JP2001148274A - Ground electrode installing method and ground electrode - Google Patents
Ground electrode installing method and ground electrodeInfo
- Publication number
- JP2001148274A JP2001148274A JP37077999A JP37077999A JP2001148274A JP 2001148274 A JP2001148274 A JP 2001148274A JP 37077999 A JP37077999 A JP 37077999A JP 37077999 A JP37077999 A JP 37077999A JP 2001148274 A JP2001148274 A JP 2001148274A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- graph
- ground electrode
- voltage
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、接地極の抵抗区域
グラフや、接地極等価半径に対する電位上昇範囲グラフ
を作成し、そのグラフから地表部分や、地表からの成る
深さの土壌中にて、接地電極相互や他の接地系との相互
間で、理論的な干渉電圧の進入防止を計る間隔と深さ、
即ち、他の接地系や自然接地系との効果的な離隔間隔、
その接地電極との離隔埋設地点、その理論値を裏付ける
グラフと設定方法に関する。又、地表部分の或る深さの
土壌中に於いて、所定深度で電気的に独立する接地電極
として機能出来る絶縁深さ、他の接地系との効果的な離
隔間隔を持たせる事を特徴とした深埋設絶縁独立接地電
極の設置する接地工事方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a graph of a resistance area of a ground electrode and a graph of a potential rise range with respect to an equivalent radius of a ground electrode. The distance and depth between the ground electrode and other grounding systems to prevent theoretical interference voltage from entering.
In other words, effective separation from other grounding systems and natural grounding systems,
The present invention relates to a buried point separated from the ground electrode, a graph supporting the theoretical value, and a setting method. In addition, in the soil at a certain depth on the ground surface, the insulation depth can function as a ground electrode that is electrically independent at a predetermined depth, and it has an effective separation distance from other grounding systems. It relates to a grounding method for installing a deep buried insulated independent ground electrode.
【0002】[0002]
【従来の技術】従来、複数以上に設ける接地電極の設置
相互間隔や、設置場所、又、接地電極と自然接地、即
ち、建造物等の地下部分等との設置間隔に留意されるこ
とも無く、他の接地系から電気的に絶縁する深埋設絶縁
独立接地電極とする工事方法も無かった。又、注意事項
等の適切な文献等も無く、その結果、接地電極からの波
及電圧による事故例もあった。2. Description of the Related Art Heretofore, there has been no need to pay attention to the intervals between installations of a plurality of ground electrodes, the installation locations, and the installation intervals between a ground electrode and natural ground, that is, the underground portion of a building or the like. There was no construction method to use a deeply buried insulated independent ground electrode that is electrically insulated from other grounding systems. In addition, there is no appropriate reference document or the like, and as a result, there was an accident example due to a ripple voltage from the ground electrode.
【0003】[0003]
【発明が解決しようとする課題】複数以上の接地電極を
設ける場合、その埋設間隔や埋設地点、自然接地との離
隔間隔、又、埋設する深さと絶縁深さを容易に設定でき
る方法を開発する必要があった。又、工事施工後には、
詳細正確に設定結果を検証する測定方法も必要とした。
このようにして、埋設地点や絶縁深さを詳細に設定しな
いで、接地電極を形成して埋設した場合、他の接地系に
与える影響等を、工事終了後に詳細に再測定する必要も
あった。In the case where a plurality of ground electrodes are provided, a method for easily setting the buried space, the buried point, the space between the buried ground and the natural ground, and the buried depth and insulation depth is developed. Needed. Also, after construction work,
It also required a measurement method that verifies the setting results accurately.
In this way, when the grounding electrode is formed and buried without setting the burying point and insulation depth in detail, it is necessary to re-measure the effects on other grounding systems in detail after the completion of the construction. .
【0004】[0004]
【課題を解決するための手段】そこで、上記課題を解決
するため、本発明は、接地工事の理論式をグラフ化し
て、そのグラフ図を作成し、又、工事完了後の検証測定
方法も実用化し、グラフ化とその設定方法と、計算値か
ら導かれた接地工事とした。Therefore, in order to solve the above-mentioned problems, the present invention provides a graph of the theoretical formula of the grounding work, prepares a graph of the theoretical formula, and also uses a verification measurement method after the completion of the work. And grounding work derived from the graphs, their setting methods, and calculated values.
【0005】[0005]
【発明の実施の形態】抵抗区域と電圧波及率のグラフ
は、線4、線5、線8、線9共に理論的には2×r間隔
で50%と25%になり、本発明の対数グラフのX値は
共通して、接地極の等価半径rに対する設置間隔aと
の、大小関係のa/r=n、接地抵抗の大小関係のRL
対RSのRL/RS=n倍の様に、接地電極の相互関係
の倍数nを、Yにはその対応値を取ったものであり、本
発明によると、接地電極で発生した接地電圧を、他の接
地系や保護対象物に波及する電圧、即ち、α%やα1%
で表すことが出来る相互間隔と深埋設絶縁独立接地電極
として設けることが出来る様にしたものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The graphs of the resistance area and the voltage ripple ratio show that the lines 4, 5, 8, and 9 are theoretically 50% and 25% at 2.times.r intervals, respectively. In the graph, the X value is common, ie, a / r = n, which is a magnitude relationship with the installation interval a with respect to the equivalent radius r of the ground pole, and R L which is a magnitude relationship of the ground resistance.
In the present invention, a multiple n of the mutual relation of the ground electrodes and a corresponding value of Y are taken as in the case of R L / R S = n times that of the pair R S. According to the present invention, the ground generated by the ground electrode voltage, the voltage to be spread to other ground-based and protected objects, i.e., alpha% and alpha 1%
And a deeply buried insulated independent ground electrode.
【0006】(特許請求の範囲)請求項1,2,3,
4,5の5項。(Claims) Claims 1, 2, 3,
4,5,5.
【0007】[0007]
【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0008】第1の発明は次のようになる。図1の半径
rの半球体(椀形状)接地1の中心から、r1迄に含ま
れるG.L3以深の地中接地抵抗をR1、大地抵抗率を
ρとすると、接地抵抗R1は次のように計算される。The first invention is as follows. From hemisphere (bowl shape) of the ground 1 center of radius r in FIG. 1, G. contained until r 1 Assuming that the underground ground resistance below L3 is R 1 and the ground resistivity is ρ, the ground resistance R 1 is calculated as follows.
【数1】R1=ρ/2π((1/r)−(1/r1)) 又、半径rの半球体状接地電極の接地抵抗Rは、R 1 = ρ / 2π ((1 / r) − (1 / r 1 )) Also, the ground resistance R of the hemispherical ground electrode having a radius r is
【数2】R=ρ/(2πr) Rの接地抵抗より小さいR1の等価半径をr、Rの等価
半径をr1とし、その比をαとすると、αは接地電極の
抵抗区域を示し、又、α端は接地電極の電圧が波及する
電圧の割合を示しその計算は次のようになる。R = ρ / (2πr) If the equivalent radius of R 1 smaller than the ground resistance of R is r, the equivalent radius of R is r 1 and the ratio is α, α indicates the resistance area of the ground electrode. The α end indicates the ratio of the voltage to which the voltage of the ground electrode spreads, and the calculation is as follows.
【数3】 α=(R1/R)×100%=(r1/r)×100% ここで、αは接地抵抗区域を表し、大地抵抗率ρは無関
係になる。r1とrの間隔比は、r1/rをnとすると
接地抵抗区域倍数n・rとなり、接地極の抵抗区域端r
1と接地極の等価半径のr比で決まる。接地抵抗区域端
と、接地極から波及する電圧端、即ち、その端に波及す
る電圧値Vは%で表現される。接地極からn・r間隔、
即ち、r1間隔地点に波及する電圧は、αとして次のよ
うにも計算される。Α = (R 1 / R) × 100% = (r 1 / r) × 100% Here, α represents a ground resistance area, and the ground resistivity ρ becomes irrelevant. The interval ratio between r 1 and r is a ground resistance area multiple n · r where r 1 / r is n.
It is determined by 1 and the r ratio of the equivalent radius of the ground pole. The voltage end spreading from the ground resistance area end and the ground electrode, that is, the voltage value V spreading to the end, is expressed in%. N · r spacing from the ground pole,
That is, the voltage spread to r 1 interval points may also be calculated as follows as alpha.
【数4】α=(r1/r)×100% 接地電極の抵抗区域である等価半径rと、ある間隔r1
の関係は、他の各種形状の接地電極でも同一に適用でき
る。図2の深埋設接地電極の場合、その等価半径rは次
式で求められる。Α = (r 1 / r) × 100% Equivalent radius r, which is the resistance area of the ground electrode, and a certain distance r 1
The same relationship can be applied to ground electrodes of other various shapes. In the case of the deeply buried ground electrode of FIG. 2, the equivalent radius r is obtained by the following equation.
【数5】r=L/(Ln((4L/d)−1)) Lは接地電極の埋設長さ(深さ)、dは接地電極断面の
等価半径とする。接地電極の等価半径rに対し、接地極
の接地抵抗区域間隔r1迄の或る倍数nは、次のように
計算する。R = L / (Ln ((4L / d) -1)) L is the buried length (depth) of the ground electrode, and d is the equivalent radius of the ground electrode cross section. To the equivalent radius r of the ground electrode, one multiples n of up to ground resistance zone spacing r 1 of the ground electrode is calculated as follows.
【数6】n=r1/r r1はrのn倍数で表現される。α1%は、接地電極r
からの電圧の低減率となる。## EQU6 ## n = r 1 / r r 1 is expressed by n multiples of r. α 1 % is equal to the ground electrode r
From the voltage.
【数7】α1=1−α 数1〜数7の計算値を表にすると表1のようになる。Α 1 = 1−α Table 1 shows the calculated values of Equations 1 to 7.
【表1】 α1%は、接地電極rからの電圧の低減率となるが、読
み方を変えると波及率として、同時に表現する事にもな
る。数1〜数7の計算結果の表1から、rに対する、r
1即ちnr、α、α1、を記入し、対数グラフ化したの
が図3である。図3の対数グラフのX右側に、接地電極
の等価半径rの整数倍値nrを、X左側接地電極の等価
半径のr、Yにα=r/r1×100%の正数をとり、
0.01〜100%迄の接地電極の抵抗区域とし、その
プロットした線は右上がり曲線4、又、rの電圧がn・
r地点で低減する電圧値のα1%値線を記入すると、そ
の電圧関係のグラフは右下がりの斜線5になる。ここに
X、Yの交点が抵抗区域グラフαの4、と5の線は、各
々読み方を変えると、接地電極の上昇電圧がr1間隔に
迄波及する波及率と低減する低減率を同時に表してい
る。又、電圧が波及する波及率の低減線2は1の曲線と
も対応し、Y右側数値2と交差するグラフα1は、電圧
vの低減率も同時に表している。α1%の線5は、接地
電極rからの電圧の低減率となるが、読み方を変えると
波及率として、同時に表現する事にもなる。接地抵抗R
2とR1は、各々が接地極毎の等価半径を有している。
接地極の接地抵抗区域は、等価半径のn倍であることか
ら、2極の接地抵抗区域r倍の比率nは、次のようにも
計算される。[Table 1] α 1 % is a reduction rate of the voltage from the ground electrode r. However, if the reading is changed, it can be simultaneously expressed as a ripple rate. From Table 1 of the calculation results of Expressions 1 to 7, r
1 That nr, alpha, fill alpha 1, and had a logarithmic graph is FIG. On the right side of the logarithmic graph of FIG. 3, an integer multiple nr of the equivalent radius r of the ground electrode is taken, and r and Y of the equivalent radius of the X left ground electrode are positive numbers of α = r / r1 × 100%.
The resistance area of the ground electrode is from 0.01% to 100%, and the plotted line is a curve 4 which rises to the right, and the voltage of r is n ·
When the α 1 % value line of the voltage value to be reduced at the point r is plotted, the graph of the voltage relationship becomes a slanting line 5 falling to the right. Here, the intersections of X and Y indicate lines 4 and 5 in the resistance area graph α, and when the reading is changed, the rising voltage of the ground electrode spreads to the interval of r 1 and the reduction ratio at the same time decreases. ing. Also, reduced line 2 spillover rate whose voltage ripple corresponds with the first curve, the graph alpha 1 which intersects the Y right number 2 represents simultaneously reduce rate of voltage v. The line 5 of α 1 % indicates the rate of reduction of the voltage from the ground electrode r. However, if the way of reading is changed, it can be expressed simultaneously as the ripple rate. Ground resistance R
2 and R 1 are each has an equivalent radius of each earth electrode.
Since the ground resistance area of the ground pole is n times the equivalent radius, the ratio n of r times the ground resistance area of the two poles is also calculated as follows.
【数8】R2/R1=n 即ち、R2:R1が2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。以上の計算から、電圧波及範囲αでも表す事が出来
る。R 2 / R 1 = n That is, when R 2 : R 1 is 2: 1, 2 when 3 and 3: 1, 3;
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. From the above calculation, it can also be represented by the voltage spread range α.
【数9】α=(R/(R1×R2/(R1+R2))−
1)×100% α=(α1−1.0)×100% 接地極R1の接地電圧がR1接地極から、どれ位の接地
電圧が他の対象物に何パーセント波及するかの計算が出
来る様になる。即ち、接地電極から他の接地電極へ波及
する電圧の強弱を%値で知ることが出来る。図3のグラ
フは、Xに接地極の等価半球体半径rの整数n倍のn・
rをとると、Yに接地抵抗区域と波及電圧両値を表すα
%、接地極からの電圧低減波及率α1%もを示す。以上
の設定で設ける接地電極は、電圧波及率αの計算方法と
その図示方法からである。グラフ線4と5は読み方を変
え、抵抗区域と電圧波及率αの関係を逆に読みとると、
即ち、α1−1とすることが出来、その抵抗区域と電圧
波及率のグラフは4、5共に、理論的には2×r間隔で
50%になる。対数グラフはXに、等価半径倍RL/R
S=nの整数、Yは1/nの正数で上限は1とし、即
ち、100%とする。このようなグラフとすると、接地
極rの接地電圧がr接地極からどれ位の接地電圧が他の
対象物に波及するかの計算が可能になる。グラフは、そ
の目盛りを細分することにより高精度に読みとれ、詳細
は計算によっても求められる。他の接地系との効果的な
離隔間隔を確認したことを特徴とする、即ち、他の接地
極や自然接地との離隔間隔、電圧の波及率αの計算方法
とその図示方法を表現した。本グラフ図3は、図18の
方眼グラフ、図19の対数グラフでYの拡大部分図にも
作図出来るが、図3の本対数グラフが読み易く、Yの小
さい数値部分を1〜≫1の様にグラフを引き延ばせる利
点がある。本発明は請求項1の様に、接地極の抵抗区
域、接地電圧波及率、又は、接地電圧の低減率の計算結
果を100〜≫1%のグラフに表現したことを特徴とす
る方眼、又は、部分拡大した対数グラフ様にもなり、本
グラフと、本対数グラフを利用して適切な間隔と深さ
に、接地電極又は、接地工事を設置又は施工する工事工
法となる。Α = (R / (R 1 × R 2 / (R 1 + R 2 )) −
1) × 100% α = ( α 1 -1.0) from the ground voltage × 100% ground electrode R 1 is R 1 earthing, how much computational ground voltage of either percentage spread to other objects Can be done. That is, the magnitude of the voltage spreading from the ground electrode to the other ground electrode can be known as a percentage value. The graph of FIG. 3 indicates that X is n · n times an integer n times the equivalent hemisphere radius r of the ground pole.
When r is taken, Y represents α representing both the ground resistance area and the ripple voltage.
%, And the voltage reduction spread rate α 1 % from the ground electrode is also shown. The ground electrode provided in the above setting is based on the calculation method of the voltage ripple ratio α and the illustrated method. Graph lines 4 and 5 change the reading, and when the relationship between the resistance area and the voltage ripple rate α is read in reverse,
That is, α 1 −1 can be obtained, and the graphs of the resistance area and the voltage ripple rate of both 4 and 5 theoretically become 50% at 2 × r intervals. In the logarithmic graph, X is the equivalent radius times R L / R
S = integer of n, Y is a positive number of 1 / n, and the upper limit is 1, that is, 100%. With such a graph, it is possible to calculate how much the ground voltage of the ground electrode r spreads from the r ground electrode to other objects. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. It is characterized by the fact that the effective separation distance from other grounding systems has been confirmed, that is, the calculation method of the separation distance from other grounding poles and natural grounding, the ripple rate α of the voltage, and the drawing method thereof are expressed. The graph of FIG. 3 can be plotted on the enlarged graph of Y in the grid graph of FIG. 18 and the logarithmic graph of FIG. 19. However, the logarithmic graph of FIG. There is an advantage that the graph can be stretched in a similar manner. According to a first aspect of the present invention, there is provided a grid characterized in that a calculation result of a resistance area of a ground electrode, a ground voltage spread rate, or a reduction rate of a ground voltage is represented in a graph of 100 to ≫1%, or The logarithmic graph looks like a partially enlarged graph, and a construction method of installing or constructing the ground electrode or the grounding work at an appropriate interval and depth using the present log and the logarithmic graph.
【0009】第2の発明は次のようになる。接地極
R1,R2を図4の様に、半球状の等価半径rの接地極
を2極その設置間隔をaにし、大地比抵抗ρの場所に設
けたとする。この2接地極に流れる電流をIとすると、
各々の接地電極に、I/2の電流が流れる。地中の任意
の点に点Pを設定し、2電極からの間隔をX、X’にと
り、そのP点の電位をVpとすると、請求項4の内容と
同じく重ね合わせの原理から、Vpは次のように計算さ
れる。The second invention is as follows. As shown in FIG. 4, it is assumed that two ground poles R 1 and R 2 are provided at a location of ground specific resistance ρ, with two hemispherical ground poles having an equivalent radius r having an installation interval of a. Assuming that the current flowing through the two ground electrodes is I,
A current of I / 2 flows through each ground electrode. Assuming that a point P is set at an arbitrary point in the ground, the distances from the two electrodes are X and X ', and the potential at the point P is Vp, Vp becomes It is calculated as follows:
【数10】Vp=(ρ(I/2))/2πX+(ρ(I
/2))/2πX’ 今P点を一方の半球状電極の表面に設定すると接地電極
系の電位Vが決まる。数10の計算式から、このR1,
R2を並列合成した接地抵抗Rが次のように計算され
る。Vp = (ρ (I / 2)) / 2πX + (ρ (I
/ 2)) / 2πX 'If the point P is set on the surface of one hemispherical electrode, the potential V of the ground electrode system is determined. From the formula of Equation 10, this R 1 ,
Ground resistance R in parallel synthesize R 2 is calculated as follows.
【数11】R=(ρ/4πr)・(1+r/a)但し、
a≫r 数11の第2項が集合係数ηを表し、大地比抵抗ρには
無関係に決まる。又、集合係数ηはa/r=nによって
変化する。R = (ρ / 4πr) · (1 + r / a) where
a≫r The second term of Equation 11 represents the set coefficient η, which is determined independently of the ground resistivity ρ. The set coefficient η changes depending on a / r = n.
【数12】η=1+r/a r/aは、表◎からαであり、次のように計算するとグ
ラフ表示は図5の様にになる。Η = 1 + r / ar where r / a is α from Table ◎, and when calculated as follows, the graph display is as shown in FIG.
【数13】Y=1+r/a−1 α=Y−1=1+r/a−1=r/a Xがnの場合、Yがa/n、即ち、αで表されるので、
対数グラフは次のように作成できる。Xをnとし、nに
対応するYが1+r/aにするには、次の様に計算す
る。但し、2極並列の集合係数の上限が2であるので、
yの上限を2に設定する。Y = 1 + r / a-1 α = Y-1 = 1 + r / a-1 = r / a When X is n, Y is represented by a / n, that is, α.
A logarithmic graph can be created as follows. In the case where X is n and Y corresponding to n is 1 + r / a, the calculation is performed as follows. However, since the upper limit of the set coefficient of two-pole parallel is 2,
Set the upper limit of y to 2.
【数14】Y=1+1/X=(1+X)/X Xが1の場合は Y=1+1/1=2 このようにX、Yのグラフを作図すると、Yは1/Xに
1をプラスした図5の様な表示になる。具体的に説明す
ると図3のYグラフ0.9+1は1.9,1+1は2の
様にすることが出来、通常の対数グラフのy=1に相当
する部分が、方眼目盛りの様に2≫1の整数値に表現す
る事ができる。接地抵抗R2とR1は、各々が接地極毎
の等価半径を有している。接地極の接地抵抗区域は、等
価半径のn倍であることから、2極の接地抵抗区域r倍
の比率nは、次のようにも計算される。## EQU14 ## Y = 1 + 1 / X = (1 + X) / X When X is 1, Y = 1 + 1/1 = 2 When the graphs of X and Y are plotted in this way, Y is 1 plus 1 / X. The display is as shown in FIG. More specifically, the Y graph 0.9 + 1 of FIG. 3 can be set to 1.9, and 1 + 1 can be set to 2, and the portion corresponding to y = 1 in the normal logarithmic graph is set to 2 様 like a grid scale. It can be expressed as an integer value of 1. Grounding resistor R 2 and R 1 are, each having an equivalent radius of each earth electrode. Since the ground resistance area of the ground pole is n times the equivalent radius, the ratio n of r times the ground resistance area of the two poles is also calculated as follows.
【数15】R2/R1=n 即ち、R2:R1が2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。以下、図に沿って本発明の実施形態を説明すると、
図5は、本発明の実施形態を示す対数グラフ図であり、
対数グラフのXは接地電極のa間隔に対し、接地極の等
価半径rの倍数値とする。数10〜数15の計算値を表
にすると表2のようになる。R 2 / R 1 = n That is, when R 2 : R 1 is 2: 1, 2 when R 2 : R 1 is 3;
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a logarithmic graph showing an embodiment of the present invention;
X in the logarithmic graph is a multiple of the equivalent radius r of the ground electrode with respect to the interval a of the ground electrode. Table 2 shows the calculated values of Equations 10 to 15 in a table.
【表2】 以上の設定で設けた接地電極は、電圧波及率αの計算方
法で設置したものである。グラフ7と6は読み方を変え
ると、抵抗区域と電圧波及率αの関係を逆に読みとるこ
とが出来る。本グラフは、図18の方眼グラフ、図19
の対数グラフでYの拡大部分図の様にも出来るが、請求
項1、2、3のグラフと共通できる本対数グラフ図5が
読み易く、グラフYの小さい数値部分1〜≫1のグラフ
を引き延ばせる利点がある。対数グラフの、Xに対する
yの1を2に表現するは、次のような計算によって対応
が可能になる。本発明で必要とするのは、Yのグラフが
Xの整数値に対し2以下であり、即ち、1.5とか1.
2の様な整数値である。以上の様なY値は、接地電極の
2極並列の集合係数η値に該当する。対数グラフのY値
を1/Xの整数値に取ると、集合係数ηは1+1/Xで
あり、Y値は1/Xの変数に1.0を加え、Yの1は1
+1/1=2でグラフの表現が出来る。又、並列係数表
示の1+(1/X)の第1項1+を考慮する計算は、次
のようになる。[Table 2] The ground electrode provided in the above setting is provided by the method of calculating the voltage ripple ratio α. By changing the reading of the graphs 7 and 6, the relationship between the resistance area and the voltage ripple ratio α can be read in reverse. This graph is a square graph of FIG.
This logarithmic graph can be made like an enlarged partial diagram of Y, but the logarithmic graph FIG. 5 which can be shared with the graphs of claims 1, 2 and 3 is easy to read, and the graphs of small numerical values 1 to ≫1 of graph Y are It has the advantage of being prolonged. In the logarithmic graph, expressing 1 of y with respect to X to 2 can be handled by the following calculation. The present invention requires that the graph of Y be less than or equal to 2 for an integer value of X, ie, 1.5 or 1.
It is an integer value such as 2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. Taking the Y value of the logarithmic graph as an integer value of 1 / X, the set coefficient η is 1 + 1 / X, and the Y value is obtained by adding 1.0 to the variable of 1 / X, and 1 of Y is 1
A graph can be expressed by + 1/1 = 2. The calculation considering the first term 1+ of 1+ (1 / X) in the parallel coefficient expression is as follows.
【数16】Y=1+1/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。本対数グラ
フ表示は、例えばYが0.99999のすぐ上が1のグ
ラフを使用時、本値に1を+し更に0.00001を加
え、Yの1を2にすると、通常の方眼目盛りと同様な表
現に使える利点がある。このように並列係数ηも2.0
〜1.0に表現され、視覚、感覚的にも読みとり易い表
現になり、グラフの曲線と斜線の何れでも、使用目的値
を変えるか併記する事により、目的グラフとして使用可
能になる。数16の計算式Y=の第1項から1を引くこ
とにより、請求項1のグラフになり、通常表示の対数グ
ラフに戻すことも自由である。グラフは、その目盛りを
細分することにより高精度に読みとれ、詳細は計算によ
っても求められる。表3の様に、配電規程JEAC70
01の、1−27表集合係数(η)に記載された、87
5極の実験データーとしての数値を、図5のグラフ線6
に記入すると、実測値は理論値の最大値をを必ず下回っ
ている事が分かる。Y = 1 + 1 / X16η = 1 + 1 / X = (1 + X) / X According to the above calculation, when X in the graph is 1, the corresponding Y is expressed as 2, and X is not an integer. 1.2, 1.
It corresponds to numbers such as 5, 2.3, and 2.5. For example, when a graph in which Y is 0.999999 immediately above 1 is used, a value of 1 is added to this value, 0.00001 is further added, and 1 of Y is set to 2. There is an advantage that can be used for similar expressions. Thus, the parallel coefficient η is also 2.0
It is expressed in the range of ~ 1.0, which makes it easy to read both visually and intuitively, and it becomes possible to use either the curve or the diagonal line of the graph as a target graph by changing the use target value or writing it together. By subtracting 1 from the first term of the formula Y = in the formula 16, the graph of claim 1 can be obtained, and the graph can be returned to the logarithmic graph of the normal display. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. As shown in Table 3, the distribution regulations JEAC70
87 described in Table 1-27 set coefficient (η) of 01
The numerical values as the experimental data of the five poles are represented by the graph line 6 in FIG.
Indicates that the measured value is always below the maximum theoretical value.
【表3】 2接地極相互の接地抵抗関係と、大地比抵抗は無関係で
あることから、接地規模も無関係になり、本グラフと、
本グラフから2極設置の接地極の間隔、自然接地との離
隔間隔、絶縁独立接地電極の絶縁深さ等を求める方法と
することが出来る。グラフは又、接地極から波及する接
地電圧の低減波及率α1の逆数をYにとり、そのX値か
ら接地極の相互間隔aのnを求めることもできる。即
ち、Yの接地電圧と低減電圧比から、Xの接地極の相互
間隔aのnが求められる。以上の事から、対数グラフの
Yが通常の方眼目盛りのような表現になる。本発明は請
求項2の様に、グラフの曲線と斜線の何れでも、又、そ
の内の何れか1本を使用目的値を変える事により、接地
極の抵抗区域α、又は、2極並列時の並列係数2〜≫
1、接地電圧波及率、又は、接地電圧の低減率の計算結
果を100〜≫1%のグラフに表現したことを特徴とす
る方眼、又は、部分拡大の対数グラフと、本対数グラフ
で、本グラフを応用して適切な間隔に、接地電極又は、
接地工事を設置、又は、施工する工事工法となる。[Table 3] Since the ground resistance relationship between the two ground poles and the ground resistivity are irrelevant, the ground scale is also irrelevant.
From this graph, it is possible to obtain a method of obtaining the distance between the ground electrodes provided with two poles, the distance from the natural ground, and the insulation depth of the insulated independent ground electrode. The graph also the inverse of the reduction spread rate alpha 1 in the ground voltage ripple from the ground electrode taken Y, may be determined n mutual distance a of the ground electrode from the X value. That is, n of the mutual interval a between the ground electrodes of X is obtained from the ground voltage of Y and the reduced voltage ratio. From the above, Y of the logarithmic graph is represented as a normal grid scale. According to the second aspect of the present invention, by changing either the curve or the diagonal line of the graph, or any one of them, the intended use value, the resistance area α of the ground electrode or the two-pole parallel The parallel coefficient of 2 to ≫
1. A grid, or a partially enlarged logarithmic graph, or a logarithmic graph, in which the calculation result of the ground voltage transmission rate or the reduction rate of the ground voltage is expressed in a graph of 100 to ≫1%. At an appropriate interval applying the graph, ground electrode or
It will be a construction method of installing or performing grounding work.
【0010】第3の発明は次のようになる。図6の様に
接地電極を2極設置すると、その2極の接地抵抗には必
ず大小関係があり、その接地極をR1,R2とし、その
内小さい接地抵抗をRS大きい方をRLとする。又、図
7のように既設のメッシュ接地や、建造物等の基礎体7
の様な自然接地系がある場合は、RSかRL何れにでも
設定する。その接地電極の低接地抵抗値RSと高接地抵
抗値RLを並列合成接続すると、その実測接地抵抗R
は、並列合成計算した接地抵抗RC値より必ず大きくな
る。その実測値Rと並列計算値RCとの比に、2極並列
の並列係数ηが介在する。2極並列の並列係数ηの計算
は次のようになる。The third invention is as follows. When installing two poles of the ground electrode as in FIG. 6, there is always the magnitude relationship to the ground resistance of the two poles, the earth electrode and R1, R2, of which a small earth resistance R S larger and R L I do. In addition, as shown in FIG.
If there is a natural grounding system as described above, set it to either RS or RL . When the low ground resistance value RS and the high ground resistance value RL of the ground electrode are combined in parallel, the measured ground resistance R
Is always larger than the ground resistance RC value calculated in parallel. The parallel coefficient η of two-pole parallel is interposed in the ratio between the measured value R and the parallel calculated value RC . The calculation of the parallel coefficient η of the two-pole parallel is as follows.
【数17】 η=R/(1/(1/RS+1/RL)) =R/(RS×RL/(RS+RL))=R/RC 但し、RC=(RS×RL/(RS+RL)) 接地極2極の並列係数ηの上限値は2.0であり、その
設置間隔aが大きくなるに従いη値は小さくなり、2.
0≫1.0の関係にある。又、或る間隔aに設置された
2接地極の接地抵抗が、RS,RLの場合は、RS<R
Lであって、RS=Rとすると、並列係数ηは次のよう
に計算される。Η = R / (1 / (1 / RS + 1 / RL )) = R / ( RS × RL / ( RS + RL )) = R / RC where RC = ( R S × R L / (R S + R L )) The upper limit of the parallel coefficient η of the two ground poles is 2.0, and the η value becomes smaller as the installation interval a becomes larger.
There is a relation of 0≫1.0. Further, when the ground resistances of the two ground poles disposed at a certain interval a are R S and R L , R S <R
If L and R S = R, the parallel coefficient η is calculated as follows.
【数18】 η=RS/(RS×RL/(RS+RL)) =RS(RS+RL)/RS×RL=(RS+RL)/RL =1+RS/RL 更に、接地抵抗RSとRLを微小間隔に設け、並列合成
するとその並列合成抵抗Rは、RSに近くなるのでRL
=RSとすると、並列係数ηは次のように2極並列の最
大値2に計算される。Η = RS / ( RS × RL / ( RS + RL )) = RS ( RS + RL ) / RS × RL = ( RS + RL ) / RL = 1 + R S / R L Further, when ground resistances R S and R L are provided at a minute interval and the parallel combination is made, the parallel combined resistance R becomes close to R S , so that R L
Assuming that = R S , the parallel coefficient η is calculated to the maximum value 2 of two-pole parallel as follows.
【数19】 η=1+RS/RL=1+RS/RS=2.0 接地抵抗RSとRLは、各々が接地極毎の等価半径を有
している。接地極の接地抵抗区域は、等価半径のn倍で
あることから、2極の接地抵抗区域r倍の比率nは、次
のように計算される。Η = 1 + RS / RL = 1 + RS / RS = 2.0 Each of the ground resistors R S and R L has an equivalent radius for each ground pole. Since the ground resistance area of the ground electrode is n times the equivalent radius, the ratio n of the ground resistance area of the two poles is calculated as follows.
【数20】RL/RS=n 即ち、RL:RSが2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。本グラフは図18の方眼グラフ、図19の対数グラ
フでYの拡大部分図にも作図出来るが、請求項1、2、
3のグラフと共通できる本対数グラフ図8や図5等が読
み易く、グラフYの小さい数値部分1〜≫1のグラフを
引き延ばせる利点があり、グラフのRS/RL=1の所
がR=RS=RLの場合η=1+RL/RL=≫2.0
になり2極並列時の最大値の2に表現できることであ
る。対数グラフの、Xに対するyの1を2に表現する
は、次のような計算によって対応が可能になる。本発明
で必要とするのは、YのグラフがXの整数値に対し2以
下であり、即ち、1.5とか1.2の様な整数値であ
る。以上の様なY値は、接地電極の2極並列の集合係数
η値に該当する。対数グラフのY値を1/Xの整数値に
取ると、集合係数ηは1+1/Xであり、Y値は1/X
の変数に1.0を加え、Yの1は1+1/1=2でグラ
フの表現が出来る。又、並列係数表示の1+(1/X)
の第1項(1+)を考慮すると、その計算は次のように
なる。Equation 20] RL / R S = n ie, R L: R S 2: 1 case of 2,3: 1, 3,
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. This graph can be plotted as an enlarged partial view of Y in the grid graph of FIG. 18 and the logarithmic graph of FIG.
This logarithmic graph, which can be shared with the graph of FIG. 3, is easy to read, and has the advantage that the graph of the small numerical part 1 to ≫1 of the graph Y can be extended, and the graph where R S / R L = 1 is obtained. When R = RS = RL , η = 1 + RL / RL = ≫2.0
And can be expressed as 2 which is the maximum value at the time of two-pole parallel operation. In the logarithmic graph, expressing 1 of y with respect to X to 2 can be handled by the following calculation. The present invention requires that the graph of Y be less than or equal to 2 for the integer value of X, ie, an integer value such as 1.5 or 1.2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. Taking the Y value of the logarithmic graph as an integer value of 1 / X, the set coefficient η is 1 + 1 / X, and the Y value is 1 / X
Is added to the variable of, and 1 of Y can be represented by a graph of 1 + 1/1 = 2. Also, 1+ (1 / X) of the parallel coefficient display
Considering the first term (1+), the calculation is as follows.
【数21】Y=1+1/X=(1+X)/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。このように
並列係数ηも2.0〜1.0に表現され、視覚、感覚的
にも読みとり易い表現になり、グラフの上昇線と下降線
の何れでも、使用目的値を変える事により、目的グラフ
として使用可能になる。2接地極相互の接地抵抗関係
と、大地比抵抗は無関係であることから、接地規模も無
関係になり、本グラフと、本グラフから2極設置の接地
極の間隔、自然接地との離隔間隔、絶縁独立接地電極の
絶縁深さ等を求める方法とすることが出来る。以上の計
算から、Yグラフが通常の方眼目盛りのような表現にな
る。数17〜数21計算値を表にすると表4のようにな
る。Y = 1 + 1 / X = (1 + X) / X η η = 1 + 1 / X = (1 + X) / X By the above calculation, when X in the graph is 1, the corresponding Y is expressed as 2. X is other than an integer.
It corresponds to numbers such as 5, 2.3, and 2.5. As described above, the parallel coefficient η is also expressed in the range of 2.0 to 1.0, which makes it easy to read both visually and intuitively. It can be used as a graph. Since the grounding resistance relationship between the two grounding poles and the ground resistivity are irrelevant, the grounding scale is also irrelevant. From this graph, the graph shows the distance between the grounding poles of the two poles installed, the separation distance from natural grounding, A method for determining the insulation depth of the insulated independent ground electrode can be used. From the above calculations, the Y graph is represented as a normal grid scale. Table 4 shows the calculated values of Equations 17 to 21 as a table.
【表4】 以上の計算から、ηを1.0にする工事は難しいが1.
0に近付ける事は出来る。即ち、2接地極間隔aを大き
くするか、図9深埋設独立接地電極の絶縁深さh2を深
くすることである。並列係数ηから、接地電極の接地電
圧が、他の接地系に波及する、波及率α%を計算により
求める。接地電極2極を並列接続した接地抵抗の場合、
その並列係数ηが、常に2〜≫1であり、次の様に計算
する。図14の様に、等価半球体半径rの整数n倍のn
・rの位置に半球体接地電極R1とR2の間隔をaの様
に設けた場合、その実測接地抵抗RはRL×RS/(R
L+RS)より大きくなる。その大きくなる分が集合係
数ηとなり、次のように計算される。[Table 4] From the above calculations, it is difficult to set η to 1.0, but 1.
It can be close to zero. That is, it is necessary to increase the distance a between the two ground electrodes or to increase the insulation depth h2 of the deeply buried independent ground electrode in FIG. From the parallel coefficient η, the ripple rate α% at which the ground voltage of the ground electrode spreads to other ground systems is calculated. In the case of a ground resistance with two ground electrodes connected in parallel,
The parallel coefficient η is always 2 to ≫1, and is calculated as follows. As shown in FIG. 14, n is an integer n times the equivalent hemisphere radius r.
When the space between the hemispherical ground electrodes R1 and R2 is provided at the position of r as shown by a, the measured ground resistance R is R L × R S / (R
L + R s ). The increase is the set coefficient η, which is calculated as follows.
【数22】η=R/(RL×RS/(RL+RS))Η = R / ( RL × RS / ( RL + RS ))
【数23】α=(R/(RL×RS/(RL+RS))
−1)×100% α1=(η−1.0)×100% 即ち、接地極RLの接地電圧が、RLから接地電圧とし
て、他の対象物の接地極や自然接地に対し、そのα%波
及するかが計算される。接地電極からの低減電圧α1%
は、接地極相互にも関係が有り、2極並列の並列係数η
値がRL、RS極相互に波及する関係にある。本グラフ
は図18の方眼グラフ、図19の対数グラフでYの拡大
部分図にも作図出来るが、請求項1、2、3のグラフと
共通できる本対数グラフ図5や図8が読み易く、Yの小
さい数値部分1〜≫1のグラフを引き延ばせる利点があ
り、グラフのRS/RL=1の所がR=RS=RLの場
合η=1+RL/RL=≫2.0になり2極並列時の最
大値の2に限りなく近く表現できることである。抵抗区
域と電圧波及率のグラフは7、8共に、理論的には2×
r間隔で50%になる。図7の接地抵抗R1や自然接地
等7が既知の場合、地形地質を調査し、或る間隔にR2
の接地極を設け、R2単独接地抵抗とR1、R2の並列
合成抵抗を測定する。接地抵抗R1とR2には必ず大小
関係があり、接地抵抗が大きい方をRL、小さい方をR
Sとし、その比nは、n=RL/RSとして計算する。
接地工事規模が不明で、接地抵抗が既知の場合、自然接
地との接地極相互の設置間隔の設け方も容易になる。グ
ラフは又、接地極から波及する接地電圧の低減波及率α
1の逆数をYにとり、そのX値から接地極の相互間隔a
のnを求めることもできる。即ち、Yの接地電圧と低減
電圧比から、Xの接地極の相互間隔aのnが求められ
る。以上の事から、本グラフから2極設置の接地極の間
隔や、自然接地との間隔、絶縁独立接地電極の絶縁深さ
等が容易に求められる。表5の様に、配電規程JEAC
7001の、1−27表集合係数(η)に記載された、
875極の実験データーの数値を、図5のグラフに記入
すると、実測値は理論値を必ず下回っている事が分か
る。Α = (R / ( RL × RS / ( RL + RS ))
-1) × 100% α 1 = (η-1.0) × 100% In other words, the ground voltage of the ground electrode R L is, as a ground voltage from the R L, with respect to the ground electrode and the natural ground of the other objects, It is calculated whether the α% spreads. Reduced voltage from the ground electrode alpha 1%
Is related to the ground poles, and the parallel coefficient η
There is a relationship in which the value spreads between the RL and RS poles. This graph can be plotted on the grid graph of FIG. 18 and the logarithmic graph of FIG. 19 as an enlarged partial view of Y. However, the logarithmic graphs 5 and 8 which can be shared with the graphs of claims 1, 2, and 3 are easy to read. There is an advantage that the graph of small numerical parts 1 to ≫1 of Y can be extended, and when R S / R L = 1 in the graph and R = R S = R L η = 1 + R L / R L = ≫2. It becomes 0 and can be expressed as close as possible to 2 which is the maximum value in two-pole parallel operation. The graphs of the resistance area and the voltage ripple ratio are theoretically 2 × for both 7 and 8.
It becomes 50% at r intervals. When grounding resistance R 1 and a natural ground or the like 7 of Figure 7 is known to investigate the terrain geology, R 2 a certain distance
The earth electrode is provided to measure the parallel combined resistance of the R 2 single ground resistor and R 1, R 2. There are always large and small relation to the ground resistor R 1 and R 2, the larger the ground resistance R L, the smaller the R
S , and the ratio n is calculated as n = RL / RS .
If the grounding construction scale is unknown and the grounding resistance is known, it is easy to provide an interval between the grounding poles and the natural grounding. The graph also shows the reduced ripple rate α of the ground voltage spreading from the ground pole.
The reciprocal of 1 is taken as Y, and from the X value, the mutual interval a
Can be obtained. That is, n of the mutual interval a between the ground electrodes of X is obtained from the ground voltage of Y and the reduced voltage ratio. From the above, from this graph, the distance between the ground electrodes provided with two poles, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like can be easily obtained. As shown in Table 5, the distribution regulations JEAC
7001, described in Table 1-27 set coefficient (η),
When the values of the experimental data of 875 poles are entered in the graph of FIG. 5, it can be seen that the measured values are always lower than the theoretical values.
【表5】 接地電極R1と他の接地系をR2とし、その2極並列合
成接続の接地抵抗Rを測定し、その並列合成抵抗Rに介
在する並列係数ηから、実測と計算により、絶縁独立接
地電極の接地効果、即ち、他の接地系との効果的な離隔
間隔を確認したことを特徴とする、深埋設絶縁独立接地
電極とその波及率αの計算も可能になる。グラフは、そ
の目盛りを細分することにより高精度に読みとれ、詳細
は計算によっても求められる。本発明は請求項3の様
に、接地電極2極並列合成時、その並列係数ηの最大値
グラフ、即ち、対数グラフのXに、接地抵抗RL/RS
の抵抗区域を示す整数値、グラフのYに1〜≫1の、R
S/RLの正数を取り、そのグラフの読み方を2極並列
係数ηの1+RS/RLとし、接地極の抵抗区域を2〜
≫1、接地電圧波及率、又は、接地電圧の低減率の計算
結果を100〜≫1%のグラフに表現し、Y軸右側目盛
りを100〜≫1%の接地電圧波及率α、接地電圧低減
率α1としたことを特徴とする対数グラフ、方眼グラ
フ、片対数グラフ、X軸を2〜1迄を目盛りした部分対
数グラフと、2接地極の相互間隔、自然接地との離隔間
隔、深埋設絶縁独立接地電極の埋設深さが適切に求めら
れた接地電極となる。[Table 5] The ground electrode R 1 and the other ground-based and R 2, to measure the ground resistance R of the two-pole parallel synthesis connections, the parallel factor η interposed the parallel combined resistance R, by measurement and calculation, the insulating independently grounded electrode , That is, a deeply buried insulated independent ground electrode and its spread α can be calculated. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. According to a third aspect of the present invention, when two ground electrodes are combined in parallel, the maximum value of the parallel coefficient η, that is, the ground resistance R L / R S is added to X in the logarithmic graph.
Integer value indicating the resistance zone of R, 1 to ≫1, R
The positive value of S / RL is taken, the reading of the graph is set to 1 + RS / RL of the two-pole parallel coefficient η, and the resistance area of the ground electrode is 2 to 2.
≫1, the ground voltage spread rate or the calculation result of the reduction rate of the ground voltage is expressed in a graph of 100 to ≫1%, and the right scale of the Y axis is set to the ground voltage spread rate α of 100 to ≫1%, and the ground voltage reduction. logarithmic graph, grid graph is characterized in that the rate alpha 1, semi-log plot, the partial logarithmic graph the X-axis that the tics until 2-1, spacing between the second ground electrode, spaced distance between the natural ground, the depth A buried depth of the buried insulated independent ground electrode is a ground electrode that is appropriately determined.
【0011】第4の発明は次のようになる。図9に示す
様に、地表面GLからdの深さに、半径rの球体接地電
極R1が埋設されているとする。この場合の接地抵抗R
1は次のようになる。The fourth invention is as follows. As shown in FIG. 9, it is assumed that a spherical ground electrode R1 having a radius r is buried at a depth d from the ground surface GL. Ground resistance R in this case
1 is as follows.
【数24】R1=ρ/4πr 埋設深さdが零の場合は、地表面に半球状電極が埋設さ
れているのと同じになる。従ってその接地抵抗はR’と
なる。R1 = ρ / 4πr When the burying depth d is zero, it is the same as when a hemispherical electrode is buried on the ground surface. Therefore, the ground resistance is R '.
【数25】R’=ρ/2πr 球体接地電極R1の埋設深さ絶縁深さh2が0〜∞迄の
値をとる場合は、図10の様に地上にR2の球体接地極
があると仮定すると、接地抵抗はR2とR1の中間の値
が予測されるが重ね合わせと影像法を使うと大凡の見当
が出来る。図10の地表面からdの高さに、半径rの第
2の球体電極R2を導入すると、第2の電極が影像法に
於ける影像に当たる。両電極から、それぞれ地中に電流
Iが流れていたとする。図10に示すように、両電極の
中心から距離x、x’の地中の点をpとし、その電位を
Vpとすると、重ね合わせの原理を使うとVpは次のよ
うに表現できる。If Equation 25] R '= ρ / 2πr sphere ground electrode R 1 buried deep insulating depth h2 has a value of up to 0~∞, if there is a earth sphere earth pole of R2 as in FIG. 10 Assuming that the ground resistance is expected to be an intermediate value between R2 and R1, the approximate value can be obtained by using the superposition and the image method. When a second spherical electrode R2 having a radius r is introduced at a height d from the ground surface in FIG. 10, the second electrode hits an image in the image method. It is assumed that a current I is flowing from both electrodes into the ground. As shown in FIG. 10, assuming that a point in the ground at a distance x, x ′ from the center of both electrodes is p and its potential is Vp, Vp can be expressed as follows using the principle of superposition.
【数26】 Vp=(ρI/4π)×((1/x)+(1/x’)) p点をR1電極の表面に取ると、そこの電位Vは次のよ
うになる。Vp = (ρI / 4π) × ((1 / x) + (1 / x ′)) When a point p is taken on the surface of the R1 electrode, the potential V thereat becomes as follows.
【数27】 V=(ρI/4π)×((1/r)+(1/2d)) 但し2d≫rとすると、R1極の接地抵抗は次のように
なる。V = (ρI / 4π) × ((1 / r) + (1 / 2d)) However, if 2d≫r, the ground resistance of the R1 pole is as follows.
【数28】 R1=(ρ/4πr)×(1+(1/2d)) 上式に於いて、d→∞とすれば括弧内の第2項は消えて
R1は次のようになる。R1 = (ρ / 4πr) × (1+ (1 / 2d)) In the above equation, if d → ∞, the second term in parentheses disappears and R1 becomes as follows.
【数29】R1=(ρ/4πr) 数24〜数29の計算値を表にすると表6のようにな
る。R1 = (ρ / 4πr) Table 6 shows the calculated values of Equations 24 to 29.
【表6】 対数グラフのXに、地表と導線で接続されてないd深さ
に埋設した、半径rの球体接地電極のd/rの整数倍値
を、Y軸に1+(r/2d)又は、r/2dの正数値と
すると、グラフのは図11の様になりグラフ線8と9は
図5の二分の一のグラフになる。図11に図5のグラフ
線5を点線で示すと、線9が二分の一が確認される。地
中電極と地表電極、又は、地表自然接地との間で接地上
昇電圧が、他の接地電極に波及する、強弱電圧の波及率
を表す事が出来る。グラフの抵抗区域を表す曲線8と波
及電圧斜線9は読み方を変えると、抵抗区域と電圧波及
率αの関係は逆に読みとることが出来る。本グラフと、
本グラフから2極設置の接地極の間隔、即ち、自然接地
との間隔、絶縁独立接地電極の絶縁深さ等が容易に求め
られる。抵抗区域と電圧波及率のグラフは線8、9共
に、理論的には2×rの2r間隔で25%になる。即
ち、半球体状接地極等価半径の二分の一になる。対数グ
ラフの、y軸の1を2に表現できることは、次のような
計算によって対応が可能になる。本発明でも必要とする
のは、YのグラフがXの最大値に対し2以下の1.5で
あり、即ち、1.5とか1.2の様な数値である。以上
の様なY値は、接地電極の2極並列の集合係数η値に該
当する。対数グラフのY値を1/X取ると、集合係数η
は1+1/Xであり、Y値は1/Xの変数に1.0を加
え、Yの1の所は1+1/1=2でグラフの表現が出来
る。 又、並列係数表示の1+(1/X)の第1項
(1+)を考慮するすると、その計算は次のようにな
る。本発明で必要とするのは、YのグラフがXの整数値
に対し2以下であり、即ち、1.5とか1.2の様な整
数値であってXはd/rのn倍数値である。以上の様な
Y値は、球体状接地電極の2極並列の集合係数η値に該
当する。対数グラフのY値を1/Xの整数値に取ると、
集合係数ηは1+1/Xであり、Y値は1/Xの変数に
1.0を加え、Yの1は1+1/1=2でグラフの表現
が出来る。又、並列係数表示の1+(1/X)の第1項
(1+)を考慮した計算は、次のようになる。[Table 6] In the logarithmic graph, X is an integer multiple of d / r of a spherical ground electrode having a radius r embedded at d depth not connected to the ground surface by a conductor, and 1+ (r / 2d) or r / Assuming a positive numerical value of 2d, the graph is as shown in FIG. 11, and the graph lines 8 and 9 become a half graph of FIG. In FIG. 11, when the graph line 5 of FIG. 5 is shown by a dotted line, half of the line 9 is confirmed. The ground rise voltage between the underground electrode and the ground electrode or the natural ground on the ground can represent a ripple rate of a strong or weak voltage that spreads to another ground electrode. The relationship between the resistance area and the voltage transmission rate α can be read in reverse by changing the reading of the curve 8 and the transmission voltage oblique line 9 representing the resistance area in the graph. This graph,
From this graph, the distance between the ground electrodes provided with two poles, that is, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like can be easily obtained. The graphs of the resistance area and the voltage spread ratio are both 25% theoretically at 2 × r 2r intervals for both lines 8 and 9. That is, it is one half of the equivalent radius of the hemispherical ground pole. The fact that 1 on the y-axis of the logarithmic graph can be expressed as 2 can be dealt with by the following calculation. What is required in the present invention is that the graph of Y has a maximum value of X which is not more than 2 and 1.5, that is, a numerical value such as 1.5 or 1.2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. When the Y value of the logarithmic graph is 1 / X, the set coefficient η
Is 1 + 1 / X, the Y value is 1 / X, and 1.0 is added to the variable. The Y position can be represented by 1 + 1/1 = 2. Considering the first term (1+) of 1+ (1 / X) in the parallel coefficient expression, the calculation is as follows. The present invention requires that the graph of Y be less than or equal to 2 with respect to the integer value of X, that is, an integer value such as 1.5 or 1.2, where X is a multiple of n times d / r. It is. The Y value as described above corresponds to the two-parallel parallel set coefficient η value of the spherical ground electrode. Taking the Y value of the logarithmic graph as an integer value of 1 / X,
The set coefficient η is 1 + 1 / X, the Y value is 1.0 by adding 1 / X to the variable, and 1 of Y is 1 + 1/1 = 2, so that the graph can be expressed. The calculation taking into account the first term (1+) of 1+ (1 / X) in the parallel coefficient expression is as follows.
【数30】Y=1+1/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。このように
並列係数ηも2.0〜1.0に表現され、視覚、感覚的
にも読みとり易い表現になり、グラフの上昇線と下降線
の何れでも、使用目的値を変える事により、目的グラフ
として使用可能になる。以上の計算から、Yグラフが通
常の方眼目盛りのような表現になる。本グラフを使用す
る事により、自然接地との間隔、絶縁独立接地電極の絶
縁部11と深h1さ等、接地電圧波及率、又は、接地電
圧の低減率の計算結果を本グラフ11を利用して適切な
間隔と深さに、接地電極又は、接地工事を設置又は施工
する工事計画が出来る。図12の電極半径dの長さh1
に取った接地電極部10に、地表G.Lから長さh2の
絶縁した電線、又は、電纜(ケーブル)11を接続した
深埋設絶縁独立接地電極になる。図12に、地下構造体
のような自然接地R2があると、その離隔間隔aもグラ
フから容易に読み取ることが出来る。本グラフは図18
の方眼グラフ、図19の対数グラフでY軸の拡大部分図
にも作図出来るが、請求項1、2、3のグラフと共通で
きる本対数グラフ図11が読み易く、Y軸の小さい数値
部分1〜≫1のグラフを引き延ばせる利点があり、グラ
フのRS/RL=1の所がR=RS=RLの場合η=1
+r/2d=1.5になり2極並列時の最大値は1.5
になる。X軸、即ち、横軸には接地抵抗区域間隔の比、
2接地極相互間隔の比、2接地抵抗の比をとると、対応
するYのグラフは図3、図5、図8と同一関係になり、
請求項1、請求項2、請求項3のグラフと共通したグラ
フにする事が出来、内容の説明関係も同一になる。グラ
フは、その目盛りを細分することにより高精度に読みと
れ、詳細は計算によっても求められる。本発明は請求項
4の様に、地中電極と地表電極、又は、地中接地電極か
ら他の接地系や自然接地に波及する、100〜≫1%の
グラフに表現したことを特徴とする方眼、又は、対数グ
ラフと、強弱電圧の波及率を表したことを特徴とする図
11の本グラフと、本グラフから2極設置の接地極の間
隔、即ち、自然接地との間隔、絶縁独立接地電極の絶縁
深さ等を求めた接地電極となる。Y = 1 + 1 / X30η = 1 + 1 / X = (1 + X) / X According to the above calculation, when X in the graph is 1, the corresponding Y is expressed as 2, and X is not an integer. 1.2, 1.
It corresponds to numbers such as 5, 2.3, and 2.5. As described above, the parallel coefficient η is also expressed in the range of 2.0 to 1.0, which makes it easy to read both visually and intuitively. It can be used as a graph. From the above calculations, the Y graph is represented as a normal grid scale. By using this graph, the calculation result of the ground voltage ripple rate or the reduction rate of the ground voltage, such as the distance from the natural ground, the insulating part 11 of the insulating independent ground electrode and the depth h1, etc. At a proper interval and depth, a construction plan for installing or constructing a ground electrode or grounding work can be made. Length h1 of electrode radius d in FIG.
The ground electrode 10 taken on the ground G. It becomes an insulated electric wire having a length h2 from L or a deeply buried insulated independent ground electrode to which an electric cable (cable) 11 is connected. In FIG. 12, if there is a natural ground R2 such as an underground structure, the separation distance a thereof can be easily read from the graph. This graph is shown in FIG.
19, the logarithmic graph of FIG. 19 can be plotted on an enlarged partial view of the Y axis, but the logarithmic graph FIG. 11 which can be shared with the graphs of claims 1, 2, and 3 is easy to read, and the numerical portion 1 of the Y axis is small. There is an advantage that the graph of ≫1 can be extended, and when R S / R L = 1 in the graph is R = R S = R L η = 1
+ R / 2d = 1.5, and the maximum value when two poles are parallel is 1.5
become. On the X axis, that is, on the horizontal axis, the ratio of the intervals of the ground resistance areas,
When the ratio between the two ground poles and the ratio between the two ground resistances are taken, the corresponding graphs of Y are the same as those in FIGS. 3, 5, and 8, and
A graph common to the graphs of claim 1, claim 2, and claim 3 can be made, and the explanation relation of the contents becomes the same. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. The present invention is characterized in that it is expressed in a graph of 100 to $ 1% that spreads from an underground electrode and a ground electrode or an underground ground electrode to another grounding system or natural grounding. A graph or a logarithmic graph, and the graph of FIG. 11 showing the transmission rate of the strong and weak voltages, and the distance between the grounding poles provided with two poles, that is, the distance from the natural ground, the insulation independent The ground electrode is obtained by determining the insulation depth of the ground electrode.
【0012】第5の発明は次のようになる。本発明は、
請求項1,2,3,4の設定に対しその接地工事機能が
効果的かどうかの確認測定に関する。又、深埋設絶縁独
立接地電極として機能出来るか、その効果を確認する測
定方法にも関する。図13に示す様な、2接地電極の接
地抵抗R1、R2の並列合成接地抵抗Rの測定には、測
定用電流通電補助極Cと電圧検出補助極Pに測定線を接
続し、R1、R2の2極にも測定電流通電線を並列に接
続する。その際、2接地極に接続する測定用電流通電線
Aから分岐し接地極R1,R2に接続する電線B、B’
はその導体抵抗を同一とし、即ち、分岐点Cからは同一
断面積で同一長さのものを使用、又、電圧検出用電線も
電流通電線の様に接続し、実測値に誤差が入らないよう
に配慮する。又、図14の2接地電極の接地抵抗Rの測
定は、精密測定が出来る直読式接地抵抗計Eの使用も可
能で、R1、R2各単独値とR1,R2の並列合成値R
の接地抵抗計のスイッチを押して測定する。図15の測
定回路断面図の様に、深埋設絶縁独立接地電極の接地抵
抗を測定時、電流通電補助接地電極Cを、x方向の遠地
点に設け、電圧検出補助極Pを同じX方向にP1〜P
n、に、図16平面配置の様にW方向に接地極Eの低減
は求電圧を、図15は直読計器を使用した接地極Eの抵
抗区域とEから波及する波及電圧を各々測定すると、目
的の接地工事として機能しているかの確認が出来る。本
測定回路は、交流による測定を示したが、電源と計器を
変えると、直読接地抵抗計や高電圧大電流のインパルス
測定も可能である。図17の測定回路平面図の様に、深
埋設絶縁独立接地電極の接地抵抗を、電流通電補助接地
電極Cを、x、w、y、z方向の何れか遠地点に設け、
電圧検出補助極Pも、x、w、y、z方向の何れか遠地
点に固定して設け、測定すると、請求項4の機能効果の
検証確認が出来る。The fifth invention is as follows. The present invention
The present invention relates to a measurement for confirming whether or not the grounding work function is effective for the settings of claims 1, 2, 3, and 4. Also, the present invention relates to a measurement method for confirming whether or not it can function as a deeply buried insulated independent ground electrode. As shown in FIG. 13, in order to measure the parallel combined ground resistance R of the ground resistances R 1 and R 2 of the two ground electrodes, a measurement wire is connected to the current-carrying auxiliary pole C for measurement and the auxiliary pole P for voltage detection. 1, also to connect the measuring current supply line in parallel to the two poles of R 2. At this time, the electric wires B and B ′ branched from the measuring current conducting wire A connected to the two ground poles and connected to the ground poles R1 and R2.
Have the same conductor resistance, that is, use the same cross-sectional area and the same length from the branch point C. Also, the voltage detection wire is connected like a current conducting wire, and no error occurs in the measured value. To be considered. Further, the measurement of the grounding resistance R of the two grounding electrodes shown in FIG. 14 can be performed by using a direct-reading-type grounding resistance meter E capable of precise measurement.
Press the switch of the earth resistance meter of the above to measure. As shown in the cross-sectional view of the measurement circuit in FIG. 15, when measuring the ground resistance of the deeply buried insulated independent ground electrode, a current carrying auxiliary ground electrode C is provided at a distant point in the x direction, and the voltage detection auxiliary pole P is set to P1 in the same X direction. ~ P
n, the reduction of the grounding pole E in the W direction as shown in the plan view of FIG. 16 measures the voltage demand, and FIG. 15 measures the resistance area of the grounding pole E using a direct-reading instrument and the spillover voltage spilling from E. It can be checked whether it is functioning as the intended grounding work. Although this measurement circuit has shown the measurement by the alternating current, if the power supply and the instrument are changed, it is also possible to measure the impulse of the direct reading ground resistance meter and the high voltage and the large current. As shown in the measurement circuit plan view of FIG. 17, the ground resistance of the deeply buried insulated independent ground electrode, the current-carrying auxiliary ground electrode C is provided at any of the x, w, y, and z directions.
When the voltage detection auxiliary pole P is also fixed at any of the apogees in the x, w, y, and z directions and measured, the functional effect of claim 4 can be verified and confirmed.
【0013】[0013]
【発明の効果】請求項1,2,3,4の発明は、グラフ
により接地電極で発生した接地電圧が、他の接地系や、
保護対象物に波及する電圧、即ち、α%で表し、請求項
1、2、3、4のグラフ図、計算図、及び、配置図か
ら、電圧波及度を設定した接地電極と、絶縁独立接地電
極として機能出来る様に、又、測定用補助接地電極C、
Pの設置間隔や、更には、適切な絶縁深さと、設置間隔
地点に設けた事を特徴とする接地電極、深埋設接地電
極、測定用補助接地電極、及び、電極半径d1の3の長
さh1にした接地電極部1に、地表G.L3から長さh
2間を絶縁した電線、又は、電纜(ケーブル)3を接続
した効果的に機能する深埋設絶縁独立接地電極として設
置することが出来る。請求項5の発明では並列係数の測
定法と、請求項1,2,3,4項の接地極としての機能
を検証確認できる測定法となる。According to the first, second, third, and fourth aspects of the present invention, the graph shows that the ground voltage generated at the ground electrode is different from that of another ground system,
A ground electrode for which the voltage spread is set based on the voltage applied to the object to be protected, that is, α%, from the graphs, calculation diagrams, and layout diagrams of claims 1, 2, 3, and 4, and an insulating independent ground. So that it can function as an electrode, and an auxiliary ground electrode C for measurement,
The installation interval of P, and furthermore, an appropriate insulation depth and a ground electrode, a deeply buried ground electrode, an auxiliary auxiliary ground electrode for measurement, and a length of 3 of the electrode radius d1, which are provided at the installation interval point. h1 on the ground electrode section 1. Length h from L3
It can be installed as a deeply buried insulated independent ground electrode that functions effectively by connecting an insulated wire or a cable (cable) 3 between them. According to the fifth aspect of the present invention, there are provided a method for measuring the parallel coefficient and a method for verifying and confirming the function as the grounding electrode according to the first, second, third and fourth aspects.
【0014】[0014]
【図1】第1の発明の説明用椀型接地電極の概念図FIG. 1 is a conceptual diagram of a bowl-shaped ground electrode for explanation of the first invention.
【図2】第1図の接地電極概念図FIG. 2 is a conceptual diagram of a ground electrode in FIG.
【図3】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 3 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistor are calculated.
【図4】第2の発明の説明用接地電極の2極配置回路図FIG. 4 is a circuit diagram showing a two-pole arrangement of ground electrodes for explanation of the second invention.
【図5】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 5 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistance are calculated.
【図6】第3の発明の説明用接地電極の2極配置図FIG. 6 is a two-pole layout diagram of a ground electrode for explanation of the third invention.
【図7】第3の発明の説明用接地電極と自然接地の2極
配置図FIG. 7 is a two-pole layout diagram of a ground electrode and a natural ground for explanation of the third invention.
【図8】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 8 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistance are calculated.
【図9】第4の発明の説明用絶縁独立接地電極の概念図FIG. 9 is a conceptual diagram of an insulated independent ground electrode for explanation of the fourth invention.
【図10】2接地電極の接地抵抗関係影像法説明の概念
図FIG. 10 is a conceptual diagram for explaining an image method relating to ground resistance of two ground electrodes.
【図11】絶縁独立接地抵抗の電圧波及間隔等を計算し
た対数グラフ図FIG. 11 is a logarithmic graph diagram in which a voltage spread interval and the like of an insulation independent grounding resistor are calculated.
【図12】2接地極並列合成接地抵と自然接地との離隔
関係図FIG. 12 is a diagram showing a separation relationship between a two-grounded-pole parallel composite grounding resistor and natural grounding.
【図13】電圧降下法による2極並列合成接地抵抗の測
定回路図FIG. 13 is a circuit diagram of a two-pole parallel combined ground resistance measurement method using the voltage drop method.
【図14】直読計器を使用する2極並列合成接地抵抗の
測定回路図FIG. 14 is a circuit diagram of a two-pole parallel combined ground resistance measurement using a direct reading instrument.
【図15】絶縁独立接地抵抗の電圧波及間隔等のを計算
結果を検証する測定回路図FIG. 15 is a measurement circuit diagram for verifying a calculation result such as a voltage spread interval of an insulation independent ground resistance.
【図16】接地極の接地電圧が波及する波及率の検証測
定回路図FIG. 16 is a circuit diagram for verifying and measuring a ripple rate at which a ground voltage of a ground electrode spreads.
【図17】直読計器を使用する接地極の抵抗区域と接地
電圧波及率の検証測定回路図FIG. 17 is a circuit diagram for verifying the resistance area of the grounding pole and the ground voltage ripple rate using a direct reading instrument.
【図18】接地抵抗区域と電圧波及率の方眼グラフ図FIG. 18 is a grid graph of a ground resistance area and a voltage ripple rate.
【図19】接地抵抗区域と電圧波及率の対数グラフYの
一部を拡大した対数グラフ図FIG. 19 is a logarithmic graph diagram in which a part of a logarithmic graph Y of a ground resistance area and a voltage ripple ratio is enlarged.
1:椀型半球体状接地電極 2:棒状接地電極 3:大地、G.L部分 4:半球状体接地の対数グラフの曲線 5:半球状体接地の対数グラフの直線 6:発変電規程の集合係数表解析の表示線 7:建造物や基礎等の自然接地体 8:球状体接地の対数グラフの曲線 9:球状体接地の対数グラフの直線 10:球状体接地域を有する棒状体接地電極部 11:絶縁独立接地電極の絶縁導線部 A.C:交流電源 A:電流計 V:電圧計 C:測定用電流補助極 E:主接地電極.直読計器Tの接地側端子 h1:絶縁深さ h2:接地電極の長さ P:接地電圧検出補助接地電極 I:通電電流 n:整数(1〜nの様に順番号) L:棒状体接地電極の埋設深さ Pw3:w方向3番目の電圧検出補助極 Pwn:w方向n番目の電圧検出補助極 Px1:x方向1番目の電圧検出補助極 Py2:y方向2番目の電圧検出補助極 Pz2:z方向2番目の電圧検出補助極 R:接地抵抗 r:接地極の等価半径 r1:接地極の等価半径 a:2接地極並列の相互離隔間隔 X:球体状接地極からp点迄の間隔 A’:接地抵抗測定用電流通電線 B:B’と同一長さと同一抵抗値の電線 B’:Bと同一長さと同一抵抗値の電線 J:電線A’からBとB’に分岐する接続点 d:球体状接地極を埋設したと仮定した深さ w:平面上に於けるEからのw方向 x:平面上に於けるEからのx方向 y:平面上に於けるEからのy方向 z:平面上に於けるEからのz方向 1: bowl-shaped hemispherical ground electrode 2: rod-shaped ground electrode 3: earth, G. L part 4: Curve of logarithmic graph of hemispherical grounding 5: Straight line of logarithmic graph of hemispherical grounding 6: Display line of set coefficient table analysis of power generation substation regulations 7: Natural grounded body such as building or foundation 8: Curve of logarithmic graph of spherical body grounding 9: Straight line of logarithmic graph of spherical body grounding 10: Rod-shaped grounding electrode part having spherical body contact area 11: Insulated conducting wire part of insulated independent grounding electrode C: AC power supply A: Ammeter V: Voltmeter C: Current auxiliary electrode for measurement E: Main ground electrode. Ground side terminal of direct reading instrument T h1: Insulation depth h2: Ground electrode length P: Ground voltage detection auxiliary ground electrode I: Conducting current n: Integer (sequential number such as 1 to n) L: Rod-shaped ground electrode Buried depth Pw3: w-direction third voltage detection auxiliary pole Pwn: w-direction nth voltage detection auxiliary pole Px1: x-direction first voltage detection auxiliary pole Py2: y-direction second voltage detection auxiliary pole Pz2: Second voltage detection auxiliary pole in z direction R: Ground resistance r: Equivalent radius of ground pole r1: Equivalent radius of ground pole a: Separation interval between two ground poles in parallel X: Distance from spherical ground pole to point p A ': Current conducting wire for ground resistance measurement B: Wire of the same length and the same resistance value as B' B ': Wire of the same length and the same resistance value as B J: Connection point branching from wire A' to B and B ' d: Depth assuming that the spherical ground electrode is buried w: E on a plane X direction: x direction from E on plane y: y direction from E on plane z: z direction from E on plane
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成11年12月8日(1999.12.
8)[Submission date] December 8, 1999 (1999.12.
8)
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【書類名】 明細書[Document Name] Statement
【発明の名称】接地電極の設置法とその接地電極 Patent application title: Installation method of ground electrode and its ground electrode
【特許請求の範囲】[The scope of the appended billed]
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、接地極の抵抗区域
グラフや、接地極等価半径に対する電位上昇範囲グラフ
を作成し、そのグラフから地表部分や、地表からの或る
深さの土壌中にて、接地電極相互や他の接地系との相互
間で、理論的な干渉電圧の進入防止を計る間隔と深さ、
即ち、他の接地系や自然接地系との効果的な離隔間隔、
その接地電極との離隔埋設地点、その理論値を裏付ける
グラフと設定方法に関する。又、地表部分の或る深さの
土壌中に於いて、所定深度で電気的に独立する接地電極
として機能出来る絶縁深さ、他の接地系との効果的な離
隔間隔を持たせる事を特徴とした深埋設絶縁独立接地電
極の設置する接地工事方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention creates a graph of a resistance area of a ground electrode and a graph of a potential rise range with respect to a ground electrode equivalent radius. The distance and depth between the ground electrode and other grounding systems to prevent theoretical interference voltage from entering,
In other words, effective separation from other grounding systems and natural grounding systems,
The present invention relates to a buried point separated from the ground electrode, a graph supporting the theoretical value, and a setting method. In addition, in the soil at a certain depth on the ground surface, the insulation depth can function as a ground electrode that is electrically independent at a predetermined depth, and it has an effective separation distance from other grounding systems. It relates to a grounding method for installing a deep buried insulated independent ground electrode.
【0002】[0002]
【従来の技術】従来、複数以上に設ける接地電極の設置
相互間隔や、設置場所、又、接地電極と自然接地、即
ち、建造物等の地下部分等との設置間隔に留意されるこ
とも無く、他の接地系から電気的に絶縁する深埋設絶縁
独立接地電極とする工事方法も皆無であった。又、注意
事項等の適切な文献等も無く、その結果、接地電極から
の波及電圧による事故例もあった。2. Description of the Related Art Heretofore, there has been no need to pay attention to the intervals between installations of a plurality of ground electrodes, the installation locations, and the installation intervals between a ground electrode and natural ground, that is, the underground portion of a building or the like. , electrically construction method for deep buried insulating independent ground electrode insulated with even Tsu all non der from other grounding system. In addition, there is no appropriate reference document or the like, and as a result, there was an accident example due to a ripple voltage from the ground electrode.
【0003】[0003]
【発明が解決しようとする課題】複数以上の接地電極を
設ける場合、その埋設間隔や埋設地点、自然接地との離
隔間隔、又、埋設する深さと絶縁深さを容易に設定でき
る方法を開発する必要があった。又、工事施工後には、
詳細正確に設定結果を検証する測定方法も必要とした。
このようにして、埋設地点や絶縁深さを詳細に設定しな
いで、接地電極を形成して埋設した場合、他の接地系に
与える影響等を、工事終了後に詳細に再測定する必要も
あった。In the case where a plurality of ground electrodes are provided, a method for easily setting the buried space, the buried point, the space between the buried ground and the natural ground, and the buried depth and insulation depth is developed. Needed. Also, after construction work,
It also required a measurement method that verifies the setting results accurately.
In this way, when the grounding electrode is formed and buried without setting the burying point and insulation depth in detail, it is necessary to re-measure the effects on other grounding systems in detail after the completion of the construction. .
【0004】[0004]
【課題を解決するための手段】そこで、上記課題を解決
するため、本発明は、接地工事の理論式をグラフ化し
て、そのグラフ図を作成し、又、工事完了後の検証測定
方法も実用化し、グラフ化とその設定方法と、計算値か
ら導かれた接地工事とした。Therefore, in order to solve the above-mentioned problems, the present invention provides a graph of the theoretical formula of the grounding work, prepares a graph of the theoretical formula, and also uses a verification measurement method after the completion of the work. And grounding work derived from the graphs, their setting methods, and calculated values.
【0005】[0005]
【発明の実施の形態】抵抗区域と電圧波及率のグラフ
は、線4、線5、線8、線9共に理論的には2×r間隔
で50%と25%になり、本発明の対数グラフのX値は
共通して、接地極の等価半径rに対する設置間隔aと
の、大小関係のa/r=n、接地抵抗の大小関係のRL
対RSのRL/RS=n倍の様に、接地電極の相互関係
の倍数nを、Yにはその対応値を取ったものであり、本
発明によると、接地電極で発生した接地電圧を、他の接
地系や保護対象物に波及する電圧、即ち、α%やα1%
で表すことが出来る相互間隔と深埋設絶縁独立接地電極
として設けることが出来る様にしたものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The graphs of the resistance area and the voltage ripple ratio show that the lines 4, 5, 8, and 9 are theoretically 50% and 25% at 2.times.r intervals, respectively. In the graph, the X value is common, ie, a / r = n, which is a magnitude relationship with the installation interval a with respect to the equivalent radius r of the ground pole, and R L which is a magnitude relationship of the ground resistance.
In the present invention, a multiple n of the mutual relation of the ground electrodes and a corresponding value of Y are taken as in the case of R L / R S = n times that of the pair R S. According to the present invention, the ground generated by the ground electrode voltage, the voltage to be spread to other ground-based and protected objects, i.e., alpha% and alpha 1%
And a deeply buried insulated independent ground electrode.
【0006】[0006]
【特許請求の範囲】 請求項1,2,3,4,5の5項。[Claim 5] Claim 5, Claim 2, Claim 3, Claim 4, and Claim 5.
【0007】[0007]
【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0008】第1の発明は次のようになる。図1の半径
rの半球体(椀形状)接地1の中心から、r1迄に含ま
れるG.L3以深の地中接地抵抗をR1、大地抵抗率を
ρとすると、接地抵抗R1は次のように計算される。The first invention is as follows. From hemisphere (bowl shape) of the ground 1 center of radius r in FIG. 1, G. contained until r 1 Assuming that the underground ground resistance below L3 is R 1 and the ground resistivity is ρ, the ground resistance R 1 is calculated as follows.
【数1】R1=ρ/2π((1/r)−(1/r1)) 又、半径rの半球体状接地電極の接地抵抗Rは、R 1 = ρ / 2π ((1 / r) − (1 / r 1 )) Also, the ground resistance R of the hemispherical ground electrode having a radius r is
【数2】R=ρ/(2πr) Rの接地抵抗より小さいR1の等価半径をr、Rの等価
半径をr1とし、その比をαとすると、αは接地電極の
抵抗区域を示し、又、α端は接地電極の電圧が波及する
電圧の割合を示しその計算は次のようになる。R = ρ / (2πr) If the equivalent radius of R 1 smaller than the ground resistance of R is r, the equivalent radius of R is r 1 and the ratio is α, α indicates the resistance area of the ground electrode. The α end indicates the ratio of the voltage to which the voltage of the ground electrode spreads, and the calculation is as follows.
【数3】 α=(R1/R)×100%=(r1/r)×100% ここで、αは接地抵抗区域を表し、大地抵抗率ρは無関
係になる。r1とrの間隔比は、r1/rをnとすると
接地抵抗区域倍数n・rとなり、接地極の抵抗区域端r
1と接地極の等価半径のr比で決まる。接地抵抗区域端
と、接地極から波及する電圧端、即ち、その端に波及す
る電圧値Vは%で表現される。接地極からn・r間隔、
即ち、r1間隔地点に波及する電圧は、αとして次のよ
うにも計算される。Α = (R 1 / R) × 100% = (r 1 / r) × 100% Here, α represents a ground resistance area, and the ground resistivity ρ becomes irrelevant. The interval ratio between r 1 and r is a ground resistance area multiple n · r where r 1 / r is n, and the resistance area end r of the ground electrode
It is determined by 1 and the r ratio of the equivalent radius of the ground pole. The voltage end spreading from the ground resistance area end and the ground electrode, that is, the voltage value V spreading to the end, is expressed in%. N · r spacing from the ground pole,
That is, the voltage spread to r 1 interval points may also be calculated as follows as alpha.
【数4】α=(r1/r)×100% 接地電極の抵抗区域である等価半径rと、ある間隔r1
の関係は、他の各種形状の接地電極でも同一に適用でき
る。図2の深埋設接地電極の場合、その等価半径rは次
式で求められる。Α = (r 1 / r) × 100% Equivalent radius r, which is the resistance area of the ground electrode, and a certain distance r 1
The same relationship can be applied to ground electrodes of other various shapes. In the case of the deeply buried ground electrode of FIG. 2, the equivalent radius r is obtained by the following equation.
【数5】r=L/(Ln((4L/d)−1)) Lは接地電極の埋設長さ(深さ)、dは接地電極断面の
等価半径とする。接地電極の等価半径rに対し、接地極
の接地抵抗区域間隔r1迄の或る倍数nは、次のように
計算する。R = L / (Ln ((4L / d) -1)) L is the buried length (depth) of the ground electrode, and d is the equivalent radius of the ground electrode cross section. To the equivalent radius r of the ground electrode, one multiples n of up to ground resistance zone spacing r 1 of the ground electrode is calculated as follows.
【数6】n=r1/r r1はrのn倍数で表現される。α1%は、接地電極r
からの電圧の低減率となる。## EQU6 ## n = r 1 / r r 1 is expressed by n multiples of r. α 1 % is equal to the ground electrode r
From the voltage.
【数7】α1=1−α 数1〜数7の計算値を表にすると表1のようになる。Α 1 = 1−α Table 1 shows the calculated values of Equations 1 to 7.
【表1】 α1%は、接地電極rからの電圧の低減率となるが、読
み方を変えると波及率として、同時に表現する事にもな
る。数1〜数7の計算結果の表1から、rに対する、r
1即ちnr、α、α1、を記入し、対数グラフ化したの
が図3である。図3の対数グラフのX右側に、接地電極
の等価半径rの整数倍値nrを、X左側接地電極の等価
半径のr、Yにα=r/r1×100%の正数をとり、
0.01〜100%迄の接地電極の抵抗区域とし、その
プロットした線は右上がり曲線4、又、rの電圧がn・
r地点で低減する電圧値のα1%値線を記入すると、そ
の電圧関係のグラフは右下がりの斜線5になる。ここに
X、Yの交点が抵抗区域グラフαの4、と5の線は、各
々読み方を変えると、接地電極の上昇電圧がr1間隔に
迄波及する波及率と低減する低減率を同時に表してい
る。又、電圧が波及する波及率の低減線2は1の曲線と
も対応し、Y右側数値2と交差するグラフα1は、電圧
vの低減率も同時に表している。α1%の線5は、接地
電極rからの電圧の低減率となるが、読み方を変えると
波及率として、同時に表現する事にもなる。接地抵抗R
2とR1は、各々が接地極毎の等価半径を有している。
接地極の接地抵抗区域は、等価半径のn倍であることか
ら、2極の接地抵抗区域r倍の比率nは、次のようにも
計算される。[Table 1] α 1 % is a reduction rate of the voltage from the ground electrode r. However, if the reading is changed, it can be simultaneously expressed as a ripple rate. From Table 1 of the calculation results of Expressions 1 to 7, r
1 That nr, alpha, fill alpha 1, and had a logarithmic graph is FIG. On the right side of the logarithmic graph of FIG. 3, an integer multiple nr of the equivalent radius r of the ground electrode is taken, and the r and Y of the equivalent radius of the X left ground electrode are positive numbers of α = r / r 1 × 100%.
The resistance area of the ground electrode is from 0.01% to 100%, and the plotted line is a curve 4 which rises to the right, and the voltage of r is n ·
When the α 1 % value line of the voltage value to be reduced at the point r is plotted, the graph of the voltage relationship becomes a slanting line 5 falling to the right. Here, the intersections of X and Y indicate lines 4 and 5 in the resistance area graph α, and when the reading is changed, the rising voltage of the ground electrode spreads to the interval of r 1 and the reduction ratio at the same time decreases. ing. Also, reduced line 2 spillover rate whose voltage ripple corresponds with the first curve, the graph alpha 1 which intersects the Y right number 2 represents simultaneously reduce rate of voltage v. The line 5 of α 1 % indicates the rate of reduction of the voltage from the ground electrode r. However, if the way of reading is changed, it can be expressed simultaneously as the ripple rate. Ground resistance R
2 and R 1 are each has an equivalent radius of each earth electrode.
Since the ground resistance area of the ground pole is n times the equivalent radius, the ratio n of r times the ground resistance area of the two poles is also calculated as follows.
【数8】R2/R1=n 即ち、R2:R1が2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。以上の計算から、電圧波及範囲αでも表す事が出来
る。R 2 / R 1 = n That is, when R 2 : R 1 is 2: 1, 2 when 3 and 3: 1, 3;
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. From the above calculation, it can also be represented by the voltage spread range α.
【数9】α=(R/(R1×R2/(R1+R2))−
1)×100% α=(α1−1.0)×100% 接地極R1の接地電圧がR1接地極から、どれ位の接地
電圧が他の対象物に何パーセント波及するかの計算が出
来る様になる。即ち、接地電極から他の接地電極へ波及
する電圧の強弱を%値で知ることが出来る。図3のグラ
フは、Xに接地極の等価半球体半径rの整数n倍のn・
rをとると、Yに接地抵抗区域と波及電圧両値を表すα
%、接地極からの電圧低減波及率α1%もを示す。以上
の設定で設ける接地電極は、電圧波及率αの計算方法と
その図示方法からである。グラフ線4と5は読み方を変
え、抵抗区域と電圧波及率αの関係を逆に読みとると、
即ち、α1−1とすることが出来、その抵抗区域と電圧
波及率のグラフは4、5共に、理論的には2×r間隔で
50%になる。対数グラフはXに、等価半径倍RL/R
S=nの整数、Yは1/nの正数で上限は1とし、即
ち、100%とする。このようなグラフとすると、接地
極rの接地電圧がr接地極からどれ位の接地電圧が他の
対象物に波及するかの計算が可能になる。グラフは、そ
の目盛りを細分することにより高精度に読みとれ、詳細
は計算によっても求められる。他の接地系との効果的な
離隔間隔を確認したことを特徴とする、即ち、他の接地
極や自然接地との離隔間隔、電圧の波及率αの計算方法
とその図示方法を表現した。本グラフ図3は、図18の
方眼グラフ、図19の対数グラフでYの拡大部分図にも
作図出来るが、図3の本対数グラフが読み易く、Yの小
さい数値部分を1〜≫1の様にグラフを引き延ばせる利
点がある。本発明は請求項1の様に、接地極の抵抗区
域、接地電圧波及率、又は、接地電圧の低減率の計算結
果を100〜≫1%のグラフに表現したことを特徴とす
る方眼、又は、部分拡大した対数グラフ様にもなり、本
グラフと、本対数グラフを利用して適切な間隔と深さの
深層地層地に、接地電極又は、接地工事を設置又は施工
する工事工法となる。Α = (R / (R 1 × R 2 / (R 1 + R 2 )) −
1) × 100% α = ( α 1 -1.0) from the ground voltage × 100% ground electrode R 1 is R 1 earthing, how much computational ground voltage of either percentage spread to other objects Can be done. That is, the magnitude of the voltage spreading from the ground electrode to the other ground electrode can be known as a percentage value. The graph of FIG. 3 indicates that X is n · n times an integer n times the equivalent hemisphere radius r of the ground pole.
When r is taken, Y represents α representing both the ground resistance area and the ripple voltage.
%, And the voltage reduction spread rate α 1 % from the ground electrode is also shown. The ground electrode provided in the above setting is based on the calculation method of the voltage ripple ratio α and the illustrated method. Graph lines 4 and 5 change the reading, and when the relationship between the resistance area and the voltage ripple rate α is read in reverse,
That is, α 1 −1 can be obtained, and the graphs of the resistance area and the voltage ripple rate of both 4 and 5 theoretically become 50% at 2 × r intervals. In the logarithmic graph, X is the equivalent radius times R L / R
S = integer of n, Y is a positive number of 1 / n, and the upper limit is 1, that is, 100%. With such a graph, it is possible to calculate how much the ground voltage of the ground electrode r spreads from the r ground electrode to other objects. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. It is characterized by the fact that the effective separation distance from other grounding systems has been confirmed, that is, the calculation method of the separation distance from other grounding poles and natural grounding, the ripple rate α of the voltage, and the drawing method thereof are expressed. The graph of FIG. 3 can be plotted on the enlarged graph of Y in the grid graph of FIG. 18 and the logarithmic graph of FIG. 19. However, the logarithmic graph of FIG. There is an advantage that the graph can be stretched in a similar manner. According to a first aspect of the present invention, there is provided a grid characterized in that a calculation result of a resistance area of a ground electrode, a ground voltage spread rate, or a reduction rate of a ground voltage is represented in a graph of 100 to ≫1%, or , also becomes part enlarged logarithmic graph-like, this graph and, by employing the present logarithmic graph of the appropriate spacing and depth
It is a construction method of installing or constructing a ground electrode or grounding work in a deep underground stratum .
【0009】第2の発明は次のようになる。接地極
R1,R2を図4の様に、半球状の等価半径rの接地極
を2極その設置間隔をaにし、大地比抵抗ρの場所に設
けたとする。この2接地極に流れる電流をIとすると、
各々の接地電極に、I/2の電流が流れる。地中の任意
の点に点Pを設定し、2電極からの間隔をX、X’にと
り、そのP点の電位をVpとすると、請求項4の内容と
同じく重ね合わせの原理から、Vpは次のように計算さ
れる。The second invention is as follows. As shown in FIG. 4, it is assumed that two ground poles R 1 and R 2 are provided at a location of ground specific resistance ρ, with two hemispherical ground poles having an equivalent radius r having an installation interval of a. Assuming that the current flowing through the two ground electrodes is I,
A current of I / 2 flows through each ground electrode. Assuming that a point P is set at an arbitrary point in the ground, the distances from the two electrodes are X and X ', and the potential at the point P is Vp, Vp becomes It is calculated as follows:
【数10】Vp=(ρ(I/2))/2πX+(ρ(I
/2))/2πX’ 今P点を一方の半球状電極の表面に設定すると接地電極
系の電位Vが決まる。数10の計算式から、このR1,
R2を並列合成した接地抵抗Rが次のように計算され
る。Vp = (ρ (I / 2)) / 2πX + (ρ (I
/ 2)) / 2πX 'If the point P is set on the surface of one hemispherical electrode, the potential V of the ground electrode system is determined. From the formula of Equation 10, this R 1 ,
Ground resistance R in parallel synthesize R 2 is calculated as follows.
【数11】R=(ρ/4πr)・(1+r/a) 但し、a≫r 数11の第2項が集合係数ηを表し、大地比抵抗ρには
無関係に決まる。又、集合係数ηはa/r=nによって
変化する。R = (ρ / 4πr) · (1 + r / a) where the second term of a≫r number 11 represents the set coefficient η, which is determined independently of the ground resistivity ρ. The set coefficient η changes depending on a / r = n.
【数12】η=1+r/a r/aは、表2からαであり、次のように計算するとグ
ラフ表示は図5の様になる。Η = 1 + r / ar where r / a is α from Table 2. When calculated as follows, the graph display is as shown in FIG.
【数13】Y=1+r/a−1 α=Y−1=1+r/a−1=r/a Xがnの場合、Yがa/n、即ち、αで表されるので、
対数グラフは次のように作成できる。Xをnとし、nに
対応するYが1+r/aにするには、次の様に計算す
る。但し、2極並列の集合係数の上限が2であるので、
yの上限を2に設定する。Y = 1 + r / a-1 α = Y-1 = 1 + r / a-1 = r / a When X is n, Y is represented by a / n, that is, α.
A logarithmic graph can be created as follows. In the case where X is n and Y corresponding to n is 1 + r / a, the calculation is performed as follows. However, since the upper limit of the set coefficient of two-pole parallel is 2,
Set the upper limit of y to 2.
【数14】Y=1+1/X=(1+X)/X Xが1の場合は Y=1+1/1=2 このようにX、Yのグラフを作図すると、Yは1/Xに
1をプラスした図5の様な表示になる。具体的に説明す
ると図3のYグラフ0.9+1は1.9,1+1は2の
様にすることが出来、通常の対数グラフのy=1に相当
する部分が、方眼目盛りの様に2≫1の整数値に表現す
る事ができる。接地抵抗R2とR1は、各々が接地極毎
の等価半径を有している。接地極の接地抵抗区域は、等
価半径のn倍であることから、2極の接地抵抗区域r倍
の比率nは、次のようにも計算される。## EQU14 ## Y = 1 + 1 / X = (1 + X) / X When X is 1, Y = 1 + 1/1 = 2 When the graphs of X and Y are plotted in this way, Y is 1 plus 1 / X. The display is as shown in FIG. More specifically, the Y graph 0.9 + 1 of FIG. 3 can be set to 1.9, and 1 + 1 can be set to 2, and the portion corresponding to y = 1 in the normal logarithmic graph is set to 2 様 like a grid scale. It can be expressed as an integer value of 1. Grounding resistor R 2 and R 1 are, each having an equivalent radius of each earth electrode. Since the ground resistance area of the ground pole is n times the equivalent radius, the ratio n of r times the ground resistance area of the two poles is also calculated as follows.
【数15】R2/R1=n 即ち、R2:R1が2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。以下、図に沿って本発明の実施形態を説明すると、
図5は、本発明の実施形態を示す対数グラフ図であり、
対数グラフのXは接地電極のa間隔に対し、接地極の等
価半径rの倍数値とする。数10〜数15の計算値を表
にすると表2のようになる。R 2 / R 1 = n That is, when R 2 : R 1 is 2: 1, 2 when R 2 : R 1 is 3;
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a logarithmic graph showing an embodiment of the present invention;
X in the logarithmic graph is a multiple of the equivalent radius r of the ground electrode with respect to the interval a of the ground electrode. Table 2 shows the calculated values of Equations 10 to 15 in a table.
【表2】 以上の設定で設けた接地電極は、電圧波及率αの計算方
法で設置したものである。グラフ7と6は読み方を変え
ると、抵抗区域と電圧波及率αの関係を逆に読みとるこ
とが出来る。本グラフは、図18の方眼グラフ、図19
の対数グラフでYの拡大部分図の様にも出来るが、請求
項1、2、3のグラフと共通できる本対数グラフ図5が
読み易く、グラフYの小さい数値部分1〜≫1のグラフ
を引き延ばせる利点がある。対数グラフの、Xに対する
yの1を2に表現するは、次のような計算によって対応
が可能になる。本発明で必要とするのは、Yのグラフが
Xの整数値に対し2以下であり、即ち、1.5とか1.
2の様な整数値である。以上の様なY値は、接地電極の
2極並列の集合係数η値に該当する。対数グラフのY値
を1/Xの整数値に取ると、集合係数ηは1+1/Xで
あり、Y値は1/Xの変数に1.0を加え、Yの1は1
+1/1=2でグラフの表現が出来る。又、並列係数表
示の1+(1/X)の第1項1+を考慮する計算は、次
のようになる。[Table 2] The ground electrode provided in the above setting is provided by the method of calculating the voltage ripple ratio α. By changing the reading of the graphs 7 and 6, the relationship between the resistance area and the voltage ripple ratio α can be read in reverse. This graph is a square graph of FIG.
This logarithmic graph can be made like an enlarged partial diagram of Y, but the logarithmic graph FIG. 5 which can be shared with the graphs of claims 1, 2 and 3 is easy to read, and the graphs of small numerical values 1 to ≫1 of graph Y are It has the advantage of being prolonged. In the logarithmic graph, expressing 1 of y with respect to X to 2 can be handled by the following calculation. The present invention requires that the graph of Y be less than or equal to 2 for an integer value of X, ie, 1.5 or 1.
It is an integer value such as 2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. Taking the Y value of the logarithmic graph as an integer value of 1 / X, the set coefficient η is 1 + 1 / X, and the Y value is obtained by adding 1.0 to the variable of 1 / X, and 1 of Y is 1
A graph can be expressed by + 1/1 = 2. The calculation considering the first term 1+ of 1+ (1 / X) in the parallel coefficient expression is as follows.
【数16】Y=1+1/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。本対数グラ
フ表示は、例えばYが0.99999のすぐ上が1のグ
ラフを使用時、本値に1を+し更に0.00001を加
え、Yの1を2にすると、通常の方眼目盛りと同様な表
現に使える利点がある。このように並列係数ηも2.0
〜1.0に表現され、視覚、感覚的にも読みとり易い表
現になり、グラフの曲線と斜線の何れでも、使用目的値
を変えるか併記する事により、目的グラフとして使用可
能になる。数16の計算式Y=の第1項から1を引くこ
とにより、請求項1のグラフになり、通常表示の対数グ
ラフに戻すことも自由である。グラフは、その目盛りを
細分することにより高精度に読みとれ、詳細は計算によ
っても求められる。表3の様に、配電規程JEAC70
01の、1−27表集合係数(η)に記載された、87
5極の実験データとしての数値を解析し、図5のグラフ
に記入すると、斜点線の様に、実測値は理論値の最大値
をを必ず下回っている事が読みとれる。Y = 1 + 1 / X16η = 1 + 1 / X = (1 + X) / X According to the above calculation, when X in the graph is 1, the corresponding Y is expressed as 2, and X is not an integer. 1.2, 1.
It corresponds to numbers such as 5, 2.3, and 2.5. For example, when a graph in which Y is 0.999999 immediately above 1 is used, a value of 1 is added to this value, 0.00001 is further added, and 1 of Y is set to 2. There is an advantage that can be used for similar expressions. Thus, the parallel coefficient η is also 2.0
It is expressed in the range of ~ 1.0, which makes it easy to read both visually and intuitively, and it becomes possible to use either the curve or the diagonal line of the graph as a target graph by changing the use target value or writing it together. By subtracting 1 from the first term of the formula Y = in the formula 16, the graph of claim 1 can be obtained, and the graph can be returned to the logarithmic graph of the normal display. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. As shown in Table 3, the distribution regulations JEAC70
87 described in Table 1-27 set coefficient (η) of 01
Analyzing the numerical values as 5-pole of the experimental data, the fill in the graph of FIG. 5, like the oblique dashed lines, and the measured value it is that be read that always below the maximum value of the theoretical value.
【表3】 2接地極相互の接地抵抗関係と、大地比抵抗は無関係で
あることから、接地規模も無関係になり、本グラフと、
本グラフから2極設置の接地極の間隔、自然接地との離
隔間隔、絶縁独立接地電極の絶縁深さ等を求める方法と
することが出来る。グラフは又、接地極から波及する接
地電圧の低減波及率α1の逆数をYにとり、そのX値か
ら接地極の相互間隔aのnを求めることもできる。即
ち、Yの接地電圧と低減電圧比から、Xの接地極の相互
間隔aのnが求められ、更にR2からのaのnも求めら
れる。以上の事から、対数グラフのYが通常の方眼目盛
りのような表現になる。本発明は請求項2の様に、グラ
フの曲線と斜線の何れでも、又、その内の何れか1本を
使用目的値を変える事により、接地極の抵抗区域α、又
は、2極並列時の並列係数2〜≫1、接地電圧波及率、
又は、接地電圧の低減率の計算結果を100〜≫1%の
グラフに表現したことを特徴とする方眼、又は、部分拡
大の対数グラフと、本対数グラフで、本グラフを応用し
て適切な間隔に、接地電極又は、接地工事を設置、又
は、施工する工事工法となる。[Table 3] Since the ground resistance relationship between the two ground poles and the ground resistivity are irrelevant, the ground scale is also irrelevant.
From this graph, it is possible to obtain a method of obtaining the distance between the ground electrodes provided with two poles, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like. The graph also the inverse of the reduction spread rate alpha 1 in the ground voltage ripple from the ground electrode taken Y, may be determined n mutual distance a of the ground electrode from the X value. That is, from the ground voltage of Y and the reduced voltage ratio, n of the mutual interval a between the ground electrodes of X is obtained, and further, n of a from R2 is obtained.
Re that. From the above, Y of the logarithmic graph is represented as a normal grid scale. According to the second aspect of the present invention, by changing either the curve or the diagonal line of the graph, or any one of them, the intended use value, the resistance area α of the ground electrode or the two-pole parallel The parallel coefficient of 2-≫1, ground voltage ripple,
Alternatively, the calculation result of the reduction rate of the ground voltage is expressed in a graph of 100 to ≫1%. A grounding electrode or grounding work is installed or installed at intervals.
【0010】第3の発明は次のようになる。図6の様に
接地電極を2極設置すると、その2極の接地抵抗には必
ず大小関係があり、その接地極をR1,R2とし、その
内小さい接地抵抗をRS大きい方をRLとする。又、図
7のように既設のメッシュ接地や、建造物等の基礎体7
の様な自然接地系がある場合は、RSかRL何れにでも
設定する。その接地電極の低接地抵抗値RSと高接地抵
抗値RLを並列合成接続すると、その実測接地抵抗R
は、並列合成計算した接地抵抗RC値より必ず大きくな
る。その実測値Rと並列計算値RCとの比に、2極並列
の並列係数ηが介在する。2極並列の並列係数ηの計算
は次のようになる。The third invention is as follows. When installing two poles of the ground electrode as in FIG. 6, there is always the magnitude relationship to the ground resistance of the two poles, the earth electrode and R1, R2, of which a small earth resistance R S larger and R L I do. In addition, as shown in FIG.
If there is a natural grounding system as described above, set it to either RS or RL . When the low ground resistance value RS and the high ground resistance value RL of the ground electrode are combined in parallel, the measured ground resistance R
Is always larger than the ground resistance RC value calculated in parallel. The parallel coefficient η of two-pole parallel is interposed in the ratio between the measured value R and the parallel calculated value RC . The calculation of the parallel coefficient η of the two-pole parallel is as follows.
【数17】 η=R/(1/(1/RS+1/RL)) =R/(RS×RL/(RS+RL))=R/RC 但し、RC=(RS×RL/(RS+RL)) 接地極2極の並列係数ηの上限値は2.0であり、その
設置間隔aが大きくなるに従いη値は小さくなり、2.
0≫1.0の関係にある。又、或る間隔aに設置された
2接地極の接地抵抗が、RS、RLの場合は、RS<R
Lであって、RS=Rとすると、並列係数ηは次のよう
に計算される。Η = R / (1 / (1 / RS + 1 / RL )) = R / ( RS × RL / ( RS + RL )) = R / RC where RC = ( R S × R L / (R S + R L )) The upper limit of the parallel coefficient η of the two ground poles is 2.0, and the η value becomes smaller as the installation interval a becomes larger.
There is a relation of 0≫1.0. Further, when the ground resistances of the two ground poles installed at a certain interval a are R S and R L , R S <R
If L and R S = R, the parallel coefficient η is calculated as follows.
【数18】 η=RS/(RS×RL/(RS+RL)) =RS(RS+RL)/RS×RL=(RS+RL)/RL =1+RS/RL 更に、接地抵抗RSとRLを微小間隔に設け、並列合成
するとその並列合成抵抗Rは、RSに近くなるのでRL
=RSとすると、並列係数ηは次のように2極並列の最
大値2に計算される。Η = RS / ( RS × RL / ( RS + RL )) = RS ( RS + RL ) / RS × RL = ( RS + RL ) / RL = 1 + R S / R L Further, when ground resistances R S and R L are provided at a minute interval and the parallel combination is made, the parallel combined resistance R becomes close to R S , so that R L
Assuming that = R S , the parallel coefficient η is calculated to the maximum value 2 of two-pole parallel as follows.
【数19】 η=1+RS/RL=1+RS/RS=2.0 接地抵抗RSとRLは、各々が接地極毎の等価半径を有
している。接地極の接地抵抗区域は、等価半径のn倍で
あることから、2極の接地抵抗区域r倍の比率nは、次
のように計算される。Η = 1 + RS / RL = 1 + RS / RS = 2.0 The ground resistors RS and RL each have an equivalent radius for each ground pole. Since the ground resistance area of the ground electrode is n times the equivalent radius, the ratio n of the ground resistance area of the two poles is calculated as follows.
【数20】RL/RS=n 即ち、RL:RSが2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。本グラフは図18の方眼グラフ、図19の対数グラ
フでYの拡大部分図にも作図出来るが、請求項1、2、
3のグラフと共通できる本対数グラフ図8や図5等が読
み易く、グラフYの小さい数値部分1〜≫1のグラフを
引き延ばせる利点があり、グラフのRS/RL=1の所
がR=RS=RLの場合η=1+RL/RL=≫2.0
になり2極並列時の最大値の2に表現できることであ
る。対数グラフの、Xに対するyの1を2に表現する
は、次のような計算によって対応が可能になる。本発明
で必要とするのは、YのグラフがXの整数値に対し2以
下であり、即ち、1.5とか1.2の様な整数値であ
る。以上の様なY値は、接地電極の2極並列の集合係数
η値に該当する。対数グラフのY値を1/Xの整数値に
取ると、集合係数ηは1+1/Xであり、Y値は1/X
の変数に1.0を加え、Yの1は1+1/1=2でグラ
フの表現が出来る。又、並列係数表示の1+(1/X)
の第1項(1+)を考慮すると、その計算は次のように
なる。R L / R S = n That is, when R L : R S is 2: 1, 2 when 3: 1 and 3 when 3: 1.
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. This graph can be plotted as an enlarged partial view of Y in the grid graph of FIG. 18 and the logarithmic graph of FIG.
This logarithmic graph, which can be shared with the graph of FIG. 3, is easy to read, and has the advantage that the graph of the small numerical part 1 to ≫1 of the graph Y can be extended, and the graph where R S / R L = 1 is obtained. When R = RS = RL , η = 1 + RL / RL = ≫2.0
And can be expressed as 2 which is the maximum value at the time of two-pole parallel operation. In the logarithmic graph, expressing 1 of y with respect to X to 2 can be handled by the following calculation. The present invention requires that the graph of Y be less than or equal to 2 for the integer value of X, ie, an integer value such as 1.5 or 1.2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. Taking the Y value of the logarithmic graph as an integer value of 1 / X, the set coefficient η is 1 + 1 / X, and the Y value is 1 / X
Is added to the variable of, and 1 of Y can be represented by a graph of 1 + 1/1 = 2. Also, 1+ (1 / X) of the parallel coefficient display
Considering the first term (1+), the calculation is as follows.
【数21】Y=1+1/X=(1+X)/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。このように
並列係数ηも2.0〜1.0に表現され、視覚、感覚的
にも読みとり易い表現になり、グラフの上昇線と下降線
の何れでも、使用目的値を変える事により、目的グラフ
として使用可能になる。2接地極相互の接地抵抗関係
と、大地比抵抗は無関係であることから、接地規模も無
関係になり、本グラフと、本グラフから2極設置の接地
極の間隔、自然接地との離隔間隔、絶縁独立接地電極の
絶縁深さ等を求める方法とすることが出来る。以上の計
算から、Yグラフが通常の方眼目盛りのような表現にな
る。数17〜数21計算値を表にすると表4のようにな
る。Y = 1 + 1 / X = (1 + X) / X η η = 1 + 1 / X = (1 + X) / X By the above calculation, when X in the graph is 1, the corresponding Y is expressed as 2. X is other than an integer.
It corresponds to numbers such as 5, 2.3, and 2.5. As described above, the parallel coefficient η is also expressed in the range of 2.0 to 1.0, which makes it easy to read both visually and intuitively. It can be used as a graph. Since the grounding resistance relationship between the two grounding poles and the ground resistivity are irrelevant, the grounding scale is also irrelevant. From this graph, the graph shows the distance between the grounding poles of the two poles installed, the separation distance from natural grounding, A method for determining the insulation depth of the insulated independent ground electrode can be used. From the above calculations, the Y graph is represented as a normal grid scale. Table 4 shows the calculated values of Equations 17 to 21 as a table.
【表4】 以上の計算から、ηを1.0にする工事は難しいが1.
0に近付ける事は出来る。即ち、2接地極間隔aを大き
くするか、図9深埋設独立接地電極の絶縁深さh2を深
くすることである。並列係数ηから、接地電極の接地電
圧が、他の接地系に波及する、波及率α%を計算により
求める。接地電極2極を並列接続した接地抵抗の場合、
その並列係数ηが、常に2〜≫1であり、次の様に計算
する。図14の様に、等価半球体半径rの整数n倍のn
・rの位置に半球体接地電極R1とR2の間隔をaの様
に設けた場合、その実測接地抵抗RはRL×RS/(R
L+RS)より大きくなる。その大きくなる分が集合係
数ηとなり、次のように計算される。[Table 4] From the above calculations, it is difficult to set η to 1.0, but 1.
It can be close to zero. That is, it is necessary to increase the distance a between the two ground electrodes or to increase the insulation depth h2 of the deeply buried independent ground electrode in FIG. From the parallel coefficient η, the ripple rate α% at which the ground voltage of the ground electrode spreads to other ground systems is calculated. In the case of a ground resistance with two ground electrodes connected in parallel,
The parallel coefficient η is always 2 to ≫1, and is calculated as follows. As shown in FIG. 14, n is an integer n times the equivalent hemisphere radius r.
When the space between the hemispherical ground electrodes R1 and R2 is provided at the position of r as shown by a, the measured ground resistance R is R L × R S / (R
L + R s ). The increase is the set coefficient η, which is calculated as follows.
【数22】η=R/(RL×RS/(RL+RS))Η = R / ( RL × RS / ( RL + RS ))
【数23】α=(R/(RL×RS/(RL+RS))
−1)×100% α1=(η−1.0)×100% 即ち、接地極RLの接地電圧が、RLから接地電圧とし
て、他の対象物の接地極や自然接地に対し、そのα%波
及するかが計算される。接地電極からの低減電圧α1%
は、接地極相互にも関係が有り、2極並列の並列係数η
値がRL、RS極相互に波及する関係にある。本グラフ
は図18の方眼グラフ、図19の対数グラフでYの拡大
部分図にも作図出来るが、請求項1、2、3のグラフと
共通できる本対数グラフ図5や図8が読み易く、Yの小
さい数値部分1〜≫1のグラフを引き延ばせる利点があ
り、グラフのRS/RL=1の所がR=RS=RLの場
合η=1+RL/RL=≫2.0になり2極並列時の最
大値の2に限りなく近く表現できることである。抵抗区
域と電圧波及率のグラフは7、8共に、理論的には2×
r間隔で50%になる。図7の接地抵抗R1や自然接地
等7が既知の場合、地形地質を調査し、或る間隔にR2
の接地極を設け、R2単独接地抵抗とR1、R2の並列
合成抵抗を測定する。接地抵抗R1とR2には必ず大小
関係があり、接地抵抗が大きい方をRL、小さい方をR
Sとし、その比nは、n=RL/RSとして計算する。
接地工事規模が不明で、接地抵抗が既知の場合、自然接
地との接地極相互の設置間隔の設け方も容易になる。グ
ラフは又、接地極から波及する接地電圧の低減波及率α
1の逆数をYにとり、そのX値から接地極の相互間隔a
のnを求めることもできる。即ち、Yの接地電圧と低減
電圧比から、Xの接地極の相互間隔aのnが求められ
る。以上の事から、本グラフから2極設置の接地極の間
隔や、自然接地との間隔、絶縁独立接地電極の絶縁深さ
等が容易に求められる。表5の様に、配電規程JEAC
7001の、1−27表集合係数(η)に記載された、
875極の実験データーの数値を補正し、図8のグラフ
に記入すると斜線6の様になり、実測値は理論値を必ず
下回っている事が読みとれる。Α = (R / ( RL × RS / ( RL + RS ))
-1) × 100% α 1 = (η-1.0) × 100% In other words, the ground voltage of the ground electrode R L is, as a ground voltage from the R L, with respect to the ground electrode and the natural ground of the other objects, It is calculated whether the α% spreads. Reduced voltage from the ground electrode alpha 1%
Is related to the ground poles, and the parallel coefficient η
There is a relationship in which the value spreads between the RL and RS poles. This graph can be plotted on the grid graph of FIG. 18 and the logarithmic graph of FIG. 19 as an enlarged partial view of Y. However, the logarithmic graphs 5 and 8 which can be shared with the graphs of claims 1, 2, and 3 are easy to read. There is an advantage that the graph of small numerical parts 1 to ≫1 of Y can be extended, and when R S / R L = 1 in the graph and R = R S = R L η = 1 + R L / R L = ≫2. It becomes 0 and can be expressed as close as possible to 2 which is the maximum value in two-pole parallel operation. The graphs of the resistance area and the voltage ripple ratio are theoretically 2 × for both 7 and 8.
It becomes 50% at r intervals. When grounding resistance R 1 and a natural ground or the like 7 of Figure 7 is known to investigate the terrain geology, R 2 a certain distance
The earth electrode is provided to measure the parallel combined resistance of the R 2 single ground resistor and R 1, R 2. There are always large and small relation to the ground resistor R 1 and R 2, the larger the ground resistance R L, the smaller the R
S , and the ratio n is calculated as n = RL / RS .
If the grounding construction scale is unknown and the grounding resistance is known, it is easy to provide an interval between the grounding poles and the natural grounding. The graph also shows the reduced ripple rate α of the ground voltage spreading from the ground pole.
The reciprocal of 1 is taken as Y, and from the X value, the mutual interval a
Can be obtained. That is, n of the mutual interval a between the ground electrodes of X is obtained from the ground voltage of Y and the reduced voltage ratio. From the above, from this graph, the distance between the ground electrodes provided with two poles, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like can be easily obtained. As shown in Table 5, the distribution regulations JEAC
7001, described in Table 1-27 set coefficient (η),
To correct the value of the experimental data of 875 poles, it will be as of the hatched 6 and to fill in the graph of FIG. 8, and the measured value that be read is that you are always lower than the theoretical value.
【表5】 接地電極R1と他の接地系をR2とし、その2極並列合
成接続の接地抵抗Rを測定し、その並列合成抵抗Rに介
在する並列係数ηから、実測と計算により、絶縁独立接
地電極の接地効果、即ち、他の接地系との効果的な離隔
間隔を確認したことを特徴とする、深埋設絶縁独立接地
電極とその波及率αの計算も可能になる。グラフは、そ
の目盛りを細分することにより高精度に読みとれ、詳細
は計算によっても求められる。本発明は請求項3の様
に、接地電極2極並列合成時、その並列係数ηの最大値
グラフ、即ち、対数グラフのXに、接地抵抗RL/RS
の抵抗区域を示す整数値、グラフのYに1〜≫1の、R
S/RLの正数を取り、そのグラフの読み方を2極並列
係数ηの1+RS/RLとし、接地極の抵抗区域を2〜
≫1、接地電圧波及率、又は、接地電圧の低減率の計算
結果を100〜≫1%のグラフに表現し、Y軸右側目盛
りを100〜≫1%の接地電圧波及率α、接地電圧低減
率α1としたことを特徴とする対数グラフ、方眼グラ
フ、片対数グラフ、X軸を2〜1迄を目盛りした部分対
数グラフと、2接地極の相互間隔、自然接地との離隔間
隔、深埋設絶縁独立接地電極の埋設深さが適切に求めら
れた接地電極となる。[Table 5] The ground electrode R 1 and the other ground-based and R 2, to measure the ground resistance R of the two-pole parallel synthesis connections, the parallel factor η interposed the parallel combined resistance R, by measurement and calculation, the insulating independently grounded electrode , That is, a deeply buried insulated independent ground electrode and its spread α can be calculated. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. According to a third aspect of the present invention, when two ground electrodes are combined in parallel, the maximum value of the parallel coefficient η, that is, the ground resistance R L / R S is added to X in the logarithmic graph.
Integer value indicating the resistance zone of R, 1 to ≫1, R
The positive value of S / RL is taken, the reading of the graph is set to 1 + RS / RL of the two-pole parallel coefficient η, and the resistance area of the ground electrode is 2 to 2.
≫1, the ground voltage spread rate or the calculation result of the reduction rate of the ground voltage is expressed in a graph of 100 to ≫1%, and the right scale of the Y axis is set to the ground voltage spread rate α of 100 to ≫1%, and the ground voltage reduction. logarithmic graph, grid graph is characterized in that the rate alpha 1, semi-log plot, the partial logarithmic graph the X-axis that the tics until 2-1, spacing between the second ground electrode, spaced distance between the natural ground, the depth A buried depth of the buried insulated independent ground electrode is a ground electrode that is appropriately determined.
【0011】第4の発明は次のようになる。図9に示す
様に、地表面GLからdの深さに、半径rの球体接地電
極R1が埋設されているとする。この場合の接地抵抗R
1は次のようになる。The fourth invention is as follows. As shown in FIG. 9, it is assumed that a spherical ground electrode R1 having a radius r is buried at a depth d from the ground surface GL. Ground resistance R in this case
1 is as follows.
【数24】R1=ρ/4πr 埋設深さdが零の場合は、地表面に半球状電極が埋設さ
れているのと同じになる。従ってその接地抵抗はR’と
なる。R1 = ρ / 4πr When the burying depth d is zero, it is the same as when a hemispherical electrode is buried on the ground surface. Therefore, the ground resistance is R '.
【数25】R’=ρ/2πr 球体接地電極R1の埋設深さ絶縁深さh2が0〜∞迄の
値をとる場合は、図10の様に地上にR2の球体接地極
があると仮定すると、接地抵抗はR2とR1の中間の値
が予測されるが重ね合わせと影像法を使うと大凡の見当
が出来る。図10の地表面からdの高さに、半径rの第
2の球体電極R2を導入すると、第2の電極が影像法に
於ける影像に当たる。両電極から、それぞれ地中に電流
Iが流れていたとする。図10に示すように、両電極の
中心から距離x、x’の地中の点をpとし、その電位を
Vpとすると、重ね合わせの原理を使うとVpは次のよ
うに表現できる。If Equation 25] R '= ρ / 2πr sphere ground electrode R 1 buried deep insulating depth h2 has a value of up to 0~∞, if there is a earth sphere earth pole of R2 as in FIG. 10 Assuming that the ground resistance is expected to be an intermediate value between R2 and R1, the approximate value can be obtained by using the superposition and the image method. When a second spherical electrode R2 having a radius r is introduced at a height d from the ground surface in FIG. 10, the second electrode hits an image in the image method. It is assumed that a current I is flowing from both electrodes into the ground. As shown in FIG. 10, assuming that a point in the ground at a distance x, x ′ from the center of both electrodes is p and its potential is Vp, Vp can be expressed as follows using the principle of superposition.
【数26】 Vp=(ρI/4π)×((1/x)+(1/x’)) p点をR1電極の表面に取ると、そこの電位Vは次のよ
うになる。Vp = (ρI / 4π) × ((1 / x) + (1 / x ′)) When a point p is taken on the surface of the R1 electrode, the potential V thereat becomes as follows.
【数27】 V=(ρI/4π)×((1/r)+(1/2d)) 但し2d≫rとすると、R1極の接地抵抗は次のように
なる。V = (ρI / 4π) × ((1 / r) + (1 / 2d)) However, if 2d≫r, the ground resistance of the R1 pole is as follows.
【数28】 R1=(ρ/4πr)×(1+(1/2d)) 上式に於いて、d→∞とすれば括弧内の第2項は消えて
R1は次のようになる。R1 = (ρ / 4πr) × (1+ (1 / 2d)) In the above equation, if d → ∞, the second term in parentheses disappears and R1 becomes as follows.
【数29】R1=(ρ/4πr) 数24〜数29の計算値を表にすると表6のようにな
る。R1 = (ρ / 4πr) Table 6 shows the calculated values of Equations 24 to 29.
【表6】 対数グラフのXに、地表と導線で接続されてないd深さ
に埋設した、半径rの球体接地電極のd/rの整数倍値
を、Y軸に1+(r/2d)又は、r/2dの正数値と
すると、グラフのは図11の様になりグラフ線8と9は
図5の二分の一のグラフになる。図11に図5のグラフ
線5を点線で示すと、線9が二分の一が確認される。地
中電極と地表電極、又は、地表自然接地との間で接地上
昇電圧が、他の接地電極に波及する、強弱電圧の波及率
を表す事が出来る。グラフの抵抗区域を表す曲線8と波
及電圧斜線9は読み方を変えると、抵抗区域と電圧波及
率αの関係は逆に読みとることが出来る。本グラフと、
本グラフから2極設置の接地極の間隔、即ち、自然接地
との間隔、絶縁独立接地電極の絶縁深さ等が容易に求め
られる。抵抗区域と電圧波及率のグラフは線8、9共
に、理論的には2×rの2r間隔で25%になる。即
ち、半球体状接地極等価半径の二分の一になる。対数グ
ラフの、y軸の1を2に表現できることは、次のような
計算によって対応が可能になる。本発明でも必要とする
のは、YのグラフがXの最大値に対し2以下の1.5で
あり、即ち、1.5とか1.2の様な数値である。以上
の様なY値は、接地電極の2極並列の集合係数η値に該
当する。対数グラフのY値を1/X取ると、集合係数η
は1+1/Xであり、Y値は1/Xの変数に1.0を加
え、Yの1の所は1+1/1=2でグラフの表現が出来
る。 又、並列係数表示の1+(1/X)の第1項
(1+)を考慮するすると、その計算は次のようにな
る。本発明で必要とするのは、YのグラフがXの整数値
に対し2以下であり、即ち、1.5とか1.2の様な整
数値であってXはd/rのn倍数値である。以上の様な
Y値は、球体状接地電極の2極並列の集合係数η値に該
当する。対数グラフのY値を1/Xの整数値に取ると、
集合係数ηは1+1/Xであり、Y値は1/Xの変数に
1.0を加え、Yの1は1+1/1=2でグラフの表現
が出来る。又、並列係数表示の1+(1/X)の第1項
(1+)を考慮した計算は、次のようになる。[Table 6] In the logarithmic graph, X is an integer multiple of d / r of a spherical ground electrode having a radius r embedded at d depth not connected to the ground surface by a conductor, and 1+ (r / 2d) or r / Assuming a positive numerical value of 2d, the graph is as shown in FIG. 11, and the graph lines 8 and 9 become a half graph of FIG. In FIG. 11, when the graph line 5 of FIG. 5 is shown by a dotted line, half of the line 9 is confirmed. The ground rise voltage between the underground electrode and the ground electrode or the natural ground on the ground can represent a ripple rate of a strong or weak voltage that spreads to another ground electrode. The relationship between the resistance area and the voltage transmission rate α can be read in reverse by changing the reading of the curve 8 and the transmission voltage oblique line 9 representing the resistance area in the graph. This graph,
From this graph, the distance between the ground electrodes provided with two poles, that is, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like can be easily obtained. The graphs of the resistance area and the voltage spread ratio are both 25% theoretically at 2 × r 2r intervals for both lines 8 and 9. That is, it is one half of the equivalent radius of the hemispherical ground pole. The fact that 1 on the y-axis of the logarithmic graph can be expressed as 2 can be dealt with by the following calculation. What is required in the present invention is that the graph of Y has a maximum value of X which is not more than 2 and 1.5, that is, a numerical value such as 1.5 or 1.2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. When the Y value of the logarithmic graph is 1 / X, the set coefficient η
Is 1 + 1 / X, the Y value is 1 / X, and 1.0 is added to the variable. The Y position can be represented by 1 + 1/1 = 2. Considering the first term (1+) of 1+ (1 / X) in the parallel coefficient expression, the calculation is as follows. The present invention requires that the graph of Y be less than or equal to 2 with respect to the integer value of X, that is, an integer value such as 1.5 or 1.2, where X is a multiple of n times d / r. It is. The Y value as described above corresponds to the two-parallel parallel set coefficient η value of the spherical ground electrode. Taking the Y value of the logarithmic graph as an integer value of 1 / X,
The set coefficient η is 1 + 1 / X, the Y value is 1.0 by adding 1 / X to the variable, and 1 of Y is 1 + 1/1 = 2, so that the graph can be expressed. The calculation taking into account the first term (1+) of 1+ (1 / X) in the parallel coefficient expression is as follows.
【数30】Y=1+1/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。このように
並列係数ηも2.0〜1.0に表現され、視覚、感覚的
にも読みとり易い表現になり、グラフの上昇線と下降線
の何れでも、使用目的値を変える事により、目的グラフ
として使用可能になる。以上の計算から、Xに対するY
のグラフが通常の方眼目盛りのような表現になる。球体
の等価半径rは次式の計算による。 Y = 1 + 1 / X30η = 1 + 1 / X = (1 + X) / X According to the above calculation, when X in the graph is 1, the corresponding Y is expressed as 2, and X is not an integer. 1.2, 1.
It corresponds to numbers such as 5, 2.3, and 2.5. As described above, the parallel coefficient η is also expressed in the range of 2.0 to 1.0, which makes it easy to read both visually and intuitively. It can be used as a graph. From the above calculation, Y for X
Graph is a representation like a normal grid scale. sphere
Is calculated by the following equation.
【数31】 球体の等価半径rは、半球体の等価半径に比し約2倍に
計算されるが、d/rのYが半球体の1/2になるの
で、半球体の抵抗区域r間隔に近く計算される。本グラ
フを使用する事により、自然接地との間隔、絶縁独立接
地電極の絶縁部11と深h1さ等、接地電圧波及率、又
は、接地電圧の低減率の計算結果を本グラフ11を利用
して適切な間隔と深さに、接地電極又は、接地工事を設
置又は施工する工事計画が出来る。図12の電極半径d
の長さh1に取った接地電極部10に、地表G.Lから
長さh2の絶縁した電線、又は、電纜(ケーブル)11
を接続した深埋設絶縁独立接地電極になる。図12に、
地下構造体のような自然接地R2があると、その離隔間
隔aもグラフから容易に読み取ることが出来る。本グラ
フは図18の方眼グラフ、図19の対数グラフでY軸の
拡大部分図にも作図出来るが、請求項1、2、3のグラ
フと共通できる本対数グラフ図11が読み易く、Y軸の
小さい数値部分1〜≫1のグラフを引き延ばせる利点が
あり、グラフのRS/RL=1の所がR=RS=RLの
場合η=1+r/2d=1.5になり2極並列時の最大
値は1.5になる。X軸、即ち、横軸には接地抵抗区域
間隔の比、2接地極相互間隔の比、2接地抵抗の比をと
ると、対応するYのグラフは図3、図5、図8と同一関
係になり、請求項1、請求項2、請求項3のグラフと共
通したグラフにする事が出来、内容の説明関係も同一に
なる。グラフは、その目盛りを細分することにより高精
度に読みとれ、詳細は計算によっても求められる。本発
明は請求項4の様に、地中電極と地表電極、又は、地中
接地電極から他の接地系や自然接地に波及する、100
〜≫1%のグラフに表現したことを特徴とする方眼、又
は、対数グラフと、強弱電圧の波及率を表したことを特
徴とする図11の本グラフと、本グラフから2極設置の
接地極の間隔、即ち、自然接地との間隔、絶縁独立接地
電極の絶縁深さ等を求めた接地電極となる。 (Equation 31) The equivalent radius r of a sphere is about twice as large as the equivalent radius of a hemisphere.
Is calculated, but Y of d / r becomes 1/2 of a hemisphere
Is calculated close to the resistance area r interval of the hemisphere. By using this graph, the calculation result of the ground voltage ripple rate or the reduction rate of the ground voltage, such as the distance from the natural ground, the insulating part 11 of the insulating independent ground electrode and the depth h1, etc. At a proper interval and depth, a construction plan for installing or constructing a ground electrode or grounding work can be made. Electrode radius d of FIG.
Is attached to the ground electrode section 10 having the length h1. An insulated wire or cable 11 of length h2 from L
Connected to a deep buried insulating independent ground electrode. In FIG.
If there is a natural ground R2 such as an underground structure, the separation a can be easily read from the graph. Although this graph can be plotted on the enlarged partial view of the Y-axis by the grid graph of FIG. 18 and the logarithmic graph of FIG. 19, the logarithmic graph diagram 11 which is common to the graphs of claims 1, 2, and 3 is easy to read, and the Y-axis There is an advantage that the graph of small numerical parts 1 to ≫1 can be extended. When R S / R L = 1 in the graph and R = R S = R L , η = 1 + r / 2d = 1.5 and 2 The maximum value in pole parallel is 1.5. When the X axis, that is, the horizontal axis shows the ratio of the interval of the grounding resistance area, the ratio of the interval between the two grounding poles, and the ratio of the two grounding resistances, the corresponding graphs of Y are the same as those in FIGS. Thus, the graph can be made common to the graphs of claims 1, 2, and 3, and the explanation relation of the contents becomes the same. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. According to the present invention, an underground electrode and a ground electrode, or an underground ground electrode spreads to another ground system or natural ground.
A graph or a logarithmic graph characterized by being expressed in a graph of ~ ≫1%, a main graph of FIG. The ground electrode is obtained by determining the distance between the poles, that is, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like.
【0012】第5の発明は次のようになる。本発明は、
請求項1,2,3,4の設定に対しその接地工事機能が
効果的かどうかの確認測定に関する。又、深埋設絶縁独
立接地電極として機能出来るか、その効果を確認する測
定方法にも関する。図13に示す様な、2接地電極の接
地抵抗R1、R2の並列合成接地抵抗Rの測定には、測
定用電流通電補助極Cと電圧検出補助極Pに測定線を接
続し、R1、R2の2極にも測定電流通電線を並列に接
続する。その際、2接地極に接続する測定用電流通電線
Aから分岐し接地極R1,R2に接続する電線B、B’
はその導体抵抗を同一とし、即ち、分岐点Cからは同一
断面積で同一長さのものを使用、又、電圧検出用電線も
電流通電線の様に接続し、実測値に誤差が入らないよう
に配慮する。又、図14の2接地電極の接地抵抗Rの測
定は、精密測定が出来る直読式接地抵抗計Eの使用も可
能で、R1、R2各単独値とR1,R2の並列合成値R
の接地抵抗計のスイッチを押して測定する。図15の測
定回路断面図の様に、深埋設絶縁独立接地電極の接地抵
抗を測定時、電流通電補助接地電極Cを、x方向の遠地
点に設け、電圧検出補助極Pを同じX方向にP1〜P
n、に、図16平面配置の様にW方向に接地極Eの低減
は求電圧を、図15は直読計器を使用した接地極Eの抵
抗区域とEから波及する波及電圧を各々測定すると、目
的の接地工事として機能しているかの確認が出来る。本
測定回路は、交流による測定を示したが、電源と計器を
変えると、直読接地抵抗計や高電圧大電流のインパルス
測定も可能である。図17の測定回路平面図の様に、深
埋設絶縁独立接地電極の接地抵抗を、電流通電補助接地
電極Cを、x、w、y、z方向の何れか遠地点に設け、
電圧検出補助極Pも、x、w、y、z方向の何れか遠地
点に固定して設け、測定すると、請求項4の機能効果の
検証確認が出来る。The fifth invention is as follows. The present invention
The present invention relates to a measurement for confirming whether or not the grounding work function is effective for the settings of claims 1, 2, 3, and 4. Also, the present invention relates to a measurement method for confirming whether or not it can function as a deeply buried insulated independent ground electrode. As shown in FIG. 13, in order to measure the parallel combined ground resistance R of the ground resistances R 1 and R 2 of the two ground electrodes, a measurement wire is connected to the current-carrying auxiliary pole C for measurement and the auxiliary pole P for voltage detection. 1, also to connect the measuring current supply line in parallel to the two poles of R 2. At this time, the electric wires B and B ′ branched from the measuring current conducting wire A connected to the two ground poles and connected to the ground poles R1 and R2.
Have the same conductor resistance, that is, use the same cross-sectional area and the same length from the branch point C. Also, the voltage detection wire is connected like a current conducting wire, and no error occurs in the measured value. To be considered. Further, the measurement of the grounding resistance R of the two grounding electrodes shown in FIG. 14 can be performed by using a direct-reading-type grounding resistance meter E capable of precise measurement.
Press the switch of the earth resistance meter of the above to measure. As shown in the cross-sectional view of the measurement circuit in FIG. 15, when measuring the ground resistance of the deeply buried insulated independent ground electrode, a current carrying auxiliary ground electrode C is provided at a distant point in the x direction, and the voltage detection auxiliary pole P is set to P1 in the same X direction. ~ P
n, the reduction of the grounding pole E in the W direction as shown in the plan view of FIG. 16 measures the voltage demand, and FIG. 15 measures the resistance area of the grounding pole E using a direct-reading instrument and the spillover voltage spilling from E. It can be checked whether it is functioning as the intended grounding work. Although this measurement circuit has shown the measurement by the alternating current, if the power supply and the instrument are changed, it is also possible to measure the impulse of the direct reading ground resistance meter and the high voltage and the large current. As shown in the measurement circuit plan view of FIG. 17, the ground resistance of the deeply buried insulated independent ground electrode, the current-carrying auxiliary ground electrode C is provided at any of the x, w, y, and z directions.
When the voltage detection auxiliary pole P is also fixed at any of the apogees in the x, w, y, and z directions and measured, the functional effect of claim 4 can be verified and confirmed.
【0013】[0013]
【発明の効果】請求項1,2,3,4の発明は、グラフ
により接地電極で発生した接地電圧が、他の接地系や、
保護対象物に波及する電圧、即ち、α%で表し、請求項
1、2、3、4のグラフ図、計算図、及び、配置図か
ら、電圧波及度を設定した接地電極と、絶縁独立接地電
極として機能出来る様に、又、測定用補助接地電極C、
Pの設置間隔や、更には、適切な絶縁深さと、設置間隔
地点に設けた事を特徴とする接地電極、深埋設接地電
極、測定用補助接地電極、及び、電極半径d1の3の長
さh1にした接地電極部1に、地表G.L3から長さh
2間を絶縁した電線、又は、電纜(ケーブル)3を接続
した効果的に機能する深埋設絶縁独立接地電極として設
置することが出来る。請求項5の発明では並列係数の測
定法と、請求項1,2,3,4項の接地極としての機能
を検証確認できる測定法となる。According to the first, second, third, and fourth aspects of the present invention, the graph shows that the ground voltage generated at the ground electrode is different from that of another ground system,
A ground electrode for which the voltage spread is set based on the voltage applied to the object to be protected, that is, α%, from the graphs, calculation diagrams, and layout diagrams of claims 1, 2, 3, and 4, and an insulating independent ground. So that it can function as an electrode, and an auxiliary ground electrode C for measurement,
The installation interval of P, and furthermore, an appropriate insulation depth and a ground electrode, a deeply buried ground electrode, an auxiliary auxiliary ground electrode for measurement, and a length of 3 of the electrode radius d1, which are provided at the installation interval point. h1 on the ground electrode section 1. Length h from L3
It can be installed as a deeply buried insulated independent ground electrode that functions effectively by connecting an insulated wire or a cable (cable) 3 between them. According to the fifth aspect of the present invention, there are provided a method for measuring the parallel coefficient and a method for verifying and confirming the function as the grounding electrode according to the first, second, third and fourth aspects.
【0014】[0014]
【図面の簡単な説明】[Brief description of the drawings]
【図1】第1の発明の説明用椀型接地電極の概念図FIG. 1 is a conceptual diagram of a bowl-shaped ground electrode for explanation of the first invention.
【図2】第1図の接地電極概念図FIG. 2 is a conceptual diagram of a ground electrode in FIG.
【図3】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 3 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistor are calculated.
【図4】第2の発明の説明用接地電極の2極配置回路図FIG. 4 is a circuit diagram showing a two-pole arrangement of ground electrodes for explanation of the second invention.
【図5】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 5 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistance are calculated.
【図6】第3の発明の説明用接地電極の2極配置図FIG. 6 is a two-pole layout diagram of a ground electrode for explanation of the third invention.
【図7】第3の発明の説明用接地電極と自然接地の2極
配置図FIG. 7 is a two-pole layout diagram of a ground electrode and a natural ground for explanation of the third invention.
【図8】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 8 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistance are calculated.
【図9】第4の発明の説明用絶縁独立接地電極の概念図FIG. 9 is a conceptual diagram of an insulated independent ground electrode for explanation of the fourth invention.
【図10】2接地電極の接地抵抗関係影像法説明の概念
図FIG. 10 is a conceptual diagram for explaining an image method relating to ground resistance of two ground electrodes.
【図11】絶縁独立接地抵抗の電圧波及間隔等を計算し
た対数グラフ図FIG. 11 is a logarithmic graph diagram in which a voltage spread interval and the like of an insulation independent grounding resistor are calculated.
【図12】2接地極並列合成接地抵と自然接地との離隔
関係図FIG. 12 is a diagram showing a separation relationship between a two-grounded-pole parallel composite grounding resistor and natural grounding.
【図13】電圧降下法による2極並列合成接地抵抗の測
定回路図FIG. 13 is a circuit diagram of a two-pole parallel combined ground resistance measurement method using the voltage drop method.
【図14】直読計器を使用する2極並列合成接地抵抗の
測定回路図FIG. 14 is a circuit diagram of a two-pole parallel combined ground resistance measurement using a direct reading instrument.
【図15】絶縁独立接地抵抗の電圧波及間隔等のを計算
結果を検証する測定回路図FIG. 15 is a measurement circuit diagram for verifying a calculation result such as a voltage spread interval of an insulation independent ground resistance.
【図16】接地極の接地電圧が波及する波及率の検証測
定回路図FIG. 16 is a circuit diagram for verifying and measuring a ripple rate at which a ground voltage of a ground electrode spreads.
【図17】直読計器を使用する接地極の抵抗区域と接地
電圧波及率の検証測定回路図FIG. 17 is a circuit diagram for verifying the resistance area of the grounding pole and the ground voltage ripple rate using a direct reading instrument.
【図18】接地抵抗区域と電圧波及率の方眼グラフ図FIG. 18 is a grid graph of a ground resistance area and a voltage ripple rate.
【図19】接地抵抗区域と電圧波及率の対数グラフYの
一部を拡大した対数グラフ図FIG. 19 is a logarithmic graph diagram in which a part of a logarithmic graph Y of a ground resistance area and a voltage ripple ratio is enlarged.
【符号の説明】 1:椀型半球体状接地電極 2:棒状接地電極 3:大地、G.L部分 4:半球状体接地の対数グラフの曲線 5:半球状体接地の対数グラフの直線 6:発変電規程の集合係数表解析値の表示線 7:建造物や基礎等の自然接地体 8:球状体接地の対数グラフの曲線 9:球状体接地の対数グラフの直線 10:球状体接地域を有する棒状体接地電極部 11:絶縁独立接地電極の絶縁導線部 A.C:交流電源 A:電流計 V:電圧計 C:測定用電流補助極 E:主接地電極.直読計器Tの接地側端子 h1:絶縁深さ h2:接地電極の長さ P:接地電圧検出補助接地電極 I:通電電流 n:整数(1〜nの様に順番号) L:棒状体接地電極の埋設深さ Pw3:w方向3番目の電圧検出補助極 Pwn:w方向n番目の電圧検出補助極 Px1:x方向1番目の電圧検出補助極 Py2:y方向2番目の電圧検出補助極 Pz2:z方向2番目の電圧検出補助極 R:接地抵抗 r:接地極の等価半径 r1:接地極の等価半径 a:2接地極並列の相互離隔間隔 X:球体状接地極からp点迄の間隔 A’:接地抵抗測定用電流通電線 B:B’と同一長さと同一抵抗値の電線 B’:Bと同一長さと同一抵抗値の電線 J:電線A’からBとB’に分岐する接続点 d:球体状接地極を埋設したと仮定した深さ w:平面上に於けるEからのw方向 x:平面上に於けるEからのx方向 y:平面上に於けるEからのy方向 z:平面上に於けるEからのz方向 ─────────────────────────────────────────────────────
[Description of References] 1: bowl-shaped hemispherical ground electrode 2: rod-shaped ground electrode 3: earth, L part 4: Curve of logarithmic graph of hemispherical grounding 5: Straight line of logarithmic graph of hemispherical grounding 6: Display line of set coefficient table analysis value of power generation substation regulations 7: Natural grounded body such as building or foundation 8 9: Line of logarithmic graph of spherical body grounding 9: Straight line of logarithmic graph of spherical body grounding 10: Bar-shaped body grounding electrode part having spherical body contact area 11: Insulated conducting wire part of insulated independent grounding electrode C: AC power supply A: Ammeter V: Voltmeter C: Current auxiliary electrode for measurement E: Main ground electrode. Ground side terminal of direct reading instrument T h1: Insulation depth h2: Ground electrode length P: Ground voltage detection auxiliary ground electrode I: Conducting current n: Integer (sequential number such as 1 to n) L: Rod-shaped ground electrode Buried depth Pw3: w-direction third voltage detection auxiliary pole Pwn: w-direction nth voltage detection auxiliary pole Px1: x-direction first voltage detection auxiliary pole Py2: y-direction second voltage detection auxiliary pole Pz2: The second voltage detection auxiliary pole in the z direction R: ground resistance r: equivalent radius of ground pole r 1 : equivalent radius of ground pole a: interval between two ground poles in parallel X: interval from spherical ground pole to point p A ': Current conducting wire for ground resistance measurement B: Wire of the same length and the same resistance as B' B ': Wire of the same length and the same resistance as B J: Connection branching from wire A' to B and B ' Point d: Depth assuming that spherical spherical ground electrode is buried w: From E on plane w direction x: x direction from E on plane y: y direction from E on plane z: z direction from E on plane ──────────── ─────────────────────────────────────────
【手続補正書】[Procedure amendment]
【提出日】平成12年4月16日(2000.4.1
6)[Submission date] April 16, 2000 (2004.1.
6)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【書類名】 明細書[Document Name] Statement
【発明の名称】接地電極の設置法とその接地電極Patent application title: Installation method of ground electrode and its ground electrode
【特許請求の範囲】[The scope of the appended billed]
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、接地極の抵抗区域
グラフや、接地極等価半径に対する電位上昇範囲グラフ
を作成し、そのグラフから地表部分や、地表からの或る
深さの土壌中にて、接地電極相互や他の接地系との相互
間で、理論的な干渉電圧の進入防止を計る間隔と深さ、
即ち、他の接地系や自然接地系との効果的な離隔間隔、
その接地電極との離隔埋設地点、その理論値を裏付ける
グラフと設定方法に関する。又、地表部分の或る深さの
土壌中に於いて、所定深度で電気的に独立する接地電極
として機能出来る絶縁深さ、他の接地系との効果的な離
隔間隔を持たせる事を特徴とした深埋設絶縁独立接地電
極を設置する接地工事方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention creates a graph of a resistance area of a ground electrode and a graph of a potential rise range with respect to a ground electrode equivalent radius. The distance and depth between the ground electrode and other grounding systems to prevent theoretical interference voltage from entering,
In other words, effective separation from other grounding systems and natural grounding systems,
The present invention relates to a buried point separated from the ground electrode, a graph supporting the theoretical value, and a setting method. In addition, in the soil at a certain depth on the ground surface, the insulation depth can function as a ground electrode that is electrically independent at a predetermined depth, and it has an effective separation distance from other grounding systems. The present invention relates to a grounding method for installing a separately buried insulated independent ground electrode.
【0002】[0002]
【従来の技術】従来、複数以上に設ける接地電極の設置
相互間隔や、設置場所、又、接地電極と自然接地、即
ち、建造物等の地下部分等との設置間隔に留意される事
無く、且つ、他の接地系から電気的に絶縁する深埋設絶
縁独立接地電極とする工事方法も考慮されてなかった。
又、以上の様な事項等に対処する適切な文献資料等も無
く、その結果、接地電極から波及する事故電圧による災
害の防止策もなかった。2. Description of the Related Art Conventionally, there is no need to pay attention to the intervals between installations of a plurality of ground electrodes, the installation location, and the installation interval between a ground electrode and natural ground, that is, an underground portion of a building or the like. and was Tsu Naka also been considered construction method for deep buried insulating independent ground electrode electrically insulated from other grounded system.
In addition, there are no appropriate literature materials to deal with the above matters, and as a result, disasters caused by accident voltage spreading from the ground electrode
Prevention of harm was also Tsu cry.
【0003】[0003]
【発明が解決しようとする課題】近年、安全上の見地か
ら、複数以上の接地電極を設ける場合、その埋設相互間
隔や埋設地点、自然接地との離隔間隔、又、埋設する深
さや絶縁深さを容易に設定できる方法を考慮する必要も
生じてきた。又、工事施工後には、詳細正確に設定結果
を検証する測定方法も必要とした。このようにして、埋
設地点や絶縁深さを詳細に設定しないで、接地電極を形
成して埋設した場合、他の接地系に与える影響等を、工
事終了後に詳細に再測定する必要もあった。SUMMARY OF THE INVENTION In recent years, is it a safety aspect?
Et al., The case of providing a plurality or more of the ground electrode, the buried mutual <br/> intervals and buried locations, spaced distance between the natural ground, and can be easily set the depth <br/> of and insulating depth for burying also need to consider how
Has arisen . In addition, after the construction work, a measurement method that verifies the setting result in detail is required. In this way, when the grounding electrode is formed and buried without setting the burying point and insulation depth in detail, it is necessary to re-measure the effects on other grounding systems in detail after the completion of the construction. .
【0004】[0004]
【課題を解決するための手段】そこで、上記課題を解決
するため、本発明は、接地工事の理論式をグラフ化し
て、そのグラフ図を対数グラフに作成し、又、工事完了
後の検証測定方法も実用化し、グラフ化とその設定方法
も確立し、その設定方法と計算方法から導かれた新規な
接地工事とした。Therefore, in order to solve the above-mentioned problems, the present invention provides a graph of a theoretical formula for grounding work , creates a graph of the theoretical formula on a logarithmic graph, and performs verification measurement after the completion of the work. Practical method, graphing and setting method
Also established was a novel <br/> grounding work derived from the calculation method and setting method.
【0005】[0005]
【発明の実施の形態】本発明の対数グラフは、抵抗区域
と電圧波及率のグラフは、線4、線5、線8、線9共に
理論的には2×r間隔で50%になり、X値が請求項1
〜4迄は共通して、接地極の等価半径rに対する設置間
隔aの大小関係a/r=n、接地抵抗の大小関係のRL
対RSのRL/RS=n倍、又、接地電極の相互関係倍
数のn、YにはそのXに対応する1/X値を各々共通し
て取ったものであり、接地電極で発生した接地電圧を、
他の接地系や保護対象物に波及する電圧、即ち、α%や
α1%で表すことが出来、相互間隔と深埋設絶縁独立接
地電極として設けることも出来、その設定が容易に出来
る様にしたものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The logarithmic graph of the present invention shows that the graphs of the resistance area and the voltage ripple rate are theoretically 50% at the intervals of 2.times.r for each of the lines 4, 5, 8, and 9. Claim 1 wherein the X value is
In common, up to 4, the relationship a / r = n of the installation interval a with respect to the equivalent radius r of the ground electrode, and RL of the size relationship of the ground resistance
R L / RS = n times the pair RS, also, n interrelation multiple of the ground electrode, the Y common respectively 1 / X value corresponding to the X
The ground voltage generated at the ground electrode is
Voltage spread to other ground-based and protected objects, i.e., can be represented by alpha% and alpha 1%, can also be provided as a mutual distance and depth buried insulating independently ground electrode, the setting can easily be <br />.
【0006】[0006]
【特許請求の範囲】 請求項1,2,3,4,5の5項。[Claim 5] Claim 5, Claim 2, Claim 3, Claim 4, and Claim 5.
【0007】[0007]
【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0008】第1の発明は次のようになる。図1の半径
rの半球体(椀形状)接地電極1の中心から、G.L3
の地中のr1迄に含まれる接地抵抗をR1、大地抵抗率
をρとすると、接地抵抗R1は次のように計算される。The first invention is as follows. G. From the center of the hemispherical (bowl-shaped) ground electrode 1 of radius r in FIG. L3
R 1 grounding resistors included until r 1 of underground, when the earth resistivity and [rho, grounding resistance R 1 is calculated as follows.
【数1】 R1=(ρ/2π)((1/r)−(1/r1)) 又、半径rの半球体状接地電極の接地抵抗Rは、R 1 = ( ρ / 2π ) ((1 / r) − (1 / r 1 )) Further, the ground resistance R of the hemispherical ground electrode having the radius r is
【数2】R=ρ/(2πr) Rの接地抵抗より小さいR1の等価半径をr、Rの等価
半径をr1とし、その比をαとすると、αは接地電極の
抵抗区域を示し、又、α端は接地電極の電圧が波及する
電圧の割合を示しその計算は次のようになる。R = ρ / (2πr) If the equivalent radius of R 1 smaller than the ground resistance of R is r, the equivalent radius of R is r 1 and the ratio is α, α indicates the resistance area of the ground electrode. The α end indicates the ratio of the voltage to which the voltage of the ground electrode spreads, and the calculation is as follows.
【数3】α=(R1/R)×100%=(1−r1/
r)×100% ここで、αは接地抵抗区域を表し、大地抵抗率ρは無関
係になる。r1とrの間隔比は、r1/rをnとすると
接地抵抗区域倍数n×rとなり、接地極の抵抗区域端r
1と接地極の等価半径のr比で決まる。接地抵抗区域端
と、接地極から波及する電圧端、即ち、その端に波及す
る電圧値Vは%で表現される。接地極からn・r間隔、
即ち、r1間隔地点に波及する電圧は、αとして次のよ
うにも計算される。Α = (R 1 / R) × 100% = ( 1 −r 1 /
r) × 100% where α represents the ground resistance area and the ground resistivity ρ becomes irrelevant. The interval ratio between r 1 and r is a ground resistance area multiple n × r where r 1 / r is n, and the resistance area end r of the ground electrode
It is determined by 1 and the r ratio of the equivalent radius of the ground pole. The voltage end spreading from the ground resistance area end and the ground electrode, that is, the voltage value V spreading to the end, is expressed in%. N · r spacing from the ground pole,
That is, the voltage spread to r 1 interval points may also be calculated as follows as alpha.
【数4】α=(r1/r)×100%一般的な棒状接地電極の接地抵抗Rは次式で求められ
る。 Α = (r 1 / r) × 100% The ground resistance R of a general rod-shaped ground electrode is obtained by the following equation.
You.
【数5】R=(ρ/(2πL))×(Ln(4L/d)−1) 接地電極の抵抗区域である等価半径rと、ある間隔r1
の関係は、他の各種形状の接地電極でも同一に適用でき
る。図2の深埋設接地電極の場合、数2と数5が同一と
して両式から、その等価半球体半径rは次式で求められ
る。Equation 5] R = (ρ / (2πL) ) × (Ln (4L / d) -1) equivalent radius r is a resistive zone of the ground electrode, an interval r 1
The same relationship can be applied to ground electrodes of other various shapes. In the case of the deeply buried ground electrode of FIG. 2, Equations 2 and 5 are the same.
Then, from both equations, the equivalent hemisphere radius r is obtained by the following equation.
【数6】r=L/(Ln((4L/d)−1)) Lは接地電極の埋設長さ(深さ)、dは接地電極断面の
等価半径とする。接地電極の等価半径rに対し、接地極
の接地抵抗区域間隔r1迄の或る倍数nは、次のように
計算する。 [6] r = L / (Ln (( 4L / d) -1)) L is the ground electrode buried length (depth), d is the equivalent radius of the ground electrode section. To the equivalent radius r of the ground electrode, one multiples n of up to ground resistance zone spacing r 1 of the ground electrode is calculated as follows.
【数7】n=r1/r r1はrのn倍数で表現される。α1%は、接地電極r
からの電圧の低減率となる。[Equation 7] n = r 1 / r r 1 is represented by n multiples of r. α 1 % is equal to the ground electrode r
From the voltage.
【数8】α1=(1−α)×100% 数4〜数8の計算値を表にすると表1のようになる。The calculated value of the number 8 α 1 = (1-α) × 100% 4 to C 8 is shown in Table 1 when the table.
【表1】 α1%は、接地電極rからの電圧の低減率となるが、読
み方を変えると、低減波及率として、同時に表現する事
にもなる。数4〜数8の計算結果の表1から、rに対す
る、r1即ちnr、α、α1、を記入し、対数グラフ化
したのが図3である。図3の対数グラフのX右整側に、
接地電極の等価半径rの整数倍値nrを、X左側接地電
極の等価半径のr、Yに1/n即ち、α=r/r1×1
00%で実用範囲の数をとり、0.01〜100%迄の
接地電極の抵抗区域と電圧値とし、そのプロットした線
は右上がり曲線4で示され、又、rの電圧がn×r地点
で低減する電圧値のα1%値線を記入すると、その電圧
関係のグラフは右下がりの斜線5になる。対数グラフの
X、Yの交点が抵抗区域グラフαの4、と5の線は、各
々読み方を変えると、接地電極の上昇電圧がr1間隔に
迄波及する波及率と、逓減する低減率を同時に表してい
る。又、電圧が波及する波及率の低減線5は4の曲線と
も対応し、Y右側数値2と交差するグラフα1は、電圧
vの低減率も同時に表している。グラフ線4と5は、大
きい数目盛り値と小さい数目盛り値の細部を表現出来る
ことになる。α1%の線5は、接地電極rからの電圧の
低減率となるが、読み方を変えると波及率として、同時
に表現する事にもなる。接地極を2極並列合成すると、
その接地抵抗R2とR1は、夫々が接地極毎の等価半径
を有する。接地極の接地抵抗区域は、等価半径のn倍で
あることから、2極の接地抵抗区域r倍の比率nは、次
のようにも計算される。[Table 1] α 1 % is a reduction rate of the voltage from the ground electrode r, but if the reading method is changed , it can be expressed simultaneously as a reduction ripple rate. Table 1 Calculation result of 4 to C 8, for r, r 1 i.e. nr, alpha, alpha 1, fill in, the was logarithmic graph is FIG. On the X-right side of the logarithmic graph of FIG.
The integer multiple nr of the equivalent radius r of the ground electrode is 1 / n to the equivalent radius r and Y of the X left ground electrode, that is, α = r / r 1 × 1
Taking the number of the practical range at 00% , the resistance area and the voltage value of the ground electrode from 0.01% to 100% are taken, and the plotted line is shown by a rising curve 4 and the voltage of r is n × When the α 1 % value line of the voltage value to be reduced at the point r is plotted, the graph of the voltage relationship becomes a slanting line 5 falling to the right. X logarithmic graph, 4 intersections of Y is resistive zone graph alpha, and 5 lines, the respective changing reading a ripple rate increases the voltage of the ground electrode is spread up to r 1 interval, reduction rate to decrease 逓 At the same time. Also, reduced line 5 spillover rate whose voltage ripple corresponds with the fourth curve, graph alpha 1 which intersects the Y right number 2 represents simultaneously reduce rate of voltage v. Graph lines 4 and 5 are large
It can express the details of critical and small scale values
Will be. The line 5 of α 1 % indicates the rate of reduction of the voltage from the ground electrode r. However, if the way of reading is changed, it can be expressed simultaneously as the ripple rate. When the ground poles are combined in two poles in parallel,
Its ground resistor R 2 and R 1 are the respective you have a equivalent radius of each earth electrode. Since the ground resistance area of the ground pole is n times the equivalent radius, the ratio n of r times the ground resistance area of the two poles is also calculated as follows.
【数9】R2/R1=n 即ち、R2:R1が2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。以上の計算から、電圧波及範囲αでも表す事が出来
る。Equation 9] R 2 / R 1 = n ie, R 2: R 1 is 2: 1 is 2,3: 1, 3,
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. From the above calculation, it can also be represented by the voltage spread range α.
【数10】α=(R/(R1×R2/(R1+R2))
−1)×100% α=(α1−1.0)×100% 接地極R1の接地電圧がR1接地極から、どれ位の接地
電圧が他の対象物に何パーセント波及するか、グラフか
ら容易に読みとれ、詳細はの計算からも出来る様にな
る。即ち、接地電極から、他の接地電極へ波及する電圧
の強弱を、%値で求めることが出来る。図3のグラフ
は、Xに接地極の等価半球体半径rの整数n倍のn・r
をとると、Yに接地抵抗区域と波及電圧両値を表すα
%、接地極からの電圧低減波及率α1%もを示す。以上
の設定で設ける接地電極は、電圧波及率αの計算方法と
その図示方法からである。グラフ線4と5は読み方を変
え、抵抗区域と電圧波及率αの関係を逆に読みとると、
即ち、α1−1とすることが出来、その抵抗区域と電圧
波及率のグラフは4、5共に、理論的には2×r間隔で
50%になる。対数グラフはXに、等価半径倍RL/R
S=nの整数、Yは1/nの正数で上限は1とし、即
ち、100%とする。このようなグラフとすると、接地
極rの接地電圧がr接地極からどれ位の接地電圧が他の
対象物に波及するかの計算が可能になる。グラフは、そ
の目盛りを細分することにより高精度に読みとれ、詳細
は計算によっても求められる。本グラフ図3は、図18
の方眼グラフ、図19の対数グラフでYの拡大部分図に
も作図出来るが、図3の本対数グラフが読み易く、Yの
小さい数値部分を1〜≫1の様にグラフを引き延ばせる
利点がある。本発明は、請求項1の様に接地極の抵抗区
域、接地電圧波及率、又は、接地電圧の低減率の計算結
果を100〜≫1%のグラフに表現したことを特徴とす
る方眼、又は、部分拡大した対数グラフ様にもなるが、
本対数グラフを利用すると適切な間隔と深さの深層地層
地に、接地電極や接地工事を容易に設置、又は、施工す
る事が出来る工事工法となる。Equation 10] α = (R / (R 1 × R 2 / (R 1 + R 2))
-1) × from 100% α = (α 1 -1.0 ) ground voltage × 100% ground electrode R 1 is R 1 earthing, how much of either ground voltage percentage spread to other objects, Graph
It is easy to read and details can be calculated from the calculation. That is, from the ground electrode, the intensity of the voltage spread to other ground electrode, can be determined as a percentage. In the graph of FIG. 3, X represents n · r, which is an integer n times the equivalent hemispherical radius r of the ground pole.
, Y represents α representing both the ground resistance area and the ripple voltage
%, And the voltage reduction spread rate α 1 % from the ground electrode is also shown. The ground electrode provided in the above setting is based on the calculation method of the voltage ripple ratio α and the illustrated method. Graph lines 4 and 5 change the reading, and when the relationship between the resistance area and the voltage ripple rate α is read in reverse,
That is, α 1 −1 can be obtained, and the graphs of the resistance area and the voltage ripple rate of both 4 and 5 theoretically become 50% at 2 × r intervals. In the logarithmic graph, X is the equivalent radius times R L / R
S = integer of n, Y is a positive number of 1 / n, and the upper limit is 1, that is, 100%. With such a graph, it is possible to calculate how much the ground voltage of the ground electrode r spreads from the r ground electrode to other objects. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. This graph, FIG.
19 can be plotted on an enlarged partial view of Y in the logarithmic graph of FIG. 19, but the logarithmic graph of FIG. 3 is easy to read, and the advantage is that the small numerical part of Y can be extended as 1 to ≫1. is there. The present invention provides a grid characterized by expressing the calculation result of the resistance area of the ground electrode, the ground voltage spread rate, or the reduction rate of the ground voltage as a claim 1 in a graph of 100 to ≫1%, or , but ing also in part enlarged logarithmic graph-like,
In deep geological location of this logarithmic graph use Then appropriate intervals and depth, easily installed a ground electrode and the grounding, or, a construction method that can be used to construction.
【0009】第2の発明は次のようになる。接地極
R1,R2を図4の様に、半球状の等価半径rの接地極
を2極その設置間隔をaにし、大地比抵抗ρの場所に設
けたとする。この2接地極に流れる電流をIとすると、
各々の接地電極に、I/2の電流が流れる。地中の任意
の点に点Pを設定し、2電極からの間隔をX、X’にと
り、そのP点の電位をVpとすると、請求項4の内容と
同じく重ね合わせの原理から、Vpは次のように計算さ
れる。The second invention is as follows. As shown in FIG. 4, it is assumed that two ground poles R 1 and R 2 are provided at a location of ground specific resistance ρ, with two hemispherical ground poles having an equivalent radius r having an installation interval of a. Assuming that the current flowing through the two ground electrodes is I,
A current of I / 2 flows through each ground electrode. Assuming that a point P is set at an arbitrary point in the ground, the distances from the two electrodes are X and X ', and the potential at the point P is Vp, Vp becomes It is calculated as follows:
【数11】Vp=(ρ(I/2))/2πX+(ρ(I
/2))/2πX’ 今P点を一方の半球状電極の表面に設定すると接地電極
系の電位Vが決まる。数11の計算式から、このR1,
R2を並列合成した接地抵抗Rが次のように計算され
る。 [1 1] Vp = (ρ (I / 2 )) / 2πX + (ρ (I
/ 2)) / 2πX 'If the point P is set on the surface of one hemispherical electrode, the potential V of the ground electrode system is determined. From 1 1 of formula, the R 1,
Ground resistance R in parallel synthesize R 2 is calculated as follows.
【数12】R=(ρ/4πr)×(1+r/a) 但し、a≫r 数12の第2項が集合係数ηを表し、又、集合係数ηは
接地極相互間隔aのa/r=nによって変化する。 [1 2] R = (ρ / 4πr) × (1 + r / a) where represents the second term set coefficients a»r 1 2 eta, also the eta set coefficient
It changes depending on a / r = n of the interval a between the ground poles .
【数13】η=1+r/a r/aは、表2からαであり、次のように計算するとグ
ラフ表示は図5の様になる。[Number 1 3] η = 1 + r / a r / a is from Table 2 alpha, graph display is calculated as follows is as shown in FIG.
【数14】Y=1+r/a−1 α=Y−1=1+r/a−1=r/a Xがnの場合、Yがa/n、即ち、αで表されるので、
対数グラフは次のように作成できる。Xをnとし、nに
対応するYが1+r/aにするには、次の様に計算す
る。但し、2極並列の集合係数の上限が2であるので、
yの上限を2に設定する。Equation 1 4 When Y = 1 + r / a- 1 α = Y-1 = 1 + r / a-1 = r / a X is n, Y is a / n, i.e., since represented by alpha,
A logarithmic graph can be created as follows. In the case where X is n and Y corresponding to n is 1 + r / a, the calculation is performed as follows. However, since the upper limit of the set coefficient of two-pole parallel is 2,
Set the upper limit of y to 2.
【数15】Y=1+1/X=(1+X)/X Xが1の場合は Y=1+1/1=2 このようにX、Yのグラフを作図すると、Yは1/Xに
1をプラスした図5の様な表示になる。具体的に説明す
ると図3のYグラフ0.9+1は1.9,1+1は2の
様にすることが出来、通常の対数グラフのy=1に相当
する部分が、方眼目盛りの様に2≫1の数値に表現する
事ができる。接地抵抗R2とR1は、各々が接地極毎の
等価半径を有している。接地極の接地抵抗区域は、等価
半径のn倍であることから、2極の接地抵抗区域r倍の
比率nは、次のようにも計算される。If Equation 1 5] Y = 1 + 1 / X = (1 + X) / X X is 1 when plotting the graph of Y = 1 + 1/1 = 2 Thus X, Y, Y 1 to 1 / X Plus The display is as shown in FIG. More specifically, the Y graph 0.9 + 1 of FIG. 3 can be set to 1.9, and 1 + 1 can be set to 2, and the portion corresponding to y = 1 in the normal logarithmic graph is set to 2 様 like a grid scale. It can be expressed as a value of 1. Grounding resistor R 2 and R 1 are, each having an equivalent radius of each earth electrode. Since the ground resistance area of the ground pole is n times the equivalent radius, the ratio n of r times the ground resistance area of the two poles is also calculated as follows.
【数16】R2/R1=n 即ち、R2:R1が2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。以下、図に沿って本発明の実施形態を説明すると、
図5は、本発明の実施形態を示す対数グラフ図であり、
対数グラフのXは接地電極のa間隔に対し、接地極の等
価半径rの倍数値とする。数13〜数16の計算値を表
にすると表2のようになる。Equation 1 6 R 2 / R 1 = n ie, R 2: R 1 is 2: 1 is 2,3: 1, 3,
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a logarithmic graph showing an embodiment of the present invention;
X in the logarithmic graph is a multiple of the equivalent radius r of the ground electrode with respect to the interval a of the ground electrode. The calculated value of 1 3 to several 1 6 is shown in Table 2 when the table.
【表2】 以上の設定で設けた接地電極は、電圧波及率αの計算方
法で設置したものである。グラフ7と6は読み方を変え
ると、抵抗区域と電圧波及率αの関係を逆に読みとるこ
とが出来る。本グラフは、図18の方眼グラフ、図19
の対数グラフでYの拡大部分図の様にも出来るが、請求
項1、2、3のグラフと共通できる本対数グラフ図5が
読み易く、グラフYの小さい数値部分1〜≫1のグラフ
を引き延ばせる利点がある。対数グラフの、Xに対する
yの1を2に表現するは、次のような計算によって対応
が可能になる。本発明で必要とするのは、Yのグラフが
Xの整数値に対し2以下であり、即ち、1.5とか1.
2の様な整数値である。以上の様なY値は、接地電極の
2極並列の集合係数η値に該当する。対数グラフのY値
を1/Xの整数値に取ると、集合係数ηは1+1/Xで
あり、Y値は1/Xの変数に1.0を加え、Yの1は1
+1/1=2でグラフの表現が出来る。又、並列係数表
示の1+(1/X)の第1項1+を考慮する計算は、次
のようになる。[Table 2] The ground electrode provided in the above setting is provided by the method of calculating the voltage ripple ratio α. By changing the reading of the graphs 7 and 6, the relationship between the resistance area and the voltage ripple ratio α can be read in reverse. This graph is a square graph of FIG.
This logarithmic graph can be made like an enlarged partial diagram of Y, but the logarithmic graph FIG. 5 which can be shared with the graphs of claims 1, 2 and 3 is easy to read, and the graphs of small numerical values 1 to ≫1 of graph Y are It has the advantage of being prolonged. In the logarithmic graph, expressing 1 of y with respect to X to 2 can be handled by the following calculation. The present invention requires that the graph of Y be less than or equal to 2 for an integer value of X, ie, 1.5 or 1.
It is an integer value such as 2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. Taking the Y value of the logarithmic graph as an integer value of 1 / X, the set coefficient η is 1 + 1 / X, and the Y value is obtained by adding 1.0 to the variable of 1 / X, and 1 of Y is 1
A graph can be expressed by + 1/1 = 2. The calculation considering the first term 1+ of 1+ (1 / X) in the parallel coefficient expression is as follows.
【数17】Y=1+1/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。本対数グラ
フ表示は、例えばYが0.99999のすぐ上が1のグ
ラフを使用時、本値に1を+し更に0.00001を加
え、Yの1を2にすると、通常の方眼目盛りと同様な表
現に使える利点がある。このように並列係数ηも2.0
〜1.0に表現され、視覚、感覚的にも読みとり易い表
現になり、グラフの曲線と斜線の何れでも、使用目的値
を変えるか併記する事により、目的グラフとして使用可
能になる。数17の計算式Y=の第1項から1を引くこ
とにより、請求項1のグラフになり、通常表示の対数グ
ラフに戻すことも自由である。グラフは、その目盛りを
細分することにより高精度に読みとれ、詳細は計算によ
っても求められる。表3の様に、配電規程JEAC70
01の、1−27表集合係数(η)に記載された、87
5極の実験データとしての数値を解析し、図5のグラフ
に記入すると、斜点線の様に、実測値は理論値の最大値
をを必ず下回っている事が読みとれる。The Equation 1 7] Y = 1 + 1 / X ∴ η = 1 + 1 / X = (1 + X) / X above calculation, when X in the graph is 1, the corresponding Y is expressed in 2, and, X is an integer Other than 1.2, 1.
It corresponds to numbers such as 5, 2.3, and 2.5. For example, when a graph in which Y is 0.999999 immediately above 1 is used, a value of 1 is added to this value, 0.00001 is further added, and 1 of Y is set to 2. There is an advantage that can be used for similar expressions. Thus, the parallel coefficient η is also 2.0
It is expressed in the range of ~ 1.0, which makes it easy to read both visually and intuitively, and it becomes possible to use either the curve or the diagonal line of the graph as a target graph by changing the use target value or writing it together. By subtracting 1 from the first term of the calculation formula Y = in Expression 17 , the graph of claim 1 can be obtained, and the graph can be returned to the logarithmic graph of the normal display. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. As shown in Table 3, the distribution regulations JEAC70
87 described in Table 1-27 set coefficient (η) of 01
Analyzing the numerical values as 5-pole of the experimental data, the fill in the graph of FIG. 5, like the oblique dashed lines, and the measured value it is that be read that always below the maximum value of the theoretical value.
【表3】 2接地極相互の接地抵抗の大小関係から、本対数グラフ
を使用して2極設置の接地極の間隔、自然接地との離隔
間隔、絶縁独立接地電極の絶縁深さ等を求める方法とす
ることが出来る。グラフは又、接地極から波及する接地
電圧の低減波及率α1の逆数をYにとり、そのX値から
接地極の相互間隔aのnを求めることもできる。即ち、
Yの接地電圧と低減電圧比から、Xの接地極の相互間隔
aのnが求められ、更にR2からのaのnも求められ
る。以上の事から、対数グラフのYが通常の方眼目盛り
のような表現になる。本発明は請求項2の様に、グラフ
の曲線4と斜線5の何れでも、又、その内の何れか1本
を使用目的値を変える事により、接地極の抵抗区域α、
又は、2極並列時の並列係数2〜≫1、接地電圧波及
率、又は、接地電圧の低減率の計算結果を100〜≫1
%のグラフに表現したことを特徴とする対数グラフと
し、本対数グラフを応用して適切な間隔に、接地工事を
設置、又は、施工する工事工法となる。[Table 3] This logarithmic graph is based on the magnitude of the ground resistance between the two ground poles.
Can be used to determine the distance between the ground electrodes provided in two poles, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like. The graph also the inverse of the reduction spread rate alpha 1 in the ground voltage ripple from the ground electrode taken Y, may be determined n mutual distance a of the ground electrode from the X value. That is,
From the ground voltage of Y and the reduced voltage ratio, n of the mutual interval a between the ground electrodes of X is obtained, and further, n of a from R2 is obtained. From the above, Y of the logarithmic graph is represented as a normal grid scale. According to the present invention, the resistance area α of the ground electrode can be changed by changing either the curve 4 or the oblique line 5 of the graph or any one of the curves to the intended use value.
Alternatively, the calculation result of the parallel coefficient 2 to 並列 1, the ground voltage spread rate, or the reduction rate of the ground voltage in two-pole parallel operation is 100 to ≫1.
A logarithmic graph characterized by being expressed in a graph of%
Then, by applying this logarithmic graph, it is a construction method of installing or constructing the grounding work at an appropriate interval.
【0010】第3の発明は次のようになる。図6の様に
接地電極を2極設置すると、その2極の接地抵抗には必
ず大小関係があり、その接地極をR1,R2とし、その
内小さい接地抵抗をRS大きい方をRLとする。又、図
7のように既設のメッシュ接地や、建造物等の基礎体7
の様な自然接地系がある場合は、RSかRL何れかに設
定する。その接地電極の低接地抵抗値RSと高接地抵抗
値RLを並列合成接続すると、その実測接地抵抗Rは、
並列合成計算した接地抵抗RC値より必ず大きくなる。
その実測値Rと並列計算値RCとの比に、2極並列の並
列係数ηが介在する。2極並列の並列係数ηの計算は次
のようになる。The third invention is as follows. When two ground electrodes are provided as shown in FIG. 6, the ground resistance of the two poles always has a magnitude relationship. The ground poles are denoted by R 1 and R 2, and the smaller ground resistance is represented by R S which is larger than R S. L. In addition, as shown in FIG.
If there is a natural ground system such as is set to either R S or R L. When the low ground resistance value R S and the high ground resistance value RL of the ground electrode are combined in parallel, the measured ground resistance R becomes
It is always larger than the ground resistance RC value calculated in parallel synthesis.
The parallel coefficient η of two-pole parallel is interposed in the ratio between the measured value R and the parallel calculated value RC . The calculation of the parallel coefficient η of the two-pole parallel is as follows.
【数18】 η=R/(1/(1/RS+1/RL)) =R/(RS×RL/(RS+RL))=R/RC 但し、RC=(RS×RL/(RS+RL)) 接地極2極の並列係数ηの上限値は2.0であり、その
設置間隔aが大きくなるに従いη値は小さくなり、2.
0≫1.0の関係にある。又、或る間隔aに設置された
2接地極の接地抵抗が、RS、RLの場合は、RS<R
Lであって、RS=Rとすると、並列係数ηは次のよう
に計算される。Η = R / (1 / (1 / RS + 1 / RL )) = R / ( RS × RL / ( RS + RL )) = R / RC where RC = ( R S × R L / (R S + R L )) The upper limit of the parallel coefficient η of the two ground poles is 2.0, and the η value becomes smaller as the installation interval a becomes larger.
There is a relation of 0≫1.0. Further, when the ground resistances of the two ground poles installed at a certain interval a are R S and R L , R S <R
If L and R S = R, the parallel coefficient η is calculated as follows.
【数19】 η=RS/(RS×RL/(RS+RL)) =RS(RS+RL)/RS×RL=(RS+RL)/RL =1+RS/RL 更に、接地抵抗RSとRLを微小間隔に設け、並列合成
するとその並列合成抵抗Rは、RSに近くなるのでRL
=RSとすると、並列係数ηは次のように2極並列の最
大値2に計算される。Equation 1 9] η = R S / (R S × R L / (R S + R L)) = R S (R S + R L) / R S × R L = (R S + R L) / R L = 1 + RS / RL Further, if grounding resistors R S and R L are provided at a small interval and the parallel combination is made, the parallel combination resistance R becomes close to R S , so that R L
Assuming that = R S , the parallel coefficient η is calculated to the maximum value 2 of two-pole parallel as follows.
【数20】 η=1+RS/RL=1+RS/RS=2.0 接地抵抗RSとRLは、各々が接地極毎の等価半径を有
している。接地極の接地抵抗区域は、等価半径のn倍で
あることから、2極の接地抵抗区域r倍の比率nは、次
のように計算される。Equation 20] η = 1 + R S / R L = 1 + R S / R S = 2.0 grounding resistance R S and R L are, each having an equivalent radius of each earth electrode. Since the ground resistance area of the ground electrode is n times the equivalent radius, the ratio n of the ground resistance area of the two poles is calculated as follows.
【数21】RL/RS=n 即ち、RL:RSが2:1の場合は2、3:1では3、
5:1で5、10:1で10、100:1で100にな
る。本グラフは図18の方眼グラフ、図19の対数グラ
フでYの拡大部分図にも作図出来るが、請求項1、2、
3のグラフと共通できる本対数グラフ図8や図5等が読
み易く、グラフYの小さい数値部分1〜≫1のグラフを
引き延ばせる利点があり、グラフのRS/RL=1の点
がR=RS=RLの場合η=1+RL/RL=≫2.0
になり、2極並列時の最大値の2に表現できることであ
る。対数グラフの、Xに対するyの1を2に表現する
は、次のような計算によって対応が可能になる。本発明
で必要とするのは、YのグラフがXの数値に対し2以下
であり、即ち、1.5とか1.2の様な数値である。以
上の様なY値は、接地電極の2極並列の集合係数η値に
該当する。対数グラフのY値を1/Xの整数値に取る
と、集合係数ηは1+1/Xであり、Y値は1/Xの変
数に1.0を加え、Yの1は1+1/1=2でグラフの
表現が出来る。又、並列係数表示の1+(1/X)の第
1項(1+)を考慮すると、その計算は次のようにな
る。Equation 2 1 R L / R S = n ie, R L: R S 2: 1 case of 2,3: 1, 3,
The ratio is 5 for 5: 1, 10 for 10: 1, and 100 for 100: 1. This graph can be plotted as an enlarged partial view of Y in the grid graph of FIG. 18 and the logarithmic graph of FIG.
8 and FIG. 5 which are common to the graph of FIG. 3 are easy to read, and have the advantage that the graphs of small numerical parts 1 to ≫1 of the graph Y can be extended, and the point of R S / R L = 1 of the graph < When R = RS = RL , η = 1 + RL / RL = ≫2.0
, And can be expressed as 2 which is the maximum value in two-pole parallel operation. In the logarithmic graph, expressing 1 of y with respect to X to 2 can be handled by the following calculation. What is needed in the present invention is that the graph of Y is less than or equal to 2 for the value of X, that is, a value such as 1.5 or 1.2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. Taking the Y value of the logarithmic graph as an integer value of 1 / X, the set coefficient η is 1 + 1 / X, the Y value is 1.0 added to the variable of 1 / X, and 1 of Y is 1 + 1/1 = 2. Can be used to represent graphs. Considering the first term (1+) of 1+ (1 / X) in the parallel coefficient expression, the calculation is as follows.
【数22】Y=1+1/X=(1+X)/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。このように
並列係数ηも2.0〜1.0に表現され、視覚、感覚的
にも読みとり易い表現になり、グラフの上昇線と下降線
の何れでも、使用目的値を変えて読みとる事により、使
用目的グラフとして使用可能になる。2接地極相互の接
地抵抗の大小関係から、本対数グラフを使用して2極設
置の接地極の間隔、自然接地との離隔間隔、絶縁独立接
地電極の絶縁深さ等を求める方法とすることが出来る。
以上の計算から、Yグラフが通常の方眼目盛りの様な表
現になる。数17〜数21計算値を表にすると表4のよ
うになる。The Equation 2 2 Y = 1 + 1 / X = (1 + X) / X ∴ η = 1 + 1 / X = (1 + X) / X above calculation, when X in the graph is 1, the corresponding Y is represented in 2 X is other than an integer.
It corresponds to numbers such as 5, 2.3, and 2.5. This parallel factor η also expressed in 2.0 to 1.0 as visual, will be read easily expressed in sensory, either rising line and a falling line in the graph, Ru preparative read by changing the purpose of use value the thing, use
It can be used as a purpose graph. From the magnitude relationship of the grounding resistance between the two grounding poles, use this logarithmic graph to determine the distance between the grounding poles installed in two poles, the separation distance from natural grounding, the insulation depth of the isolated independent grounding electrode, etc. Can be done.
From the above calculations, the Y graph is represented as a normal grid scale. Table 4 shows the calculated values of Equations 17 to 21 as a table.
【表4】 以上の計算から、ηを1.0にする工事は難しいが1.
0に近付ける事は出来る。即ち、2接地極間隔aを大き
くするか、図9深埋設独立接地電極の絶縁深さh2を大
きくすることである。並列係数ηから、接地電極の接地
電圧が、他の接地系に波及する、波及率α%は計算によ
り求められる。接地電極2極を並列接続した接地抵抗の
場合、その並列係数ηが、常に2〜≫1であり、次の様
に計算する。図14の様に、等価半球体半径rの整数n
倍のn・rの位置に半球体接地電極R1とR2の間隔を
aの様に設けた場合、その実測接地抵抗RはRL×RS
/(RL+RS)より大きくなる。その大きくなる分が
集合係数ηとなり、次のように計算される。[Table 4] From the above calculations, it is difficult to set η to 1.0, but 1.
It can be close to zero. That is, 2 or grounded electrode to increase the interval a, the insulating depth h2 of FIG deep buried independent ground electrode large
Is that it can Kusuru. The parallel factor eta, a ground voltage of the ground electrode, spread to other ground-based, spread rate alpha% is Ru determined by calculation. In the case of a ground resistance in which two ground electrodes are connected in parallel, the parallel coefficient η is always 2 to ≫1, and is calculated as follows. As shown in FIG. 14, an integer n of the equivalent hemisphere radius r
When the distance between the hemispherical ground electrodes R1 and R2 is provided at the position of n × r times as shown by a, the measured ground resistance R is R L × R S
/ ( RL + RS ). The increase is the set coefficient η, which is calculated as follows.
【数23】η=R/(RL×RS/(RL+RS))αとα1は次のように計算される。 [Number 2 3] η = R / (R L × R S / (R L + R S)) α and alpha 1 is calculated as follows.
【数24】α=(R/(RL×RS/(RL+RS))
−1)×100% α1=(η−1.0)×100% 即ち、接地極RLの接地電圧が、RLから接地電圧とし
て、他の対象物の接地極や自然接地に対し、そのα%波
及するかが計算される。接地電極からの低減電圧α1%
は、接地極相互にも関係が有り、2極並列の並列係数η
値がRL、RS極相互に波及する関係にある。本グラフ
は図18の方眼グラフ、図19の対数グラフでYの拡大
部分図にも作図出来るが、請求項1、2、3のグラフと
共通できる本対数グラフ図5や図8が読み易く、Yの小
さい数値部分1〜≫1のグラフを引き延ばせる利点があ
り、グラフのRS/RL=1の所がR=RS=RLの場
合η=1+RL/RL=≫2.0になり2極並列時の最
大値の2に限りなく近く表現できることである。抵抗区
域と電圧波及率のグラフは7、8共に、理論的には2×
r間隔で50%になる。図7の接地抵抗R1や自然接地
等7が既知の場合、地形地質を調査し、或る間隔にR2
の接地極を設け、R2単独接地抵抗とR1、R2の並列
合成抵抗を測定する。接地抵抗R1とR2には必ず大小
関係があり、接地抵抗が大きい方をRL、小さい方をR
Sとし、その比nは、n=RL/RSとして計算する。
接地抵抗が既知の場合、自然接地との接地極相互の設置
間隔の設け方も容易になる。グラフは又、接地極から波
及する接地電圧の低減波及率α1の逆数をYにとり、そ
のX値から接地極の相互間隔aのnを求めることもでき
る。即ち、Yの接地電圧と低減電圧比から、Xの接地極
の相互間隔aのnが求められる。以上の事から、本グラ
フから2極設置の接地極の間隔や、自然接地との間隔、
絶縁独立接地電極の絶縁深さ等が容易に求められる。表
5の様に、配電規程JEAC7001の、1−27表集
合係数(η)に記載された、875極の実験データーの
数値を補正し、図5のグラフに記入すると斜線6の様に
なり、実測値は理論値を必ず下回っている事が読みとれ
る。Equation 2 4] α = (R / (R L × R S / (R L + R S))
-1) × 100% α 1 = (η-1.0) × 100% In other words, the ground voltage of the ground electrode R L is, as a ground voltage from the R L, with respect to the ground electrode and the natural ground of the other objects, It is calculated whether the α% spreads. Reduced voltage from the ground electrode alpha 1%
Is related to the ground poles, and the parallel coefficient η
There is a relationship in which the value spreads between the RL and RS poles. This graph can be plotted on the grid graph of FIG. 18 and the logarithmic graph of FIG. 19 as an enlarged partial view of Y. However, the logarithmic graphs 5 and 8 which can be shared with the graphs of claims 1, 2, and 3 are easy to read. There is an advantage that the graph of small numerical parts 1 to ≫1 of Y can be extended, and when R S / R L = 1 in the graph and R = R S = R L η = 1 + R L / R L = ≫2. It becomes 0 and can be expressed as close as possible to 2 which is the maximum value in two-pole parallel operation. The graphs of the resistance area and the voltage ripple ratio are theoretically 2 × for both 7 and 8.
It becomes 50% at r intervals. When grounding resistance R 1 and a natural ground or the like 7 of Figure 7 is known to investigate the terrain geology, R 2 a certain distance
The earth electrode is provided to measure the parallel combined resistance of the R 2 single ground resistor and R 1, R 2. There are always large and small relation to the ground resistor R 1 and R 2, the larger the ground resistance R L, the smaller the R
S , and the ratio n is calculated as n = RL / RS .
If the grounding resistance is known, it is easy to provide a space between the grounding pole and the natural ground. The graph also the inverse of the reduction spread rate alpha 1 in the ground voltage ripple from the ground electrode taken Y, may be determined n mutual distance a of the ground electrode from the X value. That is, n of the mutual interval a between the ground electrodes of X is obtained from the ground voltage of Y and the reduced voltage ratio. From the above, it can be seen from this graph that the distance between the two-pole
The insulation depth of the insulated independent ground electrode is easily determined. Table as in 5, the distribution rules JEAC7001, listed in 1-27 Table set coefficient (eta), and corrects the value of the experimental data of 875 poles, like a shaded 6 when filling out the graph of FIG. 5
It becomes, and the measured value Ru <br/> things that are always less than the theoretical value be read.
【表5】 接地電極R1と他の接地系をR2とし、その2極並列合
成接続の接地抵抗Rを測定し、その並列合成抵抗Rに介
在する並列係数ηから、実測と計算により、絶縁独立接
地電極の接地効果、即ち、他の接地系との効果的な離隔
間隔を確認したことを特徴とする、深埋設絶縁独立接地
電極とその波及率αの計算も可能になる。グラフは、そ
の目盛りを細分することにより高精度に読みとれ、詳細
は計算によっても求められる。本発明は請求項3の様
に、接地電極2極並列合成時、その並列係数ηの最大値
グラフ、即ち、対数グラフのXに、接地抵抗RL/RS
の抵抗区域を示す整数値、グラフのYに1〜≫1の、R
S/RLの正数を取り、そのグラフの読み方を2極並列
係数ηの1+RS/RLとし、接地極の抵抗区域を2〜
≫1、接地電圧波及率、又は、接地電圧の低減率の計算
結果を100〜≫1%のグラフに表現し、Y軸右側目盛
りを100〜≫1%の接地電圧波及率α、接地電圧低減
率α1としたことを特徴とする対数グラフで、2接地極
の相互間隔、自然接地との離隔間隔、深埋設絶縁独立接
地電極の埋設深さが、適切に求められた接地電極とな
る。[Table 5] The ground electrode R 1 and the other ground-based and R 2, to measure the ground resistance R of the two-pole parallel synthesis connections, the parallel factor η interposed the parallel combined resistance R, by measurement and calculation, the insulating independently grounded electrode , That is, a deeply buried insulated independent ground electrode and its spread α can be calculated. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. According to a third aspect of the present invention, when two ground electrodes are combined in parallel, the maximum value of the parallel coefficient η, that is, the ground resistance R L / R S is added to X in the logarithmic graph.
Integer value indicating the resistance zone of R, 1 to ≫1, R
The positive value of S / RL is taken, the reading of the graph is set to 1 + RS / RL of the two-pole parallel coefficient η, and the resistance area of the ground electrode is 2 to 2.
≫1, the ground voltage spread rate or the calculation result of the reduction rate of the ground voltage is expressed in a graph of 100 to ≫1%, and the right scale of the Y axis is set to the ground voltage spread rate α of 100 to ≫1%, and the ground voltage reduction. that it has a rate alpha 1 in a logarithmic graph, wherein the mutual distance between the second ground electrode, is buried deep spaced intervals, deep buried insulating independent ground electrode with nature ground, and appropriately the obtained ground electrode.
【0011】第4の発明は次のようになる。図9に示す
様に、地表面GLからdの深さに、半径rの球体接地電
極R1が埋設されていると仮定する。この場合の接地抵
抗R1は次のようになる。The fourth invention is as follows. As shown in FIG. 9, the depth d from the ground surface GL, assuming spherical ground electrode R1 of radius r is embedded. The ground resistance R1 in this case is as follows.
【数25】R1=ρ/4πr 埋設深さdが零の場合は、地表面に半球状電極が埋設さ
れているのと同じになる。従ってその接地抵抗はR’と
なる。[Number 2 5] R1 = ρ / 4πr buried depth d in the case of zero, the same as the semi-spherical electrodes on the ground surface are buried. Therefore, the ground resistance is R '.
【数26】R’=ρ/2πr 球体接地電極R1の埋設深さ絶縁深さh2が0〜∞迄の
値をとる場合は、図10の様に地上にR2の球体接地極
があると仮定すると、接地抵抗はR2とR1の中間の値
が予測されるが重ね合わせと影像法を使うと大凡の見当
が出来る。図10の地表面からdの高さに、半径rの第
2の球体電極R2を導入すると、第2の電極が影像法に
於ける影像に当たる。両電極から、それぞれ地中に電流
Iが流れていたとする。図10に示すように、両電極の
中心から距離x、x’の地中の点をpとし、その電位を
Vpとすると、重ね合わせの原理を使うとVpは次のよ
うに表現できる。If Equation 2 6] R '= ρ / 2πr sphere ground electrode R 1 buried deep insulating depth h2 has a value of up to 0~∞ may sphere earthing of R2 to ground as in FIG. 10 Assuming that, the ground resistance is expected to be an intermediate value between R2 and R1, but an approximate estimate can be obtained by using the superposition and the image method. When a second spherical electrode R2 having a radius r is introduced at a height d from the ground surface in FIG. 10, the second electrode hits an image in the image method. It is assumed that a current I is flowing from both electrodes into the ground. As shown in FIG. 10, assuming that a point in the ground at a distance x, x ′ from the center of both electrodes is p and its potential is Vp, Vp can be expressed as follows using the principle of superposition.
【数27】Vp=(ρI/4π)×((1/x)+(1
/x’)) p点をR1電極の表面に取ると、そこの電位Vは次のよ
うになる。Equation 2 7] Vp = (ρI / 4π) × ((1 / x) + (1
/ X ')) When the point p is taken on the surface of the R1 electrode, the potential V there is as follows.
【数28】V=(ρI/4π)×((1/r)+(r/
2d)) 但し2d≫rとすると、R1極の接地抵抗は次のように
なる。[Number 2 8] V = (ρI / 4π) × ((1 / r) + (r /
2d)) However, if 2d≫r, the ground resistance of the R1 pole is as follows.
【数29】R1=(ρ/4πr)×(1+(r/2
d)) 上式に於いて、d→∞とすれば括弧内の第2項は消えて
R1は次のRになる。[Number 2 9] R1 = (ρ / 4πr) × (1+ (r / 2
d)) In the above equation, if d → ∞, the second term in parentheses disappears and R1 becomes the next R.
【数30】R=(ρ/4πr) 数25〜数29の計算値を表にすると表6のようにな
る。The Equation 30] R = (ρ / 4πr) Calculated number 2 5 to several 29 is shown in Table 6 when the table.
【表6】 図9の様にGL3から11深さ迄絶縁された、長さ10
の接地電極の接地抵抗は、等価球体と見做なした次式の
Rgとして計算される。 [Table 6] As shown in FIG. 9, a length of 10 insulated from GL3 to a depth of 11
The grounding resistance of the grounding electrode of
Calculated as Rg.
【数31】Rg=(ρ/(2πL))×(Ln((2
L)/d))−1+(t/L)×Ln((4×t×(t
+L))/(2t+L)2)+Ln((2×(t+
L))/(2×t+L)) Rg=(ρ/(2πL))×(Z) 数式 [Number 31] Rg = (ρ / (2πL) ) × (Ln ((2
L) / d))-1+ (t / L) × Ln ((4 × t × (t
+ L)) / (2t + L) 2 ) + Ln ((2 × (t +
L)) / (2 × t + L)) Rg = (ρ / (2πL)) × (Z) Formula
【数30】のRと、R of the formula
【数31】のRgとが等しいとして、Assuming that Rg is equal to
【数30】からと、球体の等価半径の計算式From equation (30), the formula for calculating the equivalent radius of the sphere is
【数31】から次のように求められる。計算式From Equation 31, it is obtained as follows. a formula
【数31】の第2項を(Z)とすると、Assuming that the second term of Expression 31 is (Z),
【数32】は次のようになる。Equation 32 is as follows.
【数32】Rg=(ρ(Z))/(2πL) dをd=t+L/2として代入すると R=(ρ×(1+(r/2d))/(4πr)=Rg=
(ρ(Z))/2πL)(1+(r/2d))/(2
r)=1/(2r)+1/(4d)1/(2r)=
(Z)/L−1/(4d)=(4dZ−L)/(4L
d) 2r=(4dL)/(4d(Z)−L) r=(2dL)/(4d(Z)−L) r=(2×(t+L/2)×L)/(4×(t+L/
2)×(Z)−L) 等価半径rは、ここでEquation 32] Rg = (ρ (Z)) / Substituting (2πL) d as d = t + L / 2 R = (ρ × (1+ (r / 2d)) / (4πr) = Rg =
(Ρ (Z)) / 2πL) (1+ (r / 2d)) / (2
r) = 1 / (2r) + 1 / (4d) 1 / (2r) =
(Z) / L-1 / (4d) = (4dZ-L) / (4L
d) 2r = (4dL) / (4d (Z) -L) r = (2dL) / (4d (Z) -L) r = (2 × (t + L / 2) × L) / (4 × (t + L /
2) × (Z) −L) the equivalent radius r is
【数32】の(Z)部分を、The (Z) part of the equation is
【数31】に戻し計算すると求まる。対数グラフのX
に、地表と導線で接続されてないd深さに埋設した、半
径rの球体接地電極のd/rの整数倍値を、Y軸に1+
(r/2d)又は、r/2dの数値とすると、グラフは
図11の様に、線8と9は図5の二分の一のグラフにな
り、r/(2d)は球体接地極が地表面GLに近くなっ
た分、接地抵抗R It can be obtained by calculating back to (31). X of log graph
The integer multiple of d / r of a spherical earth electrode having a radius r embedded at a depth d that is not connected to the ground surface by a conducting wire is represented by 1+ on the Y axis.
If the numerical value of (r / 2d) or r / 2d is used, the graph is as shown in FIG. 11, and the lines 8 and 9 are half graphs of FIG.
R / (2d) indicates that the spherical ground pole is closer to the ground surface GL
The ground resistance R
【数30】の上昇分とな る。図11に図5のグラフ線5
を点線で示すと、地中電極と地表電極、又は、地表自然
接地との間で接地上昇電圧が、他の接地電極に波及す
る、波及率を表す事が出来る。従って、図18は図3,
図5,図8に置き換えて使用する。本対数グラフから、
2極設置の接地極の間隔、即ち、自然接地との間隔、絶
縁独立接地電極の絶縁深さ等が容易に求められる。本発
明で必要とするのは、YのグラフがXの最大値に対し、
2以下の1.5であり、即ち、1.5とか1.2の様な
数値である。以上の様なY値は、接地電極の2極並列の
集合係数η値に該当する。対数グラフのY値を1/Xに
取ると、集合係数ηは1+1/Xであり、Y値は1/X
の変数に1.0を加え、Yの1の所は1+1/1=2で
グラフの表現が出来、又、集合係数表示の1+(1/
X)の第1項(1+)を考慮するすると、その計算は次
のようになる。 Ing and the rise of [number 30]. FIG. 11 shows the graph line 5 of FIG.
Is indicated by a dotted line, it is possible to represent a ripple rate at which the ground rising voltage spreads between the underground electrode and the ground electrode or the natural ground on the ground to other ground electrodes. Therefore, FIG.
Used in place of FIG. 5 and FIG. From this logarithmic graph,
The distance between the ground electrodes provided with two poles, that is, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like can be easily obtained. The present invention requires that the graph of Y be the maximum value of X,
It is 1.5 which is 2 or less, that is, a numerical value such as 1.5 or 1.2. The Y value as described above corresponds to the set coefficient η value of the two poles of the ground electrode in parallel. If the Y value of the logarithmic graph is 1 / X, the set coefficient η is 1 + 1 / X, and the Y value is 1 / X
1.0 is added to the variable of Y, and the place of Y can be represented by a graph of 1 + 1/1 = 2, and 1+ (1 /
Considering the first term (1+) of X), the calculation is as follows.
【数33】Y=1+1/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5の様な数にも対応する。このように
並列係数ηも2.0〜1.0に表現され、視覚、感覚的
にも読みとり易い表現になり、グラフの上昇線と下降線
の何れでも、使用目的値を変える事により、目的グラフ
として使用可能になる。図12の電極半径dの長さh1
に取った接地電極部10に、地表G.Lから長さh2の
絶縁した電線、又は、電纜(ケーブル)11を接続した
深埋設絶縁独立接地電極になる。X軸、即ち、横軸には
接地抵抗区域間隔の比、2接地極相互間隔の比、2接地
抵抗の比をとると、対応するYのグラフは図3、図5、
図8と同一関係になり、請求項1、請求項2、請求項3
のグラフと共通したグラフにする事が出来、内容の説明
関係も同一になる。グラフは、その目盛りを細分するこ
とにより高精度に読みとれ、詳細は計算によっても求め
られる。本発明は請求項4の様に、地中電極と地表電
極、又は、地中接地電極から他の接地系や自然接地に波
及する、100〜≫1%の対数グラフに表現したことを
特徴とする図11の本グラフ、図3、図5,図8と、本
対数グラフから2極設置の接地極の間隔、即ち、自然接
地との間隔、絶縁独立接地電極の絶縁深さ等を求めた接
地電極となる。The Equation 3 3 Y = 1 + 1 / X ∴ η = 1 + 1 / X = (1 + X) / X above calculation, when X in the graph is 1, the corresponding Y is expressed in 2, and, X is an integer Other than 1.2, 1.
It corresponds to numbers such as 5, 2.3, and 2.5. As described above, the parallel coefficient η is also expressed in the range of 2.0 to 1.0, which makes it easy to read both visually and intuitively. It can be used as a graph. Length h1 of electrode radius d in FIG.
The ground electrode 10 taken on the ground G. It becomes an insulated electric wire having a length h2 from L or a deeply buried insulated independent ground electrode to which an electric cable (cable) 11 is connected. If the X axis, that is, the horizontal axis shows the ratio of the ground resistance area spacing, the ratio of the two ground poles, and the ratio of the two ground resistances, the corresponding graphs of Y are shown in FIGS.
It becomes the same relationship as FIG. 8, and claims 1, 2, and 3
Can be made a common graph, and the explanation relation of the contents becomes the same. The graph can be read with high precision by subdividing the scale, and details can also be obtained by calculation. The present invention is characterized in that it is expressed in a logarithmic graph of 100 to ≫1%, which spreads from an underground electrode and a ground electrode or an underground ground electrode to another grounding system or natural ground as in claim 4. 11 , FIG. 5, FIG. 8, and FIG.
The ground electrode is obtained from the logarithmic graph, which is obtained from the distance between the ground electrodes provided with two poles, that is, the distance from the natural ground, the insulation depth of the insulating independent ground electrode, and the like.
【0012】第5の発明は次のようになる。本発明は、
請求項1,2,3,4の設定に対しその接地工事機能が
効果的かどうかの確認測定に関する。又、深埋設絶縁独
立接地電極として機能出来るか、その効果を確認する測
定方法にも関する。図13に示す様な、2接地電極の接
地抵抗R1、R2の並列合成接地抵抗Rの測定には、測
定用電流通電補助極Cと電圧検出補助極Pに測定線を接
続し、R1、R2の2極にも測定電流通電線を並列に接
続する。その際、2接地極に接続する測定用電流通電線
Aから分岐し接地極R1,R2に接続する電線B、B’
はその導体抵抗を同一とし、即ち、分岐点Cからは同一
断面積で同一長さのものを使用、又、電圧検出用電線も
電流通電線の様に接続し、実測値に誤差が入らないよう
に配慮する。又、図14の2接地電極の接地抵抗Rの測
定は、精密測定が出来る直読式接地抵抗計Eの使用も可
能で、R1、R2各単独値とR1,R2の並列合成値R
の接地抵抗計のスイッチを閉じて測定する。図15の測
定回路断面図の様に、深埋設絶縁独立接地電極の接地抵
抗を測定時、電流通電補助接地電極Cを、x方向の遠地
点に設け、電圧検出補助極Pを同じX方向にP1〜P
n、に、図16平面配置の様にW方向に接地極Eの低減
は求電圧を、図15は直読計器を使用した接地極Eの抵
抗区域とEから波及する波及電圧を各々測定すると、目
的の接地工事として機能しているかの確認が出来る。本
測定回路は、交流による測定を示したが、電源と計器を
変えると、直読接地抵抗計や高電圧大電流のインパルス
測定も可能である。図17の測定回路平面図の様に、深
埋設絶縁独立接地電極の接地抵抗を、電流通電補助接地
電極Cを、x、w、y、z方向の何れか遠地点に設け、
電圧検出補助極Pも、x、w、y、z方向の何れか遠地
点に固定して設け、測定すると、請求項4の機能効果の
検証確認が出来る。The fifth invention is as follows. The present invention
The present invention relates to a measurement for confirming whether or not the grounding work function is effective for the settings of claims 1, 2, 3, and 4. Also, the present invention relates to a measurement method for confirming whether or not it can function as a deeply buried insulated independent ground electrode. As shown in FIG. 13, in order to measure the parallel combined ground resistance R of the ground resistances R 1 and R 2 of the two ground electrodes, a measurement wire is connected to the current-carrying auxiliary pole C for measurement and the auxiliary pole P for voltage detection. 1, also to connect the measuring current supply line in parallel to the two poles of R 2. At this time, the electric wires B and B ′ branched from the measuring current conducting wire A connected to the two ground poles and connected to the ground poles R1 and R2.
Have the same conductor resistance, that is, use the same cross-sectional area and the same length from the branch point C. Also, the voltage detection wire is connected like a current conducting wire, and no error occurs in the measured value. To be considered. Further, the measurement of the grounding resistance R of the two grounding electrodes shown in FIG. 14 can be performed by using a direct-reading-type grounding resistance meter E capable of precise measurement.
Close the switch of the earth resistance meter of , and measure. As shown in the cross-sectional view of the measurement circuit in FIG. 15, when measuring the ground resistance of the deeply buried insulated independent ground electrode, a current carrying auxiliary ground electrode C is provided at a distant point in the x direction, and the voltage detection auxiliary pole P is set to P1 in the same X direction. ~ P
n, the reduction of the grounding pole E in the W direction as shown in the plan view of FIG. 16 measures the voltage demand, and FIG. 15 measures the resistance area of the grounding pole E using a direct-reading instrument and the spillover voltage spilling from E. It can be checked whether it is functioning as the intended grounding work. Although this measurement circuit has shown the measurement by the alternating current, if the power supply and the instrument are changed, it is also possible to measure the impulse of the direct reading ground resistance meter and the high voltage and the large current. As shown in the measurement circuit plan view of FIG. 17, the ground resistance of the deeply buried insulated independent ground electrode, the current-carrying auxiliary ground electrode C is provided at any of the x, w, y, and z directions.
When the voltage detection auxiliary pole P is also fixed at any of the apogees in the x, w, y, and z directions and measured, the functional effect of claim 4 can be verified and confirmed.
【0013】[0013]
【発明の効果】請求項1,2,3,4の発明は、グラフ
により接地電極で発生した接地電圧が、他の接地系や、
保護対象物に波及する電圧、即ち、α%で表し、請求項
1、2、3、4のグラフ図、計算図、及び、配置図か
ら、電圧波及度を設定した接地電極と、絶縁独立接地電
極として機能出来る様に、又、測定用補助接地電極C、
Pの設置間隔や、更には、適切な絶縁深さと、設置間隔
地点に設けた事を特徴とする接地電極、深埋設接地電
極、測定用補助接地電極、及び、電極半径d1の3の長
さh1にした接地電極部1に、地表G.L3から長さh
2間を絶縁した電線、又は、電纜(ケーブル)3を接続
した効果的に機能する深埋設絶縁独立接地電極として設
置することが出来る。請求項5の発明では並列係数の測
定法と、請求項1,2,3,4項の接地極としての機能
を検証確認できる測定法となる。According to the first, second, third, and fourth aspects of the present invention, the graph shows that the ground voltage generated at the ground electrode is different from that of another ground system,
A ground electrode for which the voltage spread is set based on the voltage applied to the object to be protected, that is, α%, from the graphs, calculation diagrams, and layout diagrams of claims 1, 2, 3, and 4, and an insulating independent ground. So that it can function as an electrode, and an auxiliary ground electrode C for measurement,
The installation interval of P, and furthermore, an appropriate insulation depth and a ground electrode, a deeply buried ground electrode, an auxiliary auxiliary ground electrode for measurement, and a length of 3 of the electrode radius d1, which are provided at the installation interval point. h1 on the ground electrode section 1. Length h from L3
It can be installed as a deeply buried insulated independent ground electrode that functions effectively by connecting an insulated wire or a cable (cable) 3 between them. According to the fifth aspect of the present invention, there are provided a method for measuring the parallel coefficient and a method for verifying and confirming the function as the grounding electrode according to the first, second, third and fourth aspects.
【0014】[0014]
【図面の簡単な説明】[Brief description of the drawings]
【図1】第1の発明の説明用椀型接地電極の概念図FIG. 1 is a conceptual diagram of a bowl-shaped ground electrode for explanation of the first invention.
【図2】第1図の接地電極概念図FIG. 2 is a conceptual diagram of a ground electrode in FIG.
【図3】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 3 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistor are calculated.
【図4】第2の発明の説明用接地電極の2極配置回路図FIG. 4 is a circuit diagram showing a two-pole arrangement of ground electrodes for explanation of the second invention.
【図5】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 5 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistance are calculated.
【図6】第3の発明の説明用接地電極の2極配置図FIG. 6 is a two-pole layout diagram of a ground electrode for explanation of the third invention.
【図7】第3の発明の説明用接地電極と自然接地の2極
配置図FIG. 7 is a two-pole layout diagram of a ground electrode and a natural ground for explanation of the third invention.
【図8】接地抵抗の電圧波及間隔等を計算した対数グラ
フ図FIG. 8 is a logarithmic graph diagram in which a voltage spreading interval and the like of a ground resistance are calculated.
【図9】第4の発明の説明用絶縁独立接地電極の概念図FIG. 9 is a conceptual diagram of an insulated independent ground electrode for explanation of the fourth invention.
【図10】2接地電極の接地抵抗関係影像法説明の概念
図FIG. 10 is a conceptual diagram for explaining an image method relating to ground resistance of two ground electrodes.
【図11】絶縁独立接地抵抗の電圧波及間隔等を計算し
た対数グラフ図FIG. 11 is a logarithmic graph diagram in which a voltage spread interval and the like of an insulation independent grounding resistor are calculated.
【図12】2接地極並列合成接地抵と自然接地との離隔
関係図FIG. 12 is a diagram showing a separation relationship between a two-grounded-pole parallel composite grounding resistor and natural grounding.
【図13】電圧降下法による2極並列合成接地抵抗の測
定回路図FIG. 13 is a circuit diagram of a two-pole parallel combined ground resistance measurement method using the voltage drop method.
【図14】直読計器を使用する2極並列合成接地抵抗の
測定回路図FIG. 14 is a circuit diagram of a two-pole parallel combined ground resistance measurement using a direct reading instrument.
【図15】絶縁独立接地抵抗の電圧波及間隔等のを計算
結果を検証する測定回路図FIG. 15 is a measurement circuit diagram for verifying a calculation result such as a voltage spread interval of an insulation independent ground resistance.
【図16】接地極の接地電圧が波及する波及率の検証測
定回路図FIG. 16 is a circuit diagram for verifying and measuring a ripple rate at which a ground voltage of a ground electrode spreads.
【図17】直読計器を使用する接地極の抵抗区域と接地
電圧波及率の検証測定回路図FIG. 17 is a circuit diagram for verifying the resistance area of the grounding pole and the ground voltage ripple rate using a direct reading instrument.
【図18】接地抵抗区域と電圧波及率の方眼グラフ図FIG. 18 is a grid graph of a ground resistance area and a voltage ripple rate.
【図19】接地抵抗区域と電圧波及率の対数グラフYの
一部を拡大した対数グラフ図FIG. 19 is a logarithmic graph diagram in which a part of a logarithmic graph Y of a ground resistance area and a voltage ripple ratio is enlarged.
【符号の説明】 1:椀型半球体状接地電極 2:棒状接地電極 3:大地、G.L部分 4:半球状体接地の対数グラフの曲線 5:半球状体接地の対数グラフの直線 6:発変電規程の集合係数表解析値の表示線 7:建造物や基礎等の自然接地体 8:球状体接地の対数グラフの曲線 9:球状体接地の対数グラフの直線 10:球状体接地域を有する棒状体接地電極部 11:絶縁独立接地電極の絶縁導線部 A.C:交流電源 A:電流計 V:電圧計 C:測定用電流補助極 E:主接地電極.直読計器Tの接地側端子 h1:絶縁深さ h2:接地電極の長さ P:接地電圧検出補助接地電極 I:通電電流 n:整数(1〜nの様に順番号) L:棒状体接地電極の埋設深さ Pw3:w方向3番目の電圧検出補助極 Pwn:w方向n番目の電圧検出補助極 Px1:x方向1番目の電圧検出補助極 Py2:y方向2番目の電圧検出補助極 Pz2:z方向2番目の電圧検出補助極 R:接地抵抗 r:接地極の等価半径 r1:接地極の等価半径 a:2接地極並列の相互離隔間隔 X:球体状接地極からp点迄の間隔 A’:接地抵抗測定用電流通電線 B:B’と同一長さと同一抵抗値の電線 B’:Bと同一長さと同一抵抗値の電線 J:電線A’からBとB’に分岐する接続点 d:球体状接地極を埋設したと仮定した深さ w:平面上に於けるEからのw方向 x:平面上に於けるEからのx方向 y:平面上に於けるEからのy方向 z:平面上に於けるEからのz方向 ─────────────────────────────────────────────────────
[Description of References] 1: bowl-shaped hemispherical ground electrode 2: rod-shaped ground electrode 3: earth, L part 4: Curve of logarithmic graph of hemispherical grounding 5: Straight line of logarithmic graph of hemispherical grounding 6: Display line of set coefficient table analysis value of power generation substation regulations 7: Natural grounded body such as building or foundation 8 9: Line of logarithmic graph of spherical body grounding 9: Straight line of logarithmic graph of spherical body grounding 10: Bar-shaped body grounding electrode part having spherical body contact area 11: Insulated conducting wire part of insulated independent grounding electrode C: AC power supply A: Ammeter V: Voltmeter C: Current auxiliary electrode for measurement E: Main ground electrode. Ground side terminal of direct reading instrument T h1: Insulation depth h2: Ground electrode length P: Ground voltage detection auxiliary ground electrode I: Conducting current n: Integer (sequential number such as 1 to n) L: Rod-shaped ground electrode buried depth Pw3: w direction third voltage detecting auxiliary pole Pwn: w direction n th voltage detection auxiliary pole Px1: x direction first voltage detecting auxiliary pole Py 2: y-direction second voltage detecting auxiliary pole Pz2 : Second voltage detection auxiliary pole in z direction R: ground resistance r: equivalent radius of ground pole r1: equivalent radius of ground pole a: separation distance between two ground poles in parallel X: distance from spherical ground pole to point p A ': Current conducting wire for ground resistance measurement B: Wire of the same length and the same resistance as B' B ': Wire of the same length and the same resistance as B J: Connection branching from wire A' to B and B ' Point d: Depth assuming that spherical spherical ground electrode is buried w: From E on plane w direction x: x direction from E on plane y: y direction from E on plane z: z direction from E on plane ──────────── ─────────────────────────────────────────
【手続補正書】[Procedure amendment]
【提出日】平成12年7月6日(2000.7.6)[Submission date] July 6, 2000 (200.7.6)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Correction target item name] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【特許請求の範囲】[Claims]
【請求項4】 2つの接地電極の接地抵抗、R1,R2の
並列合成接地抵抗Rの測定時、そのR1,R2極に接続
して通電する、測定用電流通電線の導体抵抗は同一と
し、即ち、配線場所の引き出し点からは、同一断面積で
同一長さのものを使用して両線の導体抵抗を調節し、
又、請求項1、2のグラフ図から、電圧波及度を設定し
た接地電極と同様に、接地抵抗測定用補助接地電極C,
Pの接地間隔や、電圧検出用電線も、電流通電線の様に
接続し、並列係数値と抵抗区域、及び、接地電極から波
及する波及低減電圧値を検証出来る測定方法。 ─────────────────────────────────────────────────────
4. When the ground resistance of two ground electrodes and the parallel combined ground resistance R of R1 and R2 are measured, the conductor resistance of the current-carrying wire for measurement connected to the R1 and R2 poles is the same, In other words, from the drawing point of the wiring location, the conductor resistance of both wires is adjusted using the same cross-sectional area and the same length,
According to the graphs of claims 1 and 2, the auxiliary ground electrode C for measuring the ground resistance is similar to the ground electrode for which the voltage spread is set.
A measuring method in which the grounding interval of P and the voltage detection wire are connected like a current-carrying wire, and the parallel coefficient value, the resistance area, and the ripple reduction voltage value spreading from the ground electrode can be verified. ────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成13年1月17日(2001.1.1
7)[Submission date] January 17, 2001 (2001.1.1)
7)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項1[Correction target item name] Claim 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項2[Correction target item name] Claim 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正3】[Procedure amendment 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項3[Correction target item name] Claim 3
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0004[Correction target item name] 0004
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0004】[0004]
【課題を解決するための手段】そこで、上記課題を解決
するため、本発明は、接地工事の理論式をグラフ化し
て、そのグラフ図を対数グラフに作成し、又、工事完了
後の検証測定方法も実用化し、グラフ化とその設定方法
も確立して、その設定方法と計算方法から導かれた新規
な設置工事とした。Therefore, in order to solve the above-mentioned problems, the present invention provides a graph of a theoretical formula for grounding work, creates a graph of the theoretical formula on a logarithmic graph, and performs verification measurement after the completion of the work. The method was put into practical use, a graph and its setting method were established , and a new installation work was derived from the setting method and calculation method.
【手続補正5】[Procedure amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0005[Correction target item name] 0005
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0005】[0005]
【発明の実施の形態】本発明の対数グラフは、抵抗区域
と電圧波及率のグラフは、線4、線5、線8、線9共に
理論的には2×r間隔で50%になり、X値が請求項1
〜4迄は共通して、半球体又は球体接地極の等価半径r
に対する接置間隔aの大小関係a/r=n、接地抵抗の
大小関係のRL対RSのRL/RS=n倍、又、接地電
極の相互関係倍数のn、YにはそのXに対応する1/X
値を各々共通して取ったものであり、接地電極で発生し
た接地電圧を、他の接地系や保護対象物に波及する電
圧、即ち、α%やα1%で表すことが出来、相互間隔と
深埋設絶縁独立接地電極として設けることも出来、その
設定が容易に出来る様にしたものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The logarithmic graph of the present invention shows that the graphs of the resistance area and the voltage ripple rate are theoretically 50% at the intervals of 2.times.r for each of the lines 4, 5, 8, and 9. Claim 1 wherein the X value is
The equivalent radius r of the hemispherical or spherical ground pole is common to
RL / RS = n times RL vs. RS, where RL / RS is the magnitude relationship of the ground resistance, and n and Y, which are multiples of the mutual relationship of the ground electrode, correspond to X. 1 / X
These values are common to each other, and the ground voltage generated at the ground electrode can be expressed as a voltage that spreads to other grounding systems and objects to be protected, that is, α% or α1%. It can be provided as a deeply buried insulated independent ground electrode, so that its setting can be easily performed.
【手続補正6】[Procedure amendment 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0011[Correction target item name] 0011
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0011】第4の発明は次のようになる。図9に示す
様に、地表面GLからdの深さに、半径rの球体接地電
極R1が埋設されていると仮定する。この場合の接地抵
抗R1は次のようになる。The fourth invention is as follows. As shown in FIG. 9, it is assumed that a spherical ground electrode R1 having a radius r is buried at a depth d from the ground surface GL. The ground resistance R1 in this case is as follows.
【数25】R1=ρ/4πr 埋設深さdが零の場合は、地表面に半球状電極が埋設さ
れているのと同じになる。従ってその接地抵抗はR’と
なる。R1 = ρ / 4πr When the burying depth d is zero, it is the same as when a hemispherical electrode is buried on the ground surface. Therefore, the ground resistance is R '.
【数26】R’=ρ/2πr 球体設置電極R1の埋設深さ絶縁深さh2が0〜∞迄の
値をとる場合は、図10の様に地上にR2の球体接地極
があると仮定すると、接地抵抗はR2とR1の中間の値
が予測されるが重ね合わせると影像法を使うと大凡の見
当が出来る。図10の地表面からdの高さに、半径rの
第2の球体電極R2を導入すると、第2の電極が影像法
に於ける影像に当たる。両電極から、それぞれ地中に電
流Iが流れていたとする。図10に示すように、両電極
の中心から距離X、X’の地中の点をpとし、その電位
をVpとすると、重ね合わせの原理を使うとVpは次の
ように表現できる。R '= ρ / 2πr When the insulation depth h2 of the sphere-installed electrode R1 is between 0 and ∞, it is assumed that there is a spherical ground electrode of R2 on the ground as shown in FIG. Then, the ground resistance is expected to be an intermediate value between R2 and R1. However, when the ground resistance is superimposed, the approximate value can be obtained by using the image method. When a second spherical electrode R2 having a radius r is introduced at a height d from the ground surface in FIG. 10, the second electrode hits an image in the image method. It is assumed that a current I is flowing from both electrodes into the ground. As shown in FIG. 10, assuming that a point in the ground at a distance X, X ′ from the center of both electrodes is p and its potential is Vp, Vp can be expressed as follows using the principle of superposition.
【数27】 Vp=(ρI/4π)×((1/x)+(1/x’)) p点をR1電極の表面に取ると、そこの電位Vは次のよ
うになる。Vp = (ρI / 4π) × ((1 / x) + (1 / x ′)) When a point p is taken on the surface of the R1 electrode, the potential V there is as follows.
【数28】 V=(ρI/4π)×((1/r)+(r/2d)) 但し2d≫rとすると、R1極の接地抵抗は次のように
なる。V = (ρI / 4π) × ((1 / r) + (r / 2d)) where 2d≫r, the ground resistance of the R1 pole is as follows.
【数29】 R1=(ρ/4πr)×(1+(r/2d)) 上式に於いて、d→∞とすれば括弧内の第2項は消えて
R1は次のRになる。R1 = (ρ / 4πr) × (1+ (r / 2d)) In the above equation, if d → ∞, the second term in parentheses disappears and R1 becomes the next R.
【数30】R=(ρ/4πr) 数25〜数29の計算値を表にすると表6のようにな
る。[Mathematical formula-see original document] R = ([rho] / 4 [pi] r) Table 6 shows the calculated values of equations (25) to (29).
【表6】 図9の様にGL3から11深さまで絶縁された、長さ1
0の接地電極の接地抵抗は、等価球体と見做なした次式
のRgとして計算される。[Table 6] As shown in FIG. 9, the length 1 is insulated from GL3 to 11 depths.
The ground resistance of the ground electrode of 0 is calculated as Rg of the following equation regarded as an equivalent sphere.
【数31】Rg=(ρ/(2πL)×(Ln((2L)
/d)−1+(t/L)×Ln((4×t×(t+L)
/(2t+L)2)+Ln((2×(t+L))/(2×
t+L)) Rg=(ρ/(2πL)×(Z) 数式Rg = (ρ / (2πL) × (Ln ((2L)
/ D) -1+ (t / L) × Ln ((4 × t × (t + L)
/ (2t + L) 2 ) + Ln ((2 × (t + L)) / (2 ×
t + L)) Rg = (ρ / (2πL) × (Z) Formula
【数30】のRと、R of the formula
【数31】のRgとが等しいとして、Assuming that Rg is equal to
【数30】からと、球体の等価半径の計算式From equation (30), the formula for calculating the equivalent radius of the sphere is
【数31】から次のように求められる。計算式From Equation 31, it is obtained as follows. a formula
【数31】の第2項を(Z)とすると、Assuming that the second term of Expression 31 is (Z),
【数32】は次のようになる。Equation 32 is as follows.
【数32】Rg=(ρ/(Z))/(2πL) dをd=t+L/2として代入すると R=(ρ×(1+(r/2d))/(4πr)=Rg=
ρ/(2πL・Z) (1+(r/2d))/(2r)=1/(2r)+1/(4d) 1/(2r)=(Z)/L−1/(4d)=(4dZ−L)/
(4Ld) 2r=(4dL)/(4d(Z)−L) r=(2dL)/(4d(Z)−L) r=(2×(t+(L/2)×L)/(4×(t+L
2)×(Z)−L)等価球体半球r は、ここでRg = (ρ / (Z)) / (2πL) When d is substituted as d = t + L / 2, R = (ρ × (1+ (r / 2d)) / (4πr) = Rg =
ρ / (2πL · Z) (1+ (r / 2d)) / (2r) = 1 / (2r) + 1 / (4d) 1 / (2r) = (Z) / L-1 / (4d) = (4dZ-L) /
(4Ld) 2r = (4dL) / (4d (Z) -L) r = (2dL) / (4d (Z) -L) r = (2 × (t + (L / 2) × L) / (4 × (T + L
2) × (Z) -L)Equivalent spherical hemisphere r Here
【数32】の(Z)部分を、The (Z) part of the equation is
【数31】に戻し計算すると求まる。対数グラフのX
に、地表と導線で接続されてないd深さに埋没した、半
径rの球体接地電極のd/rの整数倍値を、Y軸に1+
(r/2d)又は、r/2dの数値とすると、グラフは
図11の様に、線8と9は図5の二分の一のグラフにな
り、r/(2d)は球体接地極が地表面GLに近くなった
分、接地抵抗RIt can be obtained by calculating back to (31). X of log graph
In addition, an integer multiple of d / r of a spherical ground electrode having a radius of r and buried at a depth d not connected to the ground surface by a conducting wire is represented by 1+ on the Y axis.
Assuming that the numerical value is (r / 2d) or r / 2d, the graphs are as shown in FIG. 11, where the lines 8 and 9 are half graphs of FIG. 5, and r / (2d) is the spherical ground electrode. The ground resistance R
【数30】の上昇分となる。表7の1+(r+2d)をこ
の場合ηと表現すると、球体半径rgが見掛け上大きく
なったことを意味する。即ち、等価球体半径rはr=
rg×η、r=rg×(1+r/2d)のように大きく
なったとして計算する。 又、表7のηは半球体半径rhが球体半径rgに近づく
ことを意味する。即ち、等価球体半径rは、r=rh
/η、r=rh/(1+r/2d)のように小さくな
る。この、は第2及び第3の発明に通ずる。また、
球体接地極の場合、その接地電極部の埋設深さ(絶縁部
長さt)と電極部長さLとの比により、球体と見做すこと
が出来ない場合がある。その深さtと長さLの関係から
η値を導入し、球体の等価球体半径rを半球体半径rh
から球体半径rgに変化させて実用化する。そして、等
価球体半径rはr=rg・η、r=rh/ηとす
る。また、表7のηはη=1+r/2tとして作成し
た。但し、t/rの0.5以下は半球体と見做してηを
2.0とすることができる。なお、表7は球体半径rg
の計算値にも適用することができる。図11に図5のグ
ラフ線5を点線で示すと、地中電極と地表電極、又は、
地表自然接地との間で接地上昇電圧が、他の接地電極に
波及する、波及率を表す事が出来る。従って、図18は
図3、図5、図8に置き換えて使用できる。本体数グラ
フから、2極接地の接地極の間隔、即ち、自然接地との
間隔、絶縁独立接地電極の絶縁深さ等が容易に求められ
る。本発明で必要とするのは、YのグラフがXの最大値
に対し、2以下の1.5であり、即ち、1.5とか1.
2の様な数値である。以上のようなY値は、接地電極の
2極並列の集合係数η値に該当する。対数グラフのY値
を1/Xに取ると、集合係数ηは1+1/Xであり、Y
値は1/Xの変数に1.0を加え、Yの1の所は1+1
/1=2でグラフの表現が出来、又、集合係数表示の1
+(1/X)の第1項(1+)を考慮すると、その計算は次
のようになる。(30) 1+ (r + 2d) in Table 7
In the case of η, the spherical radius rg is apparently large
It means that it has become. That is, the equivalent spherical radius r is r =
rg × η, large as r = rg × (1 + r / 2d)
Calculate as no longer. In Table 7, η indicates that the radius of the hemisphere rh approaches the radius of the sphere rg.
Means that. That is, the equivalent spherical radius r is r = rh
/ Η, r = rh / (1 + r / 2d)
You. This leads to the second and third inventions. Also,
In the case of a spherical grounding electrode, the depth of the ground electrode
It is regarded as a sphere by the ratio of the length t) to the length L of the electrode part.
May not be possible. From the relationship between the depth t and the length L
η value is introduced, and the equivalent sphere radius r of the sphere is changed to the hemisphere radius rh.
To a sphere radius rg for practical use. And etc
The valence sphere radius r is r = rg · η, r = rh / η
You. Η in Table 7 was created as η = 1 + r / 2t.
Was. However, t / r of 0.5 or less is regarded as a hemisphere and η is
2.0. Table 7 shows the spherical radius rg.
Can be applied to the calculated value of When the graph line 5 of FIG. 5 is shown by a dotted line in FIG. 11, an underground electrode and a ground electrode, or
The ground rise voltage between the natural ground and the ground spreads to other ground electrodes, which can represent a ripple rate. Therefore, FIG. 18 can be used in place of FIGS. 3, 5, and 8. From the graph of the number of main bodies, the distance between the ground electrodes of the two-pole ground, that is, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like can be easily obtained. The present invention requires that the graph of Y be less than or equal to 2 with respect to the maximum value of X, ie, 1.5 or 1.5.
It is a numerical value like 2. The Y value as described above corresponds to the set coefficient η value of the two-parallel parallel ground electrodes. If the Y value of the logarithmic graph is 1 / X, the set coefficient η is 1 + 1 / X, and Y
The value is added to 1.0 of the variable of 1 / X, and 1 for Y is 1 + 1.
/ 1 = 2 can represent a graph, and the set coefficient is 1
Considering the first term (1+) of + (1 / X), the calculation is as follows.
【数33】Y=1+1+/X ∴ η=1+1/X=(1+X)/X 以上の計算により、グラフのXが1の場合、その対応す
るYが2に表現され、又、Xが整数以外の1.2、1.
5、2.3、2.5のような数にも対応する。このよう
な並列係数ηも2.0〜1.0に表現され、視覚、感覚
的にも読みとり易い表現になり、グラフの上昇線と下降
線の何れでも、使用目的地を変えることにより、目的グ
ラフとして使用可能になる。図12の電極半径dの長さ
h1に取った接地電極部10に、地表G.Lから長さh
2の絶縁した電線、又は、電らん(ケーブル)11を接
続した深埋設絶縁独立接地電極になる。X軸、即ち、横
軸には接地抵抗区域間隔の比、2接地極相互間隔の比、
2接地抵抗の比をとると、対応するYのグラフは図3、図
5、図8と同一関係になり、請求項1、請求項2、請求項
3のグラフと共通したグラフにすることが出来、内容の
説明関係も同一になる。グラフは、そのメモリを細分す
ることにより高精度に読みとれ、詳細は計算によっても
求められる。本発明は請求項4の様に、地中電極と地表
電極、又は、地中接地電極から他の接地系や自然接地に
波及する、100〜≫1%の対数グラフに表現したこと
を特徴とする図11の本グラフ、図3、図5、図8と、本
対数グラフから2極接地の接地極の間隔、即ち、自然接
地との間隔、絶縁独立接地電極の絶縁深さ等を求めた接
地電極となる。[Mathematical formula-see original document] Y = 1 + 1 + / X ∴ η = 1 + 1 / X = (1 + X) / X According to the above calculation, when X in the graph is 1, the corresponding Y is expressed as 2, and X is not an integer. 1.2, 1.
It also corresponds to numbers such as 5, 2.3, 2.5. Such a parallel coefficient η is also expressed in the range of 2.0 to 1.0, which makes it easy to read both visually and intuitively. It can be used as a graph. The ground electrode portion 10 having the length h1 of the electrode radius d in FIG.
2 of insulated wire, or become deep buried insulating independent ground electrode connected to conductive Ran (cable) 11. On the X axis, that is, on the horizontal axis, the ratio of the spacing of the ground resistance areas, the ratio of the spacing between the two ground poles,
Taking the ratio of the two ground resistances, the corresponding graphs of Y have the same relationship as in FIGS. 3, 5, and 8, and can be made a graph common to the graphs of claims 1, 2, and 3. As a result, the explanation of the contents will be the same. The graph can be read with high precision by subdividing its memory, and details can also be obtained by calculation. The present invention is characterized in that it is expressed in a logarithmic graph of 100 to ≫1%, which spreads from an underground electrode and a ground electrode or an underground ground electrode to another grounding system or natural ground as in claim 4. From FIG. 11, FIG. 3, FIG. 5, and FIG. 8, and the logarithmic graph, the distance between the ground electrodes of the two-pole ground, that is, the distance from the natural ground, the insulation depth of the insulated independent ground electrode, and the like were obtained. Becomes a ground electrode.
【手続補正7】[Procedure amendment 7]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図11[Correction target item name] FIG.
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図11】 FIG. 11
【手続補正書】[Procedure amendment]
【提出日】平成13年2月5日(2001.2.5)[Submission date] February 5, 2001 (2001.2.5)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項3[Correction target item name] Claim 3
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項4[Correction target item name] Claim 4
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正3】[Procedure amendment 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0012[Correction target item name] 0012
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0012】第5の発明は次のようになる。本発明は、
請求項1,2,3,4の設定に対しその接地工事機能が
効果的かどうかの確認測定に関する。又、深埋設絶縁独
立接地電極として機能出来るか、その効果を確認する測
定方法にも関する。図13に示す様な、2接地電極の接
地抵抗R1、R2の並列合成接地抵抗Rの測定には、測定
用電流通電補助極Cと電圧検出補助極Pに測定線を接続
し、R1、R2の2極にも測定電流通電線を並列に接続す
る。その際、2接地極に接続する測定用電流通電線Aか
ら分岐し接地極R1、R2に接続する電線B、B´はその
導体抵抗を同一とし、即ち、分岐点Cからは同一断面積
で同一長さのものを使用、又、電圧検出用電線も電流通
電線の様に接続し、実測値に誤差が入らないように配慮
する。又、図14の2接地電極の接地抵抗Rの測定は、
精密測定が出来る直読式接地抵抗計Eの使用も可能で、
R1、R2各単独値とR1、R2の並列合成値Rの接地抵抗
計のスイッチを押して測定する。図15の測定回路断面
図の様に、深埋設絶縁独立接地電極の接地抵抗を測定
時、電流通電補助接地電極Cを、x方向の遠地点に設
け、電圧検出補助極Pを同じX方向にP1〜Pn、に図
16平面配置の様にW方向に接地極Eの低減は求電圧
を、図15は直読計器を使用した接地極Eの抵抗区域と
Eから波及する波及電圧を各々測定すると、目的の接地
工事として機能しているかの確認が出来る。本測定回路
は、交流による測定を示したが、電源と計器を変える
と、直読接地抵抗計や高電圧大電流のインパルス測定も
可能である。図17の測定回路平面図の様に、深埋設絶
縁独立接地電極の接地抵抗を、電流通電補助接地電極C
をx,w,y,z方向の何れか遠地点に設け、電圧検出
補助極Pも、x,w,y,z方向の何れか遠地点に固定
して設け、測定すると、請求項4の機能効果の検証確認
ができる。従来、接地極から他の接地系に波及する電圧
を測定する方法は皆無であった。又、その逆に、接地系
から他の接地に波及する電圧を測定することもなかっ
た。従って、接地の保安上の問題も解決されてなかっ
た。接地抵抗を図15、図17に示す回路のようにして
測定し、その接地電極10の接地抵抗値をR、図12の
ような既設接地極や自然接地(メッシュ接地等を含む)
の抵抗値R2又は図6のような接地極R2を電圧検出極P
としてその測定抵抗値をR1とする。測定接地抵抗値R1
は、測定値Rより必ず低く測定され、その理由は測定抵
抗値R1を測定したE−P間隔aは、通常測定の間隔よ
り小さく、測定接地抵抗値Rの電圧波及範囲内にあり、
その結果低く測定される。測定接地抵抗値Rを正値とす
ると接地抵抗値RとR1の比がRの電圧がR1迄の範囲に
なり、その結果測定値は低くなり、次の計算のように、
その範囲内の波及率αとなる。 α=(1−R1/R)×100% 又、図3、図4、図6、図7、図12のような2極並列
合成抵抗値Rと単独極における測定抵抗値R1,接地極R
2の単独抵抗値の測定値から、次のように求めても概略
値としての αを求めることが出来る。 α=(R/((R1×R2)/(R1+R2)))−1×10
0% 以上のことから、接地系間の電圧範囲も容易に測定さ
れ、請求項1,2,3及び4の関係も容易に確認するこ
とが出来る。本測定には電圧降下法測定と同様に、電圧
計によって測定すると、接地抵抗計による測定に比し、
その測定度は向上する。 The fifth invention is as follows. The present invention
The present invention relates to a measurement for confirming whether or not the grounding work function is effective for the settings of claims 1, 2, 3, and 4. Also, the present invention relates to a measurement method for confirming whether or not it can function as a deeply buried insulated independent ground electrode. As shown in FIG. 13, in order to measure the parallel combined ground resistance R of the ground resistances R 1 and R 2 of the two ground electrodes, a measuring wire is connected to the current-carrying auxiliary pole C for measurement and the auxiliary pole P for voltage detection. A measuring current conducting wire is also connected in parallel to the two poles 1 and R 2 . At this time, the electric wires B and B ′ branched from the measuring current conducting wire A connected to the two ground poles and connected to the ground poles R 1 and R 2 have the same conductor resistance, that is, the same disconnection from the branch point C. Use the same area and the same length, and connect the voltage detection wires like current-carrying wires so that there is no error in the measured values. The measurement of the ground resistance R of the two ground electrodes in FIG.
It is also possible to use a direct-reading earth resistance meter E that can perform precise measurement.
R 1, R 2 is measured by pressing the switch for each single value and R 1, parallel combination of R 2 earth resistance meter R. As shown in the cross-sectional view of the measurement circuit in FIG. 15, when measuring the ground resistance of the deeply buried insulated independent ground electrode, the current carrying auxiliary ground electrode C is provided at a distant point in the x direction, and the voltage detection auxiliary pole P is set to P1 in the same X direction. 16 to Pn, the reduction of the ground electrode E in the W direction as shown in the plane arrangement of FIG. 16 measures the voltage demand, and FIG. 15 measures the resistance area of the ground electrode E using a direct reading instrument and the ripple voltage that spreads from E, respectively. It can be checked whether it is functioning as the intended grounding work. Although this measurement circuit has shown the measurement by the alternating current, if the power supply and the instrument are changed, it is also possible to measure the impulse of the direct reading ground resistance meter and the high voltage and the large current. As shown in the measurement circuit plan view of FIG. 17, the ground resistance of the deep buried insulated independent ground electrode is
Is provided at any apogee in the x, w, y, and z directions, and the voltage detection auxiliary pole P is also fixedly provided at any apogee in the x, w, y, and z directions, and is measured. Can be verified. Conventionally, the voltage that spreads from the grounding pole to other grounding systems
There was no method for measuring. Also, on the contrary,
It does not measure the voltage that spreads to other ground from
Was. Therefore, the problem of ground security has not been solved.
Was. Set the ground resistance as shown in the circuits shown in FIGS.
Measured, and the ground resistance value of the ground electrode 10 was R, as shown in FIG.
Existing grounding pole and natural grounding (including mesh grounding etc.)
Earthing the R 2 voltage detection electrode P as resistance R 2 or FIG. 6
And the measured resistance value is R 1 . Measurement ground resistance R 1
Is always measured lower than the measured value R, because the
E-P interval a of the measurement of the anti-value R 1, the interval of the normal measurement
And is within the voltage range of the measured ground resistance R,
As a result, it is measured low. Set the measured ground resistance R to a positive value
Then, the ratio of the ground resistance R and R 1 falls within the range of the voltage of R up to R 1
And as a result the measured value is lower, as in the following calculation:
The ripple rate α falls within the range. α = (1−R 1 / R) × 100% and two-pole parallel as shown in FIG. 3, FIG. 4, FIG. 6, FIG. 7, FIG.
Combined resistance value R, measured resistance value R 1 at a single pole, grounding pole R
From the measured value of the single resistance value of 2 , it can be roughly calculated as follows
Α as a value can be obtained. α = (R / ((R 1 × R 2 ) / (R 1 + R 2 ))) − 1 × 10
Since it is 0% or more, the voltage range between the grounding systems can be easily measured.
It is also easy to confirm the relationship between claims 1, 2, 3 and 4.
Can be. In this measurement, as in the voltage drop method,
When measured with a meter, compared to measurement with a ground resistance meter,
The measure is improved.
Claims (5)
径rの整数倍値nrを、X左側に接地電極の等価半径r
を、Yに接地電極の等価半径rに対応する接地抵抗区域
αと接地電極から低減して波及する接地電圧の低減率も
αとした曲線のグラフ、接地電極から波及する電圧の波
及率α1を示す斜線に、その斜線と曲線が共用できる様
に表現したことを特徴とする対数、方眼、又は、XとY
グラフの1部分を拡大した対数グラフとし、又、XとY
の交点からは接地極からの離隔間隔等を、曲線又は斜線
の何れか1本の線からでも読みとれる様にα、α1のグ
ラフ値を併記すると、読み方を変えて読みとれる事を特
徴とする本グラフとなり、本グラフから接地極2極以上
設置の適切な接地極の相互間隔、自然接地からの相互間
隔等を求める計算式と、その所要埋設深さに設ける、そ
の設定方法とその接地電極。1. An integer multiple nr of the equivalent radius r of the ground electrode is shown on the right side of the logarithmic graph and an equivalent radius r of the ground electrode is shown on the left side of the logarithmic graph.
Is a ground resistance section α corresponding to the equivalent radius r of the ground electrode and a curve of a curve in which the reduction rate of the ground voltage that spreads from the ground electrode is also α, the ripple rate α 1 of the voltage that spreads from the ground electrode. A logarithm, a grid, or X and Y, wherein the diagonal line indicating is expressed so that the diagonal line and the curve can be shared.
One part of the graph is an enlarged logarithmic graph, and X and Y
Etc. spaced distance from the ground electrode from the intersection of, as can be read from any one single line of the curve or diagonal line alpha, when also shown a chart values of alpha 1, and characterized in that can read by changing the reading This graph shows the calculation formulas for calculating the proper distance between the grounding poles of two or more grounding poles, the mutual distance from natural grounding, etc., and the setting method for the required burial depth. electrode.
rと、2接地電極の設置間隔aのa/rの整数倍値を、
Yに2接地抵抗の集合係数ηの上限2とした曲線のグラ
フと、Yの接地電極のηが低減する斜線グラフとする
と、接地電極から波及する電圧の低減率も表現され、
又、その斜線も共用できる様にすると対数、方眼、又
は、XとYの1部分を拡大した対数グラフとなり、又、
2接地極間に発生するその集合係数ηは2≫1であり、
又、Yをη−1とするとグラフはαとなり請求項1のグ
ラフと同一性を有し、又、2接地極相互の接地抵抗と大
地比抵抗も無関係になることから、接地規模も無関係に
なり、本グラフと、本グラフから2極設置の接地極の間
隔等を求める事が出来、接地極相互の離隔間隔を曲線又
は斜線の何れか1本の線からでも読み取れる様にα、α
1,ηのグラフ値を併記すると、読み方を変えて読みと
れ、更に、Yに接地電圧低減率α1の逆数を取るとXに
相互間隔aのnも読みとれる特徴を有する本グラフ、本
グラフから接地極2極以上設置の適切な接地極の相互間
隔、自然接地からの相互間隔等を求める計算式、及び、
その設定方法とその接地電極。2. In the logarithmic graph, X represents an equivalent radius r of the two ground electrodes and an integer multiple of a / r of the installation interval a of the two ground electrodes.
Assuming that Y is a graph of a curve in which the set coefficient η of the two ground resistances is 2 and an oblique line graph in which the η of the Y ground electrode is reduced, the reduction rate of the voltage spreading from the ground electrode is also expressed.
When the diagonal lines can be shared, a logarithmic graph, a grid, or a logarithmic graph in which one part of X and Y is enlarged,
The set coefficient η generated between the two ground poles is 2≫1,
If Y is η−1, the graph becomes α, which is the same as the graph of claim 1, and the ground resistance between the two ground poles and the ground resistivity become irrelevant. From this graph and this graph, it is possible to obtain the distance between the grounding poles of the two poles and the like, and to determine the distance between the grounding poles from any one of a curve and a diagonal line.
1, when also shown a chart value of eta, be read by changing the reading, further, the graph having taken features also read n of mutual distance a in the X take the inverse of the ground voltage reduction rate alpha 1 in Y, from the graph A calculation formula for calculating the proper distance between the grounding poles of two or more grounding poles, the distance from the natural grounding, and the like, and
The setting method and the ground electrode.
場合や、並列接続された2接地極の小さい接地抵抗をR
S、大きい接地抵抗をRLとし、その関係を対数グラフ
のXに、RL/RSのn整数倍値、Yに2極集合係数の
最大値1+RS/RL=2とすると、1≪〜100%の
様に上昇する曲線の並列係数ηのグラフと、最大値を2
とする斜線のグラフα1となり、又、Yをη−1に差し
引くとαになり請求項1,2項と内容が同一のグラフと
なり、曲線グラフは接地電極から低減波及する接地電
圧、又、斜線グラフは接地電極から波及する電圧のα1
を表し、対数、方眼、又は、Yの1部分を拡大した対数
グラフにすると、接地電極からの波及電圧、接地極から
の離隔間隔等を曲線と斜線、何れか1本の線からでも読
み取れる様にα、α1,ηのグラフ値を併記する事によ
り、読み方を変えて読みとれる特徴を有する本グラフと
なり、更に、Yに接地電圧低減率α1の逆数を取るとX
に相互間隔aのnも読みとれ、接地極2極以上設置の適
切な接地極の相互間隔、自然接地からの離隔間隔等を求
める計算式と、深埋設絶縁独立接地電極の所要埋設深さ
に設ける計算式、及び、設定方法とその接地電極。3. When the grounding construction scale is unknown and the grounding resistance is known, or when a small grounding resistance of two grounding poles connected in parallel is set to R
S , the large ground resistance is R L , and the relationship is represented by X of the logarithmic graph, n integer multiples of R L / R S , and Y being the maximum value 1 + RS / R L = 2 of the dipole aggregation coefficient. A graph of the parallel coefficient η of a curve that rises from ≪ to 100% and the maximum value is 2
And α is obtained by subtracting Y from η−1, and becomes the same graph as in claims 1 and 2. The curve graph is a ground voltage that is reduced from the ground electrode, and is a hatched line. The graph shows α 1 of the voltage spreading from the ground electrode.
When the logarithmic, grid, or logarithmic graph is obtained by enlarging a part of Y, the ripple voltage from the ground electrode, the separation distance from the ground electrode, etc. can be read from any one of the curve and the oblique line. By adding the graph values of α, α 1 , and η to this graph, this graph has the characteristic that it can be read by changing the reading method. Further, when Y is the inverse of the ground voltage reduction rate α 1 , X
Can be read as well, and a calculation formula for obtaining an appropriate interval between the ground electrodes having two or more ground poles, an interval from the natural ground, and the like, and a required buried depth of the deep buried insulated independent ground electrode are provided. Calculation formula, setting method and its ground electrode.
れてないd深さに埋設した半径rの球体接地電極のd/
rの整数倍値nを、Yを1+r/2dとすると、グラフ
は請求項2の二分之一の曲線グラフαと、接地電圧が波
及する波及率の斜線グラフα1になり、地中電極と地表
電極、又は、地表近くに或る自然接地との間で、接地上
昇電圧が他の接地電極に波及する、強弱電圧の波及率を
表せ、請求項1,2、3項と内容が同一のグラフとな
り、曲線グラフは接地電極から波及する接地電圧、斜線
グラフは接地電極から波及する電圧の低減率を表し、曲
線と斜線を共用できる様にすると対数、方眼、又は、Y
の1部分を拡大した対数グラフになり、接地電極からの
波及電圧、接地極からの離隔間隔等を曲線と斜線何れか
1本の線からでも読み取れる様にα、α1,ηのグラフ
値を併記すると、読み方を変えて、読みとれる特徴を有
する本グラフとなり、接地極2極以上設置の適切な接地
極の相互間隔、自然接地からの離隔間隔等を求める計算
式と、深埋設絶縁独立接地電極の所要埋設深さに設ける
計算式、及び、設定方法とその接地電極。4. In the logarithmic graph, X represents the d / of a spherical ground electrode having a radius r embedded at a depth d not connected to the ground surface by a conductor.
Assuming that n is an integer multiple of r and Y is 1 + r / 2d, the graph becomes a bipartite curve graph α of claim 2 and a diagonal line graph α 1 of the ripple rate at which the ground voltage spreads. Between the ground electrode and the ground, or a natural ground near the surface of the earth, the ground rise voltage spreads to the other ground electrode, and can show the ripple rate of the strong and weak voltage. The curve graph shows the ground voltage that spreads from the ground electrode, and the hatched graph shows the reduction rate of the voltage that spreads from the ground electrode. If the curve and the diagonal line can be shared, the logarithm, grid, or Y
Is a logarithmic graph in which a part of is expanded, and the graph values of α, α 1 , η are set so that the ripple voltage from the ground electrode, the separation distance from the ground electrode, etc. can be read from either the curve or the oblique line. In addition, this graph has characteristics that can be read by changing the way of reading, and a calculation formula for obtaining appropriate mutual spacing of grounding electrodes installed at two or more grounding poles, separation from natural grounding, etc., and deep buried insulated independent grounding Calculation formulas to be provided at the required burial depth of the electrodes, setting methods and their ground electrodes.
列合成接地抵抗Rの測定時、そのR1、R2極に接続し
て通電する、測定用電流通電線の導体抵抗は同一とし、
即ち、配線場所の引き出し点からは、同一断面積で同一
長さのものを使用して両線の導体抵抗を調節し、又、請
求項1,2,3,4のグラフ図及び計算図から、電圧波
及度を設定した接地電極と同様に、接地抵抗測定用補助
接地電極C、Pの設置間隔や、電圧検出用電線も、電流
通電線の様に接続し、並列係数値と抵抗区域、及び、接
地電極から波及する波及低減電圧値を検証する測定方
法。Ground resistance of 5. 2 the ground electrode, the measurement of R 1, parallel combined earth resistance of R 2 R, is energized by connecting to the R 1, R 2 pole, conductor resistance of the measuring current supply line The same,
That is, from the drawing point of the wiring place, the conductor resistance of both wires is adjusted using the same cross-sectional area and the same length, and from the graphs and calculation diagrams of claims 1, 2, 3, and 4, Like the ground electrode for which the voltage spread is set, the installation interval of the auxiliary ground electrodes C and P for measuring the ground resistance and the electric wire for voltage detection are also connected like the current conducting wire, and the parallel coefficient value and the resistance area, And a measurement method for verifying a ripple reduction voltage value spreading from a ground electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37077999A JP2001148274A (en) | 1999-11-19 | 1999-11-19 | Ground electrode installing method and ground electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37077999A JP2001148274A (en) | 1999-11-19 | 1999-11-19 | Ground electrode installing method and ground electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001148274A true JP2001148274A (en) | 2001-05-29 |
Family
ID=18497588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37077999A Pending JP2001148274A (en) | 1999-11-19 | 1999-11-19 | Ground electrode installing method and ground electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001148274A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018132333A (en) * | 2017-02-13 | 2018-08-23 | 株式会社かんでんエンジニアリング | Grounding resistance measuring method |
CN109921206A (en) * | 2019-03-28 | 2019-06-21 | 河南四达电力科技研究院有限公司 | A kind of graphite-based aerial drainage earthing pole |
-
1999
- 1999-11-19 JP JP37077999A patent/JP2001148274A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018132333A (en) * | 2017-02-13 | 2018-08-23 | 株式会社かんでんエンジニアリング | Grounding resistance measuring method |
CN109921206A (en) * | 2019-03-28 | 2019-06-21 | 河南四达电力科技研究院有限公司 | A kind of graphite-based aerial drainage earthing pole |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Melipoulos et al. | An advanced computer model for grounding system analysis | |
Ayodele et al. | Comparative assessment of the effect of earthing grid configurations on the earthing system using IEEE and Finite Element Methods | |
Chang et al. | Computation of ground resistances and assessment of ground grid safety at 161/23.9-kV indoor-type substation | |
CN103197193B (en) | A kind of ground net corrosion point defining method and system | |
Blattner | Study of driven ground rods and four point soil resistivity tests | |
EP2629372A2 (en) | Apparatus and method for calculating length of carbon grounding electrode module based on two-layered distributed constant circuit | |
CN108388750B (en) | Novel radial grounding resistance calculation method | |
CN107064649B (en) | Measure the method and system of pole tower ground resistance | |
JP2001148274A (en) | Ground electrode installing method and ground electrode | |
Ma et al. | Study of influence of buried metallic structures on soil resistivity measurements | |
Jabbehdari et al. | Distribution of stray current based on 3-Dimensional earth model | |
Kokoruš et al. | Computer aided design of the substation grounding system | |
Puttarach et al. | Optimal design in distribution substation’s grounding system for decreasing touch voltage | |
Jose | Design of Earth Grid for a 33/11kV GIS Substation at a High Soil Resistivity Site using CYMGRD Software | |
Li et al. | Analysis of a steel grounding system: a practical case study | |
Mousa | Experimental investigation of enhanced earth electrode systems under high frequency and transient conditions | |
Riedl et al. | Realistic maximum touch voltages in global earthing systems | |
Nor et al. | Validation of the calculation and measurement techniques of earth resistance values | |
Macedo et al. | Measurement system applied to energized substations grounding grids diagnosis | |
KR101066566B1 (en) | The system for analyzing electric potential rise using electrolytic tank | |
Ma et al. | Grounding analysis of a large electric power station | |
Jambak et al. | Evaluation of grounding system for AC substation using sub-ground (SG) software for novice professionals: Interpretation based on IEEE Std. 80-1986 | |
Aibangbee et al. | Evaluation of High Voltage Transmission Line Towers Footing Earth Resistance under High Impulse Currents | |
Pires et al. | Computation of grounding grids parameter on unconventional geometry | |
JP2002270257A (en) | Grounding resistance measuring method, and grounding electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041227 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050121 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20050729 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060516 |