JP2001151506A - Method of manufacturing calcium silicate based porous body formed by removing dioxins from waste incineration ash - Google Patents

Method of manufacturing calcium silicate based porous body formed by removing dioxins from waste incineration ash

Info

Publication number
JP2001151506A
JP2001151506A JP33338699A JP33338699A JP2001151506A JP 2001151506 A JP2001151506 A JP 2001151506A JP 33338699 A JP33338699 A JP 33338699A JP 33338699 A JP33338699 A JP 33338699A JP 2001151506 A JP2001151506 A JP 2001151506A
Authority
JP
Japan
Prior art keywords
calcium silicate
incineration ash
dioxins
porous body
based porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33338699A
Other languages
Japanese (ja)
Inventor
Yasuo Dansei
妥夫 男成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie Prefecture
Original Assignee
Mie Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie Prefecture filed Critical Mie Prefecture
Priority to JP33338699A priority Critical patent/JP2001151506A/en
Publication of JP2001151506A publication Critical patent/JP2001151506A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a calcium silicate based porous body increased in safety by eliminating the fear of the elution of harmful materials such as heavy metals or dioxins and formed by removing dioxins from waste incineration ash having high additional value. SOLUTION: The calcium silicate based porous body is synthesized by placing the waste incineration ash under an alkali condition with the coexistence of an oxidizing agent and after that, hydrothermally treating to decompose and remove the dioxins in the waste incineration ash.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、RDF焼却灰等の
ゴミ焼却灰を原料にし、その中のダイオキシン類を同時
分解して取り除き、耐熱材,防火材,吸音材,吸着剤等
として有用なゴミ焼却灰からのケイ酸カルシウム系多孔
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses refuse incineration ash such as RDF incineration ash as a raw material, and dioxins in the ash are simultaneously decomposed and removed to be useful as a heat-resistant material, a fire-proof material, a sound-absorbing material, an adsorbent and the like. The present invention relates to a method for producing a calcium silicate-based porous body from refuse incineration ash.

【0002】[0002]

【従来の技術】一般廃棄物は、一部はそのまま埋め立て
処分されているが、その多くは焼却減容した後、埋め立
て処分されている。しかし、一般廃棄物を直接焼却した
場合は、ダイオキシン類の発生量が多く問題となってお
り、焼却灰を埋め立て処分するための最終処分場の立地
も困難になっている。これまで、ゴミ焼却灰からのダイ
オキシン類の除去法としては、溶融スラグ化法の他、超
臨界流体を用いて分解し除去する方法(特開平9−32
7478号公報)が発明されている。
2. Description of the Related Art General waste is partially disposed of as landfill, but most of the waste is disposed of after landfill after incineration. However, when municipal solid waste is directly incinerated, the amount of dioxins generated is a problem, making it difficult to locate a final disposal site for landfill disposal of incinerated ash. Heretofore, as a method for removing dioxins from refuse incineration ash, in addition to a molten slag method, a method of decomposing and removing using a supercritical fluid (Japanese Unexamined Patent Publication No. 9-32)
No. 7478) has been invented.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記公報技術
は、多大のエネルギーを要すること、超臨界流体を
用いるため装置の高耐圧性が要求され、使用出来る材質
がハステロイ,インコネル等の耐圧性,耐腐食性を有す
る特殊材料を必要とすることなど大きな制約があった。
装置が高価となり、被処理焼却灰当りのエネルギ消費量
が大きくなる問題があった。そして、運転する際の安
全面でも特段の注意を払わねばならなかった。さらに、
この方法では、ダイオキシン類の分解を行うことのみ
を目的としており、処理後の焼却灰の有効利用について
は全く考慮されていなかった。斯る〜の問題を抱え
て、当該方法は利用され易い方法とはいい難かった。
However, the above gazette technology requires a large amount of energy, requires a high pressure resistance of the apparatus because of using a supercritical fluid, and can use materials such as Hastelloy and Inconel which have high pressure resistance. There were great restrictions such as the need for special materials having corrosion resistance.
There was a problem that the apparatus became expensive and the energy consumption per incineration ash to be treated increased. Special attention had to be paid to driving safety. further,
In this method, the purpose is only to decompose dioxins, and no consideration is given to the effective use of incinerated ash after treatment. With the above problems (1) to (4), the method was not easy to use.

【0004】一方、ゴミ焼却灰の有効利用法として、溶
融スラグ化して路盤材,コンクリート骨材等に用いる方
法、成分調整を行った後、成形して焼成しレンガとする
方法、コンクリートと混練した後、成形固化してブロッ
ク化する方法、セメント製造原料の一部として用いる方
法等が開発されている。しかしながら、これらの方法で
は、(i)多大のエネルギーを要する割に得られた製品の
価格が安価であること、(ii)焼却灰成分のうち、重金属
類やダイオキシン類等の有害な成分の溶出の不安が解消
されていないこと等の点で問題を残し、実用化はあまり
進んでいないのが現状である。こうしたことから、より
安全性が高く、且つ処理された生成物の付加価値がより
高くなる有効利用法の開発が求められている。
On the other hand, as a method of effectively utilizing garbage incineration ash, a method of forming into molten slag and using it for roadbed materials and concrete aggregates, a method of adjusting components, a method of molding and firing to form bricks, and a method of kneading with concrete. After that, a method of molding and solidifying into blocks, a method of using as a part of a raw material for cement production, and the like have been developed. However, according to these methods, (i) the price of the obtained product is low in spite of requiring a large amount of energy, and (ii) the elution of harmful components such as heavy metals and dioxins among the incinerated ash components. Currently, there is a problem in that the anxiety has not been resolved, and practical application has not progressed much. For these reasons, there is a need for the development of an effective use method that is safer and adds more value to the processed product.

【0005】本発明は上記問題点を解決するもので、重
金属類やダイオキシン類等の有害成分の溶出不安を解消
して安全性を高め、且つゴミ焼却灰からダイオキシン類
を除いた付加価値の高いケイ酸カルシウム系多孔体の製
造方法を提供することを目的とする。
[0005] The present invention solves the above-mentioned problems and eliminates the anxiety of elution of harmful components such as heavy metals and dioxins to enhance safety and to provide high added value by removing dioxins from incinerated ash. An object of the present invention is to provide a method for producing a calcium silicate-based porous body.

【0006】[0006]

【課題を解決するための手段】上記目的を達成すべく、
請求項1記載の本発明の要旨は、ゴミ焼却灰をアルカリ
条件下におき且つ酸化剤を共存させた後、水熱処理する
ことによりゴミ焼却灰中のダイオキシン類を分解除去し
てケイ酸カルシウム系多孔体を合成することを特徴とす
るゴミ焼却灰からダイオキシン類を除いたケイ酸カルシ
ウム系多孔体の製造方法にある。請求項2に記載の発明
たるゴミ焼却灰からダイオキシン類を除いたケイ酸カル
シウム系多孔体の製造方法は、請求項1で、100℃〜
250℃の飽和蒸気圧下で水熱処理することを特徴とす
る。請求項1,2のようにゴミ焼却灰をアルカリ条件下
におき且つ酸化剤を共存させた後、水熱処理すると、ダ
イオキシン類が分解する。ダイオキシン類は分解し、そ
の塩素分は水の中に残りアルカリと反応して無害化(塩
化カリウム等)する。また、焼却灰成分のうちの重金属
類の有害成分は、結晶格子イオンであるCaイオンとイ
オン交換して固定化されたり、多孔体から放出される強
アルカリ成分(例えばCa(OH))と反応し水酸化物
として共沈したりして安定化し溶出の不安が解消され
る。また、焼却灰中に在るPbは水熱処理により水熱処
理廃液中に溶解して除去される。そして、ゴミ焼却灰を
アルカリ条件下におき且つ酸化剤を共存させて水熱処理
すると、重金属イオン類等に対し吸着能を有するケイ酸
カルシウム系多孔体が得られる。
In order to achieve the above object,
The gist of the present invention according to claim 1 is that, after placing incineration ash under alkaline conditions and coexisting with an oxidizing agent, dioxins in the incineration ash are decomposed and removed by hydrothermal treatment to remove calcium silicate. The present invention relates to a method for producing a calcium silicate-based porous body obtained by removing dioxins from waste incineration ash, which comprises synthesizing a porous body. The method for producing a calcium silicate-based porous body obtained by removing dioxins from refuse incineration ash according to the second aspect of the present invention is a method for producing a calcium silicate-based porous body at 100 ° C.
Hydrothermal treatment is performed under a saturated vapor pressure of 250 ° C. When the incineration ash is placed under alkaline conditions and an oxidizing agent is allowed to coexist with the ash, hydrothermal treatment decomposes dioxins. Dioxins are decomposed, and their chlorine remains in water and reacts with alkalis to render them harmless (eg, potassium chloride). In addition, harmful components of heavy metals in the incineration ash component are fixed by ion exchange with Ca ions which are crystal lattice ions, or are strongly alkaline components (for example, Ca (OH) 2 ) released from a porous body. It reacts and co-precipitates as a hydroxide to stabilize and eliminate anxiety of elution. Further, Pb present in the incinerated ash is dissolved and removed in the hydrothermal treatment waste liquid by the hydrothermal treatment. Then, when the garbage incineration ash is placed under alkaline conditions and subjected to hydrothermal treatment in the presence of an oxidizing agent, a calcium silicate-based porous body having an adsorption ability for heavy metal ions and the like is obtained.

【0007】[0007]

【発明の実施の形態】以下、本発明に係るゴミ焼却灰か
らダイオキシン類を除いたケイ酸カルシウム系多孔体の
製造方法の実施形態について詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a method for producing a calcium silicate-based porous body of the present invention by removing dioxins from refuse incineration ash will be described in detail.

【0008】水熱処理法により工業的にケイ酸カルシウ
ム系の多孔体を製造する方法としては、トバモライト化
やゾノトライト化により軽量化、高強度化、吸放湿性等
の特性を付与した建築資材類の製造法(光田 武、”建
材システムへの利用”、”ファインセラミックスの活用
上”、大川出版(1986)、P208〜229)等が知られてい
る。しかし、こうした方法では、一般に前処理として原
材料の粉砕分級、成分調整、混合等の操作が必要で得ら
れる製品はコスト高となっている。従って、上記の様な
方法によってゴミ焼却灰からケイ酸カルシウム系の材料
を製造し有効利用することは、コスト面からは優れた方
法であると言えない。一方、焼却灰中のダイオキシン類
の分解法としては、溶融してスラグ化する方法や超臨界
流体を用いる方法等が提案されているが、前者では多く
のエネルギーを要する割に得られるスラグの付加価値が
低いこと、後者では処理に374 ℃、22.1MP程
度以上の高温高圧を要し装置の製作に用いる材料には大
きな制約が有りコスト高となること、処理済みの灰の有
効利用については考慮されていないこと等の問題点を有
している。
As a method for industrially producing a calcium silicate-based porous material by a hydrothermal treatment method, there is known a method of producing a building material having properties such as weight reduction, high strength, and moisture absorption / release properties by tobermorite or zonotolite. Manufacturing methods (Takeshi Mitsuda, "Utilization for building material systems", "Utilization of fine ceramics", Okawa Publishing (1986), pp. 208 to 229) are known. However, such a method generally requires operations such as pulverization and classification of raw materials, component adjustment, mixing, and the like as pretreatment, resulting in high cost products. Therefore, it cannot be said that producing a calcium silicate-based material from refuse incineration ash by the above-described method and effectively utilizing it is an excellent method from the viewpoint of cost. On the other hand, as a method for decomposing dioxins in incineration ash, a method of melting and converting into slag and a method of using a supercritical fluid have been proposed. The value is low, the latter requires high temperature and high pressure of about 374 ° C. and 22.1MP or more, and the materials used for manufacturing the apparatus have great restrictions and the cost is high. It has problems such as not being considered.

【0009】そこで、本発明者は、こうした問題を解決
すべく、RDF焼却灰等のゴミ焼却灰に酸化剤を添加し
水熱処理することにより、ダイオキシン類の同時分解を
可能とするゴミ焼却灰からのケイ酸カルシウム系多孔体
の製造法の開発を試みた。その結果、RDF焼却灰等の
ゴミ焼却灰に過酸化水素の様な酸化剤を添加し、アルカ
リ条件で水熱処理(特に100〜250℃程度の温度で
飽和蒸気圧の下で行うと好適となる。)すると、ダイオ
キシン類が分解除去され同時にトバモライトに代表され
る様なケイ酸カルシウム系鉱物類の結晶質部分とC-S-
Hの様な非晶質部分とが混在し、比表面積の大きな多孔
質のケイ酸カルシウム水和物系の多孔体になることを見
い出した。そして、この多孔体が耐熱材,防火材,吸音
材,吸着剤等として利用可能な材料となることを確認し
た。
In order to solve such a problem, the present inventor added an oxidizing agent to refuse incineration ash such as RDF incineration ash and hydrothermally treated the refuse incineration ash, which enables simultaneous decomposition of dioxins. Of calcium silicate based porous material was developed. As a result, it is preferable to add an oxidizing agent such as hydrogen peroxide to refuse incineration ash such as RDF incineration ash and perform hydrothermal treatment under alkaline conditions (especially at a temperature of about 100 to 250 ° C. under a saturated vapor pressure). )), The dioxins are decomposed and removed, and at the same time, the crystalline portion of calcium silicate minerals such as tobermorite and CS-
It has been found that an amorphous portion such as H is mixed to form a porous calcium silicate hydrate based porous material having a large specific surface area. Then, it was confirmed that this porous body could be used as a heat-resistant material, a fire-proof material, a sound-absorbing material, an adsorbent, and the like.

【0010】本発明に用いるゴミ焼却灰としては、一般
廃棄物を直接燃焼させて生成する灰でもよいが、一般廃
棄物に酸化カルシウム若しくは水酸化カルシウムを添加
した後、成形し、固形燃料(RDF)化したものを焼却
した際に生成する灰を用いるのがより好ましい。カルシ
ウム分が多くなり、ケイ酸カルシウムとして利用するの
に便利だからである。RDFを流動層炉で焼却した焼却
灰を用いれば、該焼却灰が均一生成されるので、より好
ましくなる。上記ゴミ焼却灰を、水酸化ナトリウム、水
酸化カリウム等のアルカリ水溶液中サスペンション状態
で、過酸化水素のような酸化剤を共存させ、100℃〜
250℃の温度で飽和蒸気圧下で数時間以上水熱処理
し、ケイ酸カルシウム系多孔体を合成する。出来上った
多孔体は吸着剤や建材等として有効利用できるものとな
る。水熱処理の温度を100℃〜250℃(180℃付
近が最適)の範囲とするのは、100℃未満になると反
応が進み難く、一方、250℃を越えると装置が高コス
トになるばかりか、鉱物が相転移し別の結晶構造をつく
ってしまうからである。
[0010] The refuse incineration ash used in the present invention may be ash produced by directly burning general waste, but after adding calcium oxide or calcium hydroxide to the general waste, the solid waste (RDF) is formed. It is more preferable to use the ash generated when the ashed product is incinerated. This is because the calcium content increases and it is convenient to use as calcium silicate. It is more preferable to use incinerated ash in which RDF is incinerated in a fluidized bed furnace because the incinerated ash is uniformly generated. The refuse incineration ash is suspended in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide in the presence of an oxidizing agent such as hydrogen peroxide at 100 ° C.
Hydrothermal treatment is performed at a temperature of 250 ° C. under a saturated vapor pressure for several hours or more to synthesize a calcium silicate-based porous body. The resulting porous body can be effectively used as an adsorbent, a building material, or the like. The reason for setting the temperature of the hydrothermal treatment in the range of 100 ° C. to 250 ° C. (optimally around 180 ° C.) is that if the temperature is lower than 100 ° C., it is difficult for the reaction to proceed. This is because the mineral undergoes a phase transition and forms another crystal structure.

【0011】本発明に係るゴミ焼却灰からダイオキシン
類を除いたケイ酸カルシウム系多孔体の製造方法の具体
的製造方法およびそのケイ酸カルシウム系多孔体の評価
試験結果を次に示す。
The concrete production method of the calcium silicate-based porous material of the present invention, from which dioxins are removed from incineration ash, and the evaluation test results of the calcium silicate-based porous material are shown below.

【0012】[実施例1]ここでは、日本リサイクルマ
ネジメント方式により、一般廃棄物に数%の水酸化カル
シウムを添加し、成形して製造されたRDFを、流動層
炉で焼却した際に生成する焼却灰を用いる。そして、該
焼却灰に対して水酸化カリウムと過酸化水素を含む水溶
液(1N水酸化カリウム、1.25〜5.0%過酸化水
素)を20倍量(重量換算)加え、その焼却灰を懸濁状
態にする。続いて、オートクレーブ中で180〜220
℃の飽和蒸気圧下で5〜10時間の水熱処理し、ダイオ
キシン類の酸化分解とケイ酸カルシウム系多孔体の合成
を行った。ダイオキシン類の酸化分解とケイ酸カルシウ
ム系多孔体の合成は180℃の飽和蒸気圧下であれば5
時間以上水熱処理すれば充足する。
[Example 1] Here, according to the Japan Recycling Management System, RDF produced by adding several percent of calcium hydroxide to general waste and molding is produced when incinerated in a fluidized bed furnace. Use incineration ash. Then, an aqueous solution (1 N potassium hydroxide, 1.25 to 5.0% hydrogen peroxide) containing potassium hydroxide and hydrogen peroxide is added to the incinerated ash in a 20-fold amount (in terms of weight), and the incinerated ash is added. Put in suspension. Subsequently, 180-220 in an autoclave.
Hydrothermal treatment was performed at a saturated vapor pressure of 5 ° C. for 5 to 10 hours to oxidatively decompose dioxins and synthesize a calcium silicate porous material. Oxidative decomposition of dioxins and synthesis of calcium silicate-based porous material are performed under a saturated vapor pressure of 180 ° C.
Hydrothermal treatment for more than an hour suffices.

【0013】得られたケイ酸カルシウム系多孔体は、水
洗した後、60℃で1週間乾燥させ、X線回折装置によ
る鉱物組成の分析とダイオキシン類の含有量の測定を行
った。X線回折装置による鉱物組成の分析結果をH
22: 1.5%,1N KOH水溶液中、サスペンショ
ン状態下、220℃、10時間の水熱処理により得られ
た多孔体の場合について図1に例示する。この結果から
もわかる様に、2θ:7.8゜に現れる1.1nm−ト
バモライトに起因するピ−クをはじめ回折パタ−ン全体
は、水熱処理時に過酸化水素を添加した場合と添加しな
かった場合とではほとんど変化せず、過酸化水素が焼却
灰の水熱処理に影響しないことがわかった。
The obtained calcium silicate-based porous material was washed with water, dried at 60 ° C. for one week, and analyzed for mineral composition and measured for dioxin content by an X-ray diffractometer. Analysis results of mineral composition by X-ray diffractometer
2 O 2: 1.5%, in 1N KOH aqueous solution, under the suspension state, 220 ° C., illustrated in Figure 1 for the case of the obtained porous body by hydrothermal treatment of 10 hours. As can be seen from this result, the entire diffraction pattern including the peak caused by 1.1 nm tobermorite appearing at 2θ: 7.8 ° and the whole of the diffraction pattern were added with and without hydrogen peroxide during the hydrothermal treatment. It was found that hydrogen peroxide did not affect the hydrothermal treatment of the incinerated ash.

【0014】ダイオキシン類の分解結果の一例を表1に
示す。ダイオキシンの分解率は、H : 2.5%,
1N KOH水溶液中、サスペンション状態下、220
℃、10時間の水熱処理(表1の多孔体A)で96.2
%、H: 1.25%,1N KOH水溶液中、サ
スペンション状態下、220℃、10時間の水熱処理
(表1の多孔体B)で89.7%、H: 2.5
%,1N KOH水溶液中サスペンション状態下、22
0℃、5時間の水熱処理(表1の多孔体C)で55.5
%、H: 2.5%,1N KOH水溶液中、サス
ペンション状態下、180℃、10時間の水熱処理(表
1の多孔体D)で56.2%であった。
Table 1 shows an example of the decomposition results of dioxins.
Show. The decomposition rate of dioxin is H 2O2: 2.5%,
220N in 1N KOH aqueous solution under suspension
96.2 ° C. by hydrothermal treatment for 10 hours (porous body A in Table 1).
%, H2O2: 1.25% in 1N KOH aqueous solution
Hydrothermal treatment at 220 ° C for 10 hours under the state of spencer
(Porous body B in Table 1) 89.7%, H2O2: 2.5
%, 1N KOH aqueous solution under suspension, 22
55.5 by hydrothermal treatment at 0 ° C. for 5 hours (porous body C in Table 1)
%, H2O2: 2.5%, 1N KOH aqueous solution, suspension
Hydrothermal treatment at 180 ° C for 10 hours under pension condition (Table
And 16.2% for the porous body D).

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示した符号の内容は以下の通りであ
る。 (1) Total PCDDs ポリクロロジベンゾパラジオキシン類の総和 (2) Total PCDFs ポリクロロジベンゾフラン類の総和 (3) Total Coplanar PCBs コプラナ−ピ−シ−ビ−類の総和 (4) Total(PCDDs + PCDFs + Coplanar PCBs) ポリクロロジベンゾパラジオキシン類、ポリクロロジベ
ンゾフラン類及びコプラナ−ピ−シ−ビ−類の総和
The contents of the symbols shown in Table 1 are as follows. (1) Total PCDDs Total of polychlorodibenzoparadioxins (2) Total PCDFs Total of polychlorodibenzofurans (3) Total Coplanar PCBs Total of coplanar-picy-vibes (4) Total (PCDDs + PCDFs + Coplanar PCBs) Sum of polychlorodibenzoparadioxins, polychlorodibenzofurans and coplanar pieces

【0017】表1には示さないが、多くの実験結果から
過酸化水素の添加量や水熱処理時間を多くすることによ
りダイオキシン類の除去率は上昇し、水熱処理により焼
却灰中のダイオキシン類の同時分解を効果的に行えるこ
とが判った。本実施形態では酸化剤に過酸化水素を用い
たが、これに代え、他の酸化剤(例えばペルオキソ二硫
酸カリウム等)を使用できる。
Although not shown in Table 1, from many experimental results, the removal rate of dioxins is increased by increasing the amount of added hydrogen peroxide and the duration of the hydrothermal treatment, and the dioxins in the incinerated ash are increased by the hydrothermal treatment. It was found that simultaneous decomposition can be effectively performed. In the present embodiment, hydrogen peroxide is used as the oxidizing agent, but another oxidizing agent (for example, potassium peroxodisulfate) can be used instead.

【0018】[実施例2]ダイオキシンの同時分解処理
を伴うRDF焼却灰の水熱処理で得られたケイ酸カルシ
ウム系の多孔体は、比表面積が大きく(約77m
g)、その吸着剤としての応用が期待される。そこで、
その可能性を検討するため金属イオン及びオルソリン酸
イオンに対する吸着能を検討した。多孔体の吸着能の評
価は、300ml容の三角フラスコ中に、0.5gの多
孔体と金属イオン濃度約0.005mol/lの金属硝酸
塩水溶液100ml若しくはオルソリン酸イオン濃度約
0.0004mol/lの水溶液100mlとを取り、2
5℃で振とうし、一定時間毎に試料溶液を採取して溶液
中に存在する金属イオン若しくはオルソリン酸イオンの
濃度を分析する方法によった。得られたケイ酸カルシウ
ム系多孔体の吸着能の測定例として銅の場合の結果を図
2に例示する。これらの実験結果より、Cr(III)、 Co(I
I)、Ni(II)、Cu(II)、Zn(II)、Cd(II)、Pb(II)、Ag(I)
等の金属イオン類は主としてカルシウムイオンとのイオ
ン交換作用により36〜194mg/gが吸着された。
また、オルソリン酸イオンはカルシウムイオンと反応
し、ヒドロキシアパタイトを形成することにより、約
3mg/gが吸着されることが判った。
Example 2 A calcium silicate-based porous material obtained by hydrothermal treatment of RDF incinerated ash accompanied by simultaneous decomposition of dioxin has a large specific surface area (about 77 m 2 /
g), its application as an adsorbent is expected. Therefore,
In order to examine the possibility, the adsorption ability to metal ions and orthophosphate ions was examined. Evaluation of the adsorption ability of the porous body was performed by placing 0.5 g of the porous body and 100 ml of a metal nitrate aqueous solution having a metal ion concentration of about 0.005 mol / l or an orthophosphate ion concentration of about 0.0004 mol / l in a 300 ml Erlenmeyer flask. Take 100 ml of aqueous solution,
A method of shaking at 5 ° C., collecting a sample solution at regular time intervals, and analyzing the concentration of metal ions or orthophosphate ions present in the solution was used. FIG. 2 illustrates the results of the measurement of the adsorption ability of the obtained calcium silicate-based porous material in the case of copper. From these experimental results, Cr (III), Co (I
I), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II), Ag (I)
The metal ions such as 36 to 194 mg / g were adsorbed mainly by the ion exchange action with calcium ions.
Orthophosphate ion reacts with calcium ion to form hydroxyapatite,
It was found that 3 mg / g was adsorbed.

【0019】[実施例3]RDF焼却灰の水熱処理で得
られたケイ酸カルシウム系多孔体は、細孔を有し比表面
積(約 77m/g)が大きく軽量である等のことか
ら、耐熱材、防火材、吸音材等の原材料として有用であ
ると考えられる。そこで、その成形性について検討し
た。多孔体の成形性は、多孔体をそのまま若しくは水あ
るいは水ガラス水溶液をバインダ−として添加した後、
127.4kg/cmの圧力で1分間加圧することに
より行った。その結果を表2に示す。実験結果より、
成形体の圧縮強度、かさ密度及び比表面積は、バイ
ンダ−無添加成形体で76.4kg/cm、0.
68g/cm及び72.9m/g、また、25%
水ガラス50v/w%添加成形体では239.7kg
/cm、0.88g/cm及び44.7m
gとなり、建材等へ利用するのには十分な特性を有する
成形体が得られることがわかった。一般に成形体の圧縮
強度が50kg/cmを越えれば壁面材に使用可能と
されている。
Example 3 The calcium silicate-based porous body obtained by hydrothermal treatment of RDF incinerated ash has pores, a large specific surface area (about 77 m 2 / g), and is lightweight. It is considered to be useful as a raw material such as a heat-resistant material, a fireproof material, and a sound-absorbing material. Then, the moldability was examined. The moldability of the porous body, after adding the porous body as it is or water or water glass aqueous solution as a binder,
The test was performed by applying a pressure of 127.4 kg / cm 2 for 1 minute. Table 2 shows the results. From the experimental results,
The compression strength, bulk density and specific surface area of the molded product were 76.4 kg / cm 2 , 0.
68 g / cm 3 and 72.9 m 2 / g, and 25%
239.7 kg for a molded body with 50 v / w% added water glass
/ Cm 2 , 0.88 g / cm 3 and 44.7 m 2 /
g, indicating that a molded product having sufficient properties for use as a building material or the like can be obtained. Generally, if the compressive strength of the molded body exceeds 50 kg / cm 2 , it can be used as a wall material.

【0020】[0020]

【表2】 [Table 2]

【0021】このように、本発明に係るゴミ焼却灰の水
熱合成によって得られるケイ酸カルシウム系の多孔体
は、原料である焼却灰に比べダイオキシン類の含有量が
大幅に減少することがわかった。その多孔体は、かさ密
度が小さく、比表面積が大きく、吸放湿性,吸着性,透
水性等の特質を有するので、従来の路盤材等に比し高付
加価値の建材類や吸着剤等の様々な用途へ利用が可能で
ある。例えば吸着剤として用いた場合、金属イオン類や
オルソリン酸イオン類等に対して吸着能を有することが
わかった。また、この多孔体は成形性が良好で、そのま
ま若しくは水や水ガラス水溶液をバインダ−として添加
した後、加圧成形すると良好な成形体が得られ、その圧
縮強度も76.4kg/cm程度以上であることから
建材等への利用が可能であることがわかった。
Thus, it can be seen that the calcium silicate-based porous material obtained by hydrothermal synthesis of the refuse incineration ash according to the present invention has a greatly reduced content of dioxins as compared with the incineration ash as the raw material. Was. The porous body has a low bulk density, a large specific surface area, and has properties such as moisture absorption / desorption, adsorption, and water permeability. Therefore, compared to conventional roadbed materials, it has high added value such as building materials and adsorbents. It can be used for various purposes. For example, it was found that when used as an adsorbent, it has an adsorbing ability for metal ions, orthophosphate ions, and the like. This porous body has good moldability, and a good molded body is obtained as it is or after adding water or an aqueous solution of water glass as a binder, followed by pressure molding, and its compressive strength is also about 76.4 kg / cm 2. From the above, it was found that it can be used for building materials and the like.

【0022】尚、本発明においては、前記実施形態に示
すものに限られず、目的,用途に応じて本発明の範囲で
種々変更できる。焼却灰の種類,アルカリ水溶液や酸化
剤の種類,濃度等は用途先に合わせて適宜選択できる。
本発明でいう100℃〜250℃の飽和蒸気圧下の「飽
和蒸気圧下」には過飽和蒸気圧下或いはスーパヒートさ
れた状態下も含む。
In the present invention, the present invention is not limited to the embodiment described above, and various modifications can be made within the scope of the present invention depending on the purpose and application. The type of incinerated ash, the type and concentration of the alkaline aqueous solution and the oxidizing agent, and the like can be appropriately selected according to the application.
The term "under the saturated vapor pressure" under the saturated vapor pressure of 100C to 250C in the present invention includes the supersaturated vapor pressure or the superheated state.

【0023】[0023]

【発明の効果】以上のごとく、本発明たるダイオキシン
類の同時分解を可能とするゴミ焼却灰からのケイ酸カル
シウム系多孔体の製造方法は、特別な操作や装置を必要
とせず水熱処理時に酸化剤を添加するだけで、得られる
多孔体中のダイオキシン類含有量を大幅に低減させるこ
とが出来る。200℃程の飽和蒸気圧下の水熱処理でダ
イオキシン類の分解が可能であり、従来のダイオキシン
類の除去法に比し、被処理焼却灰当りのエネルギ消費量
も少なくて済む。さらに、合成されたケイ酸カルシウム
系の多孔体は、吸放湿性,吸着性,透水性等の特性を有
し、高い付加価値のある耐熱材,防火材,吸音材,吸着
材等の様々な用途に利用できる。例えば、127.4k
g/cmの圧力で1分間加圧成形した場合、その成形
性は良好で圧縮強度76.4〜239.7kg/cm
程度の成形体が得られ軽量(かさ密度0.68〜0.8
8g/cm)で機能性の建材類として有用であると考
えられる。また、この成形体は多孔質で広い比表面積
(72.9〜44.7m/g)を有し、吸着剤として
用いた場合、遷移金属イオン類、重金属イオン類、オル
ソリン酸イオン等に対する吸着能を示す。かくのごと
く、本発明は現在決め手に欠いているゴミ焼却灰の有効
利用とダイオキシン類の除去を同時に達成することが可
能で、廃棄物の有効利用とダイオキシン問題を一挙に解
決でき極めて有益である。
As described above, the method of the present invention for producing a calcium silicate-based porous material from incineration ash, which enables simultaneous decomposition of dioxins, does not require any special operation or equipment, and can be oxidized during hydrothermal treatment. By simply adding the agent, the content of dioxins in the obtained porous body can be significantly reduced. Dioxins can be decomposed by hydrothermal treatment under a saturated vapor pressure of about 200 ° C., and energy consumption per incineration ash to be treated can be reduced as compared with the conventional dioxin removal method. Furthermore, the synthesized calcium silicate-based porous material has properties such as moisture absorption / release properties, adsorptivity, water permeability, etc., and has a variety of high value-added heat-resistant materials, fire-resistant materials, sound-absorbing materials, adsorbents, etc. Available for use. For example, 127.4k
When molded for 1 minute at a pressure of g / cm 2 , the moldability is good and the compressive strength is 76.4 to 239.7 kg / cm 2.
And a lightweight (bulk density of 0.68 to 0.8)
8 g / cm 3 ) is considered to be useful as a functional building material. This molded article is porous and has a wide specific surface area (72.9 to 44.7 m 2 / g), and when used as an adsorbent, adsorbs transition metal ions, heavy metal ions, orthophosphate ions, and the like. Show noh. As described above, the present invention can simultaneously achieve the effective use of garbage incineration ash and the removal of dioxins, which are currently decisive, and are extremely useful because they can solve the problem of effective use of waste and the dioxin problem at once. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製法で得たケイ酸カルシウム系多孔体
のX線回折パターン図である。
FIG. 1 is an X-ray diffraction pattern diagram of a calcium silicate-based porous material obtained by a production method of the present invention.

【図2】本発明の製法で得たケイ酸カルシウム系多孔体
による銅イオン吸着能の測定結果グラフである。
FIG. 2 is a graph showing a measurement result of a copper ion adsorption ability of a calcium silicate-based porous material obtained by the production method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 3/00 B09B 3/00 ZAB 21/02 304G G10K 11/162 G10K 11/16 A Fターム(参考) 4D004 AA36 AB07 BA02 BA10 CA36 CA39 CC03 CC11 CC12 DA03 DA06 4G066 AA11D AA13D AA17A AA30B AA75A AA78A BA22 BA25 BA26 BA31 BA35 CA41 CA46 CA50 FA20 FA34 4G073 BA11 BA63 BB79 BD11 CC08 FB45 FE05 UA06 4H028 AA10 BA03 5D061 AA11 AA25 DD11 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 3/00 B09B 3/00 ZAB 21/02 304G G10K 11/162 G10K 11/16 A F term (Reference) 4D004 AA36 AB07 BA02 BA10 CA36 CA39 CC03 CC11 CC12 DA03 DA06 4G066 AA11D AA13D AA17A AA30B AA75A AA78A BA22 BA25 BA26 BA31 BA35 CA41 CA46 CA50 FA20 FA34 4G073 BA11 BA63 BB79 BD11 CC08 FB45 A10A11 DD06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゴミ焼却灰をアルカリ条件下におき且つ
酸化剤を共存させた後、水熱処理することによりゴミ焼
却灰中のダイオキシン類を分解除去してケイ酸カルシウ
ム系多孔体を合成することを特徴とするゴミ焼却灰から
ダイオキシン類を除いたケイ酸カルシウム系多孔体の製
造方法。
1. A method for synthesizing a calcium silicate-based porous body by placing dirt incineration ash under alkaline conditions and coexisting with an oxidizing agent, followed by hydrothermal treatment to decompose and remove dioxins in the dirt incineration ash. A method for producing a calcium silicate-based porous body by removing dioxins from refuse incineration ash.
【請求項2】 100℃〜250℃の飽和蒸気圧下で水
熱処理する請求項1記載のゴミ焼却灰からダイオキシン
類を除いたケイ酸カルシウム系多孔体の製造方法。
2. The method for producing a calcium silicate-based porous material according to claim 1, wherein the dioxins are removed from the incinerated refuse ash according to claim 1, which is subjected to hydrothermal treatment under a saturated vapor pressure of 100 ° C. to 250 ° C.
JP33338699A 1999-11-24 1999-11-24 Method of manufacturing calcium silicate based porous body formed by removing dioxins from waste incineration ash Pending JP2001151506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33338699A JP2001151506A (en) 1999-11-24 1999-11-24 Method of manufacturing calcium silicate based porous body formed by removing dioxins from waste incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33338699A JP2001151506A (en) 1999-11-24 1999-11-24 Method of manufacturing calcium silicate based porous body formed by removing dioxins from waste incineration ash

Publications (1)

Publication Number Publication Date
JP2001151506A true JP2001151506A (en) 2001-06-05

Family

ID=18265548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33338699A Pending JP2001151506A (en) 1999-11-24 1999-11-24 Method of manufacturing calcium silicate based porous body formed by removing dioxins from waste incineration ash

Country Status (1)

Country Link
JP (1) JP2001151506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187713A (en) * 2000-12-20 2002-07-05 Zeotec:Kk Method for manufacturing artificial zeolite
US7513684B2 (en) * 2005-02-17 2009-04-07 Parker-Hannifin Corporation Calcium silicate hydrate material for use as ballast in thermostatic expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187713A (en) * 2000-12-20 2002-07-05 Zeotec:Kk Method for manufacturing artificial zeolite
US7513684B2 (en) * 2005-02-17 2009-04-07 Parker-Hannifin Corporation Calcium silicate hydrate material for use as ballast in thermostatic expansion valve

Similar Documents

Publication Publication Date Title
El-Eswed et al. Efficiency and mechanism of stabilization/solidification of Pb (II), Cd (II), Cu (II), Th (IV) and U (VI) in metakaolin based geopolymers
Duan et al. Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu (II) from wastewater
EP0487913B1 (en) Highly reactive reagents and compositions for the purification of waste gas and waste water, their preparation and their use
Bumanis et al. Metals removal from aqueous solutions by tailored porous waste-based granulated alkali-activated materials
Long et al. Improving stabilization/solidification of MSWI fly ash with coal gangue based geopolymer via increasing active calcium content
Lan et al. Manufacture of alkali-activated and geopolymer hybrid binder (AGHB) by municipal waste incineration fly ash incorporating aluminosilicate supplementary cementitious materials (ASCM)
Ye et al. Power production waste
Talbi et al. Virtuous cycle of destruction and total recycling of pure asbestos and asbestos-containing waste
Lu et al. Synthesis of ternary geopolymers using prediction for effective solidification of mercury in tailings
JPH10137716A (en) Waste treating material and treatment of waste
JP2004526555A (en) Method for inactivating ash, artificial pozzolan obtained by the method
JP4572048B2 (en) Detoxification method for substances contaminated with organochlorine hazardous substances
JP2001151506A (en) Method of manufacturing calcium silicate based porous body formed by removing dioxins from waste incineration ash
WO2002049780A1 (en) Method and apparatus for treatment of decomposing atoms in incineration ash by diffusion to detoxify them
JP2009018228A (en) Method of conducting treatment of non-asbestos treatment of asbestos containing construction material and gypsum composition obtained from the same
JPH08197095A (en) Treatment of sewage sludge and treated sewage sludge
JPH09124315A (en) Production of hardened zeolite product
JP5032755B2 (en) Soil treatment material and soil purification method using the same
JP3692443B2 (en) Production method of hydro-glossular using coal gasification slag
JP3420081B2 (en) Method for producing adsorbent from refuse incineration ash
JP3724062B2 (en) Waste treatment material and waste treatment method
JP2002058963A (en) Exhaust gas treating agent and its method
JP3082855B1 (en) Manufacturing method of hydro garnet and removal method of high temperature acidic exhaust gas by hydro garnet
JP4283701B2 (en) Calcium sulfide manufacturing method, ground improvement material manufacturing method, and processing object processing method
Wei et al. Co-disposal of hazardous waste incineration fly ash and bottom ash through alkaline-activation: Effects of added CaO on solidification of heavy metals