JP2001147023A - Method for controlling thermal storage heater - Google Patents

Method for controlling thermal storage heater

Info

Publication number
JP2001147023A
JP2001147023A JP33071799A JP33071799A JP2001147023A JP 2001147023 A JP2001147023 A JP 2001147023A JP 33071799 A JP33071799 A JP 33071799A JP 33071799 A JP33071799 A JP 33071799A JP 2001147023 A JP2001147023 A JP 2001147023A
Authority
JP
Japan
Prior art keywords
heat storage
temperature
time
heat
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33071799A
Other languages
Japanese (ja)
Other versions
JP3945102B2 (en
Inventor
Hideki Tamura
秀樹 田村
Sakae Uchinashi
栄 内梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP33071799A priority Critical patent/JP3945102B2/en
Publication of JP2001147023A publication Critical patent/JP2001147023A/en
Application granted granted Critical
Publication of JP3945102B2 publication Critical patent/JP3945102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine a conduction time without measuring the outdoor air temperature by calculating a required heat storage capacity interlocked with variation of environmental load. SOLUTION: In the control method for a thermal storage heater comprising a heat storage body 1, and a sensor 5 for measuring the temperature of the heat storage body 1 where heat generated by conducting the heat storage body during a specified time band is stored in the heat storage body and radiated for heating, a required conduction time T is calculated according to a formula; T=T0+k*t0-2*k*t1 (k: correction coefficient) where, t1 is the temperature data of the heat storage body predetermined time before the specified time band expressed in terms of time, t0 is the temperature data of the heat storage body at the same time of previous day when the data is stored in a memory expressed in terms of time, and T0 is conduction time data of previous day. The heat storage body is conducted based on the calculation results.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蓄熱式暖房装置の制
御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a regenerative heating system.

【0002】[0002]

【従来の技術】蓄熱式の床暖房装置は、部屋の使用開始
前の所定の時間帯(一般に深夜電力時間帯)に、発熱体
に通電して発熱させることで床下の蓄熱材に蓄熱し、上
記の所定の時間帯外に蓄熱された熱を床から室内に放出
して室内を暖房する。
2. Description of the Related Art A regenerative floor heating apparatus stores heat in a heat storage material under the floor by energizing a heating element to generate heat during a predetermined time zone (usually a midnight power time zone) before starting to use a room. The heat stored outside the predetermined time period is released from the floor into the room to heat the room.

【0003】割安な深夜電力時間帯に通電して蓄熱する
上記のものは、蓄熱材が所定の温度(目標温度)に到達
すると発熱体への通電を遮断し、所定の温度まで低下す
ると通電を再開する運転を上記の所定の時間帯内だけ行
い、上記の所定時間帯以外での補足蓄熱はできないよう
にしているのが一般的である。
[0003] In the above-described apparatus which stores electricity by supplying electricity during a cheap midnight power time period, the supply of electricity to the heating element is cut off when the heat storage material reaches a predetermined temperature (target temperature), and the supply of electricity is reduced when the temperature of the heat storage material decreases to a predetermined temperature. In general, the operation to be restarted is performed only during the above-mentioned predetermined time period, so that supplementary heat storage cannot be performed outside the above-mentioned predetermined time period.

【0004】この時、季節、気候等の環境負荷条件が少
なくて、深夜電力時間帯(午後11時から午前7時ま
で)の間中、発熱体に通電していなくても済むことが予
測される場合は、床暖房性能を確保できる蓄熱量が得ら
れるだけの通電時間をタイマーにより確保する運転が行
われる。
At this time, it is expected that the environmental load conditions such as the season and the climate are small, and that the heating element does not need to be energized during the midnight power time period (from 11:00 pm to 7:00 am). In such a case, an operation is performed in which a timer is used to secure a current supply time sufficient to obtain a heat storage amount that can secure floor heating performance.

【0005】そして、環境負荷変動に対応することと、
暖房性能を確保しながら通電時間制御の時間予測精度を
向上させるために、従来は戸外に外気温を測温するセン
サーを設置し、過去および現在の外気温データ及び床温
度の変化特性データから予測した通電時間で制御する方
法が提案されている。
And responding to environmental load fluctuations;
Conventionally, to improve the time prediction accuracy of energization time control while ensuring heating performance, sensors that measure the outside air temperature are conventionally installed outdoors, and predictions are made from past and current outside air temperature data and floor temperature change characteristic data. There has been proposed a method of controlling with a given energizing time.

【0006】また、簡易的な通電時間制御として、カレ
ンダー機能の月日に対応した設定通電時間で運転する方
法も提案されている。
[0006] As a simple energization time control, a method of operating with a set energization time corresponding to the date of the calendar function has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、月日に
応じて通電時間を決定するカレンダー方式では急激な外
気温変動や、季節はずれの気温変動などがあると、蓄熱
量の過不足が発生してしまう。このために冬の暖かい日
などは放熱量が減るため、蓄熱体温度が高く部屋も暑く
なり、逆に春の寒い日などは放熱量が増えるため蓄熱体
温度が低下し部屋も寒くなるという事態を招く。
However, in the calendar system in which the energization time is determined according to the month and day, if the outside air temperature fluctuates suddenly or the temperature fluctuates out of season, excessive or insufficient heat storage may occur. . For this reason, the heat storage body temperature is high and the room becomes hot because the heat release amount decreases on warm winter days, and conversely, the heat storage body temperature decreases and the room becomes cold on the cold spring day etc. Invite.

【0008】外気温度を測温して通電時間を制御する方
式の場合、外気温を測温するセンサを、屋内から屋外に
配線配置する必要があり、防水等を考慮した複雑な施工
を実施する必要があり、手間及び施工費用がかかる。
In the case of the method of controlling the energization time by measuring the outside air temperature, it is necessary to arrange a sensor for measuring the outside air temperature from indoors to outdoors, and to perform complicated construction in consideration of waterproofing and the like. Required, labor and construction costs.

【0009】本発明はこのような点に鑑みなされたもの
であって、その目的とするところは外気温度を測温しな
くても、環境負荷の変化に連動した必要蓄熱量を算出し
て通電時間を決定することができる蓄熱式暖房装置の制
御方法を提供するにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to calculate a required heat storage amount in conjunction with a change in environmental load without energizing the outside air temperature without measuring the outside air temperature. It is an object of the present invention to provide a method for controlling a regenerative heating device capable of determining time.

【0010】[0010]

【課題を解決するための手段】しかして請求項1の発明
は、蓄熱体と、蓄熱体の温度を測温する温度センサと、
発熱体とを備え、所定の時間帯に発熱体に通電して発生
させた熱を蓄熱体に蓄熱し、蓄熱体に蓄熱された熱量の
放熱によって暖房を行う蓄熱式暖房装置の制御方法であ
って、所定の時間帯の一定時間前の蓄熱体温度の時間換
算データt1と、メモリーに記憶させた前日の同時刻の
蓄熱体温度の時間換算データt0と、前日の通電時間デ
ータT0とを用いて、必要通電時間Tを次の予測式 T=T0+k*t0−2*k*t1 (k:補正係数) により算出して該算出結果に基づいて発熱体への通電を
行うことに特徴を有している。ここにおける時間換算デ
ータには、蓄熱式暖房装置における蓄熱体残熱量の残時
間換算値を用いることができる。蓄熱体の蓄熱材は顕熱
蓄熱材、潜熱蓄熱材専用または併用で使用してもよい。
According to a first aspect of the present invention, there is provided a heat storage element, a temperature sensor for measuring a temperature of the heat storage element,
And a heat storage element that includes a heat generator and stores heat generated by energizing the heat generator in a predetermined time zone in the heat storage body, and performs heating by radiating the amount of heat stored in the heat storage body. Then, the time conversion data t1 of the heat storage element temperature at a certain time before the predetermined time zone, the time conversion data t0 of the heat storage element temperature at the same time of the previous day stored in the memory, and the energization time data T0 of the previous day are used. Then, the required power supply time T is calculated by the following prediction formula T = T0 + k * t0-2 * k * t1 (k: correction coefficient), and power is supplied to the heating element based on the calculation result. are doing. As the time conversion data here, a remaining time conversion value of the heat storage body residual heat amount in the heat storage type heating device can be used. The heat storage material of the heat storage element may be used exclusively or in combination with the sensible heat storage material and the latent heat storage material.

【0011】そして、請求項1の発明においては、蓄熱
体の温度情報と前日の通電実績情報から前述の予測式で
必要通電時間を算出するために、暖房装置のセンサー設
置施工を簡略化できるものであり、また、所定の時間帯
の一定時間前の蓄熱体温度の時間換算データを用いるた
めに、一定時刻に合わせた快適な暖房を確保する通電時
間制御が可能である。
According to the first aspect of the present invention, since the necessary energizing time is calculated from the temperature information of the heat storage body and the energizing result information of the previous day by the above-mentioned prediction formula, the installation of the sensor of the heating device can be simplified. In addition, since the time conversion data of the heat storage body temperature for a predetermined time before a predetermined time zone is used, it is possible to control the energization time to ensure comfortable heating in accordance with a certain time.

【0012】また請求項2の発明は、所定の時間帯以外
の蓄熱体最低温度の時間換算データt1Lと、メモリー
に記憶させた前日の蓄熱体最低温度の時間換算データt
0Lと、前日の通電時間データT0とを用いて、必要通
電時間Tを次の予測式 T=T0+k*t0−2*k*t1L (k:補正係
数) により算出して該算出結果に基づいて発熱体への通電を
行うことに特徴を有している。所定の時間帯以外の最低
蓄熱体温度の時間換算データを用いるために、一時的な
断熱によ起因して生じる蓄熱体温度情報の高いデータを
無視することができて、季節や気候等の環境負荷にもっ
とも連動した情報を得ることができるものであり、この
結果、必要通電時間の予測精度が向上し、快適な暖房と
することができる。
The invention according to claim 2 is characterized in that the time conversion data t1L of the lowest temperature of the heat storage element other than the predetermined time zone and the time conversion data t1 of the lowest temperature of the heat storage element of the previous day stored in the memory.
Using 0L and the energizing time data T0 of the previous day, the necessary energizing time T is calculated by the following prediction formula T = T0 + k * t0-2 * k * t1L (k: correction coefficient), and based on the calculation result, It is characterized by energizing the heating element. Since the time conversion data of the minimum heat storage element temperature other than the predetermined time zone is used, high data of the heat storage element temperature information generated due to temporary insulation can be ignored, and the environment such as season and climate can be ignored. Information most linked to the load can be obtained. As a result, the accuracy of predicting the required power-on time can be improved, and comfortable heating can be achieved.

【0013】請求項3の発明は、上記の予測式における
補正係数kとしてk=1を用いることに特徴を有してい
る。所定の時間帯内に環境負荷に連動させて発熱体への
通電時間を制御する場合、発熱体に通電する時間数(長
さ)により、暖房に必要な蓄熱体への蓄熱量に暖房装置
ヘの通電時間中の放熱量を加えた熱量を供給するわけで
あるが、供給熱量は、一般の抵抗ヒータ線の発熱体では
ヒータ低抗値は温度変化に対しほとんど変わらないこと
から、通電する時間数(長さ)に発熱体の設備容量(定
格電力)を掛けた電力が熱量となる。すなわち、上記予
測式の補正係数kがk=1になるのは、発熱体に通電す
る時間数(長さ)の供給熱量が蓄熱式暖房装置の設備容
量で一義的に決まっている場合であり、特に、顕熱蓄熱
材を使用した蓄熱式暖房装置や敷設率の高い床暖房装置
に有効であり、環境負荷に連動した必要通電時間の予測
精度が向上し、快適な暖房とすることができる。
A third aspect of the present invention is characterized in that k = 1 is used as the correction coefficient k in the above-mentioned prediction equation. When controlling the energization time to the heating element in conjunction with the environmental load within a predetermined time zone, the number of hours (length) of energizing the heating element determines the amount of heat stored in the heat storage element necessary for heating to the heating device. The amount of heat supplied is the sum of the amount of heat dissipated during the energization time, and the amount of heat supplied is the same as the heating resistance of a general resistance heater wire. Electric power obtained by multiplying the number (length) by the installed capacity (rated power) of the heating element is the amount of heat. That is, the reason why the correction coefficient k in the above-mentioned prediction formula becomes k = 1 is when the amount of heat supplied for the number of hours (length) of energizing the heating element is uniquely determined by the installed capacity of the regenerative heating device. In particular, it is effective for a heat storage type heating device using a sensible heat storage material or a floor heating device having a high laying rate, and the accuracy of predicting a required energization time linked to an environmental load is improved, so that comfortable heating can be achieved. .

【0014】請求項4の発明は、上記予測式における補
正係数kとしてk>1を用いることに特徴を有してい
る。発熱体への通電によって蓄熱体が所定の温度(蓄熱
完了時の目標温度や蓄熱体および発熱体の過昇防止温
度)に到達すると、通電終了までの間、発熱体の入り切
り(ON−OFF)運転するために、通電する時間数
(長さ)同じでも、暖房に必要な蓄熱体への蓄熱量に暖
房装置ヘの通電時間中の放熱量を加えた値である供給熱
量は、環境条件によって異なることになる。そして、上
記予測式の補正係数kがk>1になるのは、発熱体に通
電する時間数(長さ)と供給熱量とが蓄熱式暖房装置の
設備容量で一義的に決まっていない場合であり、簡易的
な予測式の補正係数kがk>1の蓄熱式暖房装置では、
環境負荷に連動した必要通電時間の予測精度が向上し、
快適な暖房とすることができる。特に蓄熱温度の低い蓄
熱材に有効であり、また、演算式の補正係数変更のみで
暖房装置を共用化することができる。
[0014] The invention of claim 4 is characterized in that k> 1 is used as the correction coefficient k in the above-mentioned prediction formula. When the heat storage element reaches a predetermined temperature (a target temperature at the time of completion of heat storage or a temperature for preventing the heat storage element and the heat generation element from rising excessively) by energizing the heat generation element, the heat generation element is turned on and off (ON-OFF) until the power supply is completed. Even if the number of hours (length) of energization for operation is the same, the amount of heat supplied, which is the sum of the amount of heat stored in the heat storage unit required for heating and the amount of heat released during energization to the heating device, depends on environmental conditions. Will be different. The reason why the correction coefficient k in the above-mentioned prediction formula is k> 1 is when the number of times (length) of supplying current to the heating element and the amount of supplied heat are not uniquely determined by the installed capacity of the regenerative heating device. In a regenerative heating device in which the correction coefficient k of the simple prediction formula is k> 1,
Prediction accuracy of required power supply time linked to environmental load is improved,
Comfortable heating can be achieved. In particular, it is effective for a heat storage material having a low heat storage temperature, and the heating device can be shared by only changing the correction coefficient of the arithmetic expression.

【0015】請求項5の発明は、蓄熱式暖房装置が蓄熱
式床暖房装置であることに特徴を有している。蓄熱式床
暖房装置は使用前に床下の蓄熱体に発熱体により蓄熱
し、使用時にその蓄熱された熱を床から室内に放出して
室内を暖房することから、蓄熱体(潜熱/顕熱蓄熱量容
量)と発熱体(設備容量やON−OFF運転)と部屋構
造(天井、床下、壁等)と室内使用状況(たとえば、窓
やドアの開閉等)および外気温度の条件を設定すれば、
時間経過時の蓄熱体温度と室内温度の関係を暖房負荷計
算から求めることができる。そして、放熱が終わる時刻
(所定の時間帯前)の蓄熱体温度は所定の時間帯での発
熱体への通電時間が長ければ高くなり、また外気温度が
高ければ連動して高くなる。言い換えれば、所要時間帯
前の蓄熱体温度を一定温度に制御することで、外気温度
が高ければ通電時間が短く、低ければ通電時間が長くな
る。尚、蓄熱体温度が一定のときの室温は外気温度が高
ければ一定の部屋構造条件で高くなるが、快適温度領域
内に収まる。
A fifth aspect of the present invention is characterized in that the regenerative heating device is a regenerative floor heating device. The regenerative floor heating device stores heat in a regenerator under the floor with a heating element before use, and releases the stored heat into the room from the floor when in use to heat the room. Therefore, the regenerator (latent heat / sensible heat storage) If you set the conditions of volume capacity), heating element (equipment capacity and ON-OFF operation), room structure (ceiling, underfloor, wall, etc.), indoor use condition (for example, opening and closing of windows and doors) and outside air temperature,
The relationship between the temperature of the heat storage unit and the room temperature after the passage of time can be obtained from the heating load calculation. Then, the temperature of the heat storage body at the time when the heat radiation ends (before the predetermined time zone) increases as the energization time to the heating element in the predetermined time zone increases, and increases in conjunction with the increase in the outside air temperature. In other words, by controlling the temperature of the heat storage body before the required time zone to a constant temperature, the energization time is short if the outside air temperature is high, and the energization time is long if the outside air temperature is low. The room temperature when the temperature of the heat storage body is constant increases under a constant room structure condition when the outside air temperature is high, but falls within the comfortable temperature range.

【0016】請求項6の発明は、室温の測定値に応じ
て、蓄熱体の目標温度を変化させることに特徴を有して
いる。所定の時間帯前または通電時間帯中に外気温が急
に変動したとき、連動して室温も変動することから、室
温が低ければ蓄熱体の目標温度を高く、室温が高ければ
低く設定することで、算出された通電時間での供給熱量
とは別に蓄熱体への供給熱量を調整して必要供給熱量を
確保するのである。
A sixth aspect of the present invention is characterized in that the target temperature of the heat storage body is changed according to the measured value of the room temperature. When the outside air temperature fluctuates suddenly before the predetermined time zone or during the energization time zone, the room temperature also fluctuates in conjunction with it.Therefore, if the room temperature is low, set the target temperature of the heat storage unit to be high, and if the room temperature is high, set it low. Thus, the required amount of supplied heat is ensured by adjusting the amount of supplied heat to the heat storage element separately from the amount of supplied heat during the calculated energization time.

【0017】請求項7の発明は、請求項2記載の蓄熱式
暖房装置の制御方法において、所定の時間帯外に任意時
間Tnだけ発熱体に通電した場合、所定の時間帯外の最
も低い蓄熱体温度の時間換算データt1Lと、前日の通
電時間データT0とを用いて、必要通電時間Tを次の予
測式 T=Tn+T0−2*k*t1L (k:補正係数) により算出して該算出結果に基づいて発熱体への通電を
行うことに特徴を有している。所定の時間帯(時間帯別
電灯契約など)以外の時間帯において、外気温が急に低
くなった時、任意時間だけ発熱体に通電することで暖房
を確保する場合があるが、この時には蓄熱体温度が発熱
体の通電により上昇するために、所定の時間帯前の温度
が高くなることから、必要通電時間が短くなるよう運転
する。任意の通電時間Tnを加算する前述の予測式で必
要通電時間を算出することで、通電時間が補正されるわ
けである。
According to a seventh aspect of the present invention, in the control method of the regenerative heating device according to the second aspect, when the heating element is energized for an arbitrary time Tn outside the predetermined time zone, the lowest heat storage outside the predetermined time zone. Using the time conversion data t1L of the body temperature and the energization time data T0 of the previous day, the necessary energization time T is calculated by the following prediction formula T = Tn + T0-2 * k * t1L (k: correction coefficient). It is characterized in that the heating element is energized based on the result. In a time period other than a predetermined time period (such as a time-based light contract), when the outside temperature suddenly decreases, heating may be ensured by energizing the heating element only for an arbitrary period of time. Since the body temperature rises due to the energization of the heating element, the temperature before the predetermined time period increases, so that the operation is performed so that the required energization time is shortened. By calculating the required energizing time by the above-described prediction formula that adds an arbitrary energizing time Tn, the energizing time is corrected.

【0018】請求項8の発明は、蓄熱体温度の時間換算
データを暖房能力切替設定別に具備していることに特徴
を有している。蓄熱式暖房装置は前述のように環境負荷
を予測して運転する必要があるが、住宅構造や使い勝手
で人の温冷感は異なるために、暖房能力(好み設定)を
切替える手段を具備させておくことになる。この時、蓄
熱体温度の時間換算データを暖房能力(好み)の設定別
に具備させることで、蓄熱式暖房装置の暖房能力切替が
可能となる。
The invention according to claim 8 is characterized in that time conversion data of the heat storage element temperature is provided for each heating capacity switching setting. As described above, the regenerative heating device needs to be operated while predicting the environmental load. However, since the thermal sensation of the person is different due to the housing structure and ease of use, a means for switching the heating capacity (preference setting) is provided. Will be kept. At this time, by providing the time conversion data of the heat storage element temperature for each setting of the heating capacity (preference), the heating capacity of the heat storage type heating device can be switched.

【0019】請求項9の発明は、蓄熱体温度の時間換算
データを蓄熱体の蓄熱能力別に具備していることに特徴
を有している。所定の時間帯に発熱体に通電して蓄熱体
に蓄熱するが、寒冷地では所定の時間帯での通電では暖
房に必要な熱量を蓄熱することができないことがあるた
め、寒冷地向けには蓄熱量の多い蓄熱体の使用や敷設率
を増して対応している。従って、蓄熱体温度の時間換算
データを蓄熱体の蓄熱能力別に必要通電時間を制御する
コントローラに具備させることで、寒冷地仕様への対応
を簡便に行うことができる。
A ninth aspect of the present invention is characterized in that time conversion data of the heat storage element temperature is provided for each heat storage capacity of the heat storage element. Electricity is supplied to the heating element in a predetermined time zone and heat is stored in the heat storage element.However, in cold regions, it may not be possible to store the amount of heat required for heating by energizing in the predetermined time period. The use of heat storage materials with a large amount of heat storage and the laying ratio are being increased. Therefore, by providing the time conversion data of the heat storage element temperature in the controller that controls the required energization time for each heat storage capacity of the heat storage element, it is possible to easily cope with the specification in cold regions.

【0020】請求項10の発明は、算出した必要通電時
間データと、計時したカレンダーのある期間毎に設定し
た通電時間とを比較し、大きいほうの通電時間を採用す
ることに特徴を有している。蓄熱体温度を測温している
箇所の局部的な断熱や、エアコンなどの他の暖房器の暖
房のためにセンサ部分の蓄熱体からの放熱が減って蓄熱
体温度が予想より高くなった場合、必要通電時間が減少
し、暖房能力が低下してしまうことになるが、計時した
期間毎に通常あり得る最低の設定した通電時間以上にす
るために、暖房能力の低下を防止できる。
A tenth aspect of the present invention is characterized in that the calculated necessary energizing time data is compared with the energizing time set for each period of the measured calendar, and the larger energizing time is adopted. I have. When the heat storage element temperature becomes higher than expected due to a decrease in heat radiation from the heat storage element in the sensor part due to local insulation of the location where the temperature of the heat storage element is measured or heating of another heater such as an air conditioner Although the required power supply time is reduced and the heating power is reduced, the heating power can be prevented from being lowered because the required power supply time is set to be longer than a normally set minimum power supply time for each time period.

【0021】請求項11の発明は、蓄熱体の温度を測温
する温度センサを分散させて複数個配置し、最小の測温
値から蓄熱体温度の時間換算データを導いて通電時間を
算出することに特徴を有している。蓄熱体温度を測温し
ている箇所の局部的な断熱やエアコンなどの暖房器の併
用が原因で、誤った蓄熱体温度を測温してしまうことが
あっても、複数個を分散配置した配置した温度センサの
最小の測温値を採用することで誤検知を低減することが
できる。
According to an eleventh aspect of the present invention, a plurality of temperature sensors for measuring the temperature of the heat storage element are dispersed and arranged, and the time conversion data of the temperature of the heat storage element is derived from the minimum measured value to calculate the energization time. It has special features. Even if the temperature of the heat storage element was measured incorrectly due to the local insulation of the location where the temperature of the heat storage element was measured or the combined use of a heater such as an air conditioner, multiple units were distributed. Employing the minimum temperature measurement value of the disposed temperature sensor can reduce erroneous detection.

【0022】[0022]

【発明の実施の形態】以下本発明を実施の形態の例に基
づいて説明する。尚本発明は以下の例に限定されるもの
ではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment. The present invention is not limited to the following examples.

【0023】図1に蓄熱式暖房装置構成を示す。蓄熱体
1と、一般の抵抗線である発熱体2と、発熱体2の設備
容量電力供給の開閉器であるリレーボックス3、および
制御コントローラ4で構成されている。蓄熱体1は顕熱
蓄熱材を主としており、制御コントローラ4には必要な
熱量に応じて通電時間を制御するためのマイクロコンピ
ュータ(以下、マイコンと称す)が搭載されている。マ
イコンは発熱体温度検知処理、通電時間制御、カレンダ
ーの計時処理、温度・時間換算処理、および演算処理等
の回路を具備している。また、蓄熱体の近傍には蓄熱体
1の温度を測温するセンサ5が設置されている。
FIG. 1 shows the configuration of a regenerative heating system. It comprises a heat storage element 1, a heating element 2 that is a general resistance wire, a relay box 3 that is a switch for supplying power to the equipment capacity of the heating element 2, and a control controller 4. The heat storage body 1 mainly includes a sensible heat storage material, and the control controller 4 is equipped with a microcomputer (hereinafter, referred to as a microcomputer) for controlling an energization time according to a required amount of heat. The microcomputer is provided with circuits such as a heating element temperature detection process, an energization time control, a calendar time measurement process, a temperature / time conversion process, and a calculation process. A sensor 5 for measuring the temperature of the heat storage element 1 is provided near the heat storage element.

【0024】所定の時間帯が23時から翌朝の7時まで
(一般の深夜電力時間帯8時間)の標準施工での外気温
と室温と蓄熱体温度の温度変化データを図2に示す。蓄
熱体温度は所定の時間帯終了時の7時すぎが最も高く、
所定の時間帯外に外気温や室温に連動して放熱され、発
熱体への通電開始となる所定の時間帯前の23時頃に最
も低くなる。本発明においては、所定の時間帯前の一定
時間前(たとえば23時1分前)の蓄熱体温度を測温す
ることで蓄熱体の持つ残熱量を推定する。
FIG. 2 shows temperature change data of the outside air temperature, the room temperature, and the temperature of the heat storage element in the standard construction from a predetermined time period of 23:00 to 7:00 of the next morning (a general midnight power time period of 8 hours). The temperature of the heat storage body is highest at 7 o'clock at the end of the predetermined time zone,
The heat is radiated outside the predetermined time zone in conjunction with the outside air temperature or the room temperature, and becomes lowest around 23:00 before the predetermined time zone when the power supply to the heating element is started. In the present invention, the residual heat amount of the heat storage body is estimated by measuring the temperature of the heat storage body a predetermined time before the predetermined time zone (for example, 23:01).

【0025】部屋の施工・構造条件が一定の場合、外気
温度の環境負荷条件に連動した蓄熱体温度と前述の蓄熱
体残熱量(主として顕熱分)の関係は、図3に示すよう
に蓄熱体の持つ熱量で一義的に決まることから、蓄熱体
残熱量を一定にし、外気温環境負荷の本日の放熱量が翌
日も同じ放熱量になると仮定して、前日の通電供給熱量
と前日の蓄熱体残熱量および本日の蓄熱体残熱量から、
本日の通電供給熱量を算出する。
When the construction and structural conditions of the room are constant, the relationship between the heat storage body temperature and the heat storage body residual heat amount (mainly sensible heat) linked to the environmental load condition of the outside air temperature is as shown in FIG. Since it is determined unambiguously by the amount of heat the body has, the amount of heat remaining in the heat storage unit is kept constant, and the amount of heat supplied from the previous day and the amount of heat stored the previous day are assumed, assuming that the amount of heat radiated from the external environmental load today will be the same amount of heat next day From the body residual heat and today's heat storage body residual heat,
Calculate the current supply heat quantity.

【0026】本日の環境負荷の放熱量は前日の蓄熱体残
熱量q0と前日の通電供給熱量Q0の和から本日の蓄熱
体残熱量q1を引いた値となる。また、本日の通電供給
熱量Q1は、翌日の環境負荷の放熱量(本日の環境負荷
の放熱量)から本日の蓄熱体残熱量q1を引けば求めら
れる。従って、(本日の通電供給熱量Q1)=(前日の
通電供給熱量Q0)+(前日の蓄熱体残熱量q0)−2
*(本日の蓄熱体残熱量q1)となり、 Q1=Q0+q0−2*q1 本日の通電供給熱量Q1を予測することができる。
The heat radiation amount of the environmental load of the day is a value obtained by subtracting the heat storage body residual heat amount q1 of the present day from the sum of the heat storage body residual heat amount q0 of the previous day and the energized supply heat amount Q0 of the previous day. Further, today's energized supply heat amount Q1 can be obtained by subtracting today's heat storage body residual heat amount q1 from the next day's environmental load heat release amount (today's environmental load heat release amount). Therefore, (current supply heat quantity Q1 of today) = (current supply heat quantity Q0 of the previous day) + (heat storage body residual heat quantity q0 of the previous day) -2.
* (Today's heat storage body residual heat amount q1), and Q1 = Q0 + q0-2 * q1 It is possible to predict the energized supply heat amount Q1 of today.

【0027】外気温の環境負荷が変動した時の動作図を
図4に示す。図4から判るように、環境負荷が変動する
と通電供給熱量も変動し、翌日の蓄熱体温度が一定にな
るように熱量の制御が行われる。
FIG. 4 shows an operation diagram when the environmental load of the outside air temperature fluctuates. As can be seen from FIG. 4, when the environmental load fluctuates, the supplied heat also fluctuates, and the amount of heat is controlled so that the temperature of the heat storage body on the next day becomes constant.

【0028】通電供給熱量を通電時間で設定するには、
発熱体のヒータ抵抗特性を考慮して行うが、一般のヒー
タ線では熱量/電力(発熱体の設備容量)の関係から一
義的に決まる。また蓄熱体残熱量を時間関数である残時
間で設定するには、暖房装置の供給可能な熱量と、時間
帯の通電可能な時間との割合での時間換算で行う。この
換算値は主として蓄熱体の特性および暖房装置の目標設
定により決まる。冬の23時1分前の室温を18度に確
保できる暖房装置を目標(このときの蓄熱体温度は50
度相当になる)と設定した場合の蓄熱体温度と残熱量時
間との関係を表1に示す。
In order to set the energizing supply heat amount by the energizing time,
This is performed in consideration of the heater resistance characteristics of the heating element. However, in the case of a general heater wire, it is uniquely determined from the relationship between the calorific value and the electric power (equipment capacity of the heating element). In addition, in order to set the heat storage body residual heat amount as a remaining time, which is a time function, the heat storage body heat amount can be supplied by converting the amount of heat that can be supplied by the heating device to the time during which electricity can be supplied during the time period. This conversion value is mainly determined by the characteristics of the heat storage unit and the target setting of the heating device. Targeting a heating system that can secure a room temperature of 18 degrees Celsius before 23:01 in winter (at this time, the temperature of the regenerator is 50
Table 1 shows the relationship between the temperature of the heat storage body and the residual heat amount time when the temperature is set to (equivalent to degrees).

【0029】[0029]

【表1】 [Table 1]

【0030】表1は残時間を0.25時間(15分)単
位で割り付けている。分単位で細かく割り付けすること
もできるが、マイコン容量や演算確認評価の多大さ等を
考慮して少なくしている。
In Table 1, the remaining time is allocated in units of 0.25 hours (15 minutes). Although it is possible to finely assign in units of minutes, it is reduced in consideration of the microcomputer capacity and the large amount of calculation confirmation evaluation.

【0031】以上のことから、所定の時間帯の一定時間
前の蓄熱体温度の時間換算データをt1、メモリーに記
憶させた前日の同時刻の蓄熱体温度の時間換算データを
t0、前日の通電時間データをT0、必要通電時間をT
とすると、前述の予測式を時間置換した式は、 T=T0+t0−2*t1 となる。この式に前述の通電時間および残時間を代入し
て求める。
From the above, the time converted data of the heat storage element temperature at a certain time before the predetermined time zone is t1, the time converted data of the heat storage element temperature at the same time of the previous day stored in the memory is t0, and the energization of the previous day is performed. Time data is T0, required energization time is T
Then, an expression obtained by time-replacement of the above-described prediction expression is as follows: T = T0 + t0−2 * t1. This equation is obtained by substituting the above-described energization time and remaining time.

【0032】必要通電時間の算出と通電開始時刻を設定
した通電動作状態の一例を図5に示す。所定の時間帯前
の時刻(23時前)の測温した蓄熱体温度より本日の蓄
熱体残熱量時間を前述の割り付け表(表1)より決定す
る。マイコンにメモリーしていた前日の情報(蓄熱体残
熱量時間と供給熱量である通電時間)と本日の蓄熱体残
熱量時間から、本日の供給熱量である通電時間を予測式
にて算出する。通電時間帯(8時間)から前述の通電時
間を引いた時間を通電時間帯開始時刻よりシフトさせ通
電開始時刻を設定する。時刻タイマーが動作し前述時刻
になると、発熱体への通電が開始され、所定の時間帯完
了時刻(午前7時)で通電は停止する。また、23時の
1時間前、すなわち22時の蓄熱体温度情報を用いる時
には22時の温度を管理することになる。よって、所定
の時間帯の一定時間前の設定時刻での快適な暖房を確保
することができる。
FIG. 5 shows an example of the power supply operation state in which the required power supply time is calculated and the power supply start time is set. Based on the measured temperature of the heat storage material at the time before the predetermined time zone (prior to 23:00), the heat storage material remaining heat amount time of the present day is determined from the above-described allocation table (Table 1). Based on the information of the previous day (remaining heat amount of heat storage body and energization time as supply heat amount) stored in the microcomputer and the remaining heat amount time of heat storage body of the day, the energization time as today's supply heat amount is calculated by a prediction formula. The energization start time is set by shifting the time obtained by subtracting the energization time from the energization time zone (8 hours) from the energization time zone start time. When the time timer operates and the above-mentioned time is reached, energization to the heating element is started and energization is stopped at a predetermined time zone completion time (7:00 am). When the heat storage body temperature information at 12:00 before 23:00, that is, at 22:00, is used, the temperature at 22:00 is managed. Therefore, comfortable heating can be ensured at a set time before a predetermined time in a predetermined time zone.

【0033】ところで、所定の時間帯以外(7時から2
3時の間)での蓄熱体温度を測温するとき、外気温環境
負荷に連動して蓄熱体は放熱されるために蓄熱体温度は
徐々に低下するが、途中蓄熱体温度が上昇する場合も考
えられる。図6中のAは電力契約を時間帯別電灯契約し
ている場合であり、所定の時間帯外に任意時間だけ発熱
体に通電することができる。急に室温が低下して寒い時
に追いだき運転することができるが、電気代は通常より
割高に設定されている。追いだき運転する時刻により蓄
熱体温度は所定時間帯の一定時間前の温度に対し、通常
時よりも高いときがある。また、図6中のBは蓄熱体温
度を測温するセンサ設置場所が断熱されている場合で、
熱がこもったために温度が上昇している。いずれの場合
も、所定の時間帯の一定時間前の温度に基づくと、蓄熱
残熱量が多いと判断してしまうことになるために、算出
される必要通電時間も短くなってしまうことになり、通
電時間予測精度が劣ってしまう。
By the way, other than the predetermined time zone (from 7:00 to 2
When the temperature of the heat storage element is measured at 3 o'clock), the temperature of the heat storage element gradually decreases because the heat storage element is radiated in accordance with the ambient temperature environmental load. Can be A in FIG. 6 shows a case in which a power contract is made for each time zone, and the heating element can be energized for an arbitrary time outside a predetermined time zone. You can drive after the room temperature suddenly drops and it is cold, but the electricity bill is set higher than usual. Depending on the time of the driving operation, the temperature of the heat storage body may be higher than the normal temperature with respect to the temperature a predetermined time before the predetermined time zone. B in FIG. 6 is a case where the sensor installation location for measuring the temperature of the heat storage body is insulated,
The temperature is rising due to the heat. In any case, based on the temperature of a predetermined time period before the predetermined time zone, it is determined that the heat storage residual heat amount is large, so that the calculated required energization time will be short, The power supply time prediction accuracy is inferior.

【0034】これらの点に対処するには、所定の時間帯
の一定時間前の蓄熱体温度を用いるのではなく、所定の
時間帯以外の蓄熱体最低温度の時間換算データt1L
と、メモリーに記憶させた前日の蓄熱体最低温度の時間
換算データt0Lと、前日の通電時間データT0とを用
いて、必要通電時間Tを T=T0+k*t0−2*k*t1L (k:補正係
数) で算出して該算出結果に基づいて発熱体への通電を行え
ばよい。
In order to deal with these points, instead of using the temperature of the heat storage body a predetermined time before the predetermined time zone, the time conversion data t1L of the lowest temperature of the heat storage body other than the predetermined time zone is used.
Using the time conversion data t0L of the heat storage body minimum temperature of the previous day stored in the memory and the power supply time data T0 of the previous day, the required power supply time T is calculated as follows: T = T0 + k * t0-2 * k * t1L (k: It is only necessary to calculate the current value by using the correction coefficient, and to energize the heating element based on the calculation result.

【0035】ところで、上記の補正係数kがk=1にな
るのは、発熱体に通電する時間数(長さ)の供給熱量が
蓄熱式暖房装置の設備容量で一義的に決まっている場合
である。最初の例で述べた構成の顕熱蓄熱材を用いた暖
房装置で、一般の抵抗ヒータ線の発熱体へ通電する時間
数と供給熱量の関係を図7に示す。図7から判るように
通電時間数は発熱量(消費電力)と正比例の関係になっ
ている。ヒータ温度特性で若干変化するが、発熱体の設
備容量の発熱効率が約100%(k=1)になってい
る。前述の関係にある場合、k=1の予測式を用いて必
要通電時間を算出する。また残時間割り付けは前述の表
1を使用する。
The correction coefficient k becomes k = 1 when the amount of heat supplied for the number of hours (length) of energizing the heating element is uniquely determined by the installed capacity of the regenerative heating device. is there. FIG. 7 shows the relationship between the number of hours to supply power to the heating element of a general resistance heater wire and the amount of heat supplied in the heating device using the sensible heat storage material having the configuration described in the first example. As can be seen from FIG. 7, the number of energization times is directly proportional to the amount of heat generation (power consumption). The heating efficiency of the installed capacity of the heating element is about 100% (k = 1), though slightly changed by the heater temperature characteristics. In the case of the above-mentioned relationship, the necessary energization time is calculated using the prediction formula of k = 1. Table 1 is used for the remaining time allocation.

【0036】補正係数kがk>1になるのは、発熱体に
通電する時間数と供給熱量が蓄熱式暖房装置の設備容量
で一義的に決まっていない場合であり、最初の例で述べ
た構成の顕熱蓄熱材を用いた暖房装置で、通電により蓄
熱体が所定の温度(蓄熱完了時の目標温度や蓄熱体およ
び発熱体の過昇防止温度)に到達すれば、所定の時間帯
が終了するまでの間で発熱体の入り切り(ON−OF
F)運転する場合、発熱体へ通電する時間数と供給熱量
の関係を図8に示す。図8から判るように通電時間数は
発熱量(消費電力)と正比例の関係になっておらず、通
電時間数が増えると、発熱体の設備容量の発熱効率が悪
くなり、4時間から8時間の間では約50%(k=2)
になっている。これは蓄熱体の蓄熱ムラがある施工状態
で顕著に現れ、蓄熱体が所定の温度に到達しても測温箇
所以外の蓄熱体温度はまだ上昇していないためである。
暖房装置の設備容量が十分あっても施工状態では見かけ
上変わってしまう。
The correction coefficient k becomes k> 1 when the number of hours for energizing the heating element and the amount of supplied heat are not uniquely determined by the installed capacity of the regenerative heating device, and as described in the first example. In a heating device using a sensible heat storage material having a configuration, if a heat storage body reaches a predetermined temperature (a target temperature at the time of completion of heat storage or a temperature at which the heat storage body and the heating element are prevented from excessively rising) by energization, a predetermined time period is set. Turn on / off the heating element until it ends (ON-OF
F) In operation, FIG. 8 shows the relationship between the number of hours for energizing the heating element and the amount of heat supplied. As can be seen from FIG. 8, the number of energization hours is not directly proportional to the amount of heat generation (power consumption). When the number of energization hours increases, the heat generation efficiency of the equipment capacity of the heating element deteriorates, and from 4 hours to 8 hours About 50% (k = 2)
It has become. This is because the heat storage body appears remarkably in a construction state in which there is unevenness in heat storage, and even when the heat storage body reaches a predetermined temperature, the temperature of the heat storage body other than the temperature measurement point has not yet risen.
Even if the equipment capacity of the heating device is sufficient, it will change apparently in the construction state.

【0037】前述の関係にある場合、k=2の予測式を
用いて必要通電時間を算出する。式を共用するためあら
かじめ残時間を2倍して割り付けた表を表2に示す。こ
のように補正することで環境負荷に連動した必要通電時
間の予測精度が向上し、快適な暖房をすることができ
る。
In the case of the above-mentioned relationship, the required energization time is calculated using the prediction equation of k = 2. Table 2 shows a table in which the remaining time is doubled and assigned in advance to share the formula. By making such corrections, the accuracy of predicting the required energization time linked to the environmental load is improved, and comfortable heating can be performed.

【0038】[0038]

【表2】 [Table 2]

【0039】図9は蓄熱式暖房装置が電気床暖房装置で
ある場合を示しており、蓄熱体1は木質床材7の下層に
設置される蓄熱ボードとして形成されている。所定の時
間帯が23時から翌朝の7時まで(一般の深夜電力時間
帯8時間)の標準施工での外気温と室温と床表面温度と
蓄熱体温度の温度変化データを図10に示す。蓄熱体温
度は所定の時間帯終了時の7時すぎが最も高く、時間帯
外に外気温や室温に連動して放熱され、9時から16時
までの時間は主に蓄熱体の潜熱分の放熱であり、16時
以降は顕熱分の放熱が多くなっている。この顕熱分の放
熱が増した通電時間帯前の23時頃は最も低くなる。従
って、最初の例と同じ考えで通電時間を予測することが
できる。
FIG. 9 shows a case in which the regenerative heating device is an electric floor heating device. The regenerator 1 is formed as a regenerative board installed below the wooden floor 7. FIG. 10 shows temperature change data of the outside air temperature, the room temperature, the floor surface temperature, and the regenerator temperature in the standard construction from a predetermined time period of 23:00 to 7:00 of the next morning (general midnight power time period of 8 hours). The heat storage body temperature is highest at 7:00 after the end of the predetermined time zone, and is radiated outside the time zone in conjunction with the outside air temperature or the room temperature. During the period from 9:00 to 16:00, the latent heat of the heat storage body is mainly used. This is heat radiation, and the heat radiation for the sensible heat increases after 16:00. It becomes the lowest around 23:00 before the energization time period when the heat radiation for the sensible heat increases. Therefore, the energization time can be predicted based on the same idea as in the first example.

【0040】部屋の施工・構造条件が一定の場合、外気
温度の環境負荷条件に連動した蓄熱体温度と蓄熱体残熱
量(潜熱、顕熱分含む)の関係は図11に示すように蓄
熱体の持つ熱量で一義的に決まる。
When the construction and structural conditions of the room are constant, the relationship between the heat storage body temperature and the heat storage body residual heat amount (including latent heat and sensible heat) linked to the environmental load condition of the outside air temperature is as shown in FIG. Is uniquely determined by the amount of heat it has.

【0041】必要通電時間の設定および蓄熱体残時間を
設定し、冬の23時1分前の室温を18度、床温度23
度を確保できる暖房装置を目標(このときの蓄熱体温度
は37度相当になる)と設定した場合の蓄熱体温度と残
熱量時間との関係を表3に示す。表3はk=1.8であ
る。
The setting of the necessary energizing time and the remaining time of the heat storage body were performed, and the room temperature at 23:01 before winter was set to 18 degrees and the floor temperature was set to 23 degrees.
Table 3 shows the relationship between the heat storage element temperature and the residual heat amount time when the heating device capable of securing the temperature is set as the target (the heat storage element temperature at this time is equivalent to 37 degrees). Table 3 shows k = 1.8.

【0042】[0042]

【表3】 [Table 3]

【0043】必要通電時間の算出および通電開始時刻を
設定した通電動作状態を図12に示す。所定の時間帯前
の時刻(23時前)の測温した蓄熱体温度より本日の蓄
熱体残熱量時間を表3の割り付け表より決定する。マイ
コンにメモリーしていた前日の情報(蓄熱体残熱量時間
と供給熱量である通電時間)と本日の蓄熱体残熱量時間
から、本日の供給熱量である必要通電時間を予測式にて
算出する。所定の時間帯(8時間)から前述の必要通電
時間を引いた時間を通電時間帯開始時刻よりシフトさせ
て通電開始時刻を設定する。時刻タイマーが動作し前述
時刻になると、発熱体への通電が開始し、所定の時間帯
完了時刻で通電は停止する。
FIG. 12 shows an energization operation state in which the necessary energization time is calculated and the energization start time is set. Based on the measured temperature of the heat storage material at the time before the predetermined time zone (before 23:00), the heat storage material residual heat amount time of the present day is determined from the allocation table of Table 3. The required energization time, which is the amount of heat to be supplied today, is calculated from the information of the previous day (remaining heat amount of the heat storage body and the energization time, which is the amount of heat supplied) stored in the microcomputer and the required amount of energization time, which is the amount of heat supplied today. The energization start time is set by shifting the time obtained by subtracting the required energization time from the predetermined time zone (8 hours) from the energization time zone start time. When the time timer operates and the above time is reached, energization of the heating element is started, and the energization is stopped at a predetermined time zone completion time.

【0044】室温を測定するための室温センサを設けて
もよく、この場合は図13に示すように、室温が所定の
温度(例えば18℃)以上であれば、蓄熱体の目標温度
(発熱体上限温度T00)を低くし、逆に、室温が所定
の温度以下であれば、蓄熱体の目標温度(発熱体上限温
度T01)を高くするとよい。
A room temperature sensor for measuring the room temperature may be provided. In this case, as shown in FIG. 13, if the room temperature is equal to or higher than a predetermined temperature (for example, 18 ° C.), the target temperature of the heat storage body (heating element) The upper limit temperature T00) is lowered, and conversely, if the room temperature is equal to or lower than a predetermined temperature, the target temperature of the heat storage body (heater upper limit temperature T01) may be increased.

【0045】こうすることで、所定の時間帯前または通
電時間帯中に外気温が急に変動しても、連動して変動す
る室温に応じて蓄熱体への蓄熱量が調整されることにな
る。たとえば室温が高くなった時には蓄熱体への蓄熱量
が抑えられる。室温に応じた蓄熱量にコントロールされ
るものである。ここでは二段階の温度切替で説明した
が、段階を増やすことでより細かい制御が可能となる。
By doing so, even if the outside air temperature fluctuates suddenly before the predetermined time zone or during the energization time zone, the amount of heat stored in the heat storage body is adjusted according to the interlockingly changing room temperature. Become. For example, when the room temperature rises, the amount of heat stored in the heat storage body is suppressed. The amount of heat stored is controlled according to the room temperature. Here, the two-stage temperature switching has been described, but more control is possible by increasing the number of stages.

【0046】また、寒冷前線の通過などで急に外気温が
低下すると、蓄熱体からの放熱量が増え適正な暖房より
も低くなり、契約時間開始直前などは蓄熱体温度がもっ
とも低いため、室温も低く寒く感じる場合がある。この
時、時間帯別電灯契約であれば、契約時間(深夜電力時
間帯)外でも通電することが可能なため、所定の時間帯
前に通電を行うと、室温の低下をカバーできる。しか
し、通電を行うと契約時間直前の温度が最小温度とはな
らないので、前述のように、所定の時間帯の一定時間前
の温度に基づくのではなく、所定の時間帯以外の蓄熱体
最低温度に基づく予測に切り換えることが好ましい。こ
れは、図14に示すように、所定の時間帯(契約時間
帯)外に運転されたかどうかを記録するとともに、この
結果に基づいて、上記切り換えを行うことで対応するこ
とができる。なお、昨日の残熱量時間を0時間とする。
If the outside temperature suddenly drops due to the passage of a cold front or the like, the amount of heat radiated from the heat storage unit increases and becomes lower than proper heating. May also feel cold and low. At this time, if the lighting is contracted by time zone, it is possible to energize even outside the contract time (midnight power time zone), so if the energization is performed before a predetermined time zone, it is possible to cover a decrease in room temperature. However, when the power is supplied, the temperature immediately before the contract time does not become the minimum temperature. Therefore, as described above, the temperature of the heat storage body other than the predetermined time period is not based on the temperature of the predetermined time period before the predetermined time period. It is preferable to switch to prediction based on This can be dealt with by recording whether or not the vehicle has been operated outside a predetermined time period (contract time period) and performing the above-described switching based on the result as shown in FIG. In addition, let the remaining heat amount time yesterday be 0 hour.

【0047】暖房能力を切り換えることができるように
しておくのも好ましく、これはユーザのボタン操作によ
る切り換え(図18に示す「標準」「高」「低」)によ
って、夜間開始時間の蓄熱体目標温度を切り替えられる
ようにしておくことで対応することができる。例えば、
「標準」の場合には所定の時間帯開始時の蓄熱体温度が
37℃の時、残熱量時間を0時間とし、「高」の場合に
は所定の時間帯開始時の蓄熱体温度が42℃の時、残熱
量時間を0時間とし、「低」の場合には所定の時間帯開
始時の蓄熱体温度が32℃の時、残熱量時間を0時間と
するのである。
It is also preferable that the heating capacity can be switched, and this can be switched by the user's button operation ("standard", "high", "low" shown in FIG. 18), and the heat storage target at the night start time can be changed. This can be coped with by allowing the temperature to be switched. For example,
In the case of “standard”, when the temperature of the regenerator at the start of the predetermined time zone is 37 ° C., the residual heat amount time is set to 0 hour. In the case of “high”, the temperature of the regenerator at the start of the predetermined time zone is 42 hours. At 0 ° C., the residual heat amount time is set to 0 hour, and when “low”, the residual heat amount time is set to 0 hour when the heat storage body temperature at the start of the predetermined time zone is 32 ° C.

【0048】このような設定によって通電開始時間帯前
の蓄熱体温度の目標値を変更する制御を行って蓄熱量を
加減することで、暖房能力を調整することができ、ユー
ザーの好みや、住宅構造に応じた暖房能力に調整するこ
とが可能となる。
The heating capacity can be adjusted by adjusting the heat storage amount by performing the control for changing the target value of the heat storage body temperature before the energization start time zone by such a setting, so that the heating capacity can be adjusted. It is possible to adjust the heating capacity according to the structure.

【0049】また、蓄熱式床暖房では使用環境によって
蓄熱体を変更して温暖地仕様や寒冷地仕様とする場合が
ある。寒冷地仕様では、温暖地仕様に比べて環境負荷も
大きいために、蓄熱体の体積を増やして蓄熱量を増やす
ことで、暖房能力を確保する。このように蓄熱体が替わ
った場合にも適正な制御を行うことができるようにする
には、図16に示すように、時間換算テーブルを蓄熱体
種別に応じて複数備えたものとし、蓄熱体種別によって
時間換算テーブルを切り換えることができるようにして
おけばよい。
In the case of the regenerative floor heating, the regenerator may be changed depending on the use environment to make it a warm district specification or a cold district specification. In the cold district specification, the environmental load is greater than in the warm district specification. Therefore, the heating capacity is secured by increasing the volume of the heat storage body to increase the amount of heat storage. As shown in FIG. 16, a plurality of time conversion tables are provided according to the type of the heat storage element so that appropriate control can be performed even when the heat storage element is changed. The time conversion table may be switched depending on the type.

【0050】さらに、蓄熱体の温度を測温するセンサが
設置されている床上に座布団等が置かれた場合、断熱さ
れるためにセンサ部の蓄熱体が放熱されにくくなる。ま
た、エアコン等が併用された場合には、室温が高くなり
蓄熱体が放熱されにくくなる。このように蓄熱体の放熱
が進まずに温度が高いままとなれば、結果的に蓄熱残熱
量があると判断されて、次の必要通電時間が本来の適正
な時間よりも短くなってしまい、結果的に翌日は暖房能
力が不足することになる。
Furthermore, when a cushion or the like is placed on the floor on which a sensor for measuring the temperature of the heat storage element is installed, the heat storage element in the sensor section is less likely to radiate heat because of thermal insulation. In addition, when an air conditioner or the like is used in combination, the room temperature increases and the heat storage body is less likely to radiate heat. If the temperature remains high without the heat dissipation of the heat storage body proceeding in this way, it is determined that there is a residual heat storage amount, and the next required energization time is shorter than the originally appropriate time, As a result, the next day the heating capacity will be insufficient.

【0051】この点については、次のようにすることで
対処することができる。図17は対処例の一例を示して
おり、ここでは必要通電時間の下限値Tcをカレンダー
の1〜12月の月別に設定し、計算により算出された必
要通電時間Tとその月の下限値Tcとを大小比較し、大
きいほうの時間を採用して通電を行うようにしている。
月毎に定める下限値Tcは、月平均気温を元に必要通電
時間を割り出すことによって定めればよい。また、本例
では下限値Tcを月毎に設定したが、これは週毎あるい
は日毎に設定してもよい。
This point can be dealt with as follows. FIG. 17 shows an example of a coping example. Here, the lower limit value Tc of the required power supply time is set for each month from January to December in the calendar, and the required power supply time T calculated by calculation and the lower limit value Tc of the month are set. Are compared with each other, and the larger time is employed to energize.
The lower limit value Tc determined for each month may be determined by calculating the required power supply time based on the monthly average temperature. Further, in this example, the lower limit value Tc is set every month, but this may be set every week or every day.

【0052】上記問題の対処は、図18に示すように、
蓄熱体温度を測温するセンサを部屋内に2箇所設置し、
計算に用いる蓄熱体温度としては2個のセンサから得ら
れるデータのうち低いほうを採用することによっても行
うことができる。
To cope with the above problem, as shown in FIG.
Two sensors are installed in the room to measure the temperature of the regenerator,
The heat storage element temperature used in the calculation can be determined by adopting the lower one of the data obtained from the two sensors.

【0053】[0053]

【発明の効果】以上のように本発明の請求項1の発明及
び請求項2の発明においては、蓄熱体温度を計測する温
度センサからの情報のみで、環境負荷変動に応じた通電
時間の設定を行うことができて、ランニングコストの低
減を図ることができるとともに最適な暖房制御を行うこ
とができるものであり、しかも暖房装置としては外気温
の測定を必要としないために省施工のものとすることが
できる。加えるに、請求項1の発明にあっては、所定の
時間帯の一定時間前の蓄熱体温度の時間換算データを用
いるために、一定時刻に合わせた快適な暖房を確保する
通電時間制御が可能であり、請求項2の発明にあっては
所定の時間帯以外の最低蓄熱体温度の時間換算データを
用いるために、一時的な断熱に起因して生じる蓄熱体温
度情報の高いデータを無視することができて、季節や気
候等の環境負荷にもっとも連動した情報を得ることがで
きるものであり、この結果、必要通電時間の予測精度が
向上し、快適な暖房とすることができる。
As described above, according to the first and second aspects of the present invention, the setting of the energizing time according to the environmental load change is performed only by the information from the temperature sensor for measuring the temperature of the heat storage element. It is possible to reduce running costs and to perform optimal heating control, and as a heating device, it is not necessary to measure the outside air temperature, so it is necessary to reduce the construction work. can do. In addition, according to the first aspect of the present invention, since the time conversion data of the temperature of the heat storage element is used a predetermined time before the predetermined time zone, the energization time control that ensures comfortable heating at a certain time can be performed. According to the second aspect of the present invention, since the time conversion data of the minimum heat storage element temperature other than the predetermined time zone is used, high data of the heat storage element temperature information generated due to temporary heat insulation is ignored. As a result, it is possible to obtain information most linked to the environmental load such as the season and the climate. As a result, the accuracy of predicting the required power-on time is improved, and comfortable heating can be achieved.

【0054】請求項3の発明は、上記の予測式における
補正係数kとしてk=1を用いることから、発熱体に通
電する時間数(長さ)の供給熱量が蓄熱式暖房装置の設
備容量で一義的に決まっている場合において、特に、顕
熱蓄熱材を使用した蓄熱式暖房装置や敷設率の高い床暖
房装置において、環境負荷に連動した必要通電時間の予
測精度が向上し、快適な暖房とすることができる。
According to the third aspect of the present invention, since k = 1 is used as the correction coefficient k in the above-mentioned prediction equation, the amount of heat supplied for the number of hours (length) of energizing the heating element is determined by the installed capacity of the regenerative heating apparatus. In the case where it is determined uniquely, especially in a regenerative heating system using a sensible heat storage material or a floor heating system with a high laying ratio, the accuracy of predicting the required energization time linked to the environmental load is improved, and comfortable heating is achieved. It can be.

【0055】請求項4の発明は、上記予測式における補
正係数kとしてk>1を用いることから、発熱体に通電
する時間数(長さ)と供給熱量とが蓄熱式暖房装置の設
備容量で一義的に決まっていない場合、環境負荷に連動
した必要通電時間の予測精度が向上し、快適な暖房とす
ることができる。
According to the fourth aspect of the present invention, since k> 1 is used as the correction coefficient k in the above-mentioned prediction equation, the number of hours (length) of energizing the heating element and the amount of heat supplied are determined by the installed capacity of the regenerative heating apparatus. If it is not uniquely determined, the accuracy of predicting the required power supply time linked to the environmental load is improved, and comfortable heating can be achieved.

【0056】請求項5の発明は、蓄熱式暖房装置が、蓄
熱体(潜熱/顕熱蓄熱量容量)と発熱体(設備容量やO
N−OFF運転)と部屋構造(天井、床下、壁等)と室
内使用状況(たとえば、窓やドアの開閉等)および外気
温度の条件を設定すれば、時間経過時の蓄熱体温度と室
内温度の関係を暖房負荷計算から求めることができる蓄
熱式床暖房装置であることから、精度の良い制御を行う
ことができる。
According to a fifth aspect of the present invention, in the regenerative heating system, the heat storage element (latent heat / sensible heat storage capacity) and the heat generator (equipment capacity or O
N-OFF operation), room structure (ceiling, underfloor, wall, etc.), indoor use condition (for example, opening and closing of windows and doors), and conditions of outside air temperature are set. Is a regenerative floor heating device that can obtain the relationship from the heating load calculation, so that accurate control can be performed.

【0057】請求項6の発明は、室温の測定値に応じ
て、蓄熱体の目標温度を変化させることから、算出され
た通電時間での供給熱量とは別に蓄熱体への供給熱量を
調整して必要供給熱量を確保することができる。
According to the sixth aspect of the present invention, since the target temperature of the heat storage is changed in accordance with the measured value of the room temperature, the amount of heat supplied to the heat storage is adjusted separately from the amount of heat supplied during the calculated energization time. As a result, the required heat supply can be secured.

【0058】請求項7の発明は、請求項2記載の蓄熱式
暖房装置の制御方法において、所定の時間帯外に任意時
間Tnだけ発熱体に通電した場合、所定の時間帯外の最
も低い蓄熱体温度の時間換算データt1Lと、前日の通
電時間データT0とを用いて、必要通電時間Tを次の予
測式 T=Tn+T0−2*k*t1L (k:補正係数) により算出して該算出結果に基づいて発熱体への通電を
行うことから、所定の時間帯(時間帯別電灯契約など)
以外の時間帯において、外気温が急に低くなったため
に、任意時間だけ発熱体に通電することがあっても、通
電時間が補正されるために、精度の良い制御を行うこと
ができる。
According to a seventh aspect of the present invention, in the control method of the regenerative heating system according to the second aspect, when the heating element is energized for an arbitrary time Tn outside the predetermined time zone, the lowest heat storage outside the predetermined time zone. Using the time conversion data t1L of the body temperature and the energization time data T0 of the previous day, the necessary energization time T is calculated by the following prediction formula T = Tn + T0-2 * k * t1L (k: correction coefficient). Because the heating element is energized based on the results, it can be used for a specific time period (such as time-based lighting contracts).
In a time zone other than the above, even if the heating element is energized for an arbitrary time because the outside air temperature suddenly decreases, the energization time is corrected, so that accurate control can be performed.

【0059】請求項8の発明は、蓄熱体温度の時間換算
データを暖房能力切替設定別に具備していることから、
住宅構造や使い勝手で人の温冷感が異なることに対応す
る暖房能力(好み設定)の切替えに応ずることができ
る。
According to the eighth aspect of the present invention, since the time conversion data of the heat storage body temperature is provided for each heating capacity switching setting,
It is possible to respond to the switching of the heating capacity (preference setting) corresponding to the difference in the thermal sensation of the person due to the housing structure and convenience.

【0060】請求項9の発明は、蓄熱体温度の時間換算
データを蓄熱体の蓄熱能力別に具備していることから、
寒冷地仕様への対応を簡便に行うことができる。
According to the ninth aspect of the present invention, since the time conversion data of the heat storage element temperature is provided for each heat storage capacity of the heat storage element,
It is easy to respond to cold district specifications.

【0061】請求項10の発明は、算出した必要通電時
間データと、計時したカレンダーのある期間毎に設定し
た通電時間とを比較し、大きいほうの通電時間を採用す
ることから、蓄熱体温度を測温している箇所の局部的な
断熱や、エアコンなどの他の暖房器の暖房のためにセン
サ部分の蓄熱体からの放熱が減って蓄熱体温度が予想よ
り高くなった場合においても、暖房能力が低下してしま
うことがなくなる。
According to a tenth aspect of the present invention, the calculated required energizing time data is compared with the energized time set for each period of the measured calendar, and the larger energized time is employed. Even if the temperature of the heat storage unit becomes higher than expected due to the local insulation of the location where the temperature is being measured and the heat release from the heat storage unit in the sensor part due to the heating of other heaters such as air conditioners, the heating is also performed. The ability is not reduced.

【0062】請求項11の発明は、蓄熱体の温度を測温
する温度センサを分散させて複数個配置し、最小の測温
値から蓄熱体温度の時間換算データを導いて通電時間を
算出することから、この場合においても、蓄熱体温度を
測温している箇所の局部的な断熱やエアコンなどの暖房
器の併用が原因で、蓄熱体温度が予想より高くなる時に
も、誤制御のおそれを少なくすることができる。
According to an eleventh aspect of the present invention, a plurality of temperature sensors for measuring the temperature of the heat storage element are dispersed and arranged, and the time conversion data of the temperature of the heat storage element is derived from the minimum measured value to calculate the energization time. Therefore, even in this case, even when the temperature of the heat storage unit becomes higher than expected due to the local insulation of a portion where the temperature of the heat storage unit is being measured or the combined use of a heater such as an air conditioner, there is a risk of erroneous control. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例におけるブロック図
である。
FIG. 1 is a block diagram illustrating an example of an embodiment of the present invention.

【図2】外気温と室温と蓄熱体温度の変化を示す説明図
である。
FIG. 2 is an explanatory diagram showing changes in an outside air temperature, a room temperature, and a heat storage body temperature.

【図3】蓄熱体温度と蓄熱体残量(残熱量)との関係の
説明図である。
FIG. 3 is an explanatory diagram of a relationship between a heat storage body temperature and a heat storage body remaining amount (remaining heat amount).

【図4】外気温変更による動作移行の説明図である。FIG. 4 is an explanatory diagram of an operation transition due to a change in outside air temperature.

【図5】発明に係る制御に基づく動作の一例の説明図で
ある。
FIG. 5 is an explanatory diagram of an example of an operation based on control according to the present invention.

【図6】蓄熱体の温度変化の一例を示す説明図である。FIG. 6 is an explanatory diagram showing an example of a temperature change of a heat storage body.

【図7】通電時間数と供給熱量(電力)の時間置換数と
の関係(ただしk=1)の説明図である。
FIG. 7 is an explanatory diagram of a relationship (where k = 1) between the number of energizing hours and the number of time replacements of supplied heat (electric power).

【図8】通電時間数と供給熱量(電力)の時間置換数と
の関係(ただしk=2)の説明図である。
FIG. 8 is an explanatory diagram of a relationship (where k = 2) between the number of energizing hours and the number of time replacements of supplied heat (electric power).

【図9】床暖房装置の場合のブロック図である。FIG. 9 is a block diagram in the case of a floor heating device.

【図10】外気温と室温と床表面温度と蓄熱体温度の変
化を示す説明図である。
FIG. 10 is an explanatory diagram showing changes in outside air temperature, room temperature, floor surface temperature, and heat storage body temperature.

【図11】蓄熱体温度と蓄熱体残量(残熱量)との関係
の説明図である。
FIG. 11 is an explanatory diagram of a relationship between a heat storage body temperature and a heat storage body remaining amount (remaining heat amount).

【図12】発明に係る制御に基づく動作の一例の説明図
である。
FIG. 12 is an explanatory diagram of an example of an operation based on control according to the present invention.

【図13】制御の一例のフローチャートである。FIG. 13 is a flowchart illustrating an example of control.

【図14】制御の他例のフローチャートである。FIG. 14 is a flowchart of another example of control.

【図15】制御のさらに他例のフローチャートである。FIG. 15 is a flowchart of still another example of control.

【図16】制御の別の例のフローチャートである。FIG. 16 is a flowchart of another example of control.

【図17】制御のさらに別の例のフローチャートであ
る。
FIG. 17 is a flowchart of yet another example of control.

【図18】制御の他の例のフローチャートである。FIG. 18 is a flowchart of another example of control.

【符号の説明】[Explanation of symbols]

1 蓄熱体 2 発熱体 5 センサ Reference Signs List 1 heat storage element 2 heating element 5 sensor

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱体と、蓄熱体の温度を測温する温度
センサと、発熱体とを備え、所定の時間帯に発熱体に通
電して発生させた熱を蓄熱体に蓄熱し、蓄熱体に蓄熱さ
れた熱量の放熱によって暖房を行う蓄熱式暖房装置の制
御方法であって、所定の時間帯の一定時間前の蓄熱体温
度の時間換算データt1と、メモリーに記憶させた前日
の同時刻の蓄熱体温度の時間換算データt0と、前日の
通電時間データT0とを用いて、必要通電時間Tを次の
予測式 T=T0+k*t0−2*k*t1 (k:補正係数) により算出して該算出結果に基づいて発熱体への通電を
行うことを特徴とする蓄熱式暖房装置の制御方法。
1. A heat storage element, comprising: a temperature sensor for measuring the temperature of the heat storage element; and a heating element, wherein heat generated by energizing the heating element during a predetermined time period is stored in the heat storage element, and the heat storage element is provided. A method of controlling a regenerative heating device that performs heating by radiating the amount of heat stored in a body, comprising the time conversion data t1 of the temperature of a regenerator before a predetermined time in a predetermined time zone and the same as the previous day stored in the memory. Using the time conversion data t0 of the heat storage body temperature at the time and the energization time data T0 of the previous day, the necessary energization time T is calculated by the following prediction formula T = T0 + k * t0-2 * k * t1 (k: correction coefficient) A method for controlling a regenerative heating device, comprising calculating and energizing a heating element based on a result of the calculation.
【請求項2】 蓄熱体と、蓄熱体の温度を測温する温度
センサと、発熱体とを備え、所定の時間帯に発熱体に通
電して発生させた熱を蓄熱体に蓄熱し、蓄熱体に蓄熱さ
れた熱量の放熱によって暖房を行う蓄熱式暖房装置の制
御方法であって、所定の時間帯以外の蓄熱体最低温度の
時間換算データt1Lと、メモリーに記憶させた前日の
蓄熱体最低温度の時間換算データt0Lと、前日の通電
時間データT0とを用いて、必要通電時間Tを次の予測
式 T=T0+k*t0−2*k*t1L (k:補正係
数) により算出して該算出結果に基づいて発熱体への通電を
行うことを特徴とする蓄熱式暖房装置の制御方法。
2. A heat storage element, a temperature sensor for measuring the temperature of the heat storage element, and a heating element, wherein heat generated by energizing the heating element during a predetermined time period is stored in the heat storage element, and the heat storage element is provided. A method of controlling a regenerative heating device that performs heating by radiating the amount of heat stored in a body, comprising: a time conversion data t1L of a regenerator minimum temperature other than a predetermined time zone; Using the time conversion data t0L of the temperature and the energization time data T0 of the previous day, the necessary energization time T is calculated by the following prediction formula T = T0 + k * t0-2 * k * t1L (k: correction coefficient). A method for controlling a regenerative heating device, comprising: energizing a heating element based on a calculation result.
【請求項3】 補正係数kをk=1とすることを特徴と
する請求項1または2記載の蓄熱式暖房装置の制御方
法。
3. The method according to claim 1, wherein the correction coefficient k is set to k = 1.
【請求項4】 補正係数kをk>1とすることを特徴と
する請求項1または2記載の蓄熱式暖房装置の制御方
法。
4. The control method for a regenerative heating device according to claim 1, wherein the correction coefficient k is k> 1.
【請求項5】 蓄熱式暖房装置が蓄熱式床暖房装置であ
ることを特徴とする請求項1または2記載の蓄熱式暖房
装置の制御方法。
5. The control method for a regenerative heating device according to claim 1, wherein the regenerative heating device is a regenerative floor heating device.
【請求項6】 室温の測定値に応じて、蓄熱体の目標温
度値を変化させることを特徴とする請求項1または2記
載の蓄熱式暖房装置の制御方法。
6. The control method according to claim 1, wherein the target temperature value of the heat storage unit is changed according to the measured value of the room temperature.
【請求項7】 所定の時間帯外に任意時間Tnだけ発熱
体に通電した場合、所定の時間帯外の最も低い蓄熱体温
度の時間換算データt1Lと、前日の通電時間データT
0とを用いて、必要通電時間Tを次の予測式 T=Tn+T0−2*k*t1L (k:補正係数) により算出して該算出結果に基づいて発熱体への通電を
行うことを特徴とする請求項2記載の蓄熱式暖房装置の
制御方法。
7. When the heating element is energized for an arbitrary time Tn outside the predetermined time zone, the time conversion data t1L of the lowest heat storage element temperature outside the predetermined time zone and the energization time data T
Using 0, the required energization time T is calculated by the following prediction formula T = Tn + T0-2 * k * t1L (k: correction coefficient), and energization of the heating element is performed based on the calculation result. The method for controlling a regenerative heating device according to claim 2.
【請求項8】 蓄熱体温度の時間換算データを、暖房能
力切替設定別に具備していることを特徴とする請求項1
または2記載の蓄熱式暖房装置の制御方法。
8. The method according to claim 1, wherein time conversion data of the heat storage element temperature is provided for each heating capacity switching setting.
Or the control method of the regenerative heating device according to 2.
【請求項9】 蓄熱体温度の時間換算データを、蓄熱体
の蓄熱能力別に具備していることを特徴とする請求項1
または2記載の蓄熱式暖房装置の制御方法。
9. The method according to claim 1, wherein time conversion data of the temperature of the heat storage element is provided for each heat storage capacity of the heat storage element.
Or the control method of the regenerative heating device according to 2.
【請求項10】 算出した必要通電時間データと、計時
したカレンダーのある期間毎に設定した通電時間とを比
較し、大きいほうの通電時間を採用することを特徴とす
る請求項1または2記載の蓄熱式暖房装置の制御方法。
10. The method according to claim 1, wherein the calculated necessary energizing time data is compared with the energizing time set for each period of the measured calendar, and the larger energizing time is adopted. A method for controlling a regenerative heating device.
【請求項11】 蓄熱体の温度を測温する温度センサを
分散させて複数個配置し、最小の測温値から蓄熱体温度
の時間換算データを導いて通電時間を算出することを特
徴とする請求項1または2記載の蓄熱式暖房装置の制御
方法。
11. A plurality of temperature sensors for measuring the temperature of a heat storage element are dispersed and arranged, and a time conversion data of the temperature of the heat storage element is derived from a minimum measured value to calculate an energization time. The method for controlling a regenerative heating device according to claim 1.
JP33071799A 1999-11-19 1999-11-19 Control method for regenerative heating system Expired - Fee Related JP3945102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33071799A JP3945102B2 (en) 1999-11-19 1999-11-19 Control method for regenerative heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33071799A JP3945102B2 (en) 1999-11-19 1999-11-19 Control method for regenerative heating system

Publications (2)

Publication Number Publication Date
JP2001147023A true JP2001147023A (en) 2001-05-29
JP3945102B2 JP3945102B2 (en) 2007-07-18

Family

ID=18235790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33071799A Expired - Fee Related JP3945102B2 (en) 1999-11-19 1999-11-19 Control method for regenerative heating system

Country Status (1)

Country Link
JP (1) JP3945102B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064295A (en) * 2004-08-27 2006-03-09 Tetsuzo Fukuda Floor heating building
CN106871678A (en) * 2017-04-21 2017-06-20 吉林大学 A kind of solid electricity accumulation of heat for augmentation of heat transfer improves device and improved method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064295A (en) * 2004-08-27 2006-03-09 Tetsuzo Fukuda Floor heating building
JP4694168B2 (en) * 2004-08-27 2011-06-08 哲三 福田 Floor heating building
CN106871678A (en) * 2017-04-21 2017-06-20 吉林大学 A kind of solid electricity accumulation of heat for augmentation of heat transfer improves device and improved method
CN106871678B (en) * 2017-04-21 2023-07-21 吉林大学 Solid electric heat storage improvement device and improvement method for enhancing heat transfer

Also Published As

Publication number Publication date
JP3945102B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
US8141791B2 (en) Energy management improvement for a heating system with reduced setpoint temperature during no occupancy based upon historical sampling of room thermal response with highest power heat applied
US7992630B2 (en) System and method for pre-cooling of buildings
US6860431B2 (en) Strategic-response control system for regulating air conditioners for economic operation
US9714772B2 (en) HVAC controller configurations that compensate for heating caused by direct sunlight
US4221260A (en) Control and measuring system for flat-individual heating/cooling and procedure for the system's calibration
US20120230661A1 (en) Apparatus and Method for Control of a Thermostat
US20150276508A1 (en) Computer-Implemented System And Method For Externally Evaluating Thermostat Adjustment Patterns Of An Indoor Climate Control System In A Building
EP0713572A1 (en) Energy-conserving thermostat and method
US9752796B2 (en) Thermal storage device
JP5712476B2 (en) Demand control system
JP2004116947A (en) Air-conditioning operation control system
JPH0942737A (en) Air conditioner controller
JP2001147023A (en) Method for controlling thermal storage heater
KR20160130023A (en) Method and system for electric power demand management and energy conservation using predicted electric power profile
JP2013113524A (en) Remote control apparatus and heat source machine
JP2014219197A (en) Cogeneration system and operation method of the same
JP7281265B2 (en) Power Consumption Calculation Device, Air Conditioning System, Power Consumption Calculation Method and Program
JP3138959B2 (en) Heat storage type electric floor heating system control system
US11193691B1 (en) Controller for heating system diagnostics and operation
JP2011127880A (en) Air conditioning system
JP7316050B2 (en) air conditioning control system
JP3102788B1 (en) Thermal storage operation control method of thermal storage electric floor heating device
JP6689395B2 (en) Control device, power management system, power management method and program
JP2006038387A (en) Regenerative floor heating device
JPH02251042A (en) Air conditioning prediction control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees