JPH1061958A - Control system for heat storage type electric floor heater - Google Patents

Control system for heat storage type electric floor heater

Info

Publication number
JPH1061958A
JPH1061958A JP22086996A JP22086996A JPH1061958A JP H1061958 A JPH1061958 A JP H1061958A JP 22086996 A JP22086996 A JP 22086996A JP 22086996 A JP22086996 A JP 22086996A JP H1061958 A JPH1061958 A JP H1061958A
Authority
JP
Japan
Prior art keywords
heat storage
temperature
heat
storage body
floor heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22086996A
Other languages
Japanese (ja)
Other versions
JP3138959B2 (en
Inventor
Kiichi Takase
毅一 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DANTETSUKU HAYAKAWA KK
Original Assignee
DANTETSUKU HAYAKAWA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DANTETSUKU HAYAKAWA KK filed Critical DANTETSUKU HAYAKAWA KK
Priority to JP08220869A priority Critical patent/JP3138959B2/en
Publication of JPH1061958A publication Critical patent/JPH1061958A/en
Application granted granted Critical
Publication of JP3138959B2 publication Critical patent/JP3138959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage type electric floor heating system facilitating creating of a comfortable heating environment at a lower working cost and moreover, regardless of environmental conditions at a lower maintaining cost with a simple structure by improving a defect of the prior art. SOLUTION: In a heat storage type floor heater, a heating body 4 adapted to generate heat by supplying electric energy is buried into a heat storage body 3 composing a floor part 2. When the heat storage type floor heater is initially used or its use is started after a long unuse period, after the start of the operation of energizing the heat storage body 3 during the period lower in power charge, the energizing operation is continued until the surface temperature of the heat storage body 3 reaches a desired temperature predetermined regardless of whether the period lower in power charge ends or not.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、安価な夜間電力を
利用して建物の室内部の床部を構成する蓄熱材に熱エネ
ルギーを蓄熱し、その放熱により昼間の暖房を行う様に
した蓄熱型電気床暖房システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage system in which heat energy is stored in a heat storage material constituting a floor portion of a room interior of a building by using inexpensive nighttime electric power, and the heat is radiated to perform daytime heating. The present invention relates to a type electric floor heating system.

【0002】[0002]

【発明が解決しようとする課題】従来、電力会社では、
蓄熱槽等の利用を促進すると共に、夜間に於ける電力料
金を安くする料金体系をとり、昼間と夜間に於ける使用
電力の不均衡を是正する事を図っている。 ところで、
電力の消費による建物の暖房には、通常のヒートポンプ
等の空調機を用いる場合等、種々のものがあるが、特に
大空間の暖房に於いては、温風を吹く暖房方式と比較し
て、室内の上下温度差を少なくできること、又、輻射に
より直接的な暖房効果が期待出来ることから快適性及び
暖房効率からもすぐれた暖房方式とされている。
Conventionally, in a power company,
In addition to promoting the use of heat storage tanks, a tariff system has been adopted to reduce the nighttime electricity rates, and to correct the imbalance between daytime and nighttime electricity use. by the way,
There are various types of heating of a building due to consumption of electric power, such as when an air conditioner such as a normal heat pump is used.In particular, in heating a large space, compared to a heating method that blows hot air, The heating method is excellent in terms of comfort and heating efficiency because the vertical temperature difference in the room can be reduced and a direct heating effect can be expected by radiation.

【0003】係る電力供給事情や、暖房方式の特性を背
景に、維持コストが安く、しかも、快適な暖房空間が得
られる建物の躯体を利用した躯体蓄熱型床暖房方式が提
案されて来ている。 係る躯体蓄熱型床暖房方式は、安
価な夜間電力を利用して、該躯体に埋没させてある発熱
体から発生する熱を躯体そのものに蓄熱し、その放熱に
より昼間の床暖房を行うものである。
[0003] Against the background of the power supply situation and the characteristics of the heating system, there has been proposed a skeleton heat storage type floor heating system using a skeleton of a building which can provide a comfortable heating space with a low maintenance cost. . Such a skeleton heat storage type floor heating system uses inexpensive nighttime electric power, stores heat generated from a heating element buried in the skeleton in the skeleton itself, and performs daytime floor heating by radiating the heat. .

【0004】従って、安価な電力により蓄熱した熱を、
最も好ましい条件で放熱出来る事により、安価な維持コ
ストで最適な暖房環境を実現させる事が出来る。然しな
がら、係る躯体蓄熱型床暖房システムに於いては、一般
にその蓄熱及び放熱に関する制御が困難であり、例え
ば、夜間に於ける蓄熱量の設定基準が定めにくく、又昼
間に於いては、夜間に於ける当該蓄熱量を放熱するだけ
となるので、昼間の暖房負荷変動への追従が困難であ
る。 従って、特に昼間において、日射があるば場合に
は、放熱が必要以上に暖房に寄与して室内の温度が暑く
なりすぎ、制御不能の状態となる恐れがある。 又、建
物毎に躯体蓄熱量、放熱量、伝導による伝熱損失、及び
気象等による種々の条件が異なり、最適な設備容量の設
定及び適切な運転を行う事が困難な面も見られた。
Therefore, the heat stored by inexpensive power is
By being able to radiate heat under the most favorable conditions, an optimal heating environment can be realized at low maintenance costs. However, in such a frame heat storage type floor heating system, it is generally difficult to control the heat storage and heat dissipation. Since only the heat storage amount is radiated, it is difficult to follow a change in the heating load in the daytime. Therefore, especially in the daytime, when there is solar radiation, the heat radiation contributes more than necessary to the heating, and the temperature in the room becomes too hot, and there is a possibility that the state becomes uncontrollable. In addition, various conditions such as the amount of heat stored in the frame, the amount of heat released, the heat transfer loss due to conduction, the weather, and the like differ from building to building, making it difficult to set optimum equipment capacity and perform proper operation.

【0005】その為、従来に於いては、係る問題を解決
する方法として、例えば、当該蓄熱型電気床暖房システ
ムに於ける電力料金の安い期間に通電操作を行う方法が
提案されており、その一具体的としては、図2に示す様
に、当該蓄熱体に対する通電操作を電力料金の安い期間
のスタート時に同期させて開始させるものであるが、当
該通電操作は、当該蓄熱体の表面温度が、予め定められ
た目標設定温度に到達した場合には、当該通電操作終了
時迄、ON/OFF動作を繰り返す事になり、無駄な電
力を消費する事になると同時に、この事は、電磁開閉器
や温度制御機器の寿命に悪影響を与えるものであるが、
更に、上記に於いて、上記ON/OFF動作を実行させ
る際の当該目標設定温度を中心として設けられている上
限温度(通電操作をOFFさせるしきい値)と下限温度
(通電操作をONさせるしきい値)との間が、一般的に
は6°Cから9°Cの幅に設定されているので、仮に、
上記通電操作終了時点で、当該蓄熱体の表面温度が上記
下限温度になっていたとすると、当該蓄熱体の蓄熱量が
少ない状態で、通電操作が停止されるので、放熱時間が
短くなるので、十分な暖房効果をうる事が出来ないと言
う問題があった。
[0005] Therefore, conventionally, as a method of solving such a problem, for example, a method of performing an energizing operation during a period in which the electricity rate in the regenerative electric floor heating system is low has been proposed. As a specific example, as shown in FIG. 2, the energizing operation for the heat storage unit is started in synchronization with the start of a period in which the power rate is low, and the energizing operation is performed when the surface temperature of the heat storage unit is low. On the other hand, when the temperature reaches a predetermined target set temperature, the ON / OFF operation is repeated until the end of the energizing operation, so that unnecessary power is consumed. And adversely affect the service life of temperature control equipment.
Further, in the above, the upper limit temperature (threshold for turning off the energizing operation) and the lower limit temperature (threshold for turning on the energizing operation) provided around the target set temperature when the ON / OFF operation is performed. Threshold) is generally set to a width of 6 ° C. to 9 ° C.
At the end of the energization operation, if the surface temperature of the heat storage body is at the lower limit temperature, the energization operation is stopped in a state where the heat storage amount of the heat storage body is small. There was a problem that it was not possible to obtain a great heating effect.

【0006】一方、係る問題を回避する為の具体的とし
ては、例えば、当該通電操作開始時刻を予測して通電操
作を開始する予測制御方式が提案されている。つまり、
係る通電開始時刻の予測制御方式に於いては、例えば図
3に示す様に、当該蓄熱体に通電操作を開始してから、
電力料金の安い期間が終了する例えば午前8時迄に通電
を継続させた場合に於ける、当該蓄熱体の表面温度を逐
次測定して適宜の記憶手段に記憶させ、係る記憶データ
に基づいて当該蓄熱体の経時的な温度変化を示す温度変
化曲線aを求め、これを適当なテーブルに格納させてお
く。
On the other hand, as a specific method for avoiding such a problem, for example, a prediction control method has been proposed in which the energizing operation is started by estimating the energizing operation start time. That is,
In such a power supply start time prediction control method, for example, as shown in FIG.
For example, when energization is continued by 8:00 am when the period in which the power rate is low ends, the surface temperature of the heat storage body is sequentially measured and stored in appropriate storage means, and based on the stored data, A temperature change curve a indicating a temperature change over time of the heat storage body is obtained and stored in an appropriate table.

【0007】同様に、各種の温度環境、気象環境に応じ
て同様の温度変化曲線a、a’、a”・・・を複数種求
めておき、それを上記テーブルに格納させておく。そし
て、実際に蓄熱体に通電操作を開始する時期を求める場
合には、電力料金の安い期間が終了する例えば午前8時
に通電操作を停止させた場合に、当該蓄熱体の表面温度
が、所定の設定された表面温度Tm になる様に設定され
ている温度変化曲線aを該テーブルの中から選択して求
め、該選択された温度変化曲線aを用いて、通電操作の
開始時刻を求めるが、その場合には、当該蓄熱体への通
電操作開始時刻を予測する時点t3に於ける当該蓄熱体
の表面温度の実測値から、当該蓄熱体の放熱による表面
温度の低下量を予測した図3に示すグラフbを用いて、
前記グラフaとの交点を当該蓄熱体に対する通電操作開
始時刻と設定するものである。
Similarly, a plurality of similar temperature change curves a, a ', a "... Are obtained in accordance with various temperature environments and weather environments, and are stored in the table. When actually determining the time when the energizing operation is started for the heat storage element, when the energizing operation is stopped at, for example, 8:00 am when the period in which the electricity charge is cheap ends, the surface temperature of the heat storage element is set to a predetermined value. The temperature change curve a set so as to reach the surface temperature Tm is selected from the table and determined, and the start time of the energizing operation is determined using the selected temperature change curve a. FIG. 3 is a graph showing a prediction of the amount of decrease in the surface temperature of the heat storage element due to heat radiation from the measured value of the surface temperature of the heat storage element at time t3 at which the energization operation start time to the heat storage element is predicted. Using b,
The intersection with the graph a is set as the energization operation start time for the heat storage body.

【0008】即ち、当該蓄熱体への通電操作開始時刻を
予測する時点t3に於ける当該蓄熱体の表面温度の実測
値か Po である場合には、b1の曲線と例えばa の温度変
化曲線との交点 toで通電操作を開始させるものであ
り、又、当該蓄熱体への通電操作開始時刻を予測する時
点t3に於ける当該蓄熱体の表面温度の実測値か P1 で
ある場合には、b の曲線と例えばa の温度変化曲線との
交点 t1 で通電操作を開始させるものであり、更には、
当該蓄熱体への通電操作開始時刻を予測する時点t3に
於ける当該蓄熱体の表面温度の実測値か P2 である場合
には、b2の曲線と例えばa の温度変化曲線との交点 t2
で通電操作を開始させるものである。
That is, if the actual temperature of the surface temperature of the heat storage element at the time t3 when the start time of the energization operation to the heat storage element is predicted or Po, the curve b1 and the temperature change curve a, for example, When the energization operation is started at the intersection point to of the heat storage element, and when the actual temperature of the surface temperature of the heat storage element at the time t3 when the energization operation start time to the heat storage element is predicted is P1 or b1, b And a temperature change curve of a, for example, to start an energization operation at an intersection t1.
If it is P2 or the actual measured value of the surface temperature of the heat storage body at the time t3 when the energization operation start time to the heat storage body is predicted, the intersection t2 between the curve of b2 and the temperature change curve of a, for example,
To start the energizing operation.

【0009】当該予測された蓄熱体に対する通電操作開
始時刻は、適宜の制御手段に於ける記憶手段に記憶して
おき、所定の時刻が到達した場合には、CPUを介して
当該制御手段が、該蓄熱体に対して通電操作を開始する
様に構成されているものである。然しながら、係る従来
の蓄熱型電気床暖房システムに於いても、蓄熱体として
使用されている躯体の材料、或いは当該躯体の経年変化
等により、当該躯体に対する蓄熱効率或いは放熱効率が
微妙に異なっているので、単に、上記した方法で求めら
れた温度変化曲線をそのままの形で使用する場合には、
当該蓄熱型電気床暖房装置を使用している季節、環境、
気象状況等によって様々に変化する暖房条件に対して正
確な制御を行う事が難しい場合が発生してくる。
[0009] The predicted energizing operation start time for the heat storage element is stored in a storage means in an appropriate control means, and when a predetermined time has arrived, the control means, via the CPU, The heat storage body is configured to start an energization operation. However, even in such a conventional heat storage type electric floor heating system, the heat storage efficiency or the heat radiation efficiency for the frame is slightly different due to the material of the frame used as the heat storage or the aging of the frame. Therefore, when simply using the temperature change curve obtained by the above-described method as it is,
Season, environment,
In some cases, it is difficult to accurately control heating conditions that vary depending on weather conditions and the like.

【0010】又、特に、当該蓄熱体を所定の建物に於い
て施工完了後、最初に使用する場合、或いは、所望の季
節が到来して再使用する様な場合には、当該蓄熱型電気
床暖房装置が置かれている環境によって、最初の通電操
作時点から、予め定められた所定の暖房性能が発揮され
ない場合があり、特に寒冷地に於いては、該蓄熱体の温
度が低くなっている場合では、特にその影響が大きくな
り、十分な暖房効果がえられないと言う問題が有った。
In particular, when the heat storage body is used for the first time after completion of construction in a predetermined building, or when it is likely to be reused after a desired season has arrived, the heat storage type electric floor is used. Depending on the environment in which the heating device is placed, a predetermined heating performance may not be exhibited from the time of the first energization operation, and particularly in a cold region, the temperature of the heat storage body is low. In such a case, there is a problem that the influence is particularly large and a sufficient heating effect cannot be obtained.

【0011】又、係る蓄熱型電気床暖房システムに於い
ては、日中は単に蓄熱体からの放熱のみによって、当該
室内の暖房を行うものであるが、上記と同様に、当該蓄
熱型電気床暖房装置が置かれている環境によって、通電
操作終了時以降の該蓄熱体の表面温度の低下が大きく影
響を受け、特に寒冷地に於いては、該蓄熱体の表面温度
の低下が著しくなる場合では、室内の温度を所定の設定
温度に維持する事が不可能となる場合ガあり、その場合
には、十分な暖房効果がえられないと言う別の問題も有
った。
[0011] Further, in such a regenerative electric floor heating system, the room is heated only by radiating heat from the regenerator during the daytime. When the surface temperature of the heat storage unit is greatly affected by the environment in which the heating device is placed after the end of the energizing operation, and particularly in a cold region, the surface temperature of the heat storage unit is significantly reduced. Then, there is a case where it becomes impossible to maintain the room temperature at a predetermined set temperature, and in that case, there is another problem that a sufficient heating effect cannot be obtained.

【0012】[0012]

【課題を解決するための手段】本発明の目的は、上記し
た従来技術の欠点を改良し、施工コストが低く、構造が
簡易であり、然も安価な維持コストで、環境条件のいか
んに係わらず、快適な暖房環境を創設しえる蓄熱型電気
床暖房システムを提供するものである。本発明は上記し
た目的を達成するため、基本的には、以下に記載された
ような技術構成を採用するものである。即ち、本発明に
係る蓄熱型電気床暖房システムの第1の態様としては、
室内に於ける床部の少なくとも一部を構成する蓄熱体に
電気エネルギーを供給する事により発熱する発熱体を埋
没せしめると共に、少なくとも該床部の表面に当該床部
の表面温度を測定する測温サーミスタを配置せしめ、且
つ該床部の下方又は外部への熱伝導を遮断することによ
り該発熱体からの熱を該床部に蓄熱させる様に断熱材を
当該床部の下面に被覆配置せしめてなる蓄熱型床暖房装
置であって、電力料金の安い期間に当該蓄熱体に通電操
作を行い熱エネルギーの蓄積を計り、電力料金の高い期
間に当該蓄熱体への通電操作を停止して、当該蓄熱体か
らの放熱を利用して当該室内の暖房を維持するに際し
て、当該電力料金の安い期間に於ける当該蓄熱体に対す
る通電操作を停止する時刻に当該蓄熱体の温度が、所望
の温度に到達している様に、予め決定されている当該蓄
熱体の通電時間に対する所定の温度変化曲線を選択し、
当該選択された該温度変化曲線を参照して、当該蓄熱体
に対する通電開始時間を決定して、当該通電開始時間に
当該蓄熱体に通電操作を開始する様にした蓄熱型電気床
暖房装置に於いて、当該蓄熱型電気床暖房装置を最初に
若しくは長期間不使用後に使用開始する場合には、電力
料金の安い期間に当該蓄熱体に通電操作を開始してか
ら、当該電力料金の安い期間が終了すると否とに係わら
ず、当該蓄熱体の表面温度が、予め定められた所望の温
度に到達する迄、当該通電操作を継続させるた蓄熱型電
気床暖房制御システムであり、又、第2の態様として
は、予め定められた複数種の当該温度変化曲線群の中か
ら、電力料金の安い期間の終了時に該蓄熱体が所望の表
面温度になっている事が予測される一つの温度変化曲線
を選択し、当該選択された温度変化曲線の通電開始時刻
に合わせて、当該蓄熱体に通電を開始させるに際し、当
該蓄熱体に通電を開始させる時刻を、当該蓄熱体の材質
或いは経時年数に応じて変化させる蓄熱型電気床暖房シ
ステムである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned disadvantages of the prior art, to reduce the construction cost, to have a simple structure, and to maintain a low maintenance cost, regardless of environmental conditions. The present invention provides a regenerative electric floor heating system that can create a comfortable heating environment. The present invention basically employs the following technical configuration to achieve the above object. That is, as a first embodiment of the regenerative electric floor heating system according to the present invention,
A thermometer that buries a heating element that generates heat by supplying electric energy to a heat storage element that constitutes at least a part of a floor in a room and that measures the surface temperature of the floor at least on the surface of the floor. The lower surface of the floor is covered with a heat insulating material such that a thermistor is arranged and heat from the heating element is stored in the floor by interrupting heat conduction below or outside the floor. The heat storage type floor heating device, wherein the power storage operation is performed during a period in which the power rate is low to measure the accumulation of thermal energy, and the power storage operation is stopped during the period in which the power rate is high. When maintaining the indoor heating using heat radiation from the heat storage element, the temperature of the heat storage element reaches a desired temperature at a time when the energizing operation on the heat storage element is stopped during a period in which the power rate is low. Doing As in, selects a predetermined temperature change curve for energization time of the heat storage body are predetermined,
With reference to the selected temperature change curve, an energization start time for the heat storage element is determined, and in the heat storage type electric floor heating apparatus configured to start an energization operation to the heat storage element at the energization start time. When the heat storage type electric floor heating device is used for the first time or after a long period of non-use, the operation of energizing the heat storage body during the period when the power rate is low starts after the period when the power rate is low. Regardless of whether or not to end, a heat storage type electric floor heating control system in which the energization operation is continued until the surface temperature of the heat storage body reaches a predetermined desired temperature, and As an embodiment, from among a plurality of types of the predetermined temperature change curve groups, one temperature change curve in which it is predicted that the heat storage body has a desired surface temperature at the end of the period in which the electric power rate is low. Select the selected The heat storage type electric floor in which, when the heat storage is started to be energized, the time at which the heat storage is started to be energized is changed according to the material of the heat storage or the age over time according to the energization start time of the temperature change curve. It is a heating system.

【0013】又、本発明に係る蓄熱型電気床暖房システ
ムの第3の態様としては、当該蓄熱体に対する通電操作
が終了した後、当該蓄熱体が放熱を開始してからの当該
蓄熱体の表面温度を逐次測定してそのデータから当該蓄
熱体の放熱特性曲線を求めると共に、連続する数日間の
当該蓄熱体の放熱特性曲線から平均的な蓄熱体の基準放
熱特性曲線を求めて、所定の記憶手段に記憶させてお
き、係る基準放熱特性曲線が示す当該蓄熱体の予想表面
温度と、該通電操作の終了後に逐次測定される現在に於
ける該蓄熱体の表面温度とを比較して、当該現在に於け
る該蓄熱体の表面温度が、該基準放熱特性曲線が示す同
時期の該蓄熱体の表面予測温度との差が、予め定められ
た所定の値以上となった場合には、強制的に通電操作を
開始して、現在に於ける該蓄熱体の表面温度を、該基準
放熱特性曲線が示す温度に一致する様に制御する蓄熱型
電気床暖房システムである。
[0013] In a third aspect of the heat storage type electric floor heating system according to the present invention, the surface of the heat storage body after the heat storage body starts radiating heat after the operation of energizing the heat storage body is completed. The temperature is sequentially measured, and the heat dissipation characteristic curve of the heat storage body is obtained from the data, and the average heat storage body reference heat emission characteristic curve is obtained from the heat emission characteristic curve of the heat storage body for several consecutive days, and the predetermined storage is performed. The expected surface temperature of the heat storage body indicated by the reference heat radiation characteristic curve is compared with the current surface temperature of the heat storage body sequentially measured after the end of the energizing operation. If the difference between the current surface temperature of the heat storage body and the predicted surface temperature of the heat storage body at the same time indicated by the reference heat radiation characteristic curve is equal to or greater than a predetermined value, the forced operation is performed. Power supply operation is started That the surface temperature of the heat storage body, a regenerative electric floor heating system that controls so as to match the temperature indicated by the reference radiation characteristic curve.

【0014】[0014]

【発明の実施の形態】本発明は、上記した様な技術構成
を採用しているので、従来の蓄熱型電気床暖房システム
に比べて、電力料金の安い期間の終了時に、当該蓄熱体
に対して通電操作を停止させた場合に、当該蓄熱体の表
面温度を予め定められた設定温度に略正確に設定維持せ
しめる事が可能となり、簡易で且つ安価な構成で有りな
がら、正確に室内の温度制御が可能な蓄熱型電気床暖房
システムを実現させる事が可能となると同時に、当該蓄
熱体の材質、容量、或いは経年変化に応じて、当該蓄熱
体に通電操作を行う際に使用される温度変化曲線を、調
整して修正された温度変化曲線を使用するものであるの
で、当該蓄熱体の材質、容量、或いは経年変化等に係わ
らず安定した、正確な室内温度制御システムを実現させ
る事が可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention employs the above-mentioned technical configuration, so that when a period in which a power rate is lower than that of a conventional heat storage type electric floor heating system, the heat storage body is not used. When the energizing operation is stopped, the surface temperature of the heat storage body can be set and maintained almost exactly at a predetermined set temperature, and the indoor temperature can be accurately set while having a simple and inexpensive configuration. It is possible to realize a controllable heat storage type electric floor heating system, and at the same time, according to the material, capacity, or aging of the heat storage body, the temperature change used when performing the energizing operation to the heat storage body Since the curve is adjusted to use the modified temperature change curve, it is possible to realize a stable and accurate indoor temperature control system regardless of the material, capacity, or aging of the heat storage body. Becomes

【0015】更に、本発明に係る当該蓄熱型電気床暖房
システムに於いては、当該蓄熱体に対する通電操作を終
了後、当該蓄熱体が放熱状態に入った場合でも、当該蓄
熱体の表面温度の測定を継続させ、放熱状態に於ける当
該蓄熱体の経時的な表面温度の変化、つまり表面温度の
低下を示す蓄熱体の放熱特性曲線を求め、現実の当該蓄
熱体の表面温度と上記予め定められた蓄熱体の放熱特性
曲線との差が所定の値よりも大きくなった場合には、強
制的に当該蓄熱体に対して通電操作を再開させて、当該
蓄熱体に電気エネルギーを供給して、当該蓄熱体の表面
温度を当該蓄熱体の放熱特性曲線に合致する様に調整制
御するものであるので、例えば、外気温度環境が極端に
変化した場合、例えば、外気温度が急激に低下した場合
で、当該蓄熱体の放熱が増加して、当該蓄熱体の表面温
度が、予め定められた基準となる蓄熱体の放熱特性曲線
よりも低下した場合には、通電操作を再開する事によ
り、当該蓄熱体の表面温度を、予め定められた基準の蓄
熱体温度に戻す様にするので、外気温度の変化に係わら
ず、安定した、正確でしかも快適な室内温度制御システ
ムを実現させる事が可能となる。
Further, in the regenerative electric floor heating system according to the present invention, even if the regenerator enters a radiating state after the energizing operation for the regenerator is completed, the surface temperature of the regenerator can be reduced. The measurement is continued, and the change of the surface temperature of the heat storage body with time in the heat radiation state, that is, the heat radiation characteristic curve of the heat storage body indicating the decrease of the surface temperature is obtained, and the actual surface temperature of the heat storage body and the predetermined value are determined. If the difference from the heat dissipation characteristic curve of the heat storage body becomes larger than a predetermined value, the power supply operation is forcibly restarted for the heat storage body to supply electric energy to the heat storage body. Since the surface temperature of the heat storage body is adjusted and controlled to match the heat radiation characteristic curve of the heat storage body, for example, when the outside air temperature environment changes extremely, for example, when the outside air temperature drops rapidly In the heat storage body When the heat increases and the surface temperature of the heat storage body falls below the heat radiation characteristic curve of the heat storage body that is a predetermined reference, by restarting the energization operation, the surface temperature of the heat storage body is reduced. Since the temperature of the heat storage element is returned to the predetermined reference temperature, it is possible to realize a stable, accurate and comfortable indoor temperature control system irrespective of a change in the outside air temperature.

【0016】[0016]

【実施例】以下に、本発明に係る蓄熱型電気床暖房シス
テムの具体例を図面を参照しながら詳細に説明する。図
1は、本発明に係る蓄熱型電気床暖房システムの一具体
例の概略の構成を示す図であって、図中、室内1に於け
る床部2の少なくとも一部を構成する蓄熱体3に電気エ
ネルギーを供給する事により発熱する発熱体4を埋没せ
しめると共に、少なくとも該床部2の表面に当該床部の
表面温度を測定する測温サーミスタ5を配置せしめ、且
つ該床部2の下方又は外部への熱伝導を遮断することに
より該発熱体4からの熱を該床部に蓄熱させる様に断熱
材6を当該床部の下面に被覆配置せしめてなる蓄熱型床
暖房装置10であって、電力料金の安い期間に当該蓄熱
体に通電操作を行い熱エネルギーの蓄積を計り、電力料
金の高い期間に当該蓄熱体への通電操作を停止して、当
該蓄熱体からの放熱を利用して当該室内の暖房を維持す
るに際して、当該電力料金の安い期間に於ける当該蓄熱
体に対する通電操作を停止する時刻に当該蓄熱体の温度
が、所望の温度に到達している様に、予め決定されてい
る当該蓄熱体の通電時間に対する所定の温度変化曲線を
選択し、当該選択された該温度変化曲線を参照して、当
該蓄熱体に対する通電開始時間を決定して、当該通電開
始時間に当該蓄熱体に通電操作を開始する様にした蓄熱
型電気床暖房装置10に於いて、当該蓄熱型電気床暖房
装置10を最初に若しくは長期間不使用後に使用開始す
る場合には、電力料金の安い期間に当該蓄熱体3に通電
操作を開始してから、当該電力料金の安い期間が終了す
ると否とに係わらず、当該蓄熱体3の表面温度が、予め
定められた所望の温度に到達する迄、当該通電操作を継
続させる蓄熱型電気床暖房制御システムが示されてい
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a heat storage type electric floor heating system according to the present invention. FIG. 1 is a diagram showing a schematic configuration of a specific example of a heat storage type electric floor heating system according to the present invention, in which a heat storage body 3 constituting at least a part of a floor 2 in a room 1 is shown. The heating element 4 that generates heat by supplying electric energy to the floor 2 is buried, and a temperature measuring thermistor 5 for measuring the surface temperature of the floor is arranged at least on the surface of the floor 2, and the lower part of the floor 2 Alternatively, a heat storage type floor heating apparatus 10 in which a heat insulating material 6 is disposed on the lower surface of the floor so as to store heat from the heating element 4 in the floor by interrupting heat conduction to the outside. Then, during the period when the power rate is low, the heat storage element is energized to measure the accumulation of thermal energy, and during the period when the power rate is high, the operation to energize the heat storage element is stopped and the heat release from the heat storage element is used. To maintain the heating of the room At a time when the energizing operation on the heat storage element is stopped during a period in which the power rate is low, a predetermined time for the predetermined power supply time of the heat storage element is determined so that the temperature of the heat storage element reaches a desired temperature. Is selected, the energization start time for the heat storage element is determined with reference to the selected temperature change curve, and the energization operation is started for the heat storage element at the energization start time. In the heat storage type electric floor heating device 10, when the heat storage type electric floor heating device 10 is started to be used for the first time or after a long period of non-use, the operation of energizing the heat storage body 3 is started during a period in which the electricity rate is low. Then, regardless of whether or not the period in which the power rate is low ends, whether or not the surface temperature of the heat storage unit 3 reaches a predetermined desired temperature, the heat storage type electric floor that continues the energizing operation. Heating control system Temu is shown.

【0017】本発明に係る蓄熱型電気床暖房システムに
於いて使用される、床部の少なくとも一部を構成する蓄
熱体としては、建物を構成する躯体そのものである事が
望ましく、具体的には、当該躯体がコンクリートであ
る。つまり、本発明に於いては、構成が簡便で、製造コ
ストが安く、然かも熱容量の大きく蓄熱性の高いものを
蓄熱体として使用する事を考え、建物の基本的部分を占
める躯体そのものを蓄熱体として利用する事が最も効率
的で低コストの蓄熱型電気床暖房システムを構築出来る
を知得したものである。
The heat storage element constituting at least a part of the floor used in the heat storage type electric floor heating system according to the present invention is desirably the frame itself constituting the building, and specifically, And the frame is concrete. In other words, in the present invention, considering that a structure having a simple structure, a low manufacturing cost, and a large heat capacity and a high heat storage property is used as a heat storage body, the frame itself occupying the basic part of the building is stored in the heat storage body. It has been found that the most efficient and low-cost regenerative electric floor heating system can be used as a body.

【0018】係る躯体を蓄熱体3として使用する場合に
は、当該躯体は一般的に蓄熱容量が大きいので、当該蓄
熱型電気床暖房システムを建築施工完了後最初に使用す
る場合、若しくは1シーズンが終了して長期間不使用後
に再び当該蓄熱型電気床暖房システムを使用するシーズ
ンが到来して、その使用を開始する場合には、当該蓄熱
型電気床暖房システムの躯体からなる蓄熱体は熱容量が
大きいので、通電操作を開始してから目標をする当該蓄
熱体若しくは床部の表面温度が予め定められた設定温度
になるまで時間がかかり、1晩の電力料金の安い期間を
利用した通電操作では、当該設定温度には到達せず、場
合によっては数日から数週間、毎日通電操作を行わなけ
ればならないと言う問題がある。
When such a frame is used as the heat storage unit 3, the frame generally has a large heat storage capacity. Therefore, when the heat storage type electric floor heating system is used for the first time after the completion of construction, or during one season, When the season for using the regenerative electric floor heating system comes to an end after a long period of non-use and the use of the regenerative electric floor heating system is started, the heat storage body composed of the frame of the regenerative electric floor heating system has a heat capacity. Since it is large, it takes time until the surface temperature of the target heat storage unit or floor becomes a predetermined set temperature from the start of the energizing operation, and in the energizing operation using a period during which the nightly electricity rate is low, However, there is a problem that the power supply operation must be performed every day for several days to several weeks in some cases without reaching the set temperature.

【0019】即ち、図4(B)に示す様に、従来に於い
ては、最初に当該蓄熱体に通電操作を開始した場合に
は、最初の夜間電力を利用した蓄熱工程C1に於いて、
当該蓄熱体の表面温度、若しくは当該床部の表面温度
は、グラフPに示す様に経時的に上昇するが、予め定め
られた目標温度Tmには到底到達せず、第1回目の放熱
期間H1に於いて、当該蓄熱体の表面温度若しくは当該
床部の表面温度は、低下する。
That is, as shown in FIG. 4 (B), in the prior art, when the operation of supplying electricity to the heat storage body is first started, in the heat storage step C1 using the first nighttime electric power,
Although the surface temperature of the heat storage body or the surface temperature of the floor part rises with time as shown in the graph P, it does not reach the predetermined target temperature Tm, and the first heat radiation period H1 In this case, the surface temperature of the heat storage body or the surface temperature of the floor decreases.

【0020】尚、本発明に於いては、蓄熱体の表面温度
を検出しても良く、又床部の表面温度を検出しても良い
が、本具体例に於いては、蓄熱体の表面温度を検出する
事に統一して説明するが、これに限定されるものではな
い。次に、第2回目の夜間蓄熱工程C2に於いて当該蓄
熱体の表面温度は、グラフPに示す様に経時的に上昇す
るが、やはり予め定められた目標温度Tmに到底到達せ
ず、第2回目の放熱期間H2に於いて、同様に当該蓄熱
体の表面温度は、低下する。
In the present invention, the surface temperature of the heat accumulator may be detected, or the surface temperature of the floor may be detected. Although the description will be made in the context of detecting the temperature, the invention is not limited to this. Next, in the second night-time heat storage step C2, the surface temperature of the heat storage body rises with time as shown in the graph P, but still does not reach the predetermined target temperature Tm. Similarly, in the second heat radiation period H2, the surface temperature of the heat storage body decreases.

【0021】上記の工程が、以後第3回目、第4回目の
蓄熱工程、放熱工程と繰り返されて、数回若しくは十数
回繰り返されて漸く目標温度Tmに到達する事になるの
で、その間は、充分な室内暖房を確保する事が出来ない
状態にある。そこで、本発明に於いては、図4(A)の
グラフQに示す様に、当該蓄熱型電気床暖房システム1
0を最初に若しくは長期間不使用後に使用開始する場合
には、電力料金の安い期間に当該蓄熱体3に通電操作を
行う蓄熱工程C1で当該通電操作を開始してから、当該
電力料金の安い期間が終了すると否とに係わらず、当該
蓄熱体3の表面温度が、予め定められた所望の温度Tm
に到達する迄、一気に当該通電操作を継続させるもので
あり、具体的には、当該蓄熱工程C1の終了後、電力料
金の高い期間に入った場合でも、当該蓄熱体3に対する
通電操作を継続させて、蓄熱体の表面温度が予め定めら
れた目標温度Tmに到達した時点で、当該通電操作を停
止させる追加蓄熱工程CXを設ける様にしたものであ
る。
The above steps are repeated the third and fourth heat storage steps and the heat release step, and are repeated several or more than ten times until the target temperature Tm is reached. It is in a state where sufficient indoor heating cannot be secured. Therefore, in the present invention, as shown in the graph Q of FIG.
In the case of starting to use 0 for the first time or after a long period of non-use, the energizing operation is started in the heat storage step C1 in which the energizing operation is performed on the heat storage unit 3 during the period when the electric power price is low. Regardless of whether or not the period ends, the surface temperature of the heat storage body 3 becomes the predetermined desired temperature Tm.
Until the power storage operation is performed, the energization operation to the heat storage element 3 is continued even when the period of high power rate is entered after the end of the heat storage process C1. When the surface temperature of the heat storage body reaches a predetermined target temperature Tm, an additional heat storage step CX for stopping the power supply operation is provided.

【0022】つまり、本発明に於いては、当該蓄熱型電
気床暖房システムの立ち上げに際しては、電力料金の安
い期間であると否とに係わらず、強制的に通電操作を継
続させて、一旦当該蓄熱体の表面温度を予め定められた
目標温度Tmにまで立ち上げるものである。以後は、図
4(A)のグラフQに示す様に、適宜の期間、第1回目
の放熱工程H1と第2回目の蓄熱工程C2及び第2回目
の放熱工程H2を経て、正常な状態の蓄熱型電気床暖房
制御方法に移行させるものである。
In other words, according to the present invention, when starting up the regenerative electric floor heating system, the power supply operation is forcibly continued once regardless of whether or not the period for which the electricity rate is low. The surface temperature of the heat storage body is raised to a predetermined target temperature Tm. After that, as shown in a graph Q of FIG. 4A, a proper state is passed through a first heat radiation process H1, a second heat storage process C2, and a second heat radiation process H2 for an appropriate period. The process is shifted to the heat storage type electric floor heating control method.

【0023】従って、本発明に於ける第1の態様に於い
ては、当該蓄熱型電気床暖房システムの最初の立ち上げ
工程に於いて、昼間の電力を使用する為、多少コスト高
となるが、早期に当該蓄熱体3の表面温度を予め定めら
れた目標温度Tmに到達せしめる事ができ、その後の操
作は、専ら夜間電力を利用する事で制御出来るので、従
来の方式に比べると格段のコスト低減に寄与する事にな
る。
Therefore, in the first embodiment of the present invention, since the daytime electric power is used in the first start-up process of the regenerative electric floor heating system, the cost is somewhat increased. Since the surface temperature of the heat storage body 3 can reach the predetermined target temperature Tm at an early stage, and the subsequent operation can be controlled exclusively by using the nighttime electric power, it is much different from the conventional method. This will contribute to cost reduction.

【0024】つまり、本発明に係る第1の態様に於ける
具体的な構成の例としては、一旦、当該蓄熱体の温度
が、予め定められた所望の温度に到達した場合でも、そ
の後に行う電力料金の安い期間に於ける当該蓄熱体に通
電操作が終了した時点で、当該蓄熱体の表面温度が、予
め定められた所望の温度に到達していない場合には、前
記した電力料金の安い期間に当該蓄熱体に通電操作を開
始してから、当該電力料金の安い期間が終了すると否と
に係わらず、当該蓄熱体の表面温度が、予め定められた
所望の温度に到達する迄、当該通電操作を継続させる操
作を繰り返す事を特徴とする蓄熱型電気床暖房システム
である。
That is, as an example of a specific configuration according to the first aspect of the present invention, even if the temperature of the heat storage body reaches a predetermined desired temperature once, it is performed after that. If the surface temperature of the heat storage unit does not reach a predetermined desired temperature at the time when the energizing operation on the heat storage unit in the period in which the power charge is low is completed, the above-described power charge is low. From the start of energizing operation to the heat storage element during the period, regardless of whether or not the low power rate period ends, until the surface temperature of the heat storage element reaches a predetermined desired temperature. A regenerative electric floor heating system characterized by repeating an operation for continuing the energizing operation.

【0025】次に、本発明に係る蓄熱型電気床暖房シス
テムの第2の態様としては、予め定められた複数種の当
該温度変化曲線群の中から、電力料金の安い期間の終了
時に該蓄熱体が所望の表面温度になっている事が予測さ
れる一つの温度変化曲線を選択し、当該選択された温度
変化曲線の通電開始時刻に合わせて、当該蓄熱体に通電
を開始させるに際し、当該蓄熱体に通電を開始させる時
刻を、当該蓄熱体の材質或いは経時年数に応じて変化さ
せる蓄熱型電気床暖房システムである。
Next, as a second embodiment of the regenerative electric floor heating system according to the present invention, a heat storage electric floor heating system is selected from a plurality of types of predetermined temperature change curves at the end of a period in which the electricity rate is low. When selecting one temperature change curve in which it is predicted that the body is at a desired surface temperature, and in accordance with the start time of energization of the selected temperature change curve, when starting the energization to the heat storage body, This is a regenerative electric floor heating system in which the time at which energization of the regenerator is started is changed according to the material of the regenerator or the age of the regenerator.

【0026】即ち、前記した様に、当該蓄熱体3は、そ
の材質、容量、経年変化等により、蓄熱特性及び放熱特
性が微妙に変化するものであり、それによって、当該蓄
熱体3の放熱による室内の温度制御も影響を受けるの
で、より正確で安定した室内暖房温度制御を行うには、
係る要因を加味した制御システムを導入する必要があ
る。
That is, as described above, the heat storage element 3 has a delicate change in heat storage characteristic and heat radiation characteristic due to its material, capacity, aging, and the like. Room temperature control is also affected, so to perform more accurate and stable room heating temperature control,
It is necessary to introduce a control system that takes such factors into account.

【0027】例えば、図5に示す様に、前記した蓄熱体
3の基準温度変化曲線aは、当該蓄熱体3の材質、或い
は容量、即ち厚み、面積等により熱時定数が異なる為、
或る蓄熱体3に通電操作を開始しても、当該蓄熱体3の
表面温度の上昇時間が、当該蓄熱体3に固有の熱時定数
により遅れる場合もあれば、早くなる場合もあり、図5
は、当該蓄熱体3の表面温度の上昇時間が、基準の温度
変化曲線aに対して平均でtx時間遅れる場合の例を示
したものである。
For example, as shown in FIG. 5, the above-mentioned reference temperature change curve a of the heat storage body 3 has a different thermal time constant depending on the material or capacity of the heat storage body 3, that is, thickness, area, etc.
Even if the operation of energizing a certain heat storage unit 3 is started, the rise time of the surface temperature of the heat storage unit 3 may be delayed or earlier due to the thermal time constant inherent to the heat storage unit 3. 5
Shows an example in which the rise time of the surface temperature of the heat storage body 3 is delayed on average by tx time from the reference temperature change curve a.

【0028】従って、係る場合には、当該温度変化曲線
aの特性に対して、通電操作開始時間toを時間txだ
け早めた時刻に補正して設定する事が必要となる。つま
り、本発明に於いては、予め当該蓄熱体3の材質、容量
に付いて、必要なる補正データを求めておき、これ等の
データを適宜の記憶手段に記憶させておくものであっ
て、当該補正データを必要の都度、記憶手段から呼び出
して、当該制御手段に於いて、選択された基準の温度変
化曲線aを補正する事によって、蓄熱体3への通電操作
開始時刻を正確に予測する様にしたものである。
Therefore, in such a case, it is necessary to correct the characteristic of the temperature change curve a by correcting the energizing operation start time to a time earlier by the time tx. That is, in the present invention, necessary correction data is obtained in advance for the material and capacity of the heat storage unit 3 and these data are stored in an appropriate storage unit. The correction data is called out from the storage means whenever necessary, and the control means corrects the selected reference temperature change curve a to accurately predict the start time of the energization operation to the heat storage element 3. It is what we did.

【0029】又、本発明に於いては、当該蓄熱体3の材
質の経時変化によっても、上記した熱時定数が異なるも
のである事が判ったので、係る蓄熱体3の材質に付いて
の経時変化に応答する熱時定数も、適宜の記憶手段に記
憶させておき、必要に応じて、記憶手段から呼び出し
て、当該制御手段に於いて、選択された基準の温度変化
曲線aを補正する事によって、蓄熱体3への通電操作開
始時刻を正確に予測する様にしたものである。
Further, in the present invention, it has been found that the above-mentioned thermal time constant is also different due to the aging of the material of the heat storage body 3, so that the material of the heat storage body 3 The thermal time constant responding to the change with time is also stored in an appropriate storage means, and is called from the storage means as necessary, and the control means corrects the selected reference temperature change curve a. In this way, the start time of the energization operation to the heat storage unit 3 is accurately predicted.

【0030】図6は、上記蓄熱体3の材質の経時変化に
伴う温度変化曲線aの変化の状態を示したものである。
つまり、当該躯体が、施工完了時には、水分を多く内蔵
しているので、当初の温度変化曲線は比較的立ち上がり
は緩く、図6のグラフaがその状態を示しているが、当
該躯体が、時間の経過と共に乾燥してくると、当該温度
変化曲線の立ち上がりが早くなり、図6のグラフa1の
様な温度変化曲線を示す様になる。
FIG. 6 shows how the temperature change curve a changes with the aging of the material of the heat storage body 3.
That is, since the frame contains a large amount of water when the construction is completed, the initial temperature change curve has a relatively slow rise, and the graph a in FIG. 6 shows the state. As the temperature increases, the rise of the temperature change curve becomes faster, and the temperature change curve shows a temperature change curve as shown by a graph a1 in FIG.

【0031】一方、当該躯体が経時変化して、材質の劣
化が発生すると、当該温度変化曲線の立ち上がりは極端
に悪くなり、図6のグラフa2に示す様な温度変化曲線
を示す様になる。従って、本発明に於いては、係る蓄熱
体3の材質変化に伴う熱時定数の変化を示すパラメータ
を予め求めておき、当該パラメータを上記記憶手段に記
憶させて、必要に応じて、当該パラメータを用いて、温
度変化曲線を修正して通電操作の開示時刻を予測する様
にしたものである。
On the other hand, if the skeleton changes over time and the material deteriorates, the rise of the temperature change curve becomes extremely poor, and the temperature change curve shows a temperature change curve as shown by a graph a2 in FIG. Therefore, in the present invention, a parameter indicating a change in the thermal time constant associated with a change in the material of the heat storage body 3 is obtained in advance, and the parameter is stored in the storage means. Is used to correct the temperature change curve to predict the start time of the energizing operation.

【0032】即ち、本発明に係る第2の態様に於いて
は、当該蓄熱体に通電を開始させる時刻は、当該選択さ
れた温度変化曲線の指定通電開始時刻に対して早く開始
するか遅く開始するものである。尚、本発明に係る蓄熱
型電気床暖房システムに於いて、当該蓄熱体3の該温度
変化曲線を求めるには、前記した様に、当該蓄熱体3の
表面温度若しくは床部2の表面温度を、当該通電操作中
に逐次測定し、例えば、5分毎にサンプリングしてその
測定結果を適宜の記憶第30に記憶させ、そのデータを
元に、一次的な温度変化曲線を作成する。
That is, in the second aspect according to the present invention, the time at which the energization of the heat storage body is started is earlier or later than the designated energization start time of the selected temperature change curve. Is what you do. In addition, in the heat storage type electric floor heating system according to the present invention, in order to obtain the temperature change curve of the heat storage body 3, as described above, the surface temperature of the heat storage body 3 or the surface temperature of the floor portion 2 is determined. During the energization operation, measurement is performed sequentially, for example, sampling is performed every 5 minutes, and the measurement result is stored in an appropriate storage unit 30, and a primary temperature change curve is created based on the data.

【0033】次いで、係る一次的な温度変化曲線を複数
種集めて、平均的な基準となる温度変化曲線を求めるも
のである。係る一次的な温度変化曲線としては、1日の
データで形成される各温度変化曲線を、例えば1週間分
つまり7日分の温度変化曲線を基に、それらの平均値を
表わす基準温度変化曲線を作成するものである。
Next, a plurality of such primary temperature change curves are collected to determine an average reference temperature change curve. As such a primary temperature change curve, a reference temperature change curve representing an average value of each temperature change curve formed by one-day data, for example, based on a temperature change curve for one week, that is, seven days. Is to create.

【0034】かかるデータ処理操作を毎日重複的に繰り
返して、1日毎に、その前の7日分の温度変化曲線を平
均化した基準温度変化曲線がそれぞれ形成されるのであ
る。係る複数種の基準温度変化曲線が適宜の記憶手段3
0により作成された後、それらを適宜のテーブルよりな
る記憶手段31に格納しておく。そして、当該蓄熱型電
気床暖房システムを作動させるに際しては、当該室内の
所望の設定温度に適した温度変化曲線を該テーブルに格
納されている温度変化曲線の中から、温度環境、その他
の要因を加味して、適切な温度変化曲線選択し、その選
択された温度変化曲線を必要に応じて適切な変動パラメ
ータを用いて適宜の修正補正を実行した、当該修正され
た温度変化曲線を使用して通電操作を開始する様にする
ものである。
By repeating such data processing operations every day, a reference temperature change curve obtained by averaging the temperature change curves for the preceding seven days is formed for each day. The plurality of types of reference temperature change curves are stored in an appropriate storage unit 3.
After they have been created by the use of 0, they are stored in the storage means 31 comprising an appropriate table. When operating the regenerative electric floor heating system, a temperature change curve suitable for a desired set temperature in the room is selected from the temperature change curves stored in the table, and the temperature environment and other factors are determined. In addition, an appropriate temperature change curve is selected, and the selected temperature change curve is appropriately corrected and corrected using an appropriate variation parameter as needed. This is to start the energizing operation.

【0035】次に、本発明に係る蓄熱型電気床暖房シス
テムに於ける第3の態様に付いて説明するならば、本発
明に於ける第3の態様の具体的構成としては、上記した
様に、当該蓄熱体3に対する通電操作が終了した後、当
該蓄熱体3が放熱を開始してからの当該蓄熱体の表面温
度を逐次測定してそのデータから図7に示す様な当該蓄
熱体の放熱特性曲線Dを求めると共に、連続する数日間
の当該蓄熱体3の放熱特性曲線Dから平均的な蓄熱体3
の基準放熱特性曲線Doを求めて、所定の記憶手段30
に記憶させておき、係る基準放熱特性曲線Doが示す当
該蓄熱体3の予想表面温度と、該通電操作の終了後に逐
次測定される現在に於ける該蓄熱体3の表面温度とを比
較して、当該現在に於ける該蓄熱体3の表面温度が、該
基準放熱特性曲線Doが示す同時期の該蓄熱体3の表面
予測温度との差(Δt)が、予め定められた所定の値以
上となった場合には、強制的に通電操作を開始して、現
在に於ける該蓄熱体3の表面温度を、該基準放熱特性曲
線Doが示す温度に一致する様に制御する様に構成した
蓄熱型電気床暖房システムである。
Next, a third embodiment of the regenerative electric floor heating system according to the present invention will be described. The concrete configuration of the third embodiment of the present invention is as described above. After the operation of energizing the heat storage unit 3 is completed, the surface temperature of the heat storage unit after the heat storage unit 3 starts radiating heat is sequentially measured, and the data of the surface temperature of the heat storage unit as shown in FIG. A heat radiation characteristic curve D is obtained, and an average heat storage element 3 is obtained from the heat radiation characteristic curve D of the heat storage element 3 for several consecutive days.
Of the reference heat radiation characteristic curve Do of the predetermined storage means 30
And compares the expected surface temperature of the heat storage element 3 indicated by the reference heat radiation characteristic curve Do with the current surface temperature of the heat storage element 3 sequentially measured after the end of the energizing operation. The difference (Δt) between the present surface temperature of the heat storage unit 3 and the predicted surface temperature of the heat storage unit 3 at the same time indicated by the reference heat radiation characteristic curve Do is equal to or greater than a predetermined value. In the case of, the power supply operation is forcibly started to control the current surface temperature of the heat storage unit 3 so as to match the temperature indicated by the reference heat radiation characteristic curve Do. It is a heat storage type electric floor heating system.

【0036】即ち、本発明に於ける第3の態様に於いて
は、電力料金の安い期間が終了した時点以後は、当該蓄
熱体の放熱作用を利用して室内の温度を所定の条件に維
持させようとするものであるが、外気の温度環境が極端
に変化して、外部温度が例えば、急激に低下した様な場
合には、前記した目標設定温度との関連によって、当該
蓄熱体3の放熱作用のみでは、保温維持能力が不足する
事になり、その結果、室内の温度が、予め定められた設
定条件に維持出来なくなり、室内の居住者が寒さを感じ
ることになる。
That is, in the third mode of the present invention, after the end of the period in which the electricity rate is low, the room temperature is maintained at a predetermined condition by utilizing the heat radiating action of the heat storage body. However, in the case where the temperature environment of the outside air changes extremely and the external temperature suddenly drops, for example, the heat storage body 3 is related to the target set temperature. With only the heat radiation effect, the heat retention capability is insufficient, and as a result, the room temperature cannot be maintained at the predetermined setting condition, and the occupants of the room feel cold.

【0037】係る問題を解決する為に、本発明に於いて
は、当該電力料金の安い期間が終了し、通電操作が停止
され、当該蓄熱体3が放熱工程H1に入った場合でも、
当該蓄熱体3の表面温度tを当該温度検出手段5にて継
続的にサンプリングする様に構成しておき、その測定さ
れた蓄熱体3の表面温度の逐次経時的データから図7に
示す様な当該蓄熱体の放熱特性曲線Dを求めるものであ
る。
In order to solve such a problem, in the present invention, even if the period in which the power rate is low ends, the energization operation is stopped, and the heat storage unit 3 enters the heat radiation process H1,
The surface temperature t of the heat storage unit 3 is configured to be continuously sampled by the temperature detection unit 5, and the sequential temperature data of the measured surface temperature of the heat storage unit 3 as shown in FIG. A heat radiation characteristic curve D of the heat storage body is obtained.

【0038】係る放熱特性曲線Dは、前記した温度変化
曲線を求める場合と同様に、連続する数日間、或いは十
数日間の当該蓄熱体3の個々の放熱特性曲線Dから平均
的な蓄熱体3の基準放熱特性曲線Doを求める事が望ま
しい。ここで、現在、或る温度環境条件下に於いて、当
該通電操作が終了した時点に於ける当該蓄熱体3の表面
温度が、所定の目標設定温度Tmとなる様に、選定され
た温度変化曲線aと基準放熱特性曲線Doとを使用して
蓄熱型電気床暖房システムの温度制御を実行している場
合に、当該温度環境条件が急激に変化して、外気の温度
が極端に低下した場合には、当該放熱期間に於ける当該
蓄熱体の表面温度は、該基準放熱特性曲線Doのカーブ
に乗らず、放熱特性曲線D’に示す様に、該基準放熱特
性曲線Doから徐々に離れたカーブを描く事になる。
As in the case of obtaining the above-mentioned temperature change curve, the heat radiation characteristic curve D is obtained by calculating the average heat storage element 3 from the individual heat radiation characteristic curves D of the heat storage element 3 for several consecutive days or several tens of days. It is desirable to obtain the reference heat dissipation characteristic curve Do. Here, under a certain temperature environment condition, the temperature change selected so that the surface temperature of the heat storage unit 3 at the time when the energization operation is completed becomes a predetermined target set temperature Tm. When the temperature control of the regenerative electric floor heating system is executed using the curve a and the reference heat radiation characteristic curve Do, and the temperature environment condition changes rapidly, and the temperature of the outside air drops extremely. In this case, the surface temperature of the heat storage body during the heat radiation period did not ride on the curve of the reference heat radiation characteristic curve Do, but gradually separated from the reference heat radiation characteristic curve Do as shown in the heat radiation characteristic curve D '. You will draw a curve.

【0039】その為、該蓄熱体3の放熱能力が減少し
て、室内の温度条件を予め定められた所定の条件に維持
させる事が困難となるので、図7に示す様に、係る基準
放熱特性曲線Doが示す当該蓄熱体3の予想表面温度t
と、該放熱工程に於ける現在の蓄熱体3の表面温度t1
とを比較して、当該現在に於ける該蓄熱体3の表面温度
と、該基準放熱特性曲線Doが示す同時期の該蓄熱体3
の表面予測温度tとの差(Δt=t−t1 )が、予め定
められた所定の値以上となった場合には、電力料金の高
い期間にあるにも係わらず、強制的に通電操作を開始し
て、現在に於ける該蓄熱体3の表面温度t1 を、該基準
放熱特性曲線Doが示す温度tに一致する様に追い炊き
制御するものである。
As a result, the heat radiating ability of the heat storage element 3 is reduced, and it becomes difficult to maintain the indoor temperature condition at a predetermined condition. As shown in FIG. Expected surface temperature t of the heat storage body 3 indicated by the characteristic curve Do
And the current surface temperature t 1 of the heat storage body 3 in the heat radiation step.
Is compared with the current surface temperature of the heat storage element 3 and the heat storage element 3 at the same time indicated by the reference heat release characteristic curve Do.
When the difference (Δt = t−t 1 ) from the surface predicted temperature t becomes equal to or greater than a predetermined value, the power supply operation is forcibly performed despite the high power charge period. Is started, and the surface temperature t 1 of the heat storage body 3 at present is controlled so as to coincide with the temperature t indicated by the reference heat radiation characteristic curve Do.

【0040】当該蓄熱体3の表面温度t1 が、該基準放
熱特性曲線Doが示す温度tに一致した時点で、該強制
的な通電操作を停止させて、放電工程H1’に戻る事に
なる。係る、操作は、当該放熱工程の如何なる段階で
も、実行され又同一の放熱工程内でも、繰り返し実行さ
れても良い。
When the surface temperature t 1 of the heat accumulator 3 coincides with the temperature t indicated by the reference heat radiation characteristic curve Do, the forcible energizing operation is stopped, and the process returns to the discharging step H1 '. . Such an operation may be performed at any stage of the heat dissipation process, or may be repeatedly executed within the same heat dissipation process.

【0041】図8は、本発明に係る蓄熱型電気床暖房シ
ステムに使用される駆動制御手段の一具体的の構成を示
す概略図であり、該蓄熱体3若しくは床部2の表面温度
を測定する温度検出手段8を有する温度測定回路部34
が設けられており、当該温度測定回路部34は、複数個
のサーミスタからなる温度検出手段8を有し、それぞれ
の温度検出手段8によるセンプリングデータをマルチプ
レクサで構成されたセンサ選択手段35により、個別に
選択して、A/Dコンバータからなるアナログデジタル
変換回路36を経て、メインの制御手段20に入力され
る。
FIG. 8 is a schematic diagram showing one specific configuration of the drive control means used in the heat storage type electric floor heating system according to the present invention, and the surface temperature of the heat storage body 3 or the floor 2 is measured. Temperature measuring circuit section 34 having temperature detecting means 8
The temperature measuring circuit section 34 has a temperature detecting means 8 composed of a plurality of thermistors, and the sampling data from each of the temperature detecting means 8 is converted by a sensor selecting means 35 constituted by a multiplexer. The signals are individually selected and input to the main control means 20 via an analog / digital conversion circuit 36 including an A / D converter.

【0042】該制御手段20は、CPU21で構成され
る他、その外部にROM31及びRAM32からなる記
憶手段30が接続されていると同時に、時計情報発生手
段33が接続されている。又、本発明に係る該駆動制御
手段には、該蓄熱体3に設けられた発熱体4に通電操作
を実行する通電制御回路部37が設けられており、該通
電制御回路部37は、複数個の発熱体4に対して、個別
に電力を供給出来る様に、それぞれの発熱体4毎に例え
ばリレースイッチ40が設けられ、それぞれのリレース
イッチ40は、該CPUからなる制御手段20からの制
御信号に応答して、チャネル選択回路38を介して当該
個々のリレースイッチ40を駆動させるリレードライバ
ー39によって、適宜の電源51から該蓄熱体3に対す
る電気エネルギーの供給について、ON/OFF制御が
行われる。
The control means 20 comprises a CPU 21 and a storage means 30 comprising a ROM 31 and a RAM 32 connected to the outside thereof, and a clock information generating means 33 at the same time. Further, the drive control means according to the present invention is provided with an energization control circuit section 37 for executing an energization operation on the heating element 4 provided on the heat storage element 3. For example, a relay switch 40 is provided for each of the heating elements 4 so that power can be individually supplied to each of the heating elements 4, and each of the relay switches 40 is controlled by a control unit 20 including the CPU. In response to the signal, the relay driver 39 that drives the individual relay switch 40 via the channel selection circuit 38 performs ON / OFF control on the supply of electric energy from the appropriate power supply 51 to the heat storage unit 3. .

【0043】一方、該制御手段20では、適宜のスイッ
チ手段51、LEDあるいはLCD等からなる適宜の表
示手段52、53とで構成される操作部50からの入力
データに基づいて、ROM31或いはRAM32に格納
されている種々の温度変化曲線データ、放熱特性曲線デ
ータ、熱時定数パラメータ、及び時間情報とから、必要
な基準温度変化曲線或いは基準放熱特性曲線を選択し、
また必要な熱時定数パラメータを用いて、当該基準温度
変化曲線を修正し、その結果に基づいて、当該蓄熱型電
気床暖房システムの通電操作開始時刻を決定して、該通
電制御回路部37に必要な制御情報を提供する。
On the other hand, the control means 20 stores the data in the ROM 31 or the RAM 32 based on the input data from the operation section 50 composed of the appropriate switch means 51 and the appropriate display means 52 and 53 composed of LEDs or LCDs. From the stored various temperature change curve data, heat radiation characteristic curve data, thermal time constant parameter, and time information, select a required reference temperature change curve or reference heat radiation characteristic curve,
Further, using the necessary thermal time constant parameter, the reference temperature change curve is corrected, and based on the result, the power supply operation start time of the heat storage type electric floor heating system is determined, and the power supply control circuit unit 37 Provide necessary control information.

【0044】又、該制御手段20では、該温度測定回路
部34からの温度データを逐次サンプリングしながら、
前記した基準温度変化曲線或いは基準放熱特性曲線を作
成して、RAM32等の記憶手段に格納する。操作部5
0からの入力データに基づいて、CPU21は、ROM
31或いはRAM32に格納されている種々のプログラ
ム及び温度変化曲線データ、放熱特性曲線データ、更に
は適宜の修正パラメータ等を読みだして、演算処理を実
行し、その結果に基づいて、該蓄熱型電気床暖房システ
ムが駆動される。
The control means 20 sequentially samples the temperature data from the temperature measurement circuit section 34,
The above-described reference temperature change curve or reference heat radiation characteristic curve is created and stored in a storage means such as the RAM 32. Operation unit 5
Based on the input data from 0, the CPU 21
Various programs stored in the RAM 31 or the RAM 32, temperature change curve data, heat radiation characteristic curve data, appropriate correction parameters, and the like are read out, and arithmetic processing is executed. The floor heating system is driven.

【0045】尚、本発明に於ける蓄熱型電気床暖房シス
テムに於いては、該制御手段20により計測された蓄熱
体3の温度データ等を適宜の計測出力手段53を介して
外部表示手段に表示する事も出来る。図9は、本発明に
係る蓄熱型電気床暖房システムの温度制御方法を実行す
る場合の基本的なメイン処理工程を示すフローチャート
であり、ステップ(1)で当該蓄熱型電気床暖房システ
ムの電源が投入されるとステップ(2)で各制御手段、
記憶手段の初期化が行われ、ステップ(3)に進んで、
時刻が正確に表示されているかを検査し、時刻情報が、
現在の正確な時刻を表示していない場合には、時刻合わ
せ操作が行われる。
In the regenerative electric floor heating system according to the present invention, the temperature data of the regenerator 3 measured by the control means 20 and the like are transmitted to an external display means via an appropriate measurement output means 53. It can also be displayed. FIG. 9 is a flowchart showing a basic main processing step when the temperature control method of the regenerative electric floor heating system according to the present invention is executed. When input, each control means in step (2),
Initialization of the storage means is performed, and the process proceeds to step (3).
Check that the time is displayed correctly.
If the current accurate time is not displayed, a time adjustment operation is performed.

【0046】その後、ステップ(4)に進んで、当該蓄
熱型電気床暖房システムを作動させる場合の、外気温
度、天候、湿度等の環境情報を該操作部50より入力
し、当該各種の情報を参照しながら、ステップ(5)に
於いて、該制御手段20に於いて必要な基準温度変化曲
線及び基準放熱特性曲線の少なくとも一方が、該記憶手
段30の中から選択され、当該制御手段にセットし、通
電開始時刻に通電を開始する。
Thereafter, the process proceeds to step (4), where environmental information such as outside air temperature, weather, humidity, etc., for operating the regenerative electric floor heating system is input from the operation unit 50, and the various types of information are input. In step (5), at least one of the reference temperature change curve and the reference heat radiation characteristic curve required in the control means 20 is selected from the storage means 30 and set in the control means. Then, energization is started at the energization start time.

【0047】次いで、ステップ(6)に於いて、該蓄熱
体3の表面温度或いは該床部の表面温度を、該温度測定
回路34の各センサーを介して個別に、且つ所定の時間
間隔、例えば5分置き等、でサンプリングし、その結果
を該制御手段20に報知して、該制御手段20に於いて
所定の処理を行って、必要な基準温度変化曲線情報、或
いは基準放熱特性曲線を作成して、該記憶手段30に格
納する。つまり、係るステップ(6)では、それぞれの
蓄熱体3に付いての現在の温度変化曲線を求める為の学
習データを収集することになる。
Next, in step (6), the surface temperature of the heat storage body 3 or the surface temperature of the floor portion is measured individually and at predetermined time intervals, for example, through the respective sensors of the temperature measuring circuit 34, for example. Sampling every 5 minutes, etc., informing the control means 20 of the result, performing predetermined processing in the control means 20, and creating necessary reference temperature change curve information or reference heat dissipation characteristic curve Then, it is stored in the storage means 30. That is, in step (6), learning data for obtaining a current temperature change curve for each heat storage element 3 is collected.

【0048】又、特に、放熱工程に於ける当該蓄熱体3
の表面温度のサンプリングは、上記第3の態様におけ
る、強制的追い炊き操作を行うか否かの判断にも使用さ
れる。次いで、ステップ(7)に於いて、当該蓄熱型電
気床暖房システムに於いて使用されている温度センサー
の一つがその表面温度を監視している1つの蓄熱体3が
選択され、且つ時刻情報が、電力料金の安い期間に到達
した時点に、当該蓄熱体3に対する電気エネルギーの供
給制御が開始される。
In particular, the heat storage 3 in the heat radiation process
The sampling of the surface temperature is also used for determining whether or not to perform the forced additional cooking operation in the third embodiment. Next, in step (7), one heat storage element 3 whose one of the temperature sensors used in the heat storage type electric floor heating system monitors the surface temperature is selected, and the time information is determined. Then, at the point in time when the period of the low electricity rate has been reached, the control of the supply of electric energy to the heat storage unit 3 is started.

【0049】本発明に於いては、複数の蓄熱体3が使用
されている場合があり、その場合には、各蓄熱体3のそ
れぞれに対して、ステップ(8)、ステップ(9)の様
に直列的或いは並列的に上記制御操作が実行される。そ
して、ステップ(10)に於いて、全ての蓄熱体に関連
する各チャネルで該蓄熱工程が開始された事が確認され
た後、ステップ(11)に進んで、夜間電力利用可能時
間が終了したか否かが判断され、NOであれば、操作は
ステップ(7)に戻り、上記の各工程が繰り返され、Y
ESであれば、ステップ(12)に進んで電源供給をO
FFとなし、ステップ(13)に進んで放熱工程が開始
される。
In the present invention, a plurality of heat storage bodies 3 may be used. In such a case, the steps (8) and (9) are performed for each of the heat storage bodies 3. The above control operation is executed in series or in parallel. Then, in step (10), after it is confirmed that the heat storage process has been started in each channel related to all the heat storage bodies, the process proceeds to step (11), and the nighttime power available time ends. It is determined whether or not the operation is NO, and the operation returns to step (7), and the above-described steps are repeated.
If it is ES, go to step (12) to turn off the power supply.
The process proceeds to step (13), and the heat radiation process is started.

【0050】その後、ステップ(5)に戻って、上記各
工程が繰り返される。以下、上記の各工程が、毎日繰り
返される事になる。尚、ステップ(2)の初期化処理工
程に於いて、当該蓄熱型電気床暖房システムに使用され
ている温度検知センサーの機能が正常であるか否かのチ
ェック、或いは、当該蓄熱体3のそれぞれの発熱処理チ
ャンネルが有効に作動するか否かのチェックを同時に実
行する事も出来、又実際に当該蓄熱体の通電操作に入る
前に当該システムの試験運転を行う事も出来る。
Thereafter, returning to step (5), the above steps are repeated. Hereinafter, the above steps will be repeated daily. In the initialization process of step (2), it is checked whether the function of the temperature detection sensor used in the heat storage type electric floor heating system is normal, or each of the heat storage bodies 3 It is also possible to simultaneously check whether or not the heat generation processing channel of this embodiment operates effectively, or to perform a test operation of the system before actually starting the operation of energizing the heat storage body.

【0051】図10には、本発明に係る蓄熱型電気床暖
房システムの具体的な制御手順の一例を示すフローチャ
ートが示されている。即ち、図9に示される基本的なフ
ローチャートに於けるステップ(5)以降の工程の手順
を更に詳細に説明したものあって、且つ、使用される複
数のセンサー及び蓄熱体3の内、1個に付いてのみ処理
工程を説明するものである。
FIG. 10 is a flowchart showing an example of a specific control procedure of the regenerative electric floor heating system according to the present invention. That is, the procedure of step (5) and subsequent steps in the basic flowchart shown in FIG. 9 is described in more detail, and one of the plurality of sensors and heat storage bodies 3 used is one. The processing steps will be described only with reference to FIG.

【0052】即ち、ステップ(101)に於いて、蓄熱
体への通電操作開始時刻が決定され、ステップ(10
2)に於いて、現在の時刻が夜間料金利用時間であるか
否がが判断され、NOであれば、上記ステップ(10
2)を繰り返し、YESであれば、ステップ(103)
に進んで、当該蓄熱体に対する電源の供給を開始し、ス
テップ(104)で当該蓄熱体の表面温度を計測し、ス
テップ(105)に於いて、現在の時刻が夜間料金利用
時間外であるか否がが判断され、NOであれば、上記ス
テップ(104)に戻り上記各工程我繰り返されるが、
YESであれば、ステップ(106)に進んで、当該蓄
熱体3の表面温度が目標設定値に一致しているか否かが
判断され、YESであれば、ステップ(109)に進ん
で蓄熱体3に対する電源の供給をOFFにする。
That is, in step (101), the start time of the current supply operation to the heat storage element is determined, and step (10)
In step 2), it is determined whether or not the current time is the nighttime charge use time.
Repeat step 2). If YES, step (103)
The power supply to the heat storage element is started, and the surface temperature of the heat storage element is measured in step (104). In step (105), whether the current time is outside the night charge usage time If no, it is determined NO, the process returns to the step (104) and the above steps are repeated.
If YES, the process proceeds to step (106), and it is determined whether or not the surface temperature of the heat storage unit 3 matches the target set value. If YES, the process proceeds to step (109) and the process proceeds to step (109). Is turned off.

【0053】一方、ステップ(106)でNOである場
合には、ステップ(107)に進み、当該蓄熱体3の温
度の強制立ち上げの為の通電操作を継続させるものであ
る。次に、ステップ(108)に進んで当該蓄熱体3の
表面温度が目標設定値に一致しているか否かが判断さ
れ、NOであれば、ステップ(107)の工程が繰り返
され、YESであれば、ステップ(109)に進んで蓄
熱体3に対する電源の供給をOFFにする。
On the other hand, if NO in step (106), the flow advances to step (107) to continue the energizing operation for forcibly raising the temperature of the heat storage unit 3. Next, proceeding to step (108), it is determined whether or not the surface temperature of the heat storage body 3 matches the target set value. If NO, the process of step (107) is repeated, and if YES, If it is, the process proceeds to step (109) and the power supply to the heat storage unit 3 is turned off.

【0054】その後、ステップ(110)に進んで、放
熱工程が開始されるが、ステップ(111)に於いて、
放熱工程に於ける当該蓄熱体3の表面温度が計測され、
ステップ(112)に於いて、現在の蓄熱体3の表面温
度t’と該基準放熱特性曲線が示す当該蓄熱体3の同時
刻に於ける予想表面温度tとの差分値Δt=t−t’が
演算され、ステップ(113)に於いて、当該差分値Δ
tの値が、予め定められた所定の値以上になっているか
否かが判断され、NOであれば、ステップ(116)に
進むが、YESであれば、ステップ(114)に進ん
で、当該蓄熱体3に対して、昼間に於ける通電操作を行
って追い炊き処理を実行し、当該蓄熱体3の表面温度を
上昇させ、当該蓄熱体3の蓄熱容量を増大させる。
Then, the process proceeds to step (110) to start the heat radiation process. In step (111),
The surface temperature of the heat storage body 3 in the heat radiation process is measured,
In step (112), a difference value Δt = tt ′ between the current surface temperature t ′ of the heat storage element 3 and the expected surface temperature t of the heat storage element 3 at the same time indicated by the reference heat radiation characteristic curve. Is calculated, and in step (113), the difference value Δ
It is determined whether or not the value of t is equal to or greater than a predetermined value. If NO, the process proceeds to a step (116). If YES, the process proceeds to a step (114). An energization operation in the daytime is performed on the heat storage element 3 to perform the additional cooking process, thereby increasing the surface temperature of the heat storage element 3 and increasing the heat storage capacity of the heat storage element 3.

【0055】次いでステップ(115)に進み、当該現
在の蓄熱体3の表面温度t’と該基準放熱特性曲線が示
す当該蓄熱体3の同時刻に於ける予想表面温度tとが一
致したか否かが判断され、NOであれば、ステップ(1
14)に戻って追い炊き工程が繰り返され、YESであ
れば、ステップ(116)に進み、当該蓄熱型電気床暖
房システムを作動させるシーズンが終了したか否かが判
断され、NOであればステップ(102)に戻って上記
各工程が繰り返され、YESであれば、当該蓄熱型電気
床暖房システムの作動が停止される。
Next, proceeding to step (115), it is determined whether or not the current surface temperature t 'of the heat storage body 3 and the expected surface temperature t of the heat storage body 3 at the same time indicated by the reference heat radiation characteristic curve match. Is determined, and if NO, step (1)
Returning to 14), the additional cooking process is repeated, and if YES, the process proceeds to step (116), where it is determined whether or not the season for operating the regenerative electric floor heating system has ended. Returning to (102), the above steps are repeated, and if YES, the operation of the regenerative electric floor heating system is stopped.

【0056】[0056]

【発明の効果】本発明は、上記した様な技術構成を採用
しているので、従来の蓄熱型電気床暖房システムに比べ
て、電力料金の安い期間の終了時に、当該蓄熱体に対し
て通電操作を停止させた場合に、当該蓄熱体の表面温度
を予め定められた設定温度に略正確に設定維持せしめる
事が可能となり、簡易で且つ安価な構成で有りながら、
正確に室内の温度制御が可能な蓄熱型電気床暖房システ
ムを実現させる事が可能となると同時に、当該蓄熱体の
材質、容量、或いは経年変化に応じて、当該蓄熱体に通
電操作を行う際に使用される温度変化曲線を、調整して
修正された温度変化曲線を使用するものであるので、当
該蓄熱体の材質、容量、或いは経年変化等に係わらず安
定した、正確な室内温度制御システムを実現させる事が
可能となる。
According to the present invention, since the above-mentioned technical configuration is adopted, the power is supplied to the heat storage body at the end of the period in which the electricity rate is lower than that of the conventional heat storage type electric floor heating system. When the operation is stopped, it becomes possible to set and maintain the surface temperature of the heat storage body at a predetermined set temperature almost accurately, and while having a simple and inexpensive configuration,
It is possible to realize a heat storage type electric floor heating system capable of accurately controlling the temperature of the room, and at the same time, when performing an energizing operation to the heat storage according to the material, capacity, or aging of the heat storage. Since the temperature change curve to be used uses the temperature change curve corrected and adjusted, a stable and accurate indoor temperature control system regardless of the material, capacity, or aging of the heat storage body is provided. It can be realized.

【0057】更に、本発明に係る当該蓄熱型電気床暖房
システムに於いては、当該蓄熱体に対する通電操作を終
了後、当該蓄熱体が放熱状態に入った場合でも、当該蓄
熱体の表面温度の測定を継続させ、放熱状態に於ける当
該蓄熱体の経時的な表面温度の変化、つまり表面温度の
低下を示す蓄熱体の放熱特性曲線を求め、現実の当該蓄
熱体の表面温度と上記予め定められた蓄熱体の放熱特性
曲線との差が所定の値よりも大きくなった場合には、強
制的に当該蓄熱体に対して通電操作を再開させて、当該
蓄熱体に電気エネルギーを供給して、当該蓄熱体の表面
温度を当該蓄熱体の放熱特性曲線に合致する様に調整制
御するものであるので、例えば、外気温度環境が極端に
変化した場合、例えば、外気温度が急激に低下した場合
で、当該蓄熱体の放熱が増加して、当該蓄熱体の表面温
度が、予め定められた基準となる蓄熱体の放熱特性曲線
よりも低下した場合には、通電操作を再開する事によ
り、当該蓄熱体の表面温度を、予め定められた基準の蓄
熱体温度に戻す様にするので、外気温度の変化に係わら
ず、安定した、正確でしかも快適な室内温度制御システ
ムを実現させる事が可能となる。
Further, in the heat storage type electric floor heating system according to the present invention, even if the heat storage body enters a heat radiation state after the operation of energizing the heat storage body, the surface temperature of the heat storage body can be reduced. The measurement is continued, and the change of the surface temperature of the heat storage body with time in the heat radiation state, that is, the heat radiation characteristic curve of the heat storage body indicating the decrease of the surface temperature is obtained, and the actual surface temperature of the heat storage body and the predetermined value are determined. If the difference from the heat dissipation characteristic curve of the heat storage body becomes larger than a predetermined value, the power supply operation is forcibly restarted for the heat storage body to supply electric energy to the heat storage body. Since the surface temperature of the heat storage body is adjusted and controlled to match the heat radiation characteristic curve of the heat storage body, for example, when the outside air temperature environment changes extremely, for example, when the outside air temperature drops rapidly In the heat storage body When the heat increases and the surface temperature of the heat storage body falls below the heat radiation characteristic curve of the heat storage body that is a predetermined reference, by restarting the energization operation, the surface temperature of the heat storage body is reduced. Since the temperature of the heat storage element is returned to the predetermined reference temperature, it is possible to realize a stable, accurate and comfortable indoor temperature control system irrespective of a change in the outside air temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る蓄熱型電気床暖房システ
ムの構成の概略を説明するブロックダイアグラムであ
る。
FIG. 1 is a block diagram schematically illustrating the configuration of a heat storage type electric floor heating system according to the present invention.

【図2】図2は、従来に於ける蓄熱型電気床暖房システ
ムの問題点を説明する図である。
FIG. 2 is a diagram for explaining a problem of a conventional heat storage type electric floor heating system.

【図3】図3は、従来に於ける蓄熱型電気床暖房システ
ムで、温度変化曲線と放熱特性曲線を使用して通電操作
開始時刻を予測する方法の例を説明する図である。
FIG. 3 is a diagram for explaining an example of a method for predicting an energization operation start time using a temperature change curve and a heat radiation characteristic curve in a conventional heat storage type electric floor heating system.

【図4】図4(B)は、従来に於ける蓄熱型電気床暖房
システムでの問題点を説明するグラフであり、図4
(A)は、本発明に於ける蓄熱型電気床暖房システムで
の温度制御方法の例を説明するグラフである。
FIG. 4 (B) is a graph illustrating a problem in a conventional heat storage type electric floor heating system.
(A) is a graph explaining the example of the temperature control method in the thermal storage type electric floor heating system in this invention.

【図5】図5は、本発明に於いて、蓄熱体の材質、容量
により通電操作開始時刻を補正する場合の例を説明する
グラフである。
FIG. 5 is a graph illustrating an example in which the energization operation start time is corrected based on the material and capacity of the heat storage body in the present invention.

【図6】図6は、本発明に於いて、蓄熱体の経年変化に
より通電操作開始時刻を補正する場合の例を説明するグ
ラフである。
FIG. 6 is a graph illustrating an example of a case where the energization operation start time is corrected based on aging of the heat storage body in the present invention.

【図7】図7は、本発明に於ける蓄熱型電気床暖房シス
テムでの、追い炊き処理方法を説明するグラフである。
FIG. 7 is a graph illustrating a reheating method in the regenerative electric floor heating system according to the present invention.

【図8】図8は、本発明に係る蓄熱型電気床暖房システ
ムの一具体的の構成を示すブロックダイアグラムであ
る。
FIG. 8 is a block diagram showing a specific configuration of a heat storage type electric floor heating system according to the present invention.

【図9】図9は、本発明に係る蓄熱型電気床暖房システ
ムの基本的な処理操作手順の例を示すフローチャートで
ある。
FIG. 9 is a flowchart illustrating an example of a basic processing operation procedure of the regenerative electric floor heating system according to the present invention.

【図10】図10は、本発明に係る蓄熱型電気床暖房シ
ステムに於ける処理操作の具体例を示すフローチャート
である。
FIG. 10 is a flowchart showing a specific example of a processing operation in the regenerative electric floor heating system according to the present invention.

【符号の説明】[Explanation of symbols]

1…室内 2…床部材 3…蓄熱体 4…発熱体 5…温度検出手段、温度センサー 6…断熱材 10…蓄熱型電気床暖房装置 20…制御手段 21…CPU 30…記憶手段 31…ROM 32…RAM 33…計時手段 34…温度測定回路部 35…センサ選択回路 36…A/Dコンバータ 37…通電操作制御回路部 38…チャネル選択手段 39…リレードライバ 40…リレー手段 41…電源部 50…操作パネル部 51…キースイッチ部 52…LED 53…LCD 54…計測出力手段 DESCRIPTION OF SYMBOLS 1 ... Room 2 ... Floor member 3 ... Heat storage element 4 ... Heating element 5 ... Temperature detection means, temperature sensor 6 ... Heat insulation material 10 ... Heat storage electric floor heating apparatus 20 ... Control means 21 ... CPU 30 ... Storage means 31 ... ROM 32 ... RAM 33 ... Time measuring means 34 ... Temperature measurement circuit part 35 ... Sensor selection circuit 36 ... A / D converter 37 ... Electrification operation control circuit part 38 ... Channel selection means 39 ... Relay driver 40 ... Relay means 41 ... Power supply part 50 ... Operation Panel 51: Key switch 52: LED 53: LCD 54: Measurement output means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 室内に於ける床部の少なくとも一部を構
成する蓄熱体に電気エネルギーを供給する事により発熱
する発熱体を埋没せしめると共に、少なくとも該床部の
表面に当該床部の表面温度を測定する測温サーミスタを
配置せしめ、且つ該床部の下方又は外部への熱伝導を遮
断することにより該発熱体からの熱を該床部に蓄熱させ
る様に断熱材を当該床部の下面に被覆配置せしめてなる
蓄熱型床暖房装置であって、電力料金の安い期間に当該
蓄熱体に通電操作を行い熱エネルギーの蓄積を計り、電
力料金の高い期間に当該蓄熱体への通電操作を停止し
て、当該蓄熱体からの放熱を利用して当該室内の暖房を
維持するに際して、当該電力料金の安い期間に於ける当
該蓄熱体に対する通電操作を停止する時刻に当該蓄熱体
の温度が、所望の温度に到達している様に、予め決定さ
れている当該蓄熱体の通電時間に対する所定の温度変化
曲線を選択し、当該選択された該温度変化曲線を参照し
て、当該蓄熱体に対する通電開始時間を決定して、当該
通電開始時間に当該蓄熱体に通電操作を開始する様にし
た蓄熱型電気床暖房装置に於いて、当該蓄熱型電気床暖
房装置を最初に若しくは長期間不使用後に使用開始する
場合には、電力料金の安い期間に当該蓄熱体に通電操作
を開始してから、当該電力料金の安い期間が終了すると
否とに係わらず、当該蓄熱体の表面温度が、予め定めら
れた所望の温度に到達する迄、当該通電操作を継続させ
る事を特徴とする蓄熱型電気床暖房制御システム。
A heat generating element that generates heat by supplying electric energy to a heat storage element that constitutes at least a part of a floor in a room is buried, and at least the surface temperature of the floor is at least on the surface of the floor. A heat insulating material is placed on the lower surface of the floor so as to store heat from the heating element in the floor by disposing a temperature measuring thermistor for measuring the temperature and blocking heat conduction below or outside the floor. A heat storage type floor heating device having a cover disposed thereon, in which a power supply operation is performed during a period in which a power rate is low to measure heat energy accumulation, and a power supply operation is performed in the heat storage body during a period in which a power rate is high. When stopping to maintain the heating of the room using the heat radiation from the heat storage body, the temperature of the heat storage body at the time of stopping the energizing operation on the heat storage body during the period when the power rate is low, Desired temperature Is selected, a predetermined temperature change curve for a predetermined power supply time of the heat storage element is selected, and the power supply start time for the heat storage element is determined with reference to the selected temperature change curve. Determined, in the heat storage type electric floor heating device configured to start the current supply operation to the heat storage unit at the current supply start time, use the heat storage type electric floor heating device first or after a long period of non-use. In this case, the surface temperature of the heat storage element is set to a predetermined desired value regardless of whether the power storage operation is started during the period in which the power rate is low and whether or not the period in which the power rate is low ends. A heat storage type electric floor heating control system, wherein the power supply operation is continued until the temperature of the electric floor is reached.
【請求項2】 一旦、当該蓄熱体の温度が、予め定めら
れた所望の温度に到達した場合でも、その後に行う電力
料金の安い期間に於ける当該蓄熱体に通電操作が終了し
た時点で、当該蓄熱体の表面温度が、予め定められた所
望の温度に到達していない場合には、前記した電力料金
の安い期間に当該蓄熱体に通電操作を開始してから、当
該電力料金の安い期間が終了すると否とに係わらず、当
該蓄熱体の表面温度が、予め定められた所望の温度に到
達する迄、当該通電操作を継続させる操作を繰り返す事
を特徴とする請求項1記載の蓄熱型電気床暖房システ
ム。
2. Even if the temperature of the heat storage material once reaches a predetermined desired temperature, when the energization operation to the heat storage material is completed during a period in which the electricity rate to be performed thereafter is low, If the surface temperature of the heat storage body has not reached a predetermined desired temperature, the operation of energizing the heat storage body is started during the period when the power rate is low, and then the period during which the power rate is low. 2. The heat storage type according to claim 1, wherein the operation of continuing the energizing operation is repeated until the surface temperature of the heat storage body reaches a predetermined desired temperature regardless of whether or not the heat storage is completed. Electric floor heating system.
【請求項3】 予め定められた複数種の当該温度変化曲
線群の中から、電力料金の安い期間の終了時に該蓄熱体
が所望の表面温度になっている事が予測される一つの温
度変化曲線を選択し、当該選択された温度変化曲線の通
電開始時刻に合わせて、当該蓄熱体に通電を開始させる
に際し、当該蓄熱体に通電を開始させる時刻を、当該蓄
熱体の材質或いは経時年数に応じて変化させる事を特徴
とする請求項1又は2記載の蓄熱型電気床暖房システ
ム。
3. One of a plurality of types of predetermined temperature change curves, which is predicted to be at a desired surface temperature of the heat storage body at the end of a period in which a power rate is low. A curve is selected, and in accordance with the energization start time of the selected temperature change curve, when the energization of the heat storage body is started, the time at which the energization of the heat storage body is started is determined by the material or the age of the heat storage body. The regenerative electric floor heating system according to claim 1 or 2, wherein the electric floor heating system is changed in accordance with the change.
【請求項4】 当該蓄熱体に通電を開始させる時刻は、
当該選択された温度変化曲線の指定通電開始時刻に対し
て早く開始するか遅く開始するものである事を特徴とす
る請求項3記載の蓄熱型電気床暖房システム。
4. The time when the heat storage element is started to be energized is
4. The regenerative electric floor heating system according to claim 3, wherein the system starts earlier or later than a designated energization start time of the selected temperature change curve.
【請求項5】 当該蓄熱体に対する通電操作が終了した
後、当該蓄熱体が放熱を開始してからの当該蓄熱体の表
面温度を逐次測定してそのデータから当該蓄熱体の放熱
特性曲線を求めると共に、連続する数日間の当該蓄熱体
の放熱特性曲線から平均的な蓄熱体の基準放熱特性曲線
を求めて、所定の記憶手段に記憶させておき、係る基準
放熱特性曲線が示す当該蓄熱体の予想表面温度と、該通
電操作の終了後に逐次測定される現在に於ける該蓄熱体
の表面温度とを比較して、当該現在に於ける該蓄熱体の
表面温度が、該基準放熱特性曲線が示す同時期の該蓄熱
体の表面予測温度との差が、予め定められた所定の値以
上となった場合には、強制的に通電操作を開始して、現
在に於ける該蓄熱体の表面温度を、該基準放熱特性曲線
が示す温度に一致する様に制御する事を特徴とする請求
項1記載の蓄熱型電気床暖房システム。
5. After the energizing operation for the heat storage unit is completed, the surface temperature of the heat storage unit after the heat storage unit starts radiating is sequentially measured, and a heat radiation characteristic curve of the heat storage unit is obtained from the data. In addition, an average heat storage element reference heat radiation characteristic curve is obtained from the heat storage element heat radiation characteristic curve for several consecutive days, and stored in predetermined storage means. The expected surface temperature is compared with the current surface temperature of the heat storage body which is sequentially measured after the end of the energizing operation, and the current surface temperature of the heat storage body is determined by the reference heat radiation characteristic curve. When the difference from the predicted temperature of the surface of the heat storage body at the same time as shown above becomes equal to or more than a predetermined value, the power supply operation is forcibly started, and the surface of the heat storage body at the present time is started. Temperature is equal to the temperature indicated by the reference heat radiation characteristic curve. 2. The regenerative electric floor heating system according to claim 1, wherein the electric floor heating system is controlled such that the electric floor heating is performed in a manner as described above.
【請求項6】 当該強制的通電操作は、電力料金の高い
期間に実行されるものである事を特徴とする請求項5記
載の蓄熱型電気床暖房システム。
6. The regenerative electric floor heating system according to claim 5, wherein the forcible energizing operation is performed during a period in which a power rate is high.
【請求項7】 当該床部の少なくとも一部を構成する蓄
熱体が、建物を構成する躯体そのものである事を特徴と
する請求項1乃至6の何れかに記載の蓄熱型電気床暖房
システム。
7. The heat storage type electric floor heating system according to claim 1, wherein the heat storage body forming at least a part of the floor portion is a frame itself forming a building.
【請求項8】 当該躯体がコンクリートである事を特徴
とする請求項7に記載の蓄熱型電気床暖房システム。
8. The regenerative electric floor heating system according to claim 7, wherein the frame is made of concrete.
JP08220869A 1996-08-22 1996-08-22 Heat storage type electric floor heating system control system Expired - Fee Related JP3138959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08220869A JP3138959B2 (en) 1996-08-22 1996-08-22 Heat storage type electric floor heating system control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08220869A JP3138959B2 (en) 1996-08-22 1996-08-22 Heat storage type electric floor heating system control system

Publications (2)

Publication Number Publication Date
JPH1061958A true JPH1061958A (en) 1998-03-06
JP3138959B2 JP3138959B2 (en) 2001-02-26

Family

ID=16757825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08220869A Expired - Fee Related JP3138959B2 (en) 1996-08-22 1996-08-22 Heat storage type electric floor heating system control system

Country Status (1)

Country Link
JP (1) JP3138959B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322351A (en) * 2002-05-02 2003-11-14 Enaatekku Kk Heat storage type floor heating system using midnight electric power in high heat-insulating and high airtight housing
JP2010107115A (en) 2008-10-30 2010-05-13 Hokusho Systems:Kk Warm air floor heating system and method of installing the same
JP2012193899A (en) * 2011-03-16 2012-10-11 Osaka Gas Co Ltd Heater
JP2012207859A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Heating apparatus
JP2013234787A (en) * 2012-05-08 2013-11-21 Osaka Gas Co Ltd Method for operating floor heater and floor heater
JP2015217417A (en) * 2014-05-19 2015-12-07 株式会社名機製作所 Heating system
CN114484742A (en) * 2022-01-29 2022-05-13 北京小米移动软件有限公司 Control method and device of air conditioner, control equipment and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322351A (en) * 2002-05-02 2003-11-14 Enaatekku Kk Heat storage type floor heating system using midnight electric power in high heat-insulating and high airtight housing
JP3552217B2 (en) * 2002-05-02 2004-08-11 エナーテック株式会社 Heat storage underfloor heating system using midnight power in highly insulated and airtight houses
JP2010107115A (en) 2008-10-30 2010-05-13 Hokusho Systems:Kk Warm air floor heating system and method of installing the same
JP2012193899A (en) * 2011-03-16 2012-10-11 Osaka Gas Co Ltd Heater
JP2012207859A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Heating apparatus
JP2013234787A (en) * 2012-05-08 2013-11-21 Osaka Gas Co Ltd Method for operating floor heater and floor heater
JP2015217417A (en) * 2014-05-19 2015-12-07 株式会社名機製作所 Heating system
CN114484742A (en) * 2022-01-29 2022-05-13 北京小米移动软件有限公司 Control method and device of air conditioner, control equipment and storage medium

Also Published As

Publication number Publication date
JP3138959B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
CN107743569B (en) HVAC system start/stop control
US7015432B2 (en) Water heater control system and method for controlling temperature with same
JP3801111B2 (en) Fuel cell system
JPH1061958A (en) Control system for heat storage type electric floor heater
EP1517090B1 (en) Electric cooking apparatus and method of controlling heaters thereof
JP2016114271A (en) Cogeneration system
EP3306204A1 (en) Hot-water heating system, control device, and control method
US5934369A (en) Thermal storage controller
JP2007078200A (en) Heat pump water heater
JP3102788B1 (en) Thermal storage operation control method of thermal storage electric floor heating device
JPH0719563A (en) Air conditioning control system
JP2006038387A (en) Regenerative floor heating device
JP2663056B2 (en) Thermal storage floor heating system
JP4136916B2 (en) Heat source system
JP2875584B2 (en) Heat storage floor heating control system
JPH046851B2 (en)
JPH06180148A (en) Storage type electrical hot water heater and its controlling method
JPH0674674A (en) Storage heat heating system
JP2639038B2 (en) Control method of air conditioner
JP2650875B2 (en) Heat storage amount control method
JP2005147596A (en) Heat storage type electric floor heating system
KR100661082B1 (en) Heater using midnight electric power
JPH0415420A (en) Regeneration floor heating control system
JPH03286960A (en) Hot water storing type hot water heater
JP2826123B2 (en) Heat storage floor heating control system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101215

LAPS Cancellation because of no payment of annual fees