JP2001144062A - Polishing method - Google Patents

Polishing method

Info

Publication number
JP2001144062A
JP2001144062A JP32399599A JP32399599A JP2001144062A JP 2001144062 A JP2001144062 A JP 2001144062A JP 32399599 A JP32399599 A JP 32399599A JP 32399599 A JP32399599 A JP 32399599A JP 2001144062 A JP2001144062 A JP 2001144062A
Authority
JP
Japan
Prior art keywords
polishing
solid abrasive
abrasive grains
copper
polishing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32399599A
Other languages
Japanese (ja)
Inventor
Yasuo Kamigata
康雄 上方
Yasushi Kurata
靖 倉田
Takeshi Uchida
剛 内田
Hiroki Terasaki
裕樹 寺崎
Akiko Igarashi
明子 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP32399599A priority Critical patent/JP2001144062A/en
Publication of JP2001144062A publication Critical patent/JP2001144062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing method capable of implementing higher planarization, reducing the amount of erosion, and forming a metallic film buried pattern highly reliably, by increasing the ratio of the polishing speed for copper or a copper alloy to that for a barrier layer. SOLUTION: In a method of polishing a substrate, the substrate which has a metallic laminated film with asperities formed on its surface is urged onto a polishing cloth stuck to a support assembly, and the substrate and the support assembly are moved relative to each other while supplying a polishing solution onto the polishing cloth, whereby the metallic laminated film is polished to planarize the asperities on its surface. In this method, a first layer of the metallic laminated film is polished first using a type of the polishing solution not containing solid abrasive grains, and successively using a type of the polishing solution containing solid abrasive grains.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
配線形成工程に用いられる研磨方法に関連し、特に埋め
込み配線の形成工程において使用される研磨方法に関す
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a polishing method used in a wiring forming step of a semiconductor device, and more particularly to a polishing method used in a forming step of an embedded wiring.

【0002】[0002]

【従来の技術】近年、半導体集積回路(以下LSIと記
す)の高集積化、高性能化に伴って新たな微細加工技術
が開発されている。化学機械研磨(以下CMPと記す)
法もその一つであり、LSI製造工程、特に多層配線形
成工程における層間絶縁膜の平坦化、金属プラグ形成、
埋め込み配線形成において頻繁に利用される技術であ
る。この技術は、例えば米国特許第4944836号に
開示されている。
2. Description of the Related Art In recent years, a new fine processing technology has been developed in accordance with high integration and high performance of a semiconductor integrated circuit (hereinafter, referred to as LSI). Chemical mechanical polishing (hereinafter referred to as CMP)
The method is one of them. For example, in an LSI manufacturing process, particularly, in a multilayer wiring forming process, an interlayer insulating film is flattened, a metal plug is formed,
This is a technique frequently used in the formation of embedded wiring. This technique is disclosed, for example, in US Pat. No. 4,944,836.

【0003】また、最近はLSIを高性能化するため
に、配線材料として銅合金の利用が試みられている。し
かし、銅合金は従来のアルミニウム合金配線の形成で頻
繁に用いられたドライエッチング法による微細加工が困
難である。そこで、あらかじめ溝を形成してある絶縁膜
上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金
薄膜をCMPにより除去して埋め込み配線を形成する、
いわゆるダマシン法が主に採用されている。この技術
は、例えば特開平2−278822号公報に開示されて
いる。
Recently, use of a copper alloy as a wiring material has been attempted in order to improve the performance of an LSI. However, it is difficult to finely process a copper alloy by a dry etching method frequently used in forming a conventional aluminum alloy wiring. Therefore, a copper alloy thin film is deposited and buried on an insulating film in which a groove is formed in advance, and a copper alloy thin film other than the groove is removed by CMP to form a buried wiring.
The so-called damascene method is mainly employed. This technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-278822.

【0004】金属のCMPの一般的な方法は、円形の支
持基体(プラテン)上に研磨布(パッド)を貼り付け、
研磨パッド表面を金属用研磨液で浸し、基板の金属膜を
形成した面を押し付けて、その裏面から所定の圧力(以
下研磨圧力と記す)を加えた状態で支持基体を回し、研
磨液と金属膜の凸部との機械的摩擦によって凸部の金属
膜を除去するものである。
[0004] A general method of metal CMP is to attach an abrasive cloth (pad) on a circular support base (platen),
The surface of the polishing pad is immersed in a metal-polishing liquid, the surface of the substrate on which the metal film is formed is pressed, and the support base is rotated with a predetermined pressure (hereinafter referred to as polishing pressure) applied from the back surface, and the polishing liquid and metal The metal film on the convex portion is removed by mechanical friction with the convex portion of the film.

【0005】CMPに用いられる金属用研磨液は、一般
には酸化剤及び固体砥粒からなっており必要に応じてさ
らに酸化金属溶解剤、保護膜形成剤が添加される。まず
酸化によって金属膜表面を酸化し、その酸化層を固体砥
粒によって削り取るのが基本的なメカニズムと考えられ
ている。凹部の金属表面の酸化層は研磨パッドにあまり
触れず、固体砥粒による削り取りの効果が及ばないの
で、CMPの進行とともに凸部の金属層が除去されて基
体表面は平坦化される。この詳細についてはジャ−ナル
・オブ・エレクトロケミカルソサエティ誌(Journal of
ElectrochemicalSociety)の第138巻11号(19
91年発行)の3460〜3464頁に開示されてい
る。
[0005] The metal polishing liquid used for CMP generally comprises an oxidizing agent and solid abrasive grains, and if necessary, a metal oxide dissolving agent and a protective film forming agent are further added. It is considered that the basic mechanism is to first oxidize the surface of the metal film by oxidation and to scrape off the oxidized layer with solid abrasive grains. The oxide layer on the metal surface of the concave portion does not substantially touch the polishing pad, and the effect of the shaving by the solid abrasive grains does not reach. Therefore, as the CMP proceeds, the metal layer on the convex portion is removed and the substrate surface is flattened. See the Journal of Electrochemical Society (Journal of
Vol. 138, No. 11 (19)
1991), pages 3460-3364.

【0006】CMPによる研磨速度を高める方法として
酸化金属溶解剤を添加することが有効とされている。固
体砥粒によって削り取られた金属酸化物の粒を研磨液に
溶解させてしまうと固体砥粒による削り取りの効果が増
すためであると解釈できる。但し、凹部の金属膜表面の
酸化層も溶解(以下エッチングと記す)されて金属膜表
面が露出すると、酸化剤によって金属膜表面がさらに酸
化され、これが繰り返されると凹部の金属膜のエッチン
グが進行してしまい、平坦化効果が損なわれることが懸
念される。これを防ぐためにさらに保護膜形成剤が添加
される。酸化金属溶解剤と保護膜形成剤の効果のバラン
スを取ることが重要であり、凹部の金属膜表面の酸化層
はあまりエッチングされず、削り取られた酸化層の粒が
効率良く溶解されCMPによる研磨速度が大きいことが
望ましい。
As a method of increasing the polishing rate by CMP, it is effective to add a metal oxide dissolving agent. It can be interpreted that dissolving the metal oxide particles removed by the solid abrasive grains in the polishing liquid increases the effect of the solid abrasive grains. However, when the oxide layer on the surface of the metal film in the recess is also dissolved (hereinafter referred to as etching) and the surface of the metal film is exposed, the surface of the metal film is further oxidized by the oxidizing agent. It is feared that the flattening effect is impaired. In order to prevent this, a protective film forming agent is further added. It is important to balance the effects of the metal oxide dissolving agent and the protective film forming agent. The oxide layer on the surface of the metal film in the concave portion is not etched so much, the particles of the cut oxide layer are efficiently dissolved, and polishing by CMP is performed. High speed is desirable.

【0007】このように酸化金属溶解剤と保護膜形成剤
を添加して化学反応の効果を加えることにより、CMP
速度(CMPによる研磨速度)が向上すると共に、CM
Pされる金属層表面の損傷(ダメ−ジ)も低減される効
果が得られる。
As described above, by adding the metal oxide dissolving agent and the protective film forming agent to add the effect of the chemical reaction, the CMP
The speed (polishing speed by CMP) is improved and the CM
The effect of reducing the damage (damage) on the surface of the metal layer to be P is obtained.

【0008】一方、配線の銅或いは銅合金等の下層に
は、層間絶縁膜中への銅拡散防止のためにバリア層とし
て、チタンやチタン合金及び窒化チタン等のチタン化合
物、タンタルやタンタル合金及び窒化タンタル等のタン
タル化合物等が形成される。これらの材料は導体である
ため、銅或いは銅合金を埋め込む配線部分以外では、露
出したバリア層をCMPにより取り除く必要がある。し
かし、これらのバリア層は、銅或いは銅合金に比べ硬度
が高いために、銅或いは銅合金用の研磨材料の組み合わ
せでは十分なCMP速度が得られない場合が多い。そこ
で、銅或いは銅合金を研磨する第1工程と、バリア層を
研磨する第2工程からなる2段研磨方法が検討されてい
る。またバリア層材料は銅或いは銅合金に比べて抵抗率
が大きいため、なるべく薄く形成することが求められて
おり、一般的にその膜厚は50nm以下とされている。
On the other hand, under the wiring such as copper or copper alloy, as a barrier layer for preventing copper diffusion into the interlayer insulating film, titanium compounds such as titanium, titanium alloy and titanium nitride, tantalum and tantalum alloy and A tantalum compound such as tantalum nitride is formed. Since these materials are conductors, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion where copper or a copper alloy is embedded. However, since these barrier layers have higher hardness than copper or copper alloy, a combination of polishing materials for copper or copper alloy often cannot provide a sufficient CMP rate. Therefore, a two-step polishing method including a first step of polishing copper or a copper alloy and a second step of polishing a barrier layer has been studied. Further, since the barrier layer material has a higher resistivity than copper or a copper alloy, it is required to be formed as thin as possible, and the film thickness is generally set to 50 nm or less.

【0009】銅或いは銅合金を研磨する第1工程と、バ
リア層を研磨する第2工程からなる2段研磨方法では、
被研磨膜の硬度や化学的性質が異なるために、研磨液の
pH、固体砥粒及び添加剤等の組成物について、異なる
性質のものが検討されている。
In a two-stage polishing method comprising a first step of polishing copper or a copper alloy and a second step of polishing a barrier layer,
Since the hardness and chemical properties of the films to be polished are different, compositions having different properties are being studied for the pH of the polishing liquid, solid abrasive grains, additives and the like.

【0010】[0010]

【発明が解決しようとする課題】従来の固体砥粒を含む
研磨液を用いて2段研磨によりCMPによる埋め込み配
線形成を行う場合には、銅或いは銅合金用の研磨液を用
い銅或いは銅合金層を研磨した後、バリヤ層用の研磨液
を用いてバリア層の研磨を行い下地絶縁膜が露出するま
で研磨を行う。金属積層膜の最上層に形成された銅或い
は銅合金は、膜形成時の膜厚の不均一性および研磨速度
の不均一性等により、研磨終了時間が同一基板内で異な
っている。このため研磨が早く進んだ部分では下地のバ
リヤ層も研磨されてバリヤ層の膜厚が薄くなるという問
題があった。第1段目の銅或いは銅合金研磨時にバリヤ
層の薄い部分が生じると、続く第2段目のバリヤ層の研
磨でバリヤ層の研磨時間に分布が生じ、下地の絶縁膜が
研磨され結果として配線膜厚の薄い部分(エロージョ
ン)が発生するという問題があった。本発明は、銅或い
は銅合金とバリア層との研磨速度比を大きくして、高平
坦化、エロージョン量低減を可能とし、信頼性の高い金
属膜の埋め込みパタ−ン形成を可能とする研磨方法を提
供するものである。
When the embedded wiring is formed by CMP using two-stage polishing with a conventional polishing liquid containing solid abrasive grains, a polishing liquid for copper or copper alloy is used. After the layer is polished, the barrier layer is polished by using a polishing liquid for the barrier layer, and the polishing is performed until the underlying insulating film is exposed. The copper or copper alloy formed on the uppermost layer of the metal laminated film has a different polishing end time within the same substrate due to non-uniformity of the film thickness at the time of film formation and non-uniformity of the polishing rate. For this reason, there has been a problem that the underlying barrier layer is also polished in the portion where polishing has progressed quickly, and the thickness of the barrier layer is reduced. If a thin portion of the barrier layer is formed during the first-stage copper or copper alloy polishing, the polishing of the barrier layer will have a distribution in the subsequent polishing of the second-stage barrier layer, and the underlying insulating film will be polished as a result. There is a problem that a portion (erosion) where the wiring film thickness is small occurs. The present invention increases the polishing rate ratio between copper or a copper alloy and a barrier layer, enables high flatness, reduces the amount of erosion, and enables formation of a highly reliable buried pattern of a metal film. Is provided.

【0011】[0011]

【課題を解決するための手段】本発明は、表面に凹凸の
有る金属積層膜を有する基板を支持基体に貼り付けた研
磨布に押し付け、研磨布上に研磨液を供給しながら前記
基板と前記支持基体とを相対的に動かすことにより、前
記金属積層膜を研磨し前記金属膜表面の凹凸を平坦化す
る研磨方法において、前記金属積層膜の1層目の研磨に
前記研磨液に固体砥粒を含まない研磨液を使用し、続く
2層目の研磨に固体砥粒を含む研磨液を使用することを
特徴とする。本発明の研磨方法は、金属積層膜の1層目
が銅或いは銅合金であり、2層目がチタン、タンタル、
タングステン及びそれらの合金(含窒化物)の何れかを
含む場合に有効である。固体砥粒を含む研磨液は、固体
砥粒を含まない研磨液に固体砥粒分散液を、研磨布上ま
たは研磨布に供給する直前に混合することにより作製さ
れることが簡便で好ましい。固体砥粒を含まない研磨液
は、過酸化水素、リンゴ酸、ベンゾトリアゾール、ポリ
アクリル酸及び水を含む研磨液であることが好ましい。
本発明では埋め込み配線形成のための研磨方法として、
銅或いは銅合金の研磨にはバリヤメタルの研磨速度の小
さい固体砥粒を含まない研磨液を使用し、バリヤ層の研
磨には従来から用いられている固体砥粒を含む研磨液を
使用して研磨する。これにより、銅或いは銅合金の研磨
速度の面内分布等があった場合でも、バリヤメタルが早
く露出した部分でもバリヤメタルの研磨が進まないた
め、銅或いは銅合金を選択的に研磨することが可能にな
り、基板の面内均一性を向上させることができる。この
ため引き続いてバリヤメタルを研磨した後の均一性が向
上し、エロージョン等による配線膜厚の低減を防止する
ことができるため、信頼性を向上させることができる。
According to the present invention, a substrate having a metal laminated film having an uneven surface is pressed against a polishing cloth adhered to a supporting base, and the substrate is mixed with the polishing liquid while supplying a polishing liquid onto the polishing cloth. In a polishing method for polishing the metal laminate film and flattening irregularities on the surface of the metal film by relatively moving a support base, solid abrasive grains are added to the polishing liquid for polishing the first layer of the metal laminate film. Using a polishing liquid that does not contain
It is characterized in that a polishing liquid containing solid abrasive grains is used for polishing the second layer. In the polishing method of the present invention, the first layer of the metal laminated film is copper or a copper alloy, and the second layer is titanium, tantalum,
It is effective when it contains any of tungsten and their alloys (nitrides). The polishing liquid containing the solid abrasive grains is preferably simply and preferably prepared by mixing the solid abrasive dispersion liquid with the polishing liquid not containing the solid abrasive grains immediately before or on the polishing cloth. The polishing liquid containing no solid abrasive grains is preferably a polishing liquid containing hydrogen peroxide, malic acid, benzotriazole, polyacrylic acid and water.
In the present invention, as a polishing method for forming embedded wiring,
For polishing copper or copper alloy, use a polishing liquid that does not contain solid abrasive grains with a low polishing rate for barrier metal, and use a polishing liquid that contains conventionally used solid abrasive grains for polishing the barrier layer. I do. As a result, even if there is an in-plane distribution of the polishing rate of copper or copper alloy, etc., the polishing of the barrier metal does not proceed even in the portion where the barrier metal is exposed early, so that copper or copper alloy can be selectively polished. Thus, the in-plane uniformity of the substrate can be improved. For this reason, the uniformity after the subsequent polishing of the barrier metal is improved, and a reduction in the wiring film thickness due to erosion or the like can be prevented, so that reliability can be improved.

【0012】[0012]

【発明の実施の形態】本発明においては、表面に凹部を
有する絶縁膜を形成した基板上に、Ta(タンタル)、
Ti(チタン)、W(タングステン)等の高融点金属膜
またはそれらの窒化物膜、続いて銅或いは銅合金膜を形
成・充填する。この基板を本発明による研磨方法でCM
Pすると、基板の凸部の金属膜が選択的にCMPされ
て、凹部に金属膜が残されて所望の導体パタ−ンが得ら
れる。本発明の研磨方法は、支持基体に貼り付けた研磨
布上に前記の研磨液を供給しながら、被研磨膜を有する
基板を研磨布に押圧した状態で支持基体と基板を相対的
に動かすことによって被研磨膜を研磨する研磨方法であ
る。研磨する装置としては、半導体基板を保持するホル
ダと研磨布(パッド)を貼り付けた定盤を有する一般的
な研磨装置が使用できる。研磨布としては、一般的な不
織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用
でき、特に制限がない。銅或いは銅合金の研磨には、固
体砥粒を含まない研磨液を使用する。ここで固体砥粒を
含まない研磨液とは固体砥粒濃度が1重量%未満の研磨
液であり、好ましくは0.1重量%未満の研磨液であ
る。Ta、Ti、W等の高融点金属またはそれらの窒化
物は硬度の大きい材料であるため固体砥粒を含まない研
磨液ではほとんど研磨されない。このため銅或いは銅合
金の研磨速度に分布があり、銅或いは銅合金の研磨速度
の早い部分でバリヤメタルが早く露出しても、バリヤメ
タルで研磨が停止するため銅或いは銅合金のみ選択的に
研磨することができる。このため均一性を向上させるこ
とが可能となる。一方、固体砥粒入りの研磨液で継続し
て全ての銅或いは銅合金が研磨除去されるまで研磨する
と、固体砥粒による研磨作用が大きいためバリヤメタル
も研磨されてしまう。このバリヤメタルが一部研磨され
た状態で、バリヤメタル用の研磨液で2段目の研磨を行
うと、バリヤメタルの下地層であるシリカ膜も研磨さ
れ、配線深さの小さい部分が生じ、配線抵抗の増加や断
線など信頼性の低下を生じる。この傾向は特に配線密度
が高い部分で顕著である。固体砥粒を含まない研磨液か
ら固体砥粒を含む研磨液への転換は研磨時間または、支
持基体回転のトルク変動をモニターすることにより可能
である。研磨液の切り替えは、固体砥粒入り、固体砥粒
無の2種類の研磨液を準備し、逐次切り替えて供給して
もよいし、固体砥粒無しの研磨液と、固体砥粒の分散液
を準備し、2種のポンプで別々に供給し、研磨布上で混
合すること、または研磨布上に供給する前に混合し供給
することが可能である。この方法では固体砥粒の添加量
が任意に制御することが可能である。研磨条件に制限は
ないが、定盤の回転速度は基板が飛び出さないように2
00rpm以下の低回転が好ましい。被研磨膜を有する
半導体基板の研磨布への押し付け圧力は、9.8〜49
KPa(100〜500gf/cm2)であることが好
ましく、CMP速度のウエハ面内均一性及びパターンの
平坦性を満足するためには、14.7〜39.2KPa
(150〜400gf/cm2)であることがより好ま
しい。研磨している間、研磨布には研磨液をポンプ等で
連続的に供給する。この供給量に制限はないが、研磨布
の表面が常に研磨液で覆われていることが好ましい。固
体砥粒を含まない研磨液としては、スループットを向上
させるため、銅及び銅合金の研磨速度が大きいことが望
ましく、過酸化水素、リンゴ酸、ベンゾトリアゾール、
ポリアクリル酸を含む研磨液であることが好ましい。本
研磨液は固体砥粒を含まなくても150nm/min以
上の研磨速度が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, Ta (tantalum), Ta (tantalum),
A refractory metal film such as Ti (titanium) and W (tungsten) or a nitride film thereof, and subsequently a copper or copper alloy film are formed and filled. The substrate is subjected to CM by the polishing method according to the present invention.
When P, the metal film in the convex portion of the substrate is selectively CMPed, leaving the metal film in the concave portion to obtain a desired conductor pattern. In the polishing method of the present invention, the substrate having a film to be polished is relatively moved while the substrate having the film to be polished is pressed against the polishing cloth while the polishing liquid is supplied onto the polishing cloth attached to the supporting substrate. This is a polishing method for polishing a film to be polished by the above method. As a polishing apparatus, a general polishing apparatus having a holder for holding a semiconductor substrate and a surface plate to which a polishing cloth (pad) is attached can be used. As the polishing cloth, general nonwoven fabric, foamed polyurethane, porous fluororesin and the like can be used, and there is no particular limitation. For polishing copper or a copper alloy, a polishing liquid containing no solid abrasive grains is used. Here, the polishing liquid containing no solid abrasive is a polishing liquid having a solid abrasive concentration of less than 1% by weight, preferably a polishing liquid having a concentration of less than 0.1% by weight. Refractory metals such as Ta, Ti, W and the like or nitrides thereof are materials having high hardness and are hardly polished by a polishing liquid containing no solid abrasive grains. For this reason, there is a distribution in the polishing rate of copper or copper alloy, and even if the barrier metal is exposed early in a portion where the polishing rate of copper or copper alloy is high, polishing stops at the barrier metal, so that only copper or copper alloy is selectively polished. be able to. For this reason, the uniformity can be improved. On the other hand, if the polishing is continuously performed with the polishing liquid containing the solid abrasive grains until all the copper or copper alloy is polished and removed, the barrier metal is polished because the solid abrasive grains have a large polishing action. When the barrier metal is partially polished and the second polishing step is performed with a polishing liquid for the barrier metal, the silica film which is a base layer of the barrier metal is also polished, and a portion having a small wiring depth is generated, and the wiring resistance is reduced. The reliability may decrease such as increase or disconnection. This tendency is particularly remarkable in a portion where the wiring density is high. The conversion from the polishing liquid not containing the solid abrasive grains to the polishing liquid containing the solid abrasive grains can be performed by monitoring the polishing time or the fluctuation of the torque of the rotation of the supporting substrate. For the switching of the polishing liquid, two types of polishing liquids containing solid abrasive grains and without solid abrasive grains may be prepared and sequentially supplied and supplied, or a polishing liquid without solid abrasive grains and a dispersion liquid of solid abrasive grains Can be supplied separately by two types of pumps and mixed on a polishing cloth, or mixed and supplied before supplying on a polishing cloth. In this method, the amount of solid abrasive added can be arbitrarily controlled. The polishing conditions are not limited, but the rotation speed of the platen should be 2 so that the substrate does not pop out.
A low rotation of not more than 00 rpm is preferred. The pressing pressure of the semiconductor substrate having the film to be polished against the polishing cloth is 9.8 to 49.
KPa (100 to 500 gf / cm 2 ). In order to satisfy the uniformity of the CMP rate in the wafer surface and the flatness of the pattern, 14.7 to 39.2 KPa is required.
(150 to 400 gf / cm 2 ). During polishing, a polishing liquid is continuously supplied to the polishing cloth by a pump or the like. The supply amount is not limited, but it is preferable that the surface of the polishing pad is always covered with the polishing liquid. As a polishing liquid containing no solid abrasive grains, in order to improve the throughput, it is desirable that the polishing rate of copper and copper alloy is high, hydrogen peroxide, malic acid, benzotriazole,
The polishing liquid preferably contains polyacrylic acid. This polishing liquid can obtain a polishing rate of 150 nm / min or more even without containing solid abrasive grains.

【0013】[0013]

【実施例】以下、実施例により本発明を具体的に説明す
る。本発明はこれらの実施例により限定されるものでは
ない。 (基板の作製)シリコンウエハーにプラズマCVD法で
酸化シリコン膜を800nm形成し、フォトリソグラフ
ィー法で幅4.5μm、溝深さ800nmの凹部からな
る埋め込み配線部分と幅0.5μmの凸部からなるスペ
ース部を交互に形成したエロージョン評価部と、幅10
0μm、溝深さ800nmの凹部からなる埋め込み配線
形成部分と幅100μmの凸部からなるスペース部を交
互に形成したディッシング評価部を形成した。次にスパ
ッタ法でバリヤメタルとしてタンタル膜を50nm形成
し、続いてメッキ膜のシード層としてスパッタ法で銅を
100nm、メッキ法で銅を1400nm形成し、凹凸
を持つ絶縁膜上にタンタル、銅の2層膜をもつ半導体基
板を作製した。
The present invention will be described below in detail with reference to examples. The present invention is not limited by these examples. (Preparation of Substrate) A silicon oxide film is formed on a silicon wafer to a thickness of 800 nm by a plasma CVD method, and a buried wiring portion consisting of a concave portion having a width of 4.5 μm and a groove depth of 800 nm is formed by photolithography and a convex portion having a width of 0.5 μm. An erosion evaluation section in which spaces are alternately formed, and a width of 10
A dishing evaluation portion was formed in which a buried wiring forming portion formed of a concave portion having a depth of 800 nm and a space portion formed of a convex portion having a width of 100 μm were alternately formed. Next, a tantalum film is formed to a thickness of 50 nm as a barrier metal by a sputtering method, subsequently, 100 nm of copper is formed by a sputtering method and 1400 nm of copper is formed by a plating method as a seed layer of a plating film. A semiconductor substrate having a layer film was manufactured.

【0014】(研磨液の作製)DL−リンゴ酸(試薬特
級)0.15重量部に水70重量部を加えて溶解し、こ
れにベンゾトリアゾール0.2重量部、分子量1500
0のポリアクリル酸0.05重量部を加えた。最後に過
酸化水素水(試薬特級、30重量%水溶液)33.2重
量部を加えて得られたものを固体砥粒を含まない研磨液
Aとした。珪酸ナトリウムのイオン交換法で作製した固
体砥粒濃度40重量%、平均粒径80nmのコロイダル
シリカ懸濁液を研磨液Bとした。
(Preparation of Polishing Solution) To 0.15 parts by weight of DL-malic acid (special grade reagent), 70 parts by weight of water were added and dissolved, and 0.2 parts by weight of benzotriazole and a molecular weight of 1500 were added.
0 part by weight of polyacrylic acid was added. Finally, 33.2 parts by weight of a hydrogen peroxide solution (special grade of reagent, 30% by weight aqueous solution) was added to obtain a polishing liquid A containing no solid abrasive grains. A polishing liquid B was a colloidal silica suspension having a solid abrasive concentration of 40% by weight and an average particle diameter of 80 nm produced by a sodium silicate ion exchange method.

【0015】(研磨条件)研磨布に独立気泡を持つ発泡
ポリウレタン樹脂を使用し、研磨圧力:20.6KPa
(210g/cm2)、基板と支持基体との相対速度:
36m/minで研磨を行った。研磨液は研磨液Aを9
0ml/minで供給し、7分30秒研磨を行い、銅膜
の研磨を行った。続いて固体砥粒入り研磨液Bを10m
l/min別の配管で供給し、パッドへ供給直前に研磨
液Aに混合し固体砥粒濃度4重量%の研磨液にした。こ
の固体砥粒を含む研磨液で1分間研磨を行いタンタル膜
の研磨を行った。 (研磨品の評価)CMP後の基板の目視および光学顕微
鏡による表面観察および触針式段差計によるディッシン
グ及びエロ−ジョン量の評価を行った。目視及び光学顕
微鏡により表面観察の結果、銅およびタンタル膜は残り
なく完全に研磨されていることが分かった。触針式段差
計でディッシング及びエロ−ジョンを測定したところ、
エロージョンは、4.5/0.5μmライン/スペース
部で10nm、ディッシングは100/100μmライ
ン/スペース部で30nmであった。
(Polishing conditions) A foaming polyurethane resin having closed cells was used for the polishing cloth, and the polishing pressure was 20.6 KPa.
(210 g / cm 2 ), relative speed between substrate and supporting substrate:
Polishing was performed at 36 m / min. Polishing liquid A is 9
The slurry was supplied at 0 ml / min, polished for 7 minutes 30 seconds, and polished the copper film. Subsequently, 10 m of polishing liquid B containing solid abrasive grains is applied.
1 / min, the mixture was supplied through a separate pipe, and was mixed with the polishing liquid A immediately before the supply to the pad to obtain a polishing liquid having a solid abrasive concentration of 4% by weight. The tantalum film was polished by polishing for 1 minute with the polishing liquid containing the solid abrasive grains. (Evaluation of Polished Product) The substrate after CMP was visually observed, the surface was observed with an optical microscope, and the amount of dishing and erosion was evaluated with a stylus-type profilometer. As a result of visual observation and surface observation by an optical microscope, it was found that the copper and tantalum films were completely polished without any remaining. When dishing and erosion were measured with a stylus step meter,
The erosion was 10 nm at the 4.5 / 0.5 μm line / space part, and the dishing was 30 nm at the 100/100 μm line / space part.

【0016】(比較例)上記の実施例において研磨液は
研磨液Aを90ml/min、固体砥粒入り研磨液Bを
10ml/min別々のポンプで供給し、研磨布へ供給
直前に混合し固体砥粒濃度4重量%の研磨液にし、この
研磨液で6分間研磨を行い、銅およびタンタルを連続で
研磨した以外は実施例と同様に研磨を行った。目視及び
光学顕微鏡により表面観察を行った結果、銅およびタン
タルは残りなく完全に研磨されていた。触針式段差計で
エロ−ジョン及びディッシングを測定したところ、エロ
ージョンは4.5/0.5μmライン/スペース部で1
10nm、ディシングは100/100μmライン/ス
ペース部で100nmであった。
(Comparative Example) In the above embodiment, the polishing liquid A was supplied at 90 ml / min and the polishing liquid B containing solid abrasive grains was supplied at 10 ml / min by separate pumps. Polishing was performed in the same manner as in Example except that a polishing liquid having an abrasive concentration of 4% by weight was used, and polishing was performed for 6 minutes with this polishing liquid, and copper and tantalum were continuously polished. As a result of visual observation and surface observation by an optical microscope, copper and tantalum were completely polished without any residue. When erosion and dishing were measured using a stylus-type step meter, erosion was 1 at 4.5 / 0.5 μm line / space.
10 nm, and the dishing was 100 nm in a 100/100 μm line / space portion.

【0017】本発明の研磨方法によれば、エロージョン
を低下させることが可能になることが分かる。またディ
シング特性も併せて改善されており、信頼性の高い埋め
込み配線形成が可能であることが分かる。
It can be seen that according to the polishing method of the present invention, erosion can be reduced. In addition, the dishing characteristics are also improved, and it can be seen that highly reliable embedded wiring can be formed.

【0018】[0018]

【発明の効果】本発明の研磨方法は、銅或いは銅合金層
の研磨に研磨固体砥粒を含まない研磨液を使用すること
によりバリヤメタル研磨速度を低下させ、エロージョン
を生じることなく銅或いは銅合金層の均一な研磨を達成
し、信頼性の高い埋め込み配線パタ−ンを形成すること
ができる。
According to the polishing method of the present invention, the polishing rate of the barrier metal is reduced by using a polishing liquid which does not contain abrasive solid abrasive grains for polishing the copper or copper alloy layer. A uniform polishing of the layer can be achieved, and a highly reliable embedded wiring pattern can be formed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/306 H01L 21/306 F M (72)発明者 内田 剛 茨城県つくば市和台48 日立化成工業株式 会社総合研究所内 (72)発明者 寺崎 裕樹 茨城県つくば市和台48 日立化成工業株式 会社総合研究所内 (72)発明者 五十嵐 明子 茨城県つくば市和台48 日立化成工業株式 会社総合研究所内 Fターム(参考) 3C058 AA07 AC01 AC04 BA02 BA09 CB02 DA17 5F043 AA22 AA26 BB15 BB18 DD16 EE08 GG02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/306 H01L 21/306 FM (72) Inventor Go Uchida 48 Wadai, Tsukuba, Ibaraki Prefecture Hitachi Chemical Co., Ltd. (72) Inventor Hiroki Terasaki 48 Wadai, Tsukuba, Ibaraki Prefecture Hitachi Chemical Co., Ltd. (72) Inventor Akiko Igarashi 48 Wadai, Tsukuba, Ibaraki Prefecture F within Hitachi Chemical Co., Ltd. Terms (reference) 3C058 AA07 AC01 AC04 BA02 BA09 CB02 DA17 5F043 AA22 AA26 BB15 BB18 DD16 EE08 GG02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に凹凸の有る金属積層膜を有する基
板を、支持基体に貼り付けた研磨布に押し付け、研磨布
上に研磨液を供給しながら前記基板と前記支持基体とを
相対的に動かすことにより、前記金属積層膜を研磨し表
面の凹凸を平坦化する研磨方法において、前記金属積層
膜の1層目の研磨に前記研磨液に固体砥粒を含まない研
磨液を使用し、続く2層目の研磨に固体砥粒を含む研磨
液を使用することを特徴とする研磨方法。
1. A substrate having a metal laminate film having irregularities on its surface is pressed against a polishing cloth attached to a supporting substrate, and the substrate and the supporting substrate are relatively moved while supplying a polishing liquid onto the polishing cloth. By moving, in the polishing method for polishing the metal laminated film and flattening the surface irregularities, using a polishing liquid containing no solid abrasive in the polishing liquid for polishing the first layer of the metal laminated film, followed by A polishing method characterized by using a polishing liquid containing solid abrasive grains for polishing the second layer.
【請求項2】 前記金属積層膜の1層目が銅或いは銅合
金であり、2層目がチタン、タンタル、タングステン及
びそれらの合金の何れかを含むことを特徴とする請求項
1に記載の研磨方法。
2. The method according to claim 1, wherein the first layer of the metal laminated film is made of copper or a copper alloy, and the second layer contains any of titanium, tantalum, tungsten, and alloys thereof. Polishing method.
【請求項3】 前記固体砥粒を含む研磨液が、前記固体
砥粒を含まない研磨液に固体砥粒分散液を、研磨布上ま
たは研磨布に供給する直前に混合することにより作製さ
れることを特徴とする請求項1または請求項2に記載の
研磨方法。
3. A polishing liquid containing the solid abrasive grains is prepared by mixing a solid abrasive dispersion liquid with a polishing liquid not containing the solid abrasive grains just before supplying it onto a polishing cloth or to a polishing cloth. The polishing method according to claim 1 or 2, wherein
【請求項4】 固体砥粒を含まない研磨液が、過酸化水
素、リンゴ酸、ベンゾトリアゾール、ポリアクリル酸及
び水を含むことを特徴とする請求項1ないし請求項3の
いずれかに記載の研磨方法。
4. The polishing liquid according to claim 1, wherein the polishing liquid containing no solid abrasive contains hydrogen peroxide, malic acid, benzotriazole, polyacrylic acid and water. Polishing method.
JP32399599A 1999-11-15 1999-11-15 Polishing method Pending JP2001144062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32399599A JP2001144062A (en) 1999-11-15 1999-11-15 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32399599A JP2001144062A (en) 1999-11-15 1999-11-15 Polishing method

Publications (1)

Publication Number Publication Date
JP2001144062A true JP2001144062A (en) 2001-05-25

Family

ID=18160958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32399599A Pending JP2001144062A (en) 1999-11-15 1999-11-15 Polishing method

Country Status (1)

Country Link
JP (1) JP2001144062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185515A (en) * 1999-12-27 2001-07-06 Hitachi Ltd Polishing method, wire forming method, method for manufacturing semiconductor device and semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185515A (en) * 1999-12-27 2001-07-06 Hitachi Ltd Polishing method, wire forming method, method for manufacturing semiconductor device and semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US6743268B2 (en) Chemical-mechanical planarization of barriers or liners for copper metallurgy
KR100510977B1 (en) Polishing compound for chemimechanical polishing and method for polishing substrate
JP4095731B2 (en) Semiconductor device manufacturing method and semiconductor device
TW529978B (en) Abrasive-free metal CMP in passivation domain
EP1096556B1 (en) Chemical-mechanical planarisation of copper
CN102782066B (en) Chemical-mechanical planarization of substrates containing copper, ruthenium, and tantalum layers
US20010055880A1 (en) Barrier layer buffing after cu cmp
US9224614B2 (en) CMP slurry/method for polishing ruthenium and other films
KR101273705B1 (en) Polishing solution for cmp, and method for polishing substrate using the polishing solution for cmp
JP3033574B1 (en) Polishing method
WO2004030062A1 (en) Polishing compound composition, method for producing same and polishing method
JP2006203188A (en) Polishing composition and polishing method
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
JP2001127019A (en) Polishing fluid for metal and method for polishing substrate using the same
JP4759779B2 (en) Substrate polishing method
TW425626B (en) Manufacture of semiconductor device
JP2001144050A (en) Polishing method
JP2001144062A (en) Polishing method
JP2001144061A (en) Polishing method
JP2001144063A (en) Polishing method
JP3353831B2 (en) CMP slurry, polishing method and CMP tool
JP4683681B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JP2003059874A (en) Method of polishing board
JP2006191132A (en) Abrasive powder for chemical mechanical polishing and method for polishing substrate