JP2001147382A - Objective optical system for endoscope - Google Patents

Objective optical system for endoscope

Info

Publication number
JP2001147382A
JP2001147382A JP32966299A JP32966299A JP2001147382A JP 2001147382 A JP2001147382 A JP 2001147382A JP 32966299 A JP32966299 A JP 32966299A JP 32966299 A JP32966299 A JP 32966299A JP 2001147382 A JP2001147382 A JP 2001147382A
Authority
JP
Japan
Prior art keywords
pair
optical system
endoscope
positive lens
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32966299A
Other languages
Japanese (ja)
Inventor
Haruko Igarashi
治子 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP32966299A priority Critical patent/JP2001147382A/en
Publication of JP2001147382A publication Critical patent/JP2001147382A/en
Priority to US10/357,335 priority patent/US6855110B2/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an objective optical system having an adequate parallax and size of an image, without increasing the diameter of an endoscope in the measurement of a small diameter in particular and a stereoscopic endoscope. SOLUTION: This objective optical system has a pair of negative lens groups 1, a pair of positive lens groups 2, brightness diaphragms 3, second positive lens groups 4 and one image pickup element 8 arrayed successively from the object side. The second position lens groups 4 include a pair of positive lenses decentered more toward the respective optical axes on the object side than toward the brightness diaphragms 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内視鏡用対物光学
系に関する。
The present invention relates to an objective optical system for an endoscope.

【0002】[0002]

【従来の技術】従来、空洞や人間の体腔内に細長の挿入
部を入れて観察等を行う内視鏡が、工業分野、医療分野
において広く用いられている。更に近年、工業分野では
キズやクラック等の大きさや深さの測量、また医療分野
では内視鏡下による外科手術を行うニーズが高まってき
ており、観察部内の奥行き情報を認識できる立体画像に
よる観察が望まれている。
2. Description of the Related Art Conventionally, endoscopes for observing by inserting an elongated insertion portion into a cavity or a human body cavity have been widely used in the industrial field and the medical field. In recent years, in the industrial field, there has been an increasing need for measuring the size and depth of scratches and cracks, and in the medical field, there is a growing need for performing a surgical operation using an endoscope. Observation using a stereoscopic image capable of recognizing depth information in an observation unit. Is desired.

【0003】従来、立体観察が可能な内視鏡として、例
えば特開平8−29701号公報等に記載された光学系
が知られている。これは、図6に示すように、内視鏡挿
入部先端に並列配置された2つの対物レンズ系で構成さ
れていて、2つのCCDで画像を取り込み、そのCCD
の位置の違いによる画像のずれ即ち視差を得ることで立
体視を可能にしている。このように2つのCCDで画像
を取り込むようにした光学系は、立体画像の画質をあげ
たり、計測の精度を上げる点において有効であるが、2
つのCCDを並列に並べることは、従来よりも狹い部位
を観察したいというニーズや、医療用における低侵襲化
の流れと逆行し、内視鏡の小型化を難しくしてしまう。
Conventionally, as an endoscope capable of stereoscopic observation, an optical system described in, for example, Japanese Patent Application Laid-Open No. Hei 8-29701 is known. This is composed of two objective lens systems arranged in parallel at the end of the endoscope insertion section as shown in FIG.
The stereoscopic vision is made possible by obtaining the image shift, that is, the parallax, due to the difference in the position of. An optical system in which an image is captured by two CCDs as described above is effective in improving the image quality of a three-dimensional image and improving measurement accuracy.
Arranging two CCDs in parallel goes against the need for observing a narrower area than before and the trend toward less invasive medical use, and makes it difficult to miniaturize the endoscope.

【0004】そこで、視差のある像を1つのCCDに結
像させるようにした例として、例えば特開平7−359
89号公報に記載の光学系が提案されている。この光学
系は、図7に示すように、互いに並列に配置された2つ
の対物光学系の光軸の延長線上に1つのCCDがあり、
2つの像が結像するようにしている。ところで、対物光
学系の光軸間隔は、立体視をする上で重要な視差や計測
時の精度に影響を与える。この場合、対物光学系の先端
(物体に最も近い部分)での光軸間隔が狭ければ視差が
少なくなり、立体視する上では奥行き方向の情報が得ら
れにくくなり、計測をする上では計測誤差が大きくな
る。
Therefore, as an example in which an image having parallax is formed on one CCD, for example, Japanese Patent Laid-Open No. 7-359
No. 89 has proposed an optical system. In this optical system, as shown in FIG. 7, there is one CCD on an extension of the optical axis of two objective optical systems arranged in parallel with each other,
Two images are formed. Incidentally, the optical axis interval of the objective optical system affects parallax, which is important for stereoscopic vision, and accuracy in measurement. In this case, if the distance between the optical axes at the tip of the objective optical system (the part closest to the object) is small, the parallax will be small, and it will be difficult to obtain information in the depth direction when stereoscopically viewed. The error increases.

【0005】逆に、対物光学系の先端の光軸間隔が広け
れば広いほど視差は大きくなり、計測の精度面では有利
になるが、内視鏡の先端が大きくなってしまうという問
題点や、立体視をする上では視差が大きすぎて観察しづ
らいということにもなり得る。視差は、対物光学系の先
端の光軸間隔だけでなく、観察する物体距離にも依存す
る。即ち、物体距離が近ければ近い程視差は大きくなる
し、遠ければ遠い程視差は少なくなる。以上を踏まえる
と、立体内視鏡においては、観察距離に応じて計測及び
観察に必要な適度な視差をえ且つ内視鏡の大きさを大型
化させないようにするために、対物光学系の先端の光軸
間隔が決まってくる。
Conversely, as the distance between the optical axes at the tip of the objective optical system increases, the parallax increases, which is advantageous in terms of measurement accuracy. However, there is a problem that the tip of the endoscope becomes large. In stereoscopic vision, the parallax may be too large to make observation difficult. Parallax depends not only on the optical axis interval at the tip of the objective optical system but also on the object distance to be observed. In other words, the parallax increases as the object distance decreases, and the parallax decreases as the object distance increases. Based on the above, in a stereoscopic endoscope, in order to obtain an appropriate parallax required for measurement and observation according to the observation distance and to prevent the endoscope from being enlarged, Of the optical axis is determined.

【0006】一方、近年CCDのサイズは小型化への傾
向がある。ところが、上記のようにして最適な対物光学
系の先端の光軸間隔が決まり、その光軸間隔のままCC
D上に結像すると、図8に示すようにCCDが小さけれ
ば、像の中心がCCDの端の方になり、図中斜線を引い
た左右の共通のエリアの像が少なくなり、立体視や計測
に支障をきたしてしまう。逆に、内視鏡の太さの仕様か
ら使用するCCDのサイズが決まり、CCD上での最適
な像の中心間隔が決まったとすると、図9に示すように
CCD上での像の中心間隔が対物光学系先端での光軸間
隔となる場合、計測や立体視に必要な視差が得られない
と云う可能性が出てくる。従って、計測や立体視に必要
な適度の視差及び左右で共通なエリアの像を得るには、
対物光学系の光軸間隔とCCD上での像の中心間隔は、
必要に応じて変える必要があるということになる。
On the other hand, in recent years, the size of a CCD tends to be reduced. However, the optimal optical axis interval at the tip of the objective optical system is determined as described above, and CC
When the image is formed on D, if the CCD is small as shown in FIG. 8, the center of the image is closer to the edge of the CCD, and the image of the common area on the left and right which is shaded in the figure is reduced. The measurement will be hindered. Conversely, assuming that the size of the CCD to be used is determined from the specification of the thickness of the endoscope and the optimum center interval of the image on the CCD is determined, the center interval of the image on the CCD is determined as shown in FIG. In the case of the optical axis interval at the tip of the objective optical system, there is a possibility that parallax required for measurement and stereoscopic vision cannot be obtained. Therefore, in order to obtain an appropriate parallax necessary for measurement and stereoscopic vision and an image of an area common to the left and right,
The distance between the optical axis of the objective optical system and the center of the image on the CCD is
You have to change it as needed.

【0007】従来、対物光学系の光軸間隔とCCD上で
の像の中心間隔が違う例としては、例えば特開昭62−
215221号公報に記載の光学系がある。この例にお
いては、図10に示すように、平行平面屈折エレメント
を、一対の光学系に夫々挟むことにより、対物光学系の
光軸間隔を狭めて、CCD上での像の中心へと導いてい
る。このような光学系は、平行平面屈折エレメントを配
置する位置での光束の太さより光軸を狭める量が比較的
大きい場合には、このような構成をとることは有効であ
るが、光軸を狭める量が小さく平行平面屈折エレメント
が小さくなる場合には、配置する場所を考える必要があ
り、また加工も難しくなるという問題点が生じる。
A conventional example in which the distance between the optical axes of the objective optical system and the center of the image on the CCD is different is disclosed in, for example,
There is an optical system described in JP-A-215221. In this example, as shown in FIG. 10, a parallel plane refraction element is sandwiched between a pair of optical systems to reduce the distance between the optical axes of the objective optical system and to guide it to the center of the image on the CCD. I have. Such an optical system is effective when the amount of narrowing the optical axis is relatively larger than the thickness of the light beam at the position where the parallel-plane refraction element is arranged. When the amount of narrowing is small and the size of the parallel plane refraction element is small, it is necessary to consider a place where the parallel plane refraction element is arranged, and there is a problem that processing becomes difficult.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来技術の
有するこのような問題点に鑑みてなされたものであり、
その目的とするところは、特に細径の計測及び立体視内
視鏡において、内視鏡を太径化させることなく、計測や
立体視に必要な適度な視差と像の大きさを持つ対物光学
系を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art.
The objective is to achieve the objective parallax and image size required for measurement and stereoscopic vision, especially for small-diameter measurement and stereoscopic endoscopes, without increasing the diameter of the endoscope. Is to provide a system.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明による内視鏡の対物光学系は、図1に示すよ
うに、物体側から順に配列された、一対の負レンズ群
と、一対の正レンズ群と、明るさ絞りと、第2の正レン
ズ群と、1つの撮像素子とを備え、前記第2の正レンズ
群は、前記一対の明るさ絞りよりも物体側の各光軸に対
して偏心している一対の正レンズ群を含んでいる。
In order to achieve the above object, an objective optical system of an endoscope according to the present invention comprises a pair of negative lens groups arranged in order from the object side as shown in FIG. A pair of positive lens groups, a brightness stop, a second positive lens group, and one image pickup device, wherein the second positive lens group is configured such that each light on the object side with respect to the pair of brightness stops. It includes a pair of positive lens groups that are eccentric with respect to the axis.

【0010】また、本発明による内視鏡用対物光学系
は、横から見た図3に示すように、物体側から順に配列
された、少なくとも1つの視野方向変換プリズムと、一
対の負レンズ群と、一対の正レンズ群と、明るさ絞り
と、第2の正レンズ群と、1つの撮像素子とを備え、前
記第2の正レンズ群は、前記明るさ絞りよりも物体側の
各光軸に対して偏心している一対の正レンズを含んでい
る。これにより、明るさ絞りよりも物体側の負レンズ群
と、正レンズ群にて画角を決定しつつ、球面収差・像面
湾曲等の収差を抑えている。そして、明るさ絞りで光束
を絞った後に第2の正レンズ群の光軸をずらすことによ
り、偏心による収差の影響が少なくなるようにしてい
る。
The objective optical system for an endoscope according to the present invention comprises, as shown in FIG. 3 viewed from the side, at least one view direction changing prism arranged in order from the object side, and a pair of negative lens groups. , A pair of positive lens groups, a brightness stop, a second positive lens group, and one image sensor, wherein the second positive lens group is configured such that each light on the object side with respect to the brightness stop is It includes a pair of positive lenses that are eccentric with respect to the axis. Accordingly, aberrations such as spherical aberration and curvature of field are suppressed while the angle of view is determined by the negative lens group and the positive lens group on the object side of the aperture stop. Then, the optical axis of the second positive lens group is shifted after the light beam is stopped down by the brightness stop, so that the influence of aberration due to decentering is reduced.

【0011】また、本発明によれば、明るさ絞りより撮
像素子側の一対の正レンズは、明るさ絞りより物体側の
各光軸に対して画面水平方向に同じ量だけ内側に偏心せ
しめられている。立体視内視鏡においては、左右像の収
差のずれを最小限にとどめることが重要となるが、この
ように偏心量を左右対称とすることにより、左右像の設
計上のバランスをとっている。
Further, according to the present invention, the pair of positive lenses closer to the image pickup device than the aperture stop are decentered inward by the same amount in the horizontal direction of the screen with respect to each optical axis on the object side of the aperture stop. ing. In stereoscopic endoscopes, it is important to minimize the deviation of the aberration between the left and right images, but by making the amount of eccentricity symmetrical in this way, the design balance of the left and right images is balanced. .

【0012】また、本発明によれば、下記の条件式
(1)を満足するようにされている。 0.2≦x/d≦0.9 (1) 但し、d:明るさ絞りより物体側の光軸間隔 x:明るさ絞りより撮像素子側の光軸間隔 明るさ絞りの前後でレンズ系を偏心させることは、組立
上、光学系の性能上、当然偏心のない光学系より不利に
なる。よって、この式の上限を超えるような場合は、偏
心する量が僅かである点を踏まえると、あえて光学系を
偏心させず、明るさ絞りより物体側の光軸間隔や撮像素
子側の光軸間隔のバランスをとることで、偏心させずに
対処出来ると考えられるので、上限値を設定した。一
方、この式の下限に近くなると、明るさ絞りより撮像素
子側の光軸間隔に対し物体側の光軸間隔が大きくなるこ
と、即ち物体側のレンズ径が大きくなることを意味す
る。よって、この下限値を超えると、小型の撮像素子を
用いても内視鏡として細くすることが出来なくなるの
で、小型撮像素子のメリットが生かせなくなってしまう
ので下限値を設定した。現在、撮像素子としては、撮像
エリアのサイズで縦約2mm、横約2.5mm程度の物が製
作されているが、近い将来、縦横共に同じ画素数で半分
からそれ以下のサイズまで小型化されそうな勢いである
ので、本発明では2mm×2.5mm以下の大きさを想定し
ている。
Further, according to the present invention, the following conditional expression (1) is satisfied. 0.2 ≦ x / d ≦ 0.9 (1) where, d: optical axis interval on the object side from the aperture stop x: optical axis interval on the image sensor side from the aperture stop The lens system before and after the aperture stop Decentering is, of course, disadvantageous in terms of assembly and performance of the optical system compared to an optical system without eccentricity. Therefore, when the value exceeds the upper limit of this equation, considering that the amount of decentering is small, the optical system is not decentered, and the optical axis interval on the object side from the aperture stop or the optical axis on the image sensor side It is thought that it is possible to cope without eccentricity by balancing the intervals, so the upper limit was set. On the other hand, when approaching the lower limit of this equation, it means that the optical axis interval on the object side is larger than the optical axis interval on the image sensor side than the aperture stop, that is, the lens diameter on the object side is larger. Therefore, if the lower limit is exceeded, the endoscope cannot be made thinner even if a small-sized imaging device is used, so that the merit of the small-sized imaging device cannot be used. Therefore, the lower limit was set. At present, as an image pickup device, an image pickup device having a size of about 2 mm in length and about 2.5 mm in width is manufactured, but in the near future, the size of the image will be reduced to half or less with the same number of pixels both vertically and horizontally. Because of such momentum, the present invention assumes a size of 2 mm × 2.5 mm or less.

【0013】また、本発明によれば、下記条件式(2)
を満足するように構成されている。 0.03L<d<2L (2) 但し、L:内視鏡の最良観察距離 この式の下限は、視差を得て、更に計測時に必要な精度
を得るために必要な条件である。図1で示すと、最良の
観察距離をLとした時、内向角θが1°<θ程度は必要
と考えられている。ここで最良の観察距離とは、最良結
像物体距離を意味している。内向角θが1゜以下となる
と視差が少なくなり、立体視する上では、奥行き方向の
情報が得られにくくなり、また物体の形状の計測をする
上では計測誤差が大きくなる。また、上記(2)式の上
限の値は、内視鏡の先端が大きくなってしまうのを抑え
るものであると同時に、視差が強すぎて観察しづらくな
ることを防いでいる。
According to the present invention, the following conditional expression (2) is satisfied.
It is configured to satisfy. 0.03L <d <2L (2) where L is the best observation distance of the endoscope. The lower limit of this formula is a condition necessary for obtaining parallax and further obtaining accuracy required for measurement. As shown in FIG. 1, when the best observation distance is L, it is considered that an inward angle θ of about 1 ° <θ is necessary. Here, the best observation distance means the best imaging object distance. When the inward angle θ is 1 ° or less, the parallax decreases, and it becomes difficult to obtain information in the depth direction when stereoscopically viewed, and a measurement error increases when measuring the shape of an object. Further, the upper limit value of the above equation (2) suppresses the tip of the endoscope from becoming large, and at the same time, prevents the parallax from being too strong and making it difficult to observe.

【0014】また、本発明による内視鏡対物光学系は、
明るさ絞りより撮像素子側に一対の正レンズ群を含んで
1つの撮像素子に結像させる光学系において、前記明る
さ絞りの近傍に、該明るさ絞り以降の光軸を偏心させる
少なくとも1つの光学素子を含んでいる。偏心させる光
学素子を明るさ絞りの近傍とした理由は、小型の撮像素
子を使用する場合、偏心量の大きさが比較的小さくなる
ことを考えると、光学素子の大きさも小さくなるので、
光線高の低い明るさ絞り近傍に配置するのが望ましいか
らである。ここで明るさ絞り近傍とは、明るさ絞り前後
0.5mmの範囲内、または光学素子の内部に明るさ絞り
を含むようなものを指している。更に、この構成におい
ては、光軸を偏心させる光学素子を、片方の光学系の光
軸に画面水平方向へ偏心させる1つの光学素子とするの
がより好ましい。これは、細径の内視鏡において、従来
例のように光軸を偏心させる光学素子を2つとすると、
各光学素子が小さくなり加工がより難しくなってしまう
という理由のためである。また、上記の構成において
も、前述と同じ理由から、前記式(1)及び(2)を満
足するのが望ましい。
Further, the endoscope objective optical system according to the present invention comprises:
In an optical system including a pair of positive lens groups closer to the image sensor than the aperture stop and forming an image on one image sensor, at least one eccentric optical axis after the aperture stop near the aperture stop. Includes optical elements. The reason why the optical element to be decentered is located near the aperture stop is that when using a small image pickup element, considering that the magnitude of the amount of decentering becomes relatively small, the size of the optical element also becomes small.
This is because it is desirable to dispose it near the aperture stop having a low ray height. Here, the vicinity of the aperture stop refers to an area including the aperture stop within 0.5 mm before and after the aperture stop or inside the optical element. Further, in this configuration, it is more preferable that the optical element for decentering the optical axis is one optical element for decentering the optical axis of one of the optical systems in the horizontal direction of the screen. This is because, in a small-diameter endoscope, if there are two optical elements that decenter the optical axis as in the conventional example,
This is because each optical element becomes smaller and processing becomes more difficult. Also, in the above configuration, it is desirable that the above-described expressions (1) and (2) are satisfied for the same reason as described above.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図示
した実施例に基づき説明する。各実施例において実質同
一の光学部材には同一符号が付されている。 (第1実施例)図1は第1実施例の基本構成を示してい
る。本実施例は、物体側から順に、一対の負レンズ群1
と、一対の正レンズ群2と、明るさ絞り3と、正レンズ
群4と、赤外カットフィルター5と、カバーガラス6,
7と、1つの撮像素子8から成り、明るさ絞り3より撮
像素子8側の正レンズ群4は、明るさ絞り3より物体側
の各光軸に対して夫々偏心している一対の正レンズを含
んでいる。なお、一対の負レンズ群1は像面側に凹面を
向けた平凹レンズであり、その後ろの一対の正レンズ群
2は凹凸の接合レンズからなり、明るさ絞り3は開口部
が2つあるものから成っている。また、明るさ絞り3よ
り撮像素子8側の正レンズ群4は、明るさ絞り3より物
体側の各光軸に対し、夫々画面水平方向へ同じ量だけ内
側に偏心した一対の物体側に凸面を向けた平凸レンズか
らなり、各レンズ同士が干渉しないように符号Aで示さ
れる中央部分がカットされている。その後ろには、左右
の光学系で共通の赤外カットフィルター5と、カバーガ
ラス6,7と、1つの撮像素子8が配置されている。本
実施例は、鎖線位置で矢印方向へ切り離せるいわゆる先
端AD(アダプター)方式の構造となっており、後側の
部分は、カバーガラス7と撮像素子8を含む内視鏡側部
分となっている。従って、AD部分を取り替えることに
より、内視鏡の画角,視野角,視差を左右する内向角等
を任意に変えることが可能となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on illustrated embodiments. In each embodiment, substantially the same optical members are denoted by the same reference numerals. (First Embodiment) FIG. 1 shows the basic configuration of the first embodiment. In the present embodiment, a pair of negative lens groups 1 are arranged in order from the object side.
, A pair of positive lens groups 2, a brightness stop 3, a positive lens group 4, an infrared cut filter 5, a cover glass 6,
7 and one image sensor 8. The positive lens group 4 on the image sensor 8 side from the aperture stop 3 includes a pair of positive lenses decentered with respect to each optical axis on the object side from the aperture stop 3. Contains. The pair of negative lens groups 1 is a plano-concave lens having a concave surface facing the image plane side, and the pair of positive lens groups 2 behind it is composed of a cemented lens having irregularities, and the aperture stop 3 has two openings. Made of things. The positive lens group 4 closer to the image pickup device 8 than the aperture stop 3 has a pair of object-side convex surfaces decentered inward in the screen horizontal direction by the same amount with respect to each optical axis on the object side of the aperture stop 3. , And a central portion indicated by reference numeral A is cut so that the lenses do not interfere with each other. Behind that, an infrared cut filter 5 common to the left and right optical systems, cover glasses 6 and 7, and one image sensor 8 are arranged. This embodiment has a so-called tip AD (adapter) type structure that can be cut in the direction of the arrow at the position of the dashed line, and the rear portion is an endoscope-side portion including the cover glass 7 and the imaging element 8. I have. Therefore, by replacing the AD portion, it is possible to arbitrarily change an angle of view, a viewing angle, an inward angle that affects parallax, and the like of the endoscope.

【0016】前記の各条件式に対応する値、及びレンズ
データは以下の通りである。 x=0.986 d=1.599 L=13.69 0.2≦x/d=0.62≦0.9 0.03L<d=0.12L<2L 物体距離 13.6896 r1 =∞ d1 =0.04381 n1 =1.88300 ν1 =40.78 r2 =0.8436 d2 =0.2409 r3 =∞ d3 =0.4275 r4 =1.9713 d4 =0.6727 n4 =1.84666 ν4 =23.78 r5 =0.9857 d5 =1.3142 n5 =1.51633 ν5 =64.14 r6 =−1.3015 d6 =0.7051 r7 =∞(絞り) d7 =0.1095 r8 =2.2431 d8 =0.8785 n8 =1.78800 ν8 =47.37 r9 =∞ d9 =0.0329 r10=∞ d10=1.3142 n10=1.51400 ν10=75.00 r11=∞ d11=0.0329 r12=∞ d12=0.4381 n12=1.88300 ν12=40.76 r13=∞ d13=0.2190 r14=∞ d14=0.8761 n14=1.88300 ν14=40.76 r15=∞ d15=0.3286 n15=1.49700 ν15=81.61 r16=∞ d16=0.0329 r17=∞ 各凸レンズ4の偏心量=水平方向へ0.3356 図2はAD部分の枠を含めた断面図で、先端にはカバー
ガラス9が組み込まれ、水密がとれる構造となってい
る。
The values and lens data corresponding to the above-mentioned conditional expressions are as follows. x = 0.886 d = 1.599 L = 13.69 0.2 ≦ x / d = 0.62 ≦ 0.9 0.03L <d = 0.12L <2L Object distance 13.6896 r 1 = ∞ d 1 = 0.04381 n 1 = 1.88300 v 1 = 40.78 r 2 = 0.8436 d 2 = 0.2409 r 3 = ∞ d 3 = 0.4275 r 4 = 1.9713 d 4 = 0 0.6727 n 4 = 1.86666 v 4 = 23.78 r 5 = 0.9857 d 5 = 1.3142 n 5 = 1.51633 v 5 = 64.14 r 6 = −1.3015 d 6 = 0. 7051 r 7 = ∞ (aperture) d 7 = 0.1095 r 8 = 2.2431 d 8 = 0.8785 n 8 = 1.78800 v 8 = 47.37 r 9 = d d 9 = 0.0329 r 10 = ∞d 10 = 1.3142 n 10 = 1.51400 ν 10 = 75.00 r 11 = ∞d 1 1 = 0.0329 r 12 = ∞ d 12 = 0.4381 n 12 = 1.88300 ν 12 = 40.76 r 13 = ∞ d 13 = 0.2190 r 14 = ∞ d 14 = 0.8761 n 14 = 1.88300 ν 14 = 40.76 r 15 = ∞ d 15 = 0.3286 n 15 = 1.49700 ν 15 = 81.61 r 16 = ∞ d 16 = 0.0329 r 17 = ∞Eccentricity of each convex lens 4 Amount = horizontal direction 0.3356 FIG. 2 is a cross-sectional view including the frame of the AD portion, and has a structure in which a cover glass 9 is incorporated at the tip to be watertight.

【0017】(第2実施例)図3は第2実施例の基本構
成を示している。この実施例は、先端にカバーガラス9
と視野変換プリズム10とが配置されていて側視を可能
にした点で第1実施例と異なっている。即ち、物体側か
ら順に、視野方向変換プリズム10と、一対の負レンズ
群1と、一対の正レンズ群2と、明るさ絞り3と、正レ
ンズ群4と、赤外カットフィルター5と、カバーガラス
6,7と、1つの撮像素子8から成り、明るさ絞り3よ
り撮像素子8側の正レンズ群4は、明るさ絞り3より物
体側の各光軸に対して夫々偏心している一対の正レンズ
を含んでいる。視野方向変換プリズム10の先端には、
左右共通のカバーガラス9が配置され、視野方向変換プ
リズム10も左右共通の1つの90゜側視用直角プリズ
ムから成っている。本実施例も、先端AD方式の構造と
なっており、撮像素子8側の部分は第1実施例と共通に
しているので第1実施例のADと取り替えることにより
直視と側視を得ることが可能となる。
(Second Embodiment) FIG. 3 shows a basic configuration of a second embodiment. In this embodiment, the cover glass 9
The first embodiment differs from the first embodiment in that the camera and the field-of-view conversion prism 10 are disposed to enable side viewing. That is, in order from the object side, a viewing direction conversion prism 10, a pair of negative lens groups 1, a pair of positive lens groups 2, a brightness stop 3, a positive lens group 4, an infrared cut filter 5, a cover A pair of positive lenses 4 composed of glasses 6 and 7 and one image pickup device 8, which are closer to the image pickup device 8 than the aperture stop 3 are decentered with respect to each optical axis on the object side of the aperture stop 3. Includes positive lens. At the tip of the viewing direction conversion prism 10,
A left and right common cover glass 9 is arranged, and the viewing direction changing prism 10 is also formed of one 90 ° side-viewing right-angle prism common to the left and right. This embodiment also has a tip AD type structure, and the portion on the imaging element 8 side is common to that of the first embodiment. Therefore, it is possible to obtain direct vision and side vision by replacing the AD of the first embodiment. It becomes possible.

【0018】前記の各条件式に対応する値、及びレンズ
データは以下の通りである。 x=0.856 d=1.635 L=10.167 0.2≦x/d=0.52≦0.9 0.03L<d=0.16L<2L 物体距離 10.1672 r1 =∞ d1 =0.3804 n1 =1.88300 ν1 =40.76 r2 =∞ d2 =0.1902 r3 =∞ d3 =2.2580 n3 =1.88300 ν3 =40.76 r4 =∞ d4 =0.1303 r5 =∞ d5 =0.3804 n5 =1.88300 ν5 =40.78 r6 =0.8526 d6 =0.2092 r7 =∞ d7 =0.3215 r8 =1.7120 d8 =0.4990 n8 =1.84666 ν8 =23.78 r9 =0.8560 d9 =1.1413 n9 =1.51633 ν9 =64.14 r10=−1.1315 d10=0.7160 r11=∞(絞り) d11=0.0951 r12=2.0201 d12=0.7630 n12=1.78800 ν12=47.37 r13=∞ d13=0.0285 r14=∞ d14=1.1413 n14=1.51400 ν14=75.00 r15=∞ d15=0.0285 r16=∞ d16=0.3804 n16=1.88300 ν16=40.76 r17=∞ d17=0.1902 r18=∞ d18=0.7609 n18=1.88300 ν18=40.76 r19=∞ d19=0.2853 n19=1.49700 ν19=81.61 r20=∞ d20=0.0285 r21=∞ 各凸レンズ4の偏心量=水平方向へ0.39
The values and lens data corresponding to each of the above conditional expressions are as follows. x = 0.856 d = 1.635 L = 10.167 0.2 ≦ x / d = 0.52 ≦ 0.9 0.03L <d = 0.16L <2L Object distance 10.1672 r 1 = ∞ d 1 = 0.3804 n 1 = 1.88300 ν 1 = 40.76 r 2 = ∞ d 2 = 0.1902 r 3 = d d 3 = 2.2580 n 3 = 1.88300 ν 3 = 40.76 r 4 = ∞d 4 = 0.1303 r 5 = ∞d 5 = 0.3804 n 5 = 1.88300 ν 5 = 40.78 r 6 = 0.8526 d 6 = 0.2092 r 7 = d d 7 = 0.3215 r 8 = 1.7120 d 8 = 0.4990 n 8 = 1.86666 ν 8 = 23.78 r 9 = 0.8560 d 9 = 1.413 n 9 = 1.51633 ν 9 = 64 .14 r 10 = -1.1315 d 10 = 0.7160 r 11 = ∞ ( stop) d 11 = 0.09 51 r 12 = 2.0201 d 12 = 0.7630 n 12 = 1.78800 ν 12 = 47.37 r 13 = ∞ d 13 = 0.0285 r 14 = ∞ d 14 = 1.1413 n 14 = 1. 51400 ν 14 = 75.00 r 15 = ∞ d 15 = 0.0285 r 16 = ∞ d 16 = 0.3804 n 16 = 1.88300 ν 16 = 40.76 r 17 = ∞ d 17 = 0.1902 r 18 = ∞ d 18 = 0.7609 n 18 = 1.88300 ν 18 = 40.76 r 19 = ∞ d 19 = 0.2853 n 19 = 1.49700 ν 19 = 81.61 r 20 = ∞ d 20 = 0.0285 r 21 = ∞ eccentricity of each convex lens 4 = 0.39 in the horizontal direction

【0019】(第3実施例)図4は第3実施例の基本構
成を示している。この実施例は、明るさ絞り3より撮像
素子8側の正レンズ群4について、明るさ絞り3より物
体側の各光軸に対して夫々光軸間隔が狭まり、且つ斜め
の方向に傾けた点で第1実施例と異なっている。即ち、
物体側から順に、一対の負レンズ群1と、一対の正レン
ズ群2と、明るさ絞り3と、正レンズ群4と、赤外カッ
トフィルター5と、カバーガラス6,7と、1つの撮像
素子8から成り、明るさ絞り3より撮像素子8側の正レ
ンズ群4は、明るさ絞り3より物体側の各光軸に対して
夫々偏心している一対の正レンズを含んでいる。本実施
例も、先端AD方式の構造となっている。
(Third Embodiment) FIG. 4 shows a basic configuration of a third embodiment. In this embodiment, the positive lens group 4 closer to the image pickup device 8 than the aperture stop 3 has a point that the optical axis interval is narrower with respect to each optical axis on the object side than the aperture stop 3 and the optical axis is inclined in an oblique direction. Is different from the first embodiment. That is,
In order from the object side, a pair of negative lens group 1, a pair of positive lens group 2, a brightness stop 3, a positive lens group 4, an infrared cut filter 5, cover glasses 6, 7, and one image pickup The positive lens group 4 composed of the element 8 and located closer to the imaging element 8 than the aperture stop 3 includes a pair of positive lenses that are decentered with respect to each optical axis on the object side of the aperture stop 3. This embodiment also has a structure of the tip AD system.

【0020】前記の各条件式に対応する値、及びレンズ
データは以下の通りである。 x=0.902 d=1.382 L=12.537 0.2≦x/d=0.65≦0.9 0.03L<d=0.11L<2L 物体距離 12.5367 r1 =∞ d1 =0.4012 n1 =1.88300 ν1 =40.78 r2 =0.6887 d2 =0.2206 r3 =∞ d3 =0.9186 r4 =1.6840 d4 =1.0029 n4 =1.84666 ν4 =23.78 r5 =0.7463 d5 =1.2415 n5 =1.51633 ν5 =64.14 r6 =−0.9984 d6 =0.0501 r7 =∞(絞り) d7 =0.1003 r8 =3.4312 d8 =1.5044 n8 =1.78800 ν8 =47.37 r9 =4.5675 d9 =0.3009 r10=∞ d10=1.2035 n10=1.51400 ν10=75.00 r11=∞ d11=0.0301 r12=∞ d12=0.4012 n12=1.88300 ν12=40.76 r13=∞ d13=0.2006 r14=∞ d14=0.8024 n14=1.88300 ν14=40.76 r15=∞ d15=0.3009 n15=1.49700 ν15=81.61 r16=∞ d16=0.0301 r17=∞ 各凸レンズ4の偏心量(図4の角度α)=15゜
The values and lens data corresponding to the above-mentioned conditional expressions are as follows. x = 0.902 d = 1.382 L = 12.537 0.2 ≦ x / d = 0.65 ≦ 0.9 0.03L <d = 0.11L <2L Object distance 12.5367 r 1 = ∞ d 1 = 0.4012 n 1 = 1.88300 v 1 = 40.78 r 2 = 0.6887 d 2 = 0.2206 r 3 = ∞ d 3 = 0.9186 r 4 = 1.6840 d 4 = 1 .0029 n 4 = 1.86666 ν 4 = 23.78 r 5 = 0.7463 d 5 = 1.415 n 5 = 1.51633 ν 5 = 64.14 r 6 = −0.9984 d 6 = 0. 0501 r 7 = ∞ (aperture) d 7 = 0.1003 r 8 = 3.41212 d 8 = 1.5044 n 8 = 1.78800 v 8 = 47.37 r 9 = 4.5675 d 9 = 0.3009 r 10 = ∞ d 10 = 1.2035 n 10 = 1.51400 ν 10 = 75.00 r 11 = ∞ d 11 = 0.0301 r 12 = ∞ d 12 = 0.4012 n 12 = 1.88300 ν 12 = 40.76 r 13 = ∞ d 13 = 0.2006 r 14 = ∞ d 14 = 0. 8024 n 14 = 1.88300 ν 14 = 40.76 r 15 = ∞ d 15 = 0.3009 n 15 = 1.49700 ν 15 = 81.61 r 16 = ∞ d 16 = 0.0301 r 17 = ∞ each Eccentricity of convex lens 4 (angle α in FIG. 4) = 15 °

【0021】(第4実施例)図5は第4実施例の基本構
成を示している。この実施例においては、明るさ絞り3
は開口部が2つあるものから成り、明るさ絞り3より撮
像素子8側の一対の正レンズ群は、明るさ絞り3より順
に像側に凹面を向けた一対の凸メニスカスレンズ11
と、赤外カットフィルターからなる物体側に凸面を向け
た一対の正レンズ12と、カバーガラス6,7とから成
っている。また、明るさ絞り3より物体側の片方の光学
系には、明るさ絞り3以降の光軸を偏心させる1つの平
行四辺形のプリズム13が配置されており、もう片方の
光学系には、平行平板14が配置されているのみで特に
偏心はさせていない。従来の光学系では、例えば図10
に示すように一対のプリズムを配置しているが、本実施
例は、偏心量が比較的少ないため、光軸を偏心させる光
学素子は片方のみに配置されていて、微小なプリズム加
工にならないようにしている。また、本実施例ではプリ
ズム素子を用いたが、対向する2枚の鏡を配置して同様
の偏心を行うようにしてもよい。そして、本実施例も、
先端AD方式の構造となっている。
(Fourth Embodiment) FIG. 5 shows a basic configuration of a fourth embodiment. In this embodiment, the brightness stop 3
Is composed of two apertures, and a pair of positive lens groups on the image sensor 8 side from the aperture stop 3 are a pair of convex meniscus lenses 11 whose concave surfaces face the image side in order from the aperture stop 3.
And a pair of positive lenses 12 having infrared cut filters with convex surfaces facing the object side, and cover glasses 6 and 7. In one optical system on the object side of the aperture stop 3, one parallelogram prism 13 for decentering the optical axis after the aperture stop 3 is disposed, and in the other optical system, The eccentricity is not particularly made only because the parallel plate 14 is arranged. In a conventional optical system, for example, FIG.
Although a pair of prisms are arranged as shown in FIG. 5, in this embodiment, since the amount of eccentricity is relatively small, the optical element for decentering the optical axis is arranged on only one side, so that a fine prism processing is not performed. I have to. In this embodiment, a prism element is used. However, two opposite mirrors may be arranged to perform the same eccentricity. And also in this embodiment,
It has the structure of the advanced AD method.

【0022】前記の各条件式に対応する値、及びレンズ
データは以下の通りである。 x=0.833 d=1.351 L=10.094 0.2≦x/d=0.62≦0.9 0.03L<d=0.13L<2L 物体距離 10.0937 r1 =∞ d1 =1.0372 n1 =1.88300 ν1 =40.76 r2 =∞(絞り) d2 =0.0926 r3 =−0.6631 d3 =0.9568 n3 =1.88300 ν3 =40.76 r4 =−0.8176 d4 =0.0926 r5 =1.6107 d5 =0.9260 n5 =1.51400 ν5 =75.00 r6 =∞ d6 =0.3704 n6 =1.88300 ν6 =40.76 r7 =∞ d7 =0.1852 r8 =∞ d8 =0.7408 n8 =1.88300 ν8 =40.76 r9 =∞ d9 =0.4630 n10=1.49700 ν10=81.54 r10=∞ d10=0.0278 r11=∞ d11=0.0037 r12=∞ 平行四辺形プリズム13での偏心量=水平方向へ0.518
The values and lens data corresponding to the above-mentioned conditional expressions are as follows. x = 0.833 d = 1.351 L = 10.094 0.2 ≦ x / d = 0.62 ≦ 0.9 0.03L <d = 0.13L <2L Object distance 10.0937 r 1 = ∞ d 1 = 1.0372 n 1 = 1.88300 v 1 = 40.76 r 2 = (aperture) d 2 = 0.0926 r 3 = -0.6631 d 3 = 0.9568 n 3 = 1.88300 ν 3 = 40.76 r 4 = -0.8176 d 4 = 0.0926 r 5 = 1.6107 d 5 = 0.9260 n 5 = 1.51400 ν 5 = 75.00 r 6 = dd 6 = 0.3704 n 6 = 1.88300 v 6 = 40.76 r 7 = ∞ d 7 = 0.1852 r 8 = ∞ d 8 = 0.7408 n 8 = 1.88300 v 8 = 40.76 r 9 = ∞ d 9 = 0.4630 n 10 = 1.49700 ν 10 = 81.54 r 10 = ∞ d 10 = 0.0 78 r 11 = ∞ d 11 = 0.0037 r 12 = eccentricity in ∞ parallelogram prism 13 = 0.518 in the horizontal direction

【0023】なお、上記各実施例において、x,d,L
及びレンズデータは焦点距離f′=1で規格化したもの
であり、また、r1 ,r2 ,・・・・は各レンズ面,カバー
ガラス面またはプリズム面の曲率半径を、d1 ,d2
・・・・は各レンズ,カバーガラスまたはプリズムの肉厚ま
たは空気間隔を、n1 ,n2 ,・・・・は各レンズ,カバー
ガラスまたはプリズムの屈折率を、ν1 ,ν2 ,・・・・は
各レンズ,カバーガラスまたはプリズムのアツベ数を、
夫々表わしている。
In each of the above embodiments, x, d, L
, And lens data are normalized by the focal length f ′ = 1, and r 1 , r 2 ,... Denote the radii of curvature of each lens surface, cover glass surface or prism surface, and d 1 , d 2 ,
.. Represents the thickness or air space of each lens, cover glass or prism, n 1 , n 2 ,... Represents the refractive index of each lens, cover glass or prism, ν 1 , ν 2 ,. ... is the number of each lens, cover glass or prism.
Each is represented.

【0024】以上説明したように、本発明の内視鏡用対
物光学系は、特許請求の範囲に記載した特徴の他に下記
の特徴を有している。 (1)前記第2の正レンズ群は、明るさ絞りより物体側
の各光軸に対して画面水平方向に同一量だけ内側に偏心
している一対の正レンズ群を含んでいる請求項1または
2に記載の内視鏡用対物光学系。
As described above, the objective optical system for an endoscope according to the present invention has the following features in addition to the features described in the claims. (1) The second positive lens group includes a pair of positive lens groups that are decentered inward in the screen horizontal direction by the same amount with respect to each optical axis on the object side of the aperture stop. 3. The objective optical system for an endoscope according to 2.

【0025】(2)前記光学素子は片方の光学系の光軸
を画面水平方向へ偏心させる1つの光学素子である請求
項3に記載の内視鏡用対物光学系。
(2) The objective optical system for an endoscope according to claim 3, wherein the optical element is one optical element that decenters the optical axis of one of the optical systems in the horizontal direction of the screen.

【0026】(3)明るさ絞りより物体側の光軸間隔を
d、明るさ絞りより撮像素子側の光軸間隔をxとしたと
き、0.2≦x/d≦0.9なる条件を満足する請求項
1乃至3の何れかまたは上記(1)または(2)に記載
の内視鏡用対物光学系。
(3) When the distance between the optical axes on the object side from the aperture stop is d and the distance between the optical axes on the image sensor side from the aperture stop is x, the condition 0.2 ≦ x / d ≦ 0.9 is satisfied. The objective optical system for an endoscope according to any one of claims 1 to 3, or (1) or (2), which satisfies.

【0027】(4)内視鏡の最良観察距離をLとしたと
き、0.03L<d<2Lなる条件を満足する請求項1
乃至3の何れかまたは上記(1)または(2)に記載の
内視鏡用対物光学系。
(4) When the best observation distance of the endoscope is L, the condition 0.03L <d <2L is satisfied.
The objective optical system for an endoscope according to any one of (1) to (3) or (1) or (2).

【0028】[0028]

【発明の効果】上述の如く本発明によれば、特に細径の
計測及び立体視内視鏡において、内視鏡を太径化させる
ことなく、計測や立体視に必要な適度な視差及び像の大
きさを持った対物光学系を提供することが出来る。
As described above, according to the present invention, particularly in a small-diameter measuring and stereoscopic endoscope, an appropriate parallax and image necessary for measurement and stereoscopic vision can be obtained without increasing the diameter of the endoscope. It is possible to provide an objective optical system having a size of

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の基本構成図である。FIG. 1 is a basic configuration diagram of a first embodiment of the present invention.

【図2】枠内に組み込まれた第1実施例のAD部分の断
面図である。
FIG. 2 is a sectional view of an AD portion of the first embodiment assembled in a frame.

【図3】本発明の第2実施例の基本構成図である。FIG. 3 is a basic configuration diagram of a second embodiment of the present invention.

【図4】本発明の第3実施例の基本構成図である。FIG. 4 is a basic configuration diagram of a third embodiment of the present invention.

【図5】本発明の第4実施例の基本構成図である。FIG. 5 is a basic configuration diagram of a fourth embodiment of the present invention.

【図6】立体視可能な内視鏡用対物光学系の一従来例の
基本構成図である。
FIG. 6 is a basic configuration diagram of a conventional example of an endoscope objective optical system capable of stereoscopic viewing.

【図7】立体視可能な内視鏡用対物光学系の他の従来例
の基本構成図である。
FIG. 7 is a basic configuration diagram of another conventional example of an endoscope objective optical system capable of stereoscopic viewing.

【図8】図7に示す従来例の問題点を説明するための図
である。
FIG. 8 is a diagram for explaining a problem of the conventional example shown in FIG. 7;

【図9】図7に示す従来例の問題点を説明するための図
である。
FIG. 9 is a diagram for explaining a problem of the conventional example shown in FIG. 7;

【図10】立体視可能な内視鏡用対物光学系の更に他の
従来例の基本構成図である。
FIG. 10 is a basic configuration diagram of still another conventional example of an endoscope objective optical system capable of stereoscopic viewing.

【符号の説明】[Explanation of symbols]

1 一対の負レンズ群 2 一対の正レンズ群 3 明るさ絞り 4 正レンズ群 5 赤外カットフィルター 6,7,9 カバーガラス 8 撮像素子 10 視野変換プリズム 11 凸メニスカスレンズ 12 赤外カットフィルターから成る一対の
正レンズ 13 平行四辺形プリズム 14 平行平板
REFERENCE SIGNS LIST 1 pair of negative lens group 2 pair of positive lens group 3 aperture stop 4 positive lens group 5 infrared cut filter 6, 7, 9 cover glass 8 image sensor 10 view conversion prism 11 convex meniscus lens 12 infrared cut filter A pair of positive lenses 13 Parallelogram prism 14 Parallel plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に配列された、一対の負レ
ンズ群と、一対の正レンズ群と、明るさ絞りと、第2の
正レンズ群と、1つの撮像素子とを備え、前記第2の正
レンズ群は、前記明るさ絞りよりも物体側の各光軸に対
し偏心している一対の正レンズ群を含んでいる内視鏡用
対物光学系。
A first lens group, a brightness stop, a second positive lens group, and one imaging element, which are arranged in order from the object side. An objective optical system for an endoscope, wherein the second positive lens group includes a pair of positive lens groups decentered with respect to each optical axis on the object side of the aperture stop.
【請求項2】 物体側から順に配列された、少なくとも
1つの視野方向変換プリズムと、一対の負レンズ群と、
一対の正レンズ群と、明るさ絞りと、第2の正レンズ群
と、1つの撮像素子とを備え、前記第2の正レンズ群
は、前記明るさ絞りよりも物体側の各光軸に対し偏心し
ている一対の正レンズを含んでいる内視鏡用対物光学
系。
2. At least one viewing direction changing prism arranged in order from the object side, a pair of negative lens groups,
The image pickup apparatus includes a pair of positive lens groups, a brightness stop, a second positive lens group, and one image sensor, and the second positive lens group is located on each optical axis on the object side of the brightness stop. An objective optical system for an endoscope including a pair of positive lenses that are decentered.
【請求項3】 物体側から順に配列された、明るさ絞り
と、一対の正レンズ群と、1つの撮像素子とを備えた内
視鏡用対物光学系において、前記明るさ絞りの近傍に、
該明るさ絞りよりも物体側の光軸に対して該明るさ絞り
よりも像側の光軸を偏心させる少なくとも1つの光学素
子を設けたことを特徴とする内視鏡用対物光学系。
3. An endoscope objective optical system including a brightness stop, a pair of positive lens groups, and one image sensor, which are arranged in order from the object side.
An objective optical system for an endoscope, comprising: at least one optical element for decentering an optical axis on an image side of the aperture stop with respect to an optical axis on an object side of the aperture stop.
JP32966299A 1999-11-19 1999-11-19 Objective optical system for endoscope Withdrawn JP2001147382A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32966299A JP2001147382A (en) 1999-11-19 1999-11-19 Objective optical system for endoscope
US10/357,335 US6855110B2 (en) 1999-11-19 2003-02-04 Endoscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32966299A JP2001147382A (en) 1999-11-19 1999-11-19 Objective optical system for endoscope

Publications (1)

Publication Number Publication Date
JP2001147382A true JP2001147382A (en) 2001-05-29

Family

ID=18223869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32966299A Withdrawn JP2001147382A (en) 1999-11-19 1999-11-19 Objective optical system for endoscope

Country Status (1)

Country Link
JP (1) JP2001147382A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299113A (en) * 2007-05-31 2008-12-11 Casio Comput Co Ltd Stereoscopic endoscope
JP2014106327A (en) * 2012-11-27 2014-06-09 Olympus Corp Optical element, optical system, stereoscopic imaging apparatus and endoscope
JP2014230788A (en) * 2013-05-28 2014-12-11 クシオーン ゲゼルシャフト ミット ベシュレンクテル ハフツングXION GmbH Video endoscopic device
WO2015107733A1 (en) 2014-01-15 2015-07-23 オリンパス株式会社 Optical system, stereoscopic image pickup device, and endoscope
WO2015162959A1 (en) * 2014-04-24 2015-10-29 オリンパス株式会社 Optical system for stereoscopic imaging, stereoscopic imaging device, and endoscope
WO2017086298A1 (en) * 2015-11-16 2017-05-26 オリンパス株式会社 Side-viewing optical adapter
WO2017104427A1 (en) * 2015-12-17 2017-06-22 オリンパス株式会社 Optical adapter for endoscope
US10520719B2 (en) 2015-08-21 2019-12-31 Olympus Corporation Image acquisition device
US10955656B2 (en) 2015-07-30 2021-03-23 Olympus Corporation Image-acquisition apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299113A (en) * 2007-05-31 2008-12-11 Casio Comput Co Ltd Stereoscopic endoscope
JP2014106327A (en) * 2012-11-27 2014-06-09 Olympus Corp Optical element, optical system, stereoscopic imaging apparatus and endoscope
JP2014230788A (en) * 2013-05-28 2014-12-11 クシオーン ゲゼルシャフト ミット ベシュレンクテル ハフツングXION GmbH Video endoscopic device
US10682039B2 (en) 2013-05-28 2020-06-16 Xion Gmbh Video endoscopic device
WO2015107733A1 (en) 2014-01-15 2015-07-23 オリンパス株式会社 Optical system, stereoscopic image pickup device, and endoscope
US10274717B2 (en) 2014-01-15 2019-04-30 Olympus Corporation Optical system, stereoscopic imaging device, and endoscope
DE112015001381B4 (en) 2014-04-24 2019-03-14 Olympus Corporation Stereoscopic optical imaging system, stereoscopic imaging device and endoscope
WO2015162959A1 (en) * 2014-04-24 2015-10-29 オリンパス株式会社 Optical system for stereoscopic imaging, stereoscopic imaging device, and endoscope
JP2015210291A (en) * 2014-04-24 2015-11-24 オリンパス株式会社 Stereoscopic imaging optical system, stereoscopic image capturing device, and endoscope
US10955656B2 (en) 2015-07-30 2021-03-23 Olympus Corporation Image-acquisition apparatus
US10520719B2 (en) 2015-08-21 2019-12-31 Olympus Corporation Image acquisition device
JPWO2017086298A1 (en) * 2015-11-16 2018-08-30 オリンパス株式会社 Side-view optical adapter
WO2017086298A1 (en) * 2015-11-16 2017-05-26 オリンパス株式会社 Side-viewing optical adapter
US11009694B2 (en) 2015-11-16 2021-05-18 Olympus Corporation Side-viewing optical adapter
JPWO2017104427A1 (en) * 2015-12-17 2018-10-04 オリンパス株式会社 Optical adapter for endoscope
WO2017104427A1 (en) * 2015-12-17 2017-06-22 オリンパス株式会社 Optical adapter for endoscope
US11202555B2 (en) 2015-12-17 2021-12-21 Olympus Corporation Optical adapter for an endoscope

Similar Documents

Publication Publication Date Title
JP4093503B2 (en) Stereoscopic endoscope
US6632172B1 (en) Endoscope apparatus
JP4248771B2 (en) Endoscope device
JP2876252B2 (en) Endoscope objective lens
JP4274602B2 (en) Objective optical system
JPH07122692B2 (en) Objective lens for endoscope
JPH1090603A (en) Endscopic optical system
US7564619B2 (en) Stereomicroscope
JPH0754373B2 (en) Objective lens for endoscope
US11478134B2 (en) Stereoscopic-vision endoscope optical system and endoscope using the same
US11058287B2 (en) Optical system for stereoscopic vision and image pickup apparatus using the same
JP2001147382A (en) Objective optical system for endoscope
JPH05323186A (en) Endoscope
JPH0558527B2 (en)
JPH07294807A (en) Endoscope with observation part and with endoscope tube withbuilt-in imageforming optical system
US11249299B2 (en) Stereoscopic vision optical system and endoscope using the same
JPH10115788A (en) Hard mirror optical system
JP2000105344A (en) Ocular for displayed picture observation device
JPH06167658A (en) Stereoendoscope
JP4694014B2 (en) Endoscope imaging device
JP7061226B2 (en) Wide-angle optical system and an image pickup device equipped with it
JP3105600B2 (en) Endoscope
JPH07134246A (en) Hard mirror optical system
US20230273404A1 (en) Objective optical system, image pickup apparatus, and endoscope
JP3577107B2 (en) Stereo microscope

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206