JP2001147447A5 - - Google Patents

Download PDF

Info

Publication number
JP2001147447A5
JP2001147447A5 JP1999329981A JP32998199A JP2001147447A5 JP 2001147447 A5 JP2001147447 A5 JP 2001147447A5 JP 1999329981 A JP1999329981 A JP 1999329981A JP 32998199 A JP32998199 A JP 32998199A JP 2001147447 A5 JP2001147447 A5 JP 2001147447A5
Authority
JP
Japan
Prior art keywords
storage capacitor
capacitor electrode
electrode
conductive layer
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999329981A
Other languages
Japanese (ja)
Other versions
JP4058869B2 (en
JP2001147447A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP32998199A priority Critical patent/JP4058869B2/en
Priority claimed from JP32998199A external-priority patent/JP4058869B2/en
Publication of JP2001147447A publication Critical patent/JP2001147447A/en
Publication of JP2001147447A5 publication Critical patent/JP2001147447A5/ja
Application granted granted Critical
Publication of JP4058869B2 publication Critical patent/JP4058869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の名称】電気光学装置及びその製造方法、並びにプロジェクタPatent application title: Electro-optical device, method of manufacturing the same, and projector

【0006】
【課題を解決するための手段】
本発明の第1電気光学装置は上記課題を解決するために、基板上に、複数の走査線及び複数のデータ線と、前記走査線及び前記データ線の交差に対応して設けられた薄膜トランジスタと、前記ドレイン領域に導電層を中継して電気的に接続された画素電極と を備えており、前記ドレイン領域から延設された半導体層の一部からなる第1蓄積容量電極と前記第1蓄積容量電極上の第2蓄積容量電極とが第1誘電体膜を介して対向配置されて一の蓄積容量が構築され且つ前記第2蓄積容量電極と前記導電層の一部からなる第3蓄積容量電極とが前記第2誘電体膜を介して対向配置されて他の蓄積容量が構築されており、前記第2蓄積容量電極の伸延方向に交わる方向で切った前記一及び他の蓄積容量を含む断面において前記第1蓄積容量電極は前記第2蓄積容量電極よりも幅広に形成されている。
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a first electro-optical device according to the present invention includes a plurality of scanning lines and a plurality of data lines, and thin film transistors provided corresponding to intersections of the scanning lines and the data lines on a substrate. A first storage capacitor electrode comprising a part of a semiconductor layer extended from the drain region; and a first storage capacitor electrode, and a pixel electrode electrically connected by relaying a conductive layer to the drain region. A third storage capacitor, which is disposed opposite to the second storage capacitor electrode on the capacitor electrode via the first dielectric film, to construct one storage capacitor, and which comprises the second storage capacitor electrode and a part of the conductive layer. The other storage capacitor is constructed by facing the electrode through the second dielectric film to construct another storage capacitor, which includes the one and other storage capacitors cut in a direction intersecting the extension direction of the second storage capacitor electrode. In the cross section, the first storage capacitor electrode is It is formed wider than the second storage capacitance electrode.

【0008】
更に導電層の一部からなる第3蓄積容量電極は、第2蓄積容量電極と対向配置されることにより、該第2蓄積容量電極を半導体層の一部からなる第1蓄積容量電極に対向配置して構築した一の蓄積容量に加えて、他の蓄積容量を追加的に構築する。従って、当該導電層を利用することにより、限られた画素の非開口領域(即ち、各画素において表示に寄与する光が透過しない領域)を有効利用して蓄積容量を増加させることができる。この結果、画素電極における画像信号の電圧保持時間を長くすることができ、コントラスト比を効率良く高められる。また、容量線により各画素に設けられる第1蓄積容量電極をまとめて構成できる。
[0008]
Furthermore, the third storage capacitor electrode formed of a part of the conductive layer is disposed opposite to the second storage capacitor electrode , whereby the second storage capacitor electrode is disposed opposite to the first storage capacitor electrode formed of a part of the semiconductor layer. In addition to the storage capacity of one built, another storage capacity is additionally built. Therefore, by using the conductive layer, the storage capacity can be increased by effectively utilizing the non-aperture area of a limited pixel (that is, the area in which light contributing to display in each pixel is not transmitted). As a result, the voltage holding time of the image signal in the pixel electrode can be extended, and the contrast ratio can be efficiently enhanced. Further, the first storage capacitor electrode provided in each pixel can be collectively configured by the capacitor line.

【0010】
そして、第2蓄積容量電極の伸延方向に交わる方向で切った一及び他の蓄積容量を含む断面において、第1蓄積容量電極は第2蓄積容量電極よりも幅広に形成されている。即ち、第1蓄積容量の幅>第2蓄積容量の幅という不等式関係が成立する。このため、第1蓄積容量電極が第2蓄積容量電極と同一幅に形成される場合と比較して、第2蓄積容量電極側面部上に形成される第2誘電体膜の付き回りは遥かに良くなる。より具体的には、幅広の第1蓄積容量電極の上面においてその縁から後退した位置から側面部が立ち上がるように第2蓄積容量電極が形成されるので、第2蓄積容量電極上に形成される第2誘電体膜が付き回される段差は当該第2蓄積容量電極の膜厚とほぼ等しいだけで済む。そして、この段差分だけ第2蓄積容量電極の側面部に対し第2誘電体膜を付き回すことは、比較的容易に行えるのである。この結果、第2蓄積容量電極の側面部において付き回りの悪い第2誘電体膜の欠陥個所を介して当該第2蓄積容量電極とこの上に第2誘電体膜を介して形成される導電層の一部である第3蓄積容量電極との間でショート或いはリークする可能性を低減できる。
[0010]
Then, in the cross section including the first and other storage capacitor taken along the direction crossing the extending direction of the second storage capacitor electrode, the first storage capacitor electrode is formed wider than the second storage capacitor electrode. That is, the inequality relation of the width of the first storage capacitance> the width of the second storage capacitance is established. Therefore, compared with the case where the first storage capacitor electrode is formed to have the same width as the second storage capacitor electrode, the coverage of the second dielectric film formed on the second storage capacitor electrode side surface is far Get better. More specifically, the second storage capacitor electrode is formed on the upper surface of the wide first storage capacitor electrode so that the side surface portion rises from a position receding from the edge of the wide first storage capacitor electrode. The difference in level between the second dielectric film and the second storage film may be approximately equal to the thickness of the second storage capacitor electrode. Then, it is relatively easy to attach the second dielectric film to the side surface portion of the second storage capacitor electrode by the step difference. As a result, a conductive layer is formed on the second storage capacitor electrode via the second dielectric film via the defective portion of the second dielectric film which is not good enough at the side of the second storage capacitor electrode. It is possible to reduce the possibility of shorting or leakage with the third storage capacitor electrode which is a part of

【0013】
この態様によれば、第2蓄積容量電極の伸延方向に交わる方向で切った一及び他の蓄積容量を含む断面において、第1蓄積容量の幅>第2蓄積容量の幅>第3蓄積容量の幅という不等式関係が成立する。このため、仮に第2蓄積容量電極上に形成される第2誘電体膜の付き回りが第2蓄積容量電極の側面部において悪く、この側面部で第2誘電体膜に欠陥個所が存在しても、この側面部における第2誘電体膜上には、第3蓄積容量電極は形成されない。このため、第3蓄積容量電極と第2蓄積容量電極とが、この欠陥個所を介してショート或いはリークする可能性は殆ど無い。
[0013]
According to this aspect, the width of the first storage capacitor> the width of the second storage capacitor> the width of the third storage capacitor in a cross section including one and the other storage capacitors cut in a direction intersecting the extension direction of the second storage capacitor electrode An inequality relation of width is established. Therefore, temporarily the second dielectric film formed on the second storage capacitor electrode is bad at the side portion of the second storage capacitor electrode, and there is a defect in the second dielectric film at this side portion. Also, the third storage capacitor electrode is not formed on the second dielectric film in the side surface portion. For this reason, there is almost no possibility that the third storage capacitor electrode and the second storage capacitor electrode will be shorted or leak via this defect point.

【0015】
この態様によれば、第2蓄積容量電極の伸延方向に交わる方向で切った一及び他の蓄積容量を含む断面において、第1蓄積容量の幅>第2蓄積容量の幅<第3蓄積容量の幅という不等式関係が成立する。このため、第2蓄積容量電極の側面部において第2誘電体膜上に第3蓄積容量電極が形成されるものの、第2蓄積容量電極上に形成される第2誘電体膜の付き回りが特にその側面部においても良好なため、第2蓄積容量電極の側面部において付き回りの悪い第2誘電体膜の欠陥個所を介して当該第2蓄積容量電極とこの上に第2誘電体膜を介して形成される第3蓄積容量電極との間でショート或いはリークする可能性を低減できる。
[0015]
According to this aspect, the width of the first storage capacitance> the width of the second storage capacitance> the width of the second storage capacitance <the third storage capacitance in a cross section including one and other storage capacitances cut in a direction intersecting the extension direction of the second storage capacitance electrode . An inequality relation of width is established. For this reason, although the third storage capacitor electrode is formed on the second dielectric film in the side surface portion of the second storage capacitor electrode, the second dielectric film formed on the second storage capacitor electrode is particularly Since the side surface of the second storage capacitor electrode is also good, the second storage capacitor electrode and the second dielectric film over the second storage capacitor electrode via the defective portion of the second dielectric film which is not smooth in the side surface of the second storage capacitor electrode. It is possible to reduce the possibility of shorting or leakage with the third storage capacitor electrode formed.

【0016】
本発明の第2電気光学装置は上記課題を解決するために、基板上に、複数の走査線及び複数のデータ線と、前記走査線及び前記データ線の交差に対応して設けられた薄膜トランジスタと、前記ドレイン領域に導電層を中継して接続された画素電極とを備えており、前記ドレイン領域から延設された半導体層の一部からなる第1蓄積容量電極と前記第1蓄積容量電極上の第2蓄積容量電極とが前記第1誘電体膜を介して対向配置されて一の蓄積容量が構築され且つ前記第2蓄積容量電極と前記導電層の一部からなる第3蓄積容量電極とが前記第2誘電体膜を介して対向配置されて他の蓄積容量が構築されており、前記第2蓄積容量電極の伸延方向に交わる方向で切った前記一及び他の蓄積容量を含む断面において前記第2蓄積容量電極は前記第3蓄積容量電極よりも幅広に形成されており、前記導電層上及び該導電層が形成されていない領域における前記第2誘電体膜上には層間絶縁膜が形成されている。
[0016]
According to a second electro-optical device of the present invention, in order to solve the above problems, a plurality of scanning lines and a plurality of data lines, thin film transistors provided corresponding to intersections of the scanning lines and the data lines are provided on a substrate. A pixel electrode connected by relaying a conductive layer to the drain region, and a first storage capacitor electrode formed of a part of a semiconductor layer extended from the drain region and the first storage capacitor electrode And a second storage capacitor electrode are arranged opposite to each other via the first dielectric film to construct one storage capacitor, and a third storage capacitor electrode consisting of the second storage capacitor electrode and a part of the conductive layer Are disposed opposite to each other through the second dielectric film to construct another storage capacitance, and in a cross section including the one and the other storage capacitances cut in a direction intersecting the extension direction of the second storage capacitance electrode The second storage capacitor electrode is Storage capacitor electrodes are formed wider than the second dielectric film in the conductive layer and the conductive layer is not formed region is formed an interlayer insulating film.

【0018】
そして、第2蓄積容量電極の伸延方向に交わる方向で切った一及び他の蓄積容量を含む断面において、第2蓄積容量電極の幅>第3蓄積容量電極の幅という不等式関係が成立する。このため、仮に第2蓄積容量電極の側面部において付き回りの悪い第2誘電体膜の欠陥個所があっても、この側面部における第2誘電体膜上には、第3蓄積容量電極は形成されない。しかも、この場合の欠陥個所は、一の層間絶縁膜により覆われる。これらの結果、第3蓄積容量電極と第2蓄積容量電極とが、この欠陥個所を介してショート或いはリークする可能性は殆ど無い。
[0018]
Then, in the cross section including the first and other storage capacitor taken along the direction crossing the extending direction of the second storage capacitor electrode, the inequality relationship second width of the storage capacitor electrode> the width of the third storage capacitor electrode is established. For this reason, even if there is a defective portion of the second dielectric film which is dull at the side portion of the second storage capacitor electrode, the third storage capacitor electrode is formed on the second dielectric film at this side portion. I will not. Moreover, the defective portion in this case is covered with one interlayer insulating film. As a result of these, there is almost no possibility that the third storage capacitor electrode and the second storage capacitor electrode will short or leak via this defect point.

【0021】
この態様によれば、第2蓄積容量電極の縁はほとんどテーパが無い状態に形成されても、上述の如く仮に第1蓄積容量電極が第2蓄積容量電極と同一幅に形成されるとすれば第2誘電体膜の付き回りは非常に悪いが、この態様では、第1蓄積容量電極は第2蓄積容量電極よりも幅広に形成されているので、やはり第2蓄積容量電極上に形成される第2誘電体膜の付き回りは良い。
このため、付き回りの悪い第2誘電体膜の欠陥個所を介して当該第2蓄積容量電極と導電層の一部である第3蓄積容量電極との間でショート或いはリークする可能性を低減できる。したがって、このような装置欠陥の発生率を低減しつつ且つ素子電極や配線の微細化に相応しくパターン精度を高めるのに最適な指向性の高いドライエッチングを用いて第2蓄積容量電極を形成でき、容量線と同一膜から同時に走査線をドライエッチングにより形成できる。このことは、走査線の一部が薄膜トランジスタのゲート電極とされることに鑑みれば、パターン精度の高いゲート電極を形成することによりトランジスタ特性に優れた薄膜トランジスタを形成する上で非常に有利である。
[0021]
According to this aspect, even if the edge of the second storage capacitor electrode is formed with almost no taper, it is assumed that the first storage capacitor electrode is formed to have the same width as the second storage capacitor electrode as described above. Although the second dielectric film is very poorly attached, in this embodiment, since the first storage capacitor electrode is formed wider than the second storage capacitor electrode, it is also formed on the second storage capacitor electrode. The second dielectric film is fine.
Therefore, the possibility of shorting or leakage between the second storage capacitor electrode and the third storage capacitor electrode which is a part of the conductive layer can be reduced via the defective portion of the second dielectric film which is not good enough. . Therefore, it is possible to form the second storage capacitor electrode using highly directional dry etching which is suitable for reducing the incidence of device defects and improving the pattern accuracy in accordance with the miniaturization of the device electrodes and wirings. The scanning line can be formed simultaneously by dry etching from the same film as the capacitance line. This is very advantageous in forming a thin film transistor having excellent transistor characteristics by forming a gate electrode with high pattern accuracy, considering that a part of the scanning line is used as a gate electrode of the thin film transistor.

【0022】
本発明の第1又は第2電気光学装置の他の態様では、前記ドレイン領域と前記導電層とは、前記一及び他の蓄積容量が形成されていない平面領域に開孔された第1コンタクトホールを介して電気的に接続されており、前記第2蓄積容量電極の伸延方向に交わる方向で切った前記第1コンタクトホールを含む断面において前記第1蓄積容量電極は前記第2蓄積容量電極よりも幅広に形成されており且つ前記第3蓄積容量電極は前記第2蓄積容量電極よりも幅広に形成されている。
[0022]
In another aspect of the first or second electro-optical device of the present invention, the drain region and the conductive layer are first contact holes opened in a planar region where the one and the other storage capacitors are not formed. The first storage capacitor electrode is more electrically connected than the second storage capacitor electrode in a cross-section including the first contact hole which is electrically connected via the second storage capacitor electrode and cut in a direction intersecting the extension direction of the second storage capacitor electrode. The third storage capacitor electrode is formed wider than the second storage capacitor electrode.

【0023】
この態様によれば、第1コンタクトホールは、一及び他の蓄積容量が形成されていない平面領域に開孔されている。この第1コンタクトホールを介して半導体層のドレイン領域と導電層とは電気的に接続されている。そして、第2蓄積容量電極の伸延方向に交わる方向で切った第1コンタクトホールを含む断面において、第1蓄積容量電極の幅>第2蓄積容量電極の幅<第3蓄積容量電極の幅という不等式関係が成立する。従って、この断面において、第1コンタクトホールを介してドレイン領域と導電層とを第2蓄積容量電極に電気的に接触しないように接続することが可能となる。しかも、第2蓄積容量電極の側面部において第2誘電体膜上に第3蓄積容量電極が形成されているものの、第2蓄積容量電極上に形成される第2誘電体膜の付き回りが良いため、結局、第1コンタクトホールの周囲で第2蓄積容量電極の側面部において付き回りの悪い第2誘電体膜の欠陥個所を介して当該第2蓄積容量電極と第3蓄積容量電極との間でショート或いはリークする可能性を低減できる。
[0023]
According to this aspect, the first contact hole is opened in the planar area where one and the other storage capacitances are not formed. The drain region of the semiconductor layer and the conductive layer are electrically connected via the first contact hole. Then, in the section including the first contact hole cut in the direction intersecting the extension direction of the second storage capacitor electrode, the inequality: width of first storage capacitor electrode> width of second storage capacitor electrode <width of third storage capacitor electrode A relationship is established. Therefore, in this cross section, the drain region and the conductive layer can be connected so as not to be in electrical contact with the second storage capacitance electrode through the first contact hole. In addition, although the third storage capacitor electrode is formed on the second dielectric film in the side surface portion of the second storage capacitor electrode, the second dielectric film formed on the second storage capacitor electrode is good. Therefore, in the end, between the second storage capacitor electrode and the third storage capacitor electrode via the defective portion of the second dielectric film which is dulled in the side portion of the second storage capacitor electrode around the first contact hole. Can reduce the possibility of shorting or leakage.

【0026】
本発明の第1又は第2電気光学装置の他の態様では、前記第1誘電体膜と同一膜から前記薄膜トランジスタのゲート絶縁膜が形成されており、前記第2蓄積容量電極と同一膜から前記走査線が形成されている。
[0026]
In another aspect of the first or second electro-optical device of the present invention, the gate insulating film of the thin film transistor is formed of the same film as the first dielectric film, and the gate insulating film of the second storage capacitor electrode is formed of the same film as the second storage capacitor electrode. A scan line is formed.

【0027】
この態様によれば、一の蓄積容量を構築するための第1誘電体膜と、薄膜トランジスタのゲート絶縁膜とは、例えば熱酸化膜等と同一膜から形成されている。
しかも、第2蓄積容量電極と走査線とは、例えばポリシリコン膜等と同一膜から形成されている。従って、全体として装置構成及び製造方法の簡略化並びに低コスト化を図ることが可能となる。そして特に、ゲート電極を構成する走査線に要求されるパターン精度を出すために、ドライエッチングを施してこれら容量線及び走査線をパターンニングした場合に、該ドライエッチングにより、ほぼテーパが無い状態の側面部を持つ第2蓄積容量電極が形成されたとしても、第2蓄積容量電極と第3蓄積容量電極との間でショート或いはリークする可能性を余り高めないで済む。
[0027]
According to this aspect, the first dielectric film for constructing one storage capacitance and the gate insulating film of the thin film transistor are formed of, for example, the same film as the thermal oxide film or the like.
Moreover, the second storage capacitor electrode and the scanning line are formed of, for example, the same film as the polysilicon film or the like. Therefore, it is possible to achieve simplification of the apparatus configuration and manufacturing method as a whole and cost reduction. In particular, in the case where dry etching is performed to pattern the capacitance lines and the scanning lines in order to obtain the pattern accuracy required for the scanning lines constituting the gate electrode, the dry etching does not substantially taper. Even if the second storage capacitor electrode having the side surface portion is formed, the possibility of a short circuit or a leak between the second storage capacitor electrode and the third storage capacitor electrode may not be significantly increased.

Claims (15)

基板上に、
複数の走査線及び複数のデータ線と、
前記走査線及び前記データ線の交差に対応して設けられた薄膜トランジスタと、
前記ドレイン領域に導電層を中継して電気的に接続された画素電極と
を備えており、
前記ドレイン領域から延設された半導体層の一部からなる第1蓄積容量電極と前記第1蓄積容量電極上の第2蓄積容量電極とが第1誘電体膜を介して対向配置されて一の蓄積容量が構築され且つ前記第2蓄積容量電極と前記導電層の一部からなる第3蓄積容量電極とが前記第2誘電体膜を介して対向配置されて他の蓄積容量が構築されており、
前記第2蓄積容量電極の伸延方向に交わる方向で切った前記一及び他の蓄積容量を含む断面において前記第1蓄積容量電極は前記第2蓄積容量電極よりも幅広に形成されていることを特徴とする電気光学装置。
On the board
Multiple scan lines and multiple data lines,
A thin film transistor provided corresponding to the crossing of the scanning line and the data line;
And a pixel electrode electrically connected to the drain region via a conductive layer .
A first storage capacitor electrode formed of a part of the semiconductor layer extended from the drain region and a second storage capacitor electrode on the first storage capacitor electrode are disposed opposite to each other via a first dielectric film. A storage capacitor is constructed, and the second storage capacitor electrode and a third storage capacitor electrode consisting of a part of the conductive layer are disposed opposite to each other via the second dielectric film, and another storage capacitor is constructed. ,
Characterized in that said first storage capacitor electrode is formed wider than the second storage capacitor electrode in a cross section including the first and other storage capacitor taken along the direction crossing the extending direction of the second storage capacitor electrode Electro-optical device.
前記断面において前記第3蓄積容量電極は前記第2蓄積容量電極よりも幅狭に形成されていることを特徴とする請求項1に記載の電気光学装置。The electro-optical device according to claim 1, wherein the third storage capacitor electrode is formed narrower than the second storage capacitor electrode in the cross section. 前記断面において前記第3蓄積容量電極は前記第2蓄積容量電極よりも幅広に形成されていることを特徴とする請求項1に記載の電気光学装置。The electro-optical device according to claim 1, wherein the third storage capacitor electrode is formed wider than the second storage capacitor electrode in the cross section. 基板上に、
複数の走査線及び複数のデータ線と、
前記走査線及び前記データ線の交差に対応して設けられた薄膜トランジスタと、
前記ドレイン領域に導電層を中継して接続された画素電極と
を備えており、
前記ドレイン領域から延設された半導体層の一部からなる第1蓄積容量電極と前記第1蓄積容量電極上の第2蓄積容量電極とが前記第1誘電体膜を介して対向配置されて一の蓄積容量が構築され且つ前記第2蓄積容量電極と前記導電層の一部からなる第3蓄積容量電極とが前記第2誘電体膜を介して対向配置されて他の蓄積容量が構築されており、
前記第2蓄積容量電極の伸延方向に交わる方向で切った前記一及び他の蓄積容量を含む断面において前記第2蓄積容量電極は前記第3蓄積容量電極よりも幅広に形成されており、前記導電層上及び該導電層が形成されていない領域における前記第2誘電体膜上には層間絶縁膜が形成されていることを特徴とする電気光学装置。
On the board
Multiple scan lines and multiple data lines,
A thin film transistor provided corresponding to the crossing of the scanning line and the data line;
And a pixel electrode connected by relaying a conductive layer to the drain region,
A first storage capacitor electrode formed of a part of the semiconductor layer extended from the drain region and a second storage capacitor electrode on the first storage capacitor electrode are disposed opposite to each other via the first dielectric film. Storage capacitances are constructed, and the second storage capacitance electrode and the third storage capacitance electrode consisting of a part of the conductive layer are disposed opposite to each other through the second dielectric film to construct another storage capacitance. Yes,
The second storage capacitor electrode in a cross section including the first and other storage capacitor taken along the direction crossing the extending direction of the second storage capacitor electrode is formed wider than the third storage capacitor electrode, wherein the conductive An electro-optical device characterized in that an interlayer insulating film is formed on the layer and on the second dielectric film in a region where the conductive layer is not formed.
前記断面において前記第2蓄積容量電極の縁は、ほぼテーパが無い状態に形成されていることを特徴とする請求項1から4のいずれか一項に記載の電気光学装置。The electro-optical device according to any one of claims 1 to 4, wherein an edge of the second storage capacitor electrode in the cross section is formed in a substantially non-tapered state. 前記ドレイン領域と前記導電層とは、前記一及び他の蓄積容量が形成されていない平面領域に開孔された第1コンタクトホールを介して電気的に接続されており、前記第2蓄積容量電極の伸延方向に交わる方向で切った前記第1コンタクトホールを含む断面において前記第1蓄積容量電極は前記第2蓄積容量電極よりも幅広に形成されており且つ前記第3蓄積容量電極は前記第2蓄積容量電極よりも幅広に形成されていることを特徴とする請求項1から5のいずれか一項に記載の電気光学装置。The drain region and the conductive layer are electrically connected via a first contact hole opened in a planar region where the one and the other storage capacitors are not formed, and the second storage capacitor electrode The first storage capacitor electrode is formed wider than the second storage capacitor electrode in a cross section including the first contact hole cut in a direction intersecting the extension direction of the second storage capacitor electrode and the third storage capacitor electrode is the second The electro-optical device according to any one of claims 1 to 5, wherein the electro-optical device is formed wider than the storage capacitance electrode. 前記導電層と前記画素電極とは、前記一及び他の蓄積容量が構築された平面領域に開孔された第2コンタクトホールを介して電気的に接続されたことを特徴とする請求項1から6のいずれか一項に記載の電気光学装置。The conductive layer and the pixel electrode are electrically connected to each other through a second contact hole opened in a planar region in which the one and the other storage capacitances are constructed. 6. The electro-optical device according to any one of 6. 前記第1誘電体膜と同一膜から前記薄膜トランジスタのゲート絶縁膜が形成されており、前記第2蓄積容量電極と同一膜から前記走査線が形成されていることを特徴とする請求項1から7のいずれか一項に記載の電気光学装置。8. The gate insulating film of the thin film transistor is formed of the same film as the first dielectric film, and the scanning line is formed of the same film as the second storage capacitor electrode. The electro-optical device according to any one of the above. 前記導電層は高融点金属を含むことを特徴とする請求項1から8のいずれか一項に記載の電気光学装置。The electro-optical device according to any one of claims 1 to 8, wherein the conductive layer contains a refractory metal. 前記導電層は、前記基板上において前記データ線よりも下層に設けられていることを特徴とする請求項1から9のいずれか一項に記載の電気光学装置。The electro-optical device according to any one of claims 1 to 9, wherein the conductive layer is provided on the substrate below the data line. 請求項1から10のいずれか一項に記載の電気光学装置をライトA light according to any one of claims 1 to 10 バルブとして用いることを特徴とするプロジェクタ。A projector characterized in that it is used as a valve. 基板上に薄膜トランジスタのソース領域、チャネル領域及びドレイン領域並びに一の蓄積容量の第1蓄積容量電極となる半導体層を形成する工程と、
前記半導体層上に前記薄膜トランジスタのゲート絶縁膜及び前記一の蓄積容量の第1誘電体膜を同一絶縁薄膜から形成する工程と、
前記第ゲート絶縁膜及び前記1誘電体膜上に夫々複数の走査線及び複数の容量線を形成する工程と、
前記走査線及び容量線上に第2誘電体膜を形成する工程と、
前記第1及び第2誘電体膜に前記ドレイン領域に通じる第1コンタクトホールを開孔する工程と、
前記第2誘電体膜上に、前記第1コンタクトホールを介して前記ドレイン領域に電気的に接続されるように導電層を形成する工程と、
前記導電層上に一の層間絶縁膜を形成する工程と、
前記一の層間絶縁膜上に複数のデータ線を形成する工程と、
前記データ線上に他の層間絶縁膜を形成する工程と、
前記一及び他の層間絶縁膜に前記導電層に通じる第2コンタクトホールを開孔する工程と、
前記第2コンタクトホールを介して前記導電層に電気的に接続されるように前記他の層間絶縁膜上に画素電極を形成する工程と
を有しており、
前記第1蓄積容量電極と前記容量線の一部からなる第2蓄積容量電極とを前記第1誘電体膜を介して対向配置させることにより前記一の蓄積容量を構築し且つ前記第2蓄積容量電極と前記導電層の一部からなる第3蓄積容量電極とを前記第2誘電体膜を介して対向配置させることにより他の蓄積容量を構築し、
前記容量線の伸延方向に交わる方向で切った前記一及び他の蓄積容量を含む断面において前記第1蓄積容量電極を前記第2蓄積容量電極よりも幅広に形成することを特徴とする電気光学装置の製造方法。
Forming on the substrate a semiconductor layer to be a source region, a channel region and a drain region of the thin film transistor and a first storage capacitance electrode of one storage capacitance;
Forming the gate insulating film of the thin film transistor and the first dielectric film of the one storage capacitor from the same insulating thin film on the semiconductor layer;
Forming a plurality of scanning lines and a plurality of capacitance lines on the first gate insulating film and the first dielectric film, respectively;
Forming a second dielectric film on the scan line and the capacitance line;
Opening a first contact hole communicating with the drain region in the first and second dielectric films;
Forming a conductive layer on the second dielectric film so as to be electrically connected to the drain region through the first contact hole;
Forming an interlayer insulating film on the conductive layer;
Forming a plurality of data lines on the one interlayer insulating film;
Forming another interlayer insulating film on the data line;
Opening a second contact hole communicating with the conductive layer in the one and the other interlayer insulating films;
Forming a pixel electrode on the other interlayer insulating film so as to be electrically connected to the conductive layer through the second contact hole;
The one storage capacitor is constructed by opposingly arranging the first storage capacitor electrode and a second storage capacitor electrode formed of a part of the capacitor line via the first dielectric film, and the second storage capacitor Another storage capacitor is constructed by opposingly arranging an electrode and a third storage capacitor electrode made of a part of the conductive layer via the second dielectric film,
An electro-optical device characterized in that the first storage capacitor electrode is formed wider than the second storage capacitor electrode in a cross section including the one and other storage capacitors cut in a direction intersecting the extension direction of the capacitor line. Manufacturing method.
前記断面において前記第3蓄積容量電極を前記第2蓄積容量電極よりも幅狭に形成することを特徴とする請求項12に記載の電気光学装置の製造方法。The method according to claim 12, wherein the third storage capacitor electrode is formed narrower than the second storage capacitor electrode in the cross section. 基板上に薄膜トランジスタのソース領域、チャネル領域及びドレイン領域並びに一の蓄積容量の第1蓄積容量電極となる半導体層を形成する工程と、
前記半導体層上に前記薄膜トランジスタのゲート絶縁膜及び前記一の蓄積容量の第1誘電体膜を同一絶縁薄膜から形成する工程と、
前記ゲート絶縁膜及び前記第1誘電体膜上に夫々複数の走査線及び複数の容量線を形成する工程と、
前記走査線及び容量線上に第2誘電体膜を形成する工程と、
前記第1及び第2誘電体膜に前記ドレイン領域に通じる第1コンタクトホールを開孔する工程と、
前記第2誘電体膜上に、前記第1コンタクトホールを介して前記ドレイン領域に電気的に接続されるように導電層を形成する工程と、
前記導電層上及び前記導電層が形成されていない領域における前記第2誘電体膜上に一の層間絶縁膜を形成する工程と、
前記一の層間絶縁膜上に複数のデータ線を形成する工程と、
前記データ線上に他の層間絶縁膜を形成する工程と、
前記一及び他の層間絶縁膜に前記導電層に通じる第2コンタクトホールを開孔する工程と、
前記第2コンタクトホールを介して前記導電層に電気的に接続されるように前記他の層間絶縁膜上に画素電極を形成する工程と
を有しており、
前記第1蓄積容量電極と前記容量線の一部からなる第2蓄積容量電極とを前記第1誘電体膜を介して対向配置させることにより前記一の蓄積容量を構築し且つ前記第2蓄積容量電極と前記導電層の一部からなる第3蓄積容量電極とを前記第2誘電体膜を介して対向配置させることにより他の蓄積容量を構築し、
前記容量線の伸延方向に交わる方向で切った前記一及び他の蓄積容量を含む断面において前記第2蓄積容量電極を前記第3蓄積容量電極よりも幅広に形成することを特徴とする電気光学装置の製造方法。
Forming on the substrate a semiconductor layer to be a source region, a channel region and a drain region of the thin film transistor and a first storage capacitance electrode of one storage capacitance;
Forming the gate insulating film of the thin film transistor and the first dielectric film of the one storage capacitor from the same insulating thin film on the semiconductor layer;
Forming a plurality of scanning lines and a plurality of capacitance lines on the gate insulating film and the first dielectric film, respectively;
Forming a second dielectric film on the scan line and the capacitance line;
Opening a first contact hole communicating with the drain region in the first and second dielectric films;
Forming a conductive layer on the second dielectric film so as to be electrically connected to the drain region through the first contact hole;
Forming an interlayer insulating film on the conductive layer and on the second dielectric film in a region where the conductive layer is not formed;
Forming a plurality of data lines on the one interlayer insulating film;
Forming another interlayer insulating film on the data line;
Opening a second contact hole communicating with the conductive layer in the one and the other interlayer insulating films;
Forming a pixel electrode on the other interlayer insulating film so as to be electrically connected to the conductive layer through the second contact hole;
The one storage capacitor is constructed by opposingly arranging the first storage capacitor electrode and a second storage capacitor electrode formed of a part of the capacitor line via the first dielectric film, and the second storage capacitor Another storage capacitor is constructed by opposingly arranging an electrode and a third storage capacitor electrode made of a part of the conductive layer via the second dielectric film,
An electro-optical device characterized in that the second storage capacitor electrode is formed wider than the third storage capacitor electrode in a cross section including the one and other storage capacitors cut in a direction intersecting the extension direction of the capacitor line. Manufacturing method.
前記走査線及び容量線を形成する工程では、ドライエッチングにより前記走査線及び容量線をパターンニングする工程を含むことを特徴とする請求項12から14のいずれか一項に記載の電気光学装置の製造方法。The electro-optical device according to any one of claims 12 to 14, wherein the step of forming the scanning line and the capacitive line includes the step of patterning the scanning line and the capacitive line by dry etching. Production method.
JP32998199A 1999-11-19 1999-11-19 Electro-optical device, manufacturing method thereof, and projector Expired - Fee Related JP4058869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32998199A JP4058869B2 (en) 1999-11-19 1999-11-19 Electro-optical device, manufacturing method thereof, and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32998199A JP4058869B2 (en) 1999-11-19 1999-11-19 Electro-optical device, manufacturing method thereof, and projector

Publications (3)

Publication Number Publication Date
JP2001147447A JP2001147447A (en) 2001-05-29
JP2001147447A5 true JP2001147447A5 (en) 2004-12-24
JP4058869B2 JP4058869B2 (en) 2008-03-12

Family

ID=18227444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32998199A Expired - Fee Related JP4058869B2 (en) 1999-11-19 1999-11-19 Electro-optical device, manufacturing method thereof, and projector

Country Status (1)

Country Link
JP (1) JP4058869B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4314926B2 (en) * 2003-08-04 2009-08-19 セイコーエプソン株式会社 Electro-optical device, manufacturing method thereof, and electronic apparatus
JP2005084104A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Semiconductor device and electrooptical device
JP4349375B2 (en) 2005-04-11 2009-10-21 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP5386626B2 (en) * 2012-11-06 2014-01-15 株式会社半導体エネルギー研究所 Display device
US10877343B2 (en) * 2018-11-21 2020-12-29 Sharp Kabushiki Kaisha Array substrate and display device

Similar Documents

Publication Publication Date Title
US7049215B2 (en) Thin film transistor array panel and fabricating method thereof
JP3110328B2 (en) Semiconductor storage device
US20010006256A1 (en) Semiconductor device
JP2000267596A5 (en)
KR100239404B1 (en) Dram and dram cell array method
US4513304A (en) Semiconductor memory device and process for producing the same
JP2001147447A5 (en)
CN210110300U (en) Pixel driving circuit, array substrate and display device
US6940480B2 (en) Pixel structure
US5326998A (en) Semiconductor memory cell and manufacturing method thereof
US20050139905A1 (en) Dummy layer in semiconductor device and fabricating method thereof
JP2000114481A (en) Manufacture of semiconductor memory device
KR100488945B1 (en) a method for manufacturing of TFT array panel of digital X-ray detector device
KR100219512B1 (en) Semiconductor device
KR100200716B1 (en) Method of manufacturing a semiconductor device
JP3165693B2 (en) Stacked capacitor type DRAM
KR100390846B1 (en) Method for fabricating semiconductor device
KR20010082836A (en) Liquid Crystal Display Device And Fabrication Method Thereof
KR100294696B1 (en) Semiconductor device and method for manufacturing the same
KR100268863B1 (en) Method for fabricating semiconductor device
JPH1027846A (en) Semiconductor device
WO2005093506A1 (en) Pixel structure and manufacturing method of the same
KR100549570B1 (en) Test pattern structure of semiconductor device
JP2005141255A (en) Liquid crystal display and its manufacturing method
KR20040085911A (en) A method for forming a test pattern of a semiconductor device