと
略記する)0.24g(0.0025モル)を仕込み、
攪拌下液温を20℃に保持しながら、イソブチレンガス
(以下IBGと略記する)67.4g(1.20モル)
を6時間にわたって溶液中に供給した。その後同温度で
20時間熟成した。この反応液をGC分析して反応成績
を求めたところPCP転化率76.4%、PTBCB収
率75.1%であった。次いでこの反応液を、定量ポン
プを用いて、温度計、攪拌機、5℃の冷却水が循環され
た還流冷却管及びそのベントにガス流量計とガストラッ
プ装置を有する500ml丸底フラスコ中の20重量%
水酸化ナトリウム水溶液68.4g(0.342モル)
に1.5時間にわたって液温を90℃に保持しながら定
量滴下した。滴下中の気相ガスを流量計で測定したとこ
ろ定量的に放出されていた。トラップされた気相放出ガ
ス量は22.9gであり、イソブチレン22.4g
(0.399モル)、水分2200ppm.を含有して
いた。滴下終了とほぼ同時にガスの放出もなくなった。
この処理液を冷却、分液し有機相を取り上げた。この有
機相中の残存原料をGC分析したところ、イソブチレン
が0.08重量%でPCPは検出されなかった。この有
機相から蒸留によりPhCl及びPTBCBを回収した
が、液発泡等蒸留の負担となるようなこともなく短時間
で回収できた。
Example 1 3 having a thermometer, a stirrer, a reflux cooling pipe and a raw material introduction pipe
In a 00 ml round bottom flask, add chlorobenzene (hereinafter Ph
85.6 g of parachlorophenol (hereinafter abbreviated as PCP) dissolved by heating to 88.6 g.
g (1.00 mol) and 0.24 g (0.0025 mol) of methanesulfonic acid (hereinafter abbreviated as MSA),
While maintaining the liquid temperature at 20 ° C. while stirring, 67.4 g (1.20 mol) of isobutylene gas (hereinafter abbreviated as IBG).
Was fed into the solution over 6 hours. Thereafter, aging was performed at the same temperature for 20 hours. This reaction solution was subjected to GC analysis to determine the reaction results. As a result, the PCP conversion rate was 76.4% and the PTBCB yield was 75.1%. Then, using a metering pump, this reaction solution was weighed in a 500 ml round bottom flask having a thermometer, a stirrer, a reflux condenser through which cooling water at 5 ° C. was circulated, and a gas flow meter and a gas trap at its vent. %
68.4 g (0.342 mol) of aqueous sodium hydroxide solution
For 1.5 hours while maintaining the liquid temperature at 90 ° C. When the gas phase gas during the dropping was measured with a flow meter, it was quantitatively released. The amount of gaseous gas released was 22.9 g, and 22.4 g of isobutylene.
(0.399 mol), water 2200 ppm. Was contained. Almost simultaneously with the end of the dropping, the release of gas was stopped.
The treated liquid was cooled and separated, and the organic phase was taken up. GC analysis of the remaining raw material in the organic phase revealed that isobutylene was 0.08% by weight and PCP was not detected. PhCl and PTBCB were recovered from the organic phase by distillation, but could be recovered in a short time without causing any burden on distillation such as liquid foaming.

【0027】実施例2 実施例1と同一の装置、原料、仕込み、反応条件で反応
させた反応液に、10重量%水酸化ナトリウム水溶液
1.0g(0.0025モル)を添加攪拌して中和処理
を行った。この反応液を、実施例1と同一の装置中の水
40gに1.5時間にわたって液温を90℃に保持しな
がら定量滴下した。滴下中の気相ガスを流量計で測定し
たところ定量的に放出されていた。トラップされた気相
放出ガス量は23.0gであり、イソブチレン22.5
g(0.401モル)、水分2000ppm.を含有し
ていた。滴下終了とほぼ同時にガスの放出もなくなっ
た。この処理液を冷却し有機相中の残存イソブチレンを
GC分析したところ、0.05重量%であった。次に、
この処理液を攪拌しながら48重量%水酸化ナトリウム
水溶液28.5g(0.342モル)を0.5時間にわ
たって液温を室温付近に保持しながら滴下した。滴下終
了後、静定分液して有機相を取り上げた。この有機相中
の残存原料をGC分析したところ、イソブチレンが0.
04重量%でPCPは検出されなかった。
Example 2 1.0 g (0.0025 mol) of a 10% by weight aqueous sodium hydroxide solution was added to a reaction solution reacted under the same apparatus, raw materials, preparation and reaction conditions as in Example 1, followed by stirring. Sum processing was performed. This reaction solution was added dropwise to 40 g of water in the same apparatus as in Example 1 over a period of 1.5 hours while maintaining the solution temperature at 90 ° C. When the gas phase gas during the dropping was measured with a flow meter, it was quantitatively released. The amount of gaseous gas released was 23.0 g, and 22.5 g of isobutylene was discharged.
g (0.401 mol), water 2000 ppm. Was contained. Almost simultaneously with the end of the dropping, the release of gas was stopped. This treatment liquid was cooled, and residual isobutylene in the organic phase was analyzed by GC. As a result, it was found to be 0.05% by weight. next,
While stirring the treatment liquid, 28.5 g (0.342 mol) of a 48% by weight aqueous sodium hydroxide solution was added dropwise over 0.5 hours while maintaining the liquid temperature near room temperature. After completion of the dropwise addition, the organic phase was separated by static decantation. GC analysis of the remaining raw material in the organic phase revealed that isobutylene contained 0.1%.
No PCP was detected at 04% by weight.

【0028】比較例1 実施例1と同一の装置、原料、仕込み、反応条件で反応
させた反応液に20重量%水酸化ナトリウム水溶液6
8.4g(0.342モル)を0.5時間にわたって滴
下した。その後液温を90℃に保持し1.5時間加熱攪
拌した。この20重量%水酸化ナトリウム水溶液滴下中
及び加熱攪拌中に、還流冷却管から放出した気相ガスを
流量計で測定したところ、流量の変動が激しく非定量的
に放出されていた。この間にトラップされた気相放出ガ
ス量は17.7gであり、イソブチレン17.2g
(0.307モル)、水分2500ppm.を含有して
いた。この処理液を冷却、分液し有機相を取り上げた。
この有機相中の残存原料をGC分析したところ、イソブ
チレンが2.1重量%でPCPは検出されなかった。こ
の有機相から蒸留によりPhCl及びPTBCBを回収
したが、液発泡が激しく回収に長時間を要した。また、
イソブチレントラップ等の繁雑な操作も含めて非常に蒸
留の負担となった。
Comparative Example 1 A 20% by weight aqueous solution of sodium hydroxide 6 was added to a reaction solution reacted under the same apparatus, raw materials, preparation and reaction conditions as in Example 1.
8.4 g (0.342 mol) were added dropwise over 0.5 hour. Thereafter, the liquid temperature was maintained at 90 ° C., and the mixture was heated and stirred for 1.5 hours. During the dropwise addition of the 20% by weight aqueous sodium hydroxide solution and during the heating and stirring, the gaseous phase gas released from the reflux condenser was measured with a flow meter. The amount of gas-phase released gas trapped during this time was 17.7 g, and 17.2 g of isobutylene.
(0.307 mol), water 2500 ppm. Was contained. The treated liquid was cooled and separated, and the organic phase was taken up.
GC analysis of the remaining raw material in the organic phase revealed that isobutylene was 2.1% by weight and PCP was not detected. PhCl and PTBCB were recovered from this organic phase by distillation, but the liquid foamed vigorously and it took a long time to recover. Also,
The burden of distillation was extremely high, including complicated operations such as isobutylene trap.

【0029】比較例2 実施例1と同一の装置、原料、仕込み、反応条件で反応
させその成績を求めたところPCP転化率76.2%、
PTBCB収率75.1%であった。この反応液を、実
施例1と同一の装置中の水40gに1.5時間にわたっ
て液温を90℃に保持しながら定量滴下した。滴下中の
気相ガスを流量計で測定したところ流量の変動が激しく
非定量的に放出されていた。トラップされた気相放出ガ
ス量は31.7gであり、イソブチレン30.9g
(0.55モル)、水分2400ppm.を含有してい
た。この処理液を冷却、分液し有機相を取り上げた。こ
の有機相をGC分析しPTBCB収率を求めたところ6
0.2%であり、生成PTBCBの約20%が分解して
いた。
Comparative Example 2 The reaction was carried out under the same apparatus, raw materials, preparation and reaction conditions as in Example 1 and the results were determined. The PCP conversion was 76.2%.
The PTBCB yield was 75.1%. This reaction solution was added dropwise to 40 g of water in the same apparatus as in Example 1 over a period of 1.5 hours while maintaining the solution temperature at 90 ° C. When the gas phase gas during dropping was measured by a flow meter, the flow rate fluctuated greatly and was released non-quantitatively. The amount of gas-phase released gas trapped was 31.7 g, and 30.9 g of isobutylene.
(0.55 mol), water 2400 ppm. Was contained. The treated liquid was cooled and separated, and the organic phase was taken up. The organic phase was analyzed by GC to determine the PTBCB yield.
0.2%, and about 20% of the produced PTBCB was decomposed.

【0030】実施例3 温度計、攪拌機、還流冷却管及び原料導入管を有する1
000mlの丸底フラスコに、PhCl256.8gと
加温して溶解させたPCP385.8g(3.00モ
ル)とMSA0.72g(0.0075モル)を仕込
み、攪拌下液温を20℃に保持しながら、IBG20
2.2g(3.60モル)を6時間にわたって溶液中に
供給した。その後同温度で20時間熟成した。この反応
液をGC分析して反応成績を求めたところPCP転化率
76.8%、PTBCB収率75.3%であった。次い
でこの反応液を、定量ポンプを用いて、温度計、攪拌
機、5℃の冷却水が循環された還流冷却管を有する20
00ml丸底フラスコ中の20重量%水酸化ナトリウム
水溶液205.2g(1.026モル)に6時間にわた
って液温を90℃に保持しながら定量滴下した。この滴
下中に還流冷却管から放出したリサイクルIBGを用い
た以外は、実施例1と同一の装置、原料、仕込み、反応
条件で反応させた。この反応液をGC分析して反応成績
を求めたところPCP転化率76.1%、PTBCB収
率75.0%であり、未反応イソブチレンはリサイクル
使用可能であった。
Example 3 1 having a thermometer, a stirrer, a reflux cooling pipe and a raw material introduction pipe
In a 2,000 ml round bottom flask, 385.8 g (3.00 mol) of PCP and 0.72 g (0.0075 mol) of MSA dissolved by heating with 256.8 g of PhCl were charged, and the liquid temperature was maintained at 20 ° C. with stirring. While IBG20
2.2 g (3.60 mol) were fed into the solution over 6 hours. Thereafter, aging was performed at the same temperature for 20 hours. This reaction mixture was subjected to GC analysis to determine the reaction results. As a result, the PCP conversion was 76.8% and the PTBCB yield was 75.3%. Next, the reaction solution was subjected to a thermometer, a stirrer, and a reflux cooling pipe through which cooling water at 5 ° C. was circulated using a metering pump.
A fixed amount was dropped into 205.2 g (1.026 mol) of a 20% by weight aqueous sodium hydroxide solution in a 00 ml round bottom flask over 6 hours while maintaining the liquid temperature at 90 ° C. The reaction was carried out under the same apparatus, raw materials, preparation and reaction conditions as in Example 1 except that the recycled IBG discharged from the reflux condenser during this dropping was used. The reaction solution was subjected to GC analysis to determine the reaction results. As a result, the PCP conversion was 76.1%, the PTBCB yield was 75.0%, and the unreacted isobutylene was recyclable.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フェノール化合物を、酸触媒存在下イソ
ブチレンと反応させて、第3級−ブトキシベンゼンを製
造する方法において、反応液を熱アルカリ水溶液に定量
滴下し未反応原料を除去した後、蒸留により第3級−ブ
トキシベンゼン誘導体を得ることを特徴とする第3級−
ブトキシベンゼン誘導体の製造方法。
1. A method for producing a tertiary-butoxybenzene by reacting a phenol compound with isobutylene in the presence of an acid catalyst. To obtain a tertiary-butoxybenzene derivative.
A method for producing a butoxybenzene derivative.
【請求項2】 フェノール化合物を、酸触媒存在下イソ
ブチレンと反応させて、第3級−ブトキシベンゼンを製
造する方法において、アルカリ処理した反応液を熱媒体
に定量滴下して未反応原料を除去した後、蒸留により第
3級−ブトキシベンゼン誘導体を得ることを特徴とする
第3級−ブトキシベンゼン誘導体の製造方法。
2. A method for producing a tertiary-butoxybenzene by reacting a phenol compound with isobutylene in the presence of an acid catalyst, wherein an unreacted raw material is removed by dropping a predetermined amount of the alkali-treated reaction solution into a heating medium. Then, a tertiary-butoxybenzene derivative is obtained by distillation.
JP33414899A 1999-11-25 1999-11-25 Method for producing tertiary-butoxybenzene derivative Expired - Lifetime JP4432172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33414899A JP4432172B2 (en) 1999-11-25 1999-11-25 Method for producing tertiary-butoxybenzene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33414899A JP4432172B2 (en) 1999-11-25 1999-11-25 Method for producing tertiary-butoxybenzene derivative

Publications (2)

Publication Number Publication Date
JP2001151718A true JP2001151718A (en) 2001-06-05
JP4432172B2 JP4432172B2 (en) 2010-03-17

Family

ID=18274075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33414899A Expired - Lifetime JP4432172B2 (en) 1999-11-25 1999-11-25 Method for producing tertiary-butoxybenzene derivative

Country Status (1)

Country Link
JP (1) JP4432172B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395617B2 (en) 2009-01-05 2016-07-19 Applied Quantum Technologies, Inc. Panoramic multi-scale imager and method therefor
US9432591B2 (en) 2009-01-05 2016-08-30 Duke University Multiscale optical system having dynamic camera settings
US9635253B2 (en) 2009-01-05 2017-04-25 Duke University Multiscale telescopic imaging system
CN108640821A (en) * 2018-04-10 2018-10-12 恒河材料科技股份有限公司 A kind of the rubigan tertbutyl ether synthetic method and device of high-efficiency and continuous
US10725280B2 (en) 2009-01-05 2020-07-28 Duke University Multiscale telescopic imaging system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395617B2 (en) 2009-01-05 2016-07-19 Applied Quantum Technologies, Inc. Panoramic multi-scale imager and method therefor
US9432591B2 (en) 2009-01-05 2016-08-30 Duke University Multiscale optical system having dynamic camera settings
US9635253B2 (en) 2009-01-05 2017-04-25 Duke University Multiscale telescopic imaging system
US10725280B2 (en) 2009-01-05 2020-07-28 Duke University Multiscale telescopic imaging system
CN108640821A (en) * 2018-04-10 2018-10-12 恒河材料科技股份有限公司 A kind of the rubigan tertbutyl ether synthetic method and device of high-efficiency and continuous
CN108640821B (en) * 2018-04-10 2021-06-18 恒河材料科技股份有限公司 Efficient and continuous p-chlorophenyl tert-butyl ether synthesis method and device

Also Published As

Publication number Publication date
JP4432172B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP5668319B2 (en) Method for producing 2,2-bis (4-hydroxyphenyl) hexafluoropropane
JP2001151718A (en) Method for producing tertiary butoxybenzene derivative
US2964535A (en) Purification of nu-methyl pyrrolidone
CA1267158A (en) Production of dibromonitro compound
US5777168A (en) Process for producing N-alkyl-dinitroalkylanilines
CN100509748C (en) Preparation method for purified 3-methyl-2-butenyl acetate
EP0790972B1 (en) Synthesis of bis(2,2-dinitropropyl)formal (bdnpf)
US6353126B1 (en) Process for the production of malononitrile
EP0792254B1 (en) Synthesis of bis(2,2-dinitropropyl)acetal (bdnpa)
US4282364A (en) Process for the preparation of thiazoles
CA1340073C (en) Process for the production of dinitrotoleune or mononitrobenzene
JPH11228464A (en) Production of methyl isobutyl ketone and/or methyl isobutyl carbinol
NO821817L (en) PROCEDURE FOR THE PREPARATION OF BASIC SUBSTITUTED PHENYL ACETONITRILS.
JP2517304B2 (en) Method for producing bromoacetonitrile
JPH06271495A (en) Recovery of 1,1,1,3,3,3-hexafluoro-2-propanol
JPS58157751A (en) Recovery of monomethylhydrazine
RU2106338C1 (en) Method of preparing dinitrotoluene
JP3104323B2 (en) How to remove thiophosgene
US6500978B2 (en) Process for producing cyclopropanecarbonitrile
SU652897A3 (en) Method of obtaining 0,0 -dimethyl-s-phthalimidoment methyldithiophosphate
RU2265590C1 (en) Method for preparing 4-aminodiphenylamine
JPH0699350B2 (en) Method for separating phenols and catechols
CA1261879A (en) Method for the purification of trifluraline
CA1152107A (en) Process for the preparation of 4-nitroso- diphenyl-amine
JP2004529941A (en) Method for producing 5-benzyl-3-furfuryl alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4432172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

EXPY Cancellation because of completion of term