JP2001141617A - Method and apparatus for measuring contact state - Google Patents

Method and apparatus for measuring contact state

Info

Publication number
JP2001141617A
JP2001141617A JP32355299A JP32355299A JP2001141617A JP 2001141617 A JP2001141617 A JP 2001141617A JP 32355299 A JP32355299 A JP 32355299A JP 32355299 A JP32355299 A JP 32355299A JP 2001141617 A JP2001141617 A JP 2001141617A
Authority
JP
Japan
Prior art keywords
sliding
contact state
reflected wave
wave
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32355299A
Other languages
Japanese (ja)
Other versions
JP3616908B2 (en
Inventor
Yoichi Inoue
陽一 井上
Tomonaga Oyamada
具永 小山田
Muneo Mizumoto
宗男 水本
Yuichi Yanase
裕一 柳瀬
Yoshitaka Fujimoto
芳貴 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32355299A priority Critical patent/JP3616908B2/en
Publication of JP2001141617A publication Critical patent/JP2001141617A/en
Application granted granted Critical
Publication of JP3616908B2 publication Critical patent/JP3616908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for measuring the contact state of sliding faces of two sliding members quantitatively. SOLUTION: One of two members 1, 3 sliding relatively comprises means 11, 27 for radiating sound wave into one sliding member 3, means 11, 29 for receiving a reflected wave from the sliding face 9 of one sliding member 3 and a reflected wave from a reference plane 39 set on one sliding member 3 except the sliding face 9, and a reflected wave analyzing means 35 for expressing the contact state of two members 1, 3 numerically based on the relation of reflected waves from the sliding face 9 and the reference plane 39. The contact state can be expressed numerically and measured quantitatively based on the relation between the intensity of a reflected wave from the sliding face dependent on the contact state and the constant intensity of a reflected wave from the reference plane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、相対的に摺動する
2つの摺動部材の摺動面の接触状態計測装置に係り、特
に、音波により摺動面の接触状態を計測する接触状態計
測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a contact state of a sliding surface of two sliding members which slide relatively to each other, and more particularly to a contact state measuring apparatus for measuring a contact state of a sliding surface by sound waves. Related to the device.

【0002】[0002]

【従来の技術】従来の相対的に摺動する2つの摺動部材
の摺動面の接触状態を検出する手段として、2つの部材
が導電性物質である場合には、2つの部材の接触導通を
計測する方法や、2つの部材の摺動面の摩耗が激しくな
り摺動面が破壊されることによって発生するアコーステ
ィック・エミッション波形を計測する方法などが知られ
ている。
2. Description of the Related Art Conventionally, as a means for detecting a contact state between sliding surfaces of two sliding members relatively sliding with each other, when two members are made of a conductive material, contact conduction between the two members is performed. And a method of measuring an acoustic emission waveform generated by abrasion of the sliding surface of the two members due to severe wear of the sliding surface.

【0003】[0003]

【発明が解決しようとする課題】しかし、2つの摺動部
材の接触導通を計測する方法では、間隔をおいて位置す
る2つの摺動部材の摺動面が接触した状態になったこと
しか検出することができない。また、アコースティック
・エミッション波形を計測する方法では、2つの摺動部
材の摺動面の摩耗が激しくなり、摺動面の破壊が起きて
いるような異常状態になったことしか検出することがで
きない。
However, in the method of measuring the contact continuity between two sliding members, it is only detected that the sliding surfaces of the two sliding members located at an interval come into contact with each other. Can not do it. Further, in the method of measuring the acoustic emission waveform, it is possible to detect only an abnormal state in which the sliding surfaces of the two sliding members are severely worn and the sliding surfaces are destroyed. .

【0004】ところが、多くの摺動する部材を有する機
器や装置などでは、使用開始時にすでに2つの摺動部材
は接触した状態にあり、さらに、2つの摺動部材の摺動
面の接触状態が異常状態になり、摺動面の破壊が起きる
前に、異常状態になることを事前に検知する必要があ
る。このため、2つの摺動部材の摺動面の接触状態を定
量的に計測することにより、接触状態の変化を検知でき
るようにする必要がある。
However, in an apparatus or an apparatus having a large number of sliding members, the two sliding members are already in contact with each other at the start of use, and the sliding surfaces of the two sliding members are in contact with each other. Before an abnormal state occurs and the sliding surface is destroyed, it is necessary to detect the abnormal state in advance. For this reason, it is necessary to detect the change in the contact state by quantitatively measuring the contact state between the sliding surfaces of the two sliding members.

【0005】これに対し、2つの摺動部材の摺動面の接
触状態を検出するために位置センサーや荷重センサーな
どを摺動面に設置することが考えられる。しかし、摺動
部材の摺動面の形状や摺動面周囲の設計によってセンサ
ーを設置できない場合、またはセンサーを設置するため
に摺動部材を有する装置などの設計が制限されてしまう
場合がある。
On the other hand, it is conceivable to install a position sensor or a load sensor on the sliding surface in order to detect the contact state between the sliding surfaces of the two sliding members. However, when the sensor cannot be installed due to the shape of the sliding surface of the sliding member or the design around the sliding surface, the design of an apparatus having a sliding member for installing the sensor may be limited.

【0006】また、日本機械学会論文集63巻611号
2456ページ、1997−7に記載のように、2つの
部材の摺動面に音波を照射したとき、摺動面の接触状態
によって、摺動面で反射した音波の反射波の強度が変化
することが知られている。しかし、摺動面の粗さや摺動
面の運動形態が時間経過に伴い変化する場合には、これ
らの条件によって摺動面からの反射波の強度が変化する
ため、摺動運動開始初期の反射波の反射強度と、所定時
間摺動運動を行った後に計測した反射波の反射強度との
比較を行っても、接触状態の変化を把握することは難し
い。
[0006] Further, as described in the Transactions of the Japan Society of Mechanical Engineers, Vol. 63, No. 611, page 2456, 1997-7, when sound waves are radiated to the sliding surfaces of two members, the sliding state depends on the contact state of the sliding surfaces. It is known that the intensity of the reflected wave of the sound wave reflected by the surface changes. However, when the roughness of the sliding surface and the movement form of the sliding surface change with the passage of time, the intensity of the reflected wave from the sliding surface changes due to these conditions. Even if the reflection intensity of the wave is compared with the reflection intensity of the reflected wave measured after performing the sliding motion for a predetermined time, it is difficult to grasp the change in the contact state.

【0007】本発明の課題は、2つ摺動部材の摺動面の
接触状態を定量的に計測することにある。
An object of the present invention is to quantitatively measure a contact state between sliding surfaces of two sliding members.

【0008】[0008]

【課題を解決するための手段】本発明の接触状態計測方
法及び接触状態計測装置は、以下の手段により上記課題
を解決する。相対的に摺動運動する2つの摺動部材のう
ち、一方の摺動部材内に音波を放射し、一方の摺動部材
の摺動面での反射波と一方の摺動部材の前記摺動面を除
く部分に設定された基準面での反射波との関係に基づい
て2つの摺動部材の接触状態を計測する。
A contact state measuring method and a contact state measuring apparatus according to the present invention solve the above-mentioned problems by the following means. Of the two sliding members that relatively slide, a sound wave is emitted into one of the sliding members, and a reflected wave on the sliding surface of the one sliding member and the sliding of the one sliding member. The contact state between the two sliding members is measured based on the relationship with the reflected wave on the reference surface set in a portion other than the surface.

【0009】このとき、摺動面での反射波と基準面での
反射波との強度比を算出し、2つの摺動部材の接触状態
を強度比により数値化する。
At this time, the intensity ratio between the reflected wave on the sliding surface and the reflected wave on the reference surface is calculated, and the contact state between the two sliding members is quantified by the intensity ratio.

【0010】このようにすれば、摺動部材の押しつけ荷
重によって変化する摺動面での反射波の強度と、常に一
定である基準面での反射波の強度との強度比を算出する
ことにより、摺動部材の押しつけ荷重によって変化する
摺動面の摩耗速度などの2つの摺動部材の接触状態を、
反射波の強度を変化させる他の要因からの影響がない相
対的なスケールで数値化できるので、接触状態を定量的
に計測することができる。
With this configuration, the intensity ratio of the intensity of the reflected wave on the sliding surface, which varies with the pressing load of the sliding member, and the intensity of the reflected wave on the reference surface, which is always constant, is calculated. , The contact state of the two sliding members, such as the wear rate of the sliding surface, which varies with the pressing load of the sliding member,
Since the numerical value can be expressed on a relative scale without any influence from other factors that change the intensity of the reflected wave, the contact state can be quantitatively measured.

【0011】また、基準面となる底面を有する音波の波
長のほぼ4分の1の深さで、かつ底面の面積が摺動面の
計測音波が反射する部分の面積とほぼ等しい有底穴を形
成し、摺動面での反射波と基準面での反射波との合成波
の強度に基づいて2つの摺動部材の接触状態を数値化す
る。
A bottomed hole having a depth approximately one-fourth of the wavelength of a sound wave having a bottom surface serving as a reference surface and an area of the bottom surface substantially equal to an area of a portion of the sliding surface on which the measured sound wave reflects is provided. Then, the state of contact between the two sliding members is quantified based on the intensity of the combined wave of the reflected wave on the sliding surface and the reflected wave on the reference surface.

【0012】このようにすれば、摩耗の初期状態では、
摺動面からの反射波と基準面からの反射波とがほぼ逆位
相となり互いにほぼ打ち消し合い、2つの反射波の合成
波の強度は、ほぼ0または小さな値となる。摺動面の摩
耗が進むと、有底穴の深さが浅くなることにより、2つ
の反射波の位相がずれて、2つの反射波の合成波の強度
は大きくなる。したがって、摺動部材の摺動面での反射
波と基準面での反射波との合成波の強度に基づいて接触
状態を数値化できるので、接触状態を定量的に計測する
ことができる。
In this way, in the initial state of wear,
The reflected wave from the sliding surface and the reflected wave from the reference surface are substantially in opposite phases and almost cancel each other, and the intensity of the composite wave of the two reflected waves is substantially zero or a small value. As the wear of the sliding surface progresses, the depth of the bottomed hole becomes shallower, so that the phases of the two reflected waves are shifted, and the intensity of the composite wave of the two reflected waves increases. Therefore, since the contact state can be quantified based on the intensity of the composite wave of the reflected wave on the sliding surface of the sliding member and the reflected wave on the reference surface, the contact state can be quantitatively measured.

【0013】また、上記の接触状態計測方法により2つ
の摺動部材の接触状態を計測する装置は、相対的に摺動
運動する2つの摺動部材のうち、一方の摺動部材内に音
波を放射する音波放射手段と、一方の摺動部材の摺動面
での反射波及び一方の摺動部材の摺動面を除く部分に設
定された基準面での反射波の受信手段と、摺動面での反
射波及び基準面での反射波の関係に基づいて2つの摺動
部材の接触状態を数値化する反射波解析手段とを備えて
なる装置とすればよい。
Further, the apparatus for measuring the contact state of two sliding members by the above-mentioned contact state measuring method provides a sound wave in one of the two sliding members that relatively slide. Means for radiating sound waves, receiving means for receiving a reflected wave on the sliding surface of one of the sliding members and a reflected wave on a reference surface set at a portion other than the sliding surface of the one sliding member, and What is necessary is just to provide a device provided with reflected wave analysis means for quantifying the contact state of the two sliding members based on the relationship between the reflected wave on the surface and the reflected wave on the reference surface.

【0014】このとき、基準面が、摺動面に穿設された
有底穴の底面、または、摺動面上に形成された被膜と摺
動面との界面であれば、摺動部材の押しつけ荷重によっ
て変化する摺動面での反射波の強度と、常に一定である
基準面での反射波の強度との強度比により、接触状態を
数値化することができる。このとき、被膜は、摺動部材
と異なる密度を有する材料で形成されている。
At this time, if the reference surface is the bottom surface of the bottomed hole formed in the sliding surface or the interface between the coating formed on the sliding surface and the sliding surface, The contact state can be quantified by the intensity ratio between the intensity of the reflected wave on the sliding surface, which changes with the pressing load, and the intensity of the reflected wave on the reference surface, which is always constant. At this time, the coating is formed of a material having a density different from that of the sliding member.

【0015】また、摺動面での反射波と基準面での反射
波とを受信手段への到着時刻の差に基づいて弁別して分
離する波形分離手段を備えれば、容易に摺動面での反射
波と基準面での反射波とを分離できるので好ましい。
Further, if a waveform separating means for discriminating and separating the reflected wave on the sliding surface and the reflected wave on the reference surface based on a difference in arrival time at the receiving means is provided, the sliding surface can be easily formed on the sliding surface. This is preferable because it is possible to separate the reflected wave from the reflected wave from the reference surface.

【0016】さらに、基準面が、摺動面に穿設された1
つまたは複数の有底穴の底面であり、有底穴の深さは、
計測音波の波長のほぼ4分の1で、底面の面積または複
数の底面の面積の合計が、摺動面の計測音波が反射する
部分の面積とほぼ等しければ、摺動面での反射波と基準
面での反射波との合成波の強度によって接触状態を数値
化できる。
[0016] Further, the reference surface is formed by drilling a hole in the sliding surface.
The bottom of one or more bottomed holes, the depth of which is
If the area of the bottom surface or the sum of the areas of the plurality of bottom surfaces is substantially equal to the area of the portion of the sliding surface on which the measured sound wave is reflected at approximately one-quarter of the wavelength of the measurement sound wave, the reflected wave on the sliding surface is equal to The contact state can be quantified by the intensity of the combined wave with the reflected wave on the reference surface.

【0017】ところで、圧縮機の摺動部材間の接触状態
は、内部潤滑状態、すなわち、潤滑油中の気泡の量、冷
媒溶解量の変化に伴う潤滑油の粘度変化、潤滑油の供給
量などの運転モードによって変化し、さらに、摺動部材
間などへの異物の混入などによっても変化する。このよ
うな内部潤滑状態や異物の混入などにより、圧縮機内の
摺動部材の接触状態が経時的に変化するため、摺動部材
の接触状態を定量的に把握することが重要であり、信頼
性を確保するために摺動部材間の接触状態に応じて圧縮
機の運転を制御できることが重要である。
Incidentally, the contact state between the sliding members of the compressor is an internal lubrication state, that is, the amount of bubbles in the lubricating oil, the change in the viscosity of the lubricating oil due to the change in the amount of refrigerant dissolved, the supply amount of the lubricating oil, etc. , And also changes due to the entry of foreign matter between the sliding members and the like. Since the contact state of the sliding member in the compressor changes over time due to such internal lubrication state and the mixing of foreign matter, it is important to quantitatively grasp the contact state of the sliding member, and to improve reliability. It is important to be able to control the operation of the compressor in accordance with the contact state between the sliding members in order to ensure the performance.

【0018】これに対し、上記に記載のいずれかの接触
状態計測装置と、この接触状態計測装置で計測した相対
的に摺動運動する2つの摺動部材の接触状態に基づいて
運転を制御する制御手段とを備えてなる圧縮機とすれ
ば、制御部が、接触状態計測装置からの接触状態の計測
結果に基づき、摺動部材の摺動面の接触状態が異常状態
になるのを事前に検知し、圧縮機の作動を停止すること
により、圧縮機の破損を防止することができる。
On the other hand, the operation is controlled based on any one of the contact state measuring devices described above and the contact state between the two sliding members which are relatively slid and measured by the contact state measuring device. If the compressor is provided with control means, the control unit determines in advance that the contact state of the sliding surface of the sliding member will be abnormal based on the measurement result of the contact state from the contact state measurement device. By detecting and stopping the operation of the compressor, damage to the compressor can be prevented.

【0019】[0019]

【発明の実施の形態】(第1の実施形態)以下、本発明
を適用してなる接触状態計測装置の第1の実施形態を、
図1乃至図8を参照して説明する。図1は、本発明を適
用してなる接触状態計測装置の概略構成と動作を示す図
である。図2は、押しつけ荷重100Nでの反射波の強
度を示す図である。図3は、押しつけ荷重200Nでの
反射波の強度を示す図である。図4は、押しつけ荷重に
対する反射波の強度比と摩耗速度との関係を示す図であ
る。図5は、接触状態計測装置を備えた圧縮機本体の概
略構成を示す断面図である。図6は、接触状態計測装置
を備えた圧縮機のオルダム機構部の概略構成を、一部を
破断して示す分解斜視図である。図7は、オルダム機構
部へ接触状態計測装置を取り付けた状態を示す断面図で
ある。図8は、圧縮機全体の概略構成を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) Hereinafter, a first embodiment of a contact state measuring apparatus to which the present invention is applied will be described.
This will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration and operation of a contact state measuring device to which the present invention is applied. FIG. 2 is a diagram illustrating the intensity of the reflected wave at a pressing load of 100N. FIG. 3 is a diagram illustrating the intensity of the reflected wave at a pressing load of 200N. FIG. 4 is a diagram showing the relationship between the intensity ratio of the reflected wave to the pressing load and the wear rate. FIG. 5 is a cross-sectional view illustrating a schematic configuration of a compressor body including the contact state measuring device. FIG. 6 is an exploded perspective view showing a schematic configuration of an Oldham mechanism part of a compressor including the contact state measuring device, with a part thereof cut away. FIG. 7 is a cross-sectional view showing a state where the contact state measuring device is attached to the Oldham mechanism. FIG. 8 is a diagram showing a schematic configuration of the entire compressor.

【0020】本実施形態の接触状態計測装置は、図1に
示すように、鋳鉄からなる可動側の摺動部材1と固定側
の摺動部材3との接触状態を計測するために設けられて
いる。摺動部材1は、摺動部材3に所定の押しつけ荷重
Pで押し付けられた状態で、摺動部材3の摺動面5に沿
う方向7に往復運動しており、摺動部材1の摺動面9と
摺動部材3の摺動面5とは接触しており、摺動部材1の
往復運動により摩擦が生じている状態にある。
As shown in FIG. 1, the contact state measuring device of this embodiment is provided for measuring a contact state between a movable sliding member 1 made of cast iron and a fixed sliding member 3. I have. The sliding member 1 reciprocates in the direction 7 along the sliding surface 5 of the sliding member 3 while being pressed against the sliding member 3 with a predetermined pressing load P. The surface 9 and the sliding surface 5 of the sliding member 3 are in contact with each other, and friction is generated by the reciprocating motion of the sliding member 1.

【0021】本実施形態の接触状態計測装置は、超音波
プローブ11と接触状態計測制御部13などで構成さ
れ、そして、摺動部材3の摺動面5には有底穴15が形
成されている。超音波プローブ11は、圧電素子を内蔵
しており、計測音波の発振、つまり放射と受信を兼ねて
おり、その先端部にはカバーとなる先端板16が取り付
けられている。そして、摺動部材3の摺動面5と反対側
の背面17側に設けられた有底穴19に計測音波の放射
と受信を行う超音波プローブ11が挿入され、先端板1
6の反対側の端部側に設けられたばねなどの弾性部材2
3を介して固定部材25により摺動部材3に弾性的に取
り付けられている。接触状態計測制御部13は、発振回
路27、受信回路29、増幅回路31、波形分離回路3
3、反射波形解析回路35、計測制御回路37などで構
成されている。なお、超音波プローブ11と発振回路2
7とは、音波放射手段を構成し、超音波プローブ11と
受信回路29とは、受信手段を構成している。
The contact state measuring device according to the present embodiment comprises an ultrasonic probe 11 and a contact state measurement control unit 13 and the like. The sliding surface 5 of the sliding member 3 has a bottomed hole 15 formed therein. I have. The ultrasonic probe 11 has a built-in piezoelectric element, oscillates, that is, emits and receives, a measurement sound wave, and has a tip plate 16 serving as a cover attached to a tip portion thereof. Then, an ultrasonic probe 11 for emitting and receiving a measurement sound wave is inserted into a bottomed hole 19 provided on the back surface 17 opposite to the sliding surface 5 of the sliding member 3, and
Elastic member 2 such as a spring provided on the end side opposite to 6
The elastic member 3 is elastically attached to the sliding member 3 by a fixing member 25 via the intermediate member 3. The contact state measurement control unit 13 includes an oscillation circuit 27, a reception circuit 29, an amplification circuit 31, a waveform separation circuit 3,
3, a reflection waveform analysis circuit 35, a measurement control circuit 37, and the like. The ultrasonic probe 11 and the oscillation circuit 2
7 constitutes a sound wave emitting means, and the ultrasonic probe 11 and the receiving circuit 29 constitute a receiving means.

【0022】有底穴15は、摺動部材3の摺動面5に深
さLが2mmで穿設されており、有底穴15の底面はほ
ぼ平面状に加工されて基準面39となっている。なお、
超音波プローブ11の先端板16の端面と摺動面5間の
距離は10mmであり、超音波プローブ11の先端板1
6の端面と基準面39間の距離は8mmとなっている。
なお、基準面39の大きさ、すなわち面積は、超音波プ
ローブ11の送受信面となる先端板16の面積よりも小
さければよいが、基準面39の面積が超音波プローブ1
1の送受信面となる先端板16の面積の半分であれば、
摺動面5からの反射波と基準面39からの反射波の強度
がほぼ同じになるため、計測感度がよくなる。
The bottomed hole 15 is formed in the sliding surface 5 of the sliding member 3 with a depth L of 2 mm, and the bottom surface of the bottomed hole 15 is formed into a substantially planar shape to serve as a reference surface 39. ing. In addition,
The distance between the end face of the end plate 16 of the ultrasonic probe 11 and the sliding surface 5 is 10 mm, and the end plate 1 of the ultrasonic probe 11
The distance between the end face 6 and the reference plane 39 is 8 mm.
The size, that is, the area of the reference surface 39 may be smaller than the area of the end plate 16 which is the transmitting / receiving surface of the ultrasonic probe 11.
If it is half of the area of the end plate 16 which is the transmitting and receiving surface of No. 1,
Since the intensity of the reflected wave from the sliding surface 5 and the intensity of the reflected wave from the reference surface 39 are substantially the same, the measurement sensitivity is improved.

【0023】このような本実施形態の接触状態計測装置
は、測定時、計測制御回路37からの指令41により、
発振回路27からパルス波形43を出力することで超音
波プローブ11を加振し、周波数10MHzの計測音波
を発振する。計測音波は、摺動面5及び基準面39で反
射し、摺動面5及び基準面39で反射した各々の反射波
は、超音波プローブ11で受信される。受信された反射
波は、超音波プローブ11と受信回路29を順次介し
て、受信された反射波に応じた受信信号47として出力
される。受信信号47は、増幅回路31で所定ゲインま
で増幅された後、波形分離回路33に入力される。受信
信号47は、波形分離回路33により、摺動面5からの
反射波に対応する受信信号47aと基準面37からの反
射波に対応する受信信号47bとに弁別して分離され
る。分離された受信信号47a、47bは、反射波解析
回路35により解析され接触状態を表すための数値に数
値化される。これら一連の接触状態の計測動作は、計測
制御回路37で指令されている。本実施形態の接触状態
計測制御部37は、発振回路27が周波数10MHzの
パルス波形43を出力するのに対し、発振と受信とは、
1kHz毎で切り替えを行っている。すなわち、所定時
間間隔で受信信号だけを連続的に取り込み、接触状態の
計測をっている。
The contact state measuring device according to the present embodiment operates in response to a command 41 from the measurement control circuit 37 during measurement.
By outputting the pulse waveform 43 from the oscillation circuit 27, the ultrasonic probe 11 is vibrated, and a measurement sound wave having a frequency of 10 MHz is oscillated. The measurement sound wave is reflected by the sliding surface 5 and the reference surface 39, and each reflected wave reflected by the sliding surface 5 and the reference surface 39 is received by the ultrasonic probe 11. The received reflected wave is output as a reception signal 47 corresponding to the received reflected wave via the ultrasonic probe 11 and the receiving circuit 29 in order. The reception signal 47 is input to the waveform separation circuit 33 after being amplified to a predetermined gain by the amplification circuit 31. The received signal 47 is separated and separated by the waveform separating circuit 33 into a received signal 47a corresponding to the reflected wave from the sliding surface 5 and a received signal 47b corresponding to the reflected wave from the reference surface 37. The separated reception signals 47a and 47b are analyzed by the reflected wave analysis circuit 35 and converted into numerical values to represent the contact state. The measurement operation of the series of contact states is instructed by the measurement control circuit 37. The contact state measurement control unit 37 of the present embodiment indicates that the oscillation circuit 27 outputs a pulse waveform 43 having a frequency of 10 MHz,
Switching is performed every 1 kHz. That is, only the received signal is continuously taken in at predetermined time intervals, and the contact state is measured.

【0024】ここで、波形分離回路33での波形の分離
方法と、反射波形解析回路35での波形の解析方法、す
なわち接触状態の数値化とについて説明する。摺動部材
3の摺動面5と有底穴15の底面である基準面39とか
らの反射波を受信する時間差tは、図1に示すように、
摺動面5と基準面39との計測音波の伝播距離差をL、
計測音波の音速をvとすると、 t = L / v …(1) となる。すなわち、摺動面5からの反射波と基準面39
からの反射波とは、常に時間差tだけずれて検出され
る。このため、各々の反射波を時間差tに基づき容易に
弁別して分離することが可能である。したがって、波形
分離回路33は、予め入力された超音波プローブ11の
先端板16の端面から計測音波の反射面となる摺動部材
3の摺動面5までの距離、超音波プローブ11の先端板
16の端面から有底穴15の底面である基準面39まで
の距離、そして摺動部材3内での計測音波の音速から、
摺動面5からの反射波と基準面39からの反射波の各々
の到着時刻を算出し、この算出された各々の到着時刻か
ら、摺動面5からの反射波に対応する受信信号47aと
基準面39からの反射波に対応する受信信号47bとを
弁別し分離している。
Here, a method of separating a waveform in the waveform separating circuit 33 and a method of analyzing a waveform in the reflected waveform analyzing circuit 35, that is, a numerical representation of a contact state will be described. The time difference t for receiving reflected waves from the sliding surface 5 of the sliding member 3 and the reference surface 39 which is the bottom surface of the bottomed hole 15 is, as shown in FIG.
The propagation distance difference of the measured sound wave between the sliding surface 5 and the reference surface 39 is L,
Assuming that the sound speed of the measurement sound wave is v, t = L / v (1). That is, the reflected wave from the sliding surface 5 and the reference surface 39
Is always detected with a time difference t. For this reason, each reflected wave can be easily distinguished and separated based on the time difference t. Therefore, the waveform separation circuit 33 calculates the distance from the end face of the tip plate 16 of the ultrasonic probe 11 which is input in advance to the sliding surface 5 of the sliding member 3 serving as the reflection surface of the measurement sound wave, From the distance from the end surface 16 to the reference surface 39 which is the bottom surface of the bottomed hole 15 and the sound velocity of the measured sound wave in the sliding member 3,
The arrival time of each of the reflected wave from the sliding surface 5 and the reflected wave from the reference surface 39 is calculated, and the reception signal 47a corresponding to the reflected wave from the sliding surface 5 is calculated from each of the calculated arrival times. The received signal 47b corresponding to the reflected wave from the reference surface 39 is discriminated and separated.

【0025】一方、固体内を伝播した超音波の自由表面
での反射に関する物理的性質において、超音波の自由表
面での反射率は固体中での音速と固体の密度との積算値
に依存し、音響インピーダンスで表現できる。一般に、
固体内を伝播した音波が自由表面に達すると、多くは反
射され、その他は直進して自由表面に隣接する液体また
は気体中に進んで行く。これに対し、超音波が反射する
面に別の固体が接触している場合の現象に関しては、基
本関係式などは未だ無いのが現状である。最近の研究で
は、日本機械学会論文集63巻611号2456ペー
ジ、1997−7に記載のように、2つの固体の接触面
での超音波の反射に関する物理的性質は、2つの固体の
接触面圧と密接な関係があり、接触面圧に応じて音波の
接触面の透過率が決まることが知られている。接触面圧
が高いほど2つの固体の接触面での超音波の反射する割
合は低下し、直進する割合が増加する。すなわち、接触
面圧が低く、接触の度合いが弱いほど、接触面で超音波
が反射する割合が増加するため、接触面での反射波の強
度は強くなる。ただし、実際には、発振回路の出力は経
時的に変動していることに加え、摺動部材では、2つの
固体の接触面となる摺動面の粗さや運動形態などが経時
的に変化する。したがって、摺動面からの反射波の強度
は、これら発振回路の出力変動、摺動面の粗さや運動形
態などの経時的変化などによっても変化する。このた
め、摺動面からの反射波の強度のみを評価するだけでは
接触状態を計測することは難しい。
On the other hand, in the physical properties related to the reflection of the ultrasonic wave propagating in the solid on the free surface, the reflectivity of the ultrasonic wave on the free surface depends on the integrated value of the speed of sound in the solid and the density of the solid. , Can be expressed by acoustic impedance. In general,
When a sound wave propagating in a solid reaches a free surface, much is reflected, and others go straight into a liquid or gas adjacent to the free surface. On the other hand, as for the phenomenon in which another solid is in contact with the surface on which the ultrasonic wave is reflected, at present, there is no basic relational expression or the like. In recent studies, as described in JSME Vol. 63, No. 611, p. 2456, 1997-7, the physical properties related to the reflection of ultrasonic waves at the contact surface between two solids are as follows. It is known that there is a close relationship with the pressure, and the transmittance of the sound wave contact surface is determined according to the contact surface pressure. The higher the contact surface pressure, the lower the ratio of reflection of ultrasonic waves at the contact surface between the two solids, and the higher the ratio of going straight. That is, the lower the contact surface pressure and the weaker the degree of contact, the higher the ratio of ultrasonic waves reflected on the contact surface, so that the intensity of the reflected wave on the contact surface increases. However, actually, in addition to the output of the oscillation circuit fluctuating with time, the roughness and the movement form of the sliding surface, which is the contact surface between the two solids, change with time in the sliding member. . Therefore, the intensity of the reflected wave from the sliding surface also changes due to fluctuations in the output of these oscillation circuits, temporal changes in the roughness of the sliding surface, the form of movement, and the like. For this reason, it is difficult to measure a contact state only by evaluating only the intensity of the reflected wave from the sliding surface.

【0026】そこで、本実施形態の反射波形解析回路3
5は、接触面圧、すなわち摺動部材1の押しつけ荷重P
により強度が変化する摺動部材3の摺動面5からの反射
波と、摺動部材1と接触せず、摺動部材1の押しつけ荷
重Pに関係なく常にほぼ一定の強度となる基準面39の
反射波とを用いて接触状態の計測を行っている。反射波
形解析回路35は、接触状態によって反射波の強度が変
化する摺動面5からの反射波の強度Anと、一定の値と
なる基準面39からの反射波の強度A0とから、摺動面
5からの反射波と基準面39からの反射波との強度比K
を、 K=An/A0 …(2) により算出し、反射波の強度を強度比Kとして規格化し
ている。このように強度比Kの値という相対的スケール
を設定することにより、発振回路の出力変動や、摺動面
の粗さや運動形態などの経時的変化などによる反射波の
強度の変動に関わらず、接触状態を数値化して定量的に
計測することができる。したがって、強度比Kの値によ
り、摺動部材1の摺動面9と摺動部材3の摺動面5との
接触状態を数値化することによって、接触状態の定量的
な計測が可能になる。また、強度比Kの変化から摺動部
材1の摺動面9と摺動部材3の摺動面5との接触状態が
異常状態になることを事前に予測できる。
Therefore, the reflection waveform analysis circuit 3 of the present embodiment
5 is the contact surface pressure, that is, the pressing load P of the sliding member 1
The reflected wave from the sliding surface 5 of the sliding member 3 whose strength changes due to the above, and the reference surface 39 which does not come into contact with the sliding member 1 and has a substantially constant strength regardless of the pressing load P of the sliding member 1. The contact state is measured by using the reflected wave of. The reflection waveform analysis circuit 35 determines the sliding based on the intensity An of the reflected wave from the sliding surface 5 where the intensity of the reflected wave changes depending on the contact state, and the intensity A0 of the reflected wave from the reference surface 39 which is a constant value. The intensity ratio K between the reflected wave from the surface 5 and the reflected wave from the reference surface 39
K = An / A0 (2), and the intensity of the reflected wave is normalized as the intensity ratio K. By setting the relative scale of the value of the intensity ratio K in this manner, regardless of the fluctuation of the output of the oscillation circuit or the fluctuation of the intensity of the reflected wave due to the change over time such as the roughness of the sliding surface and the movement form, The contact state can be quantified and quantitatively measured. Therefore, by quantitatively expressing the state of contact between the sliding surface 9 of the sliding member 1 and the sliding surface 5 of the sliding member 3 using the value of the strength ratio K, quantitative measurement of the contact state becomes possible. . In addition, it can be predicted in advance that the contact state between the sliding surface 9 of the sliding member 1 and the sliding surface 5 of the sliding member 3 will be abnormal from the change in the strength ratio K.

【0027】また、本実施形態では、受信した反射波に
応じた受信信号47の増幅回路31による所定レベルま
での増幅において、2種類の反射波、すなわち摺動面5
からの反射波と基準面39からの反射波とを同時に増幅
処理している。さらに、上記のように、接触状態を2種
類の反射波の強度比Kで表している。したがって、増幅
回路31による受信信号47の増幅率の変動が計測結果
に影響しないため、増幅回路31として、受信信号47
を強度比Kの判定ができるレベルまで適宜増幅するAG
C(Automatic Gain Control、自動利得制御回路)を用
いている。
Further, in the present embodiment, in the amplification of the reception signal 47 according to the received reflected wave to a predetermined level by the amplifier circuit 31, two types of reflected waves, that is, the sliding surface 5 are used.
And the reflected wave from the reference surface 39 are simultaneously amplified. Further, as described above, the contact state is represented by the intensity ratio K of the two types of reflected waves. Therefore, the fluctuation of the amplification factor of the reception signal 47 by the amplification circuit 31 does not affect the measurement result.
Which is appropriately amplified to a level at which the intensity ratio K can be determined
C (Automatic Gain Control, automatic gain control circuit) is used.

【0028】以下に2つの摺動部材の接触状態の計測の
一例を示す。摺動部材1の摺動面9は、僅かに油で濡れ
た摺動部材3の摺動面5と接触して摩擦状態となってお
り、摺動部材1が、押しつけ荷重P100N、振幅10
mm、振動周波数20Hzで、摺動部材3上を往復摺動
している。なお、有底穴15内は摺動部材3の摺動面5
を濡らす油が満たされた状態にある。このとき、図2に
示すように、有底穴15の底面である基準面39から反
射される反射波の1次反射波は、強度振幅B0で、2次
反射波は、1次反射波よりも減衰した波形として観測さ
れる。この反射波の強度は摺動状態や押しつけ荷重Pに
は依らず一定である。基準面39で反射する計測音波の
往復伝播距離は16mmであり、鋳鉄中の音速が492
0m/sであることから、反射波は計測音波の発振から
3.25μs後に観測される。一方、摺動面5から反射さ
れてくる反射波は、進行距離が長いぶんだけ時間的遅
れ、すなわち時間差tをもって観測される。摺動面5で
反射する計測音波の往復伝播距離は20mmなので、摺
動面5からの1次反射波は、計測音波の発振から4.0
7μs後に反射波の強度振幅A1として観測される。こ
れらの強度は、摺動面5や基準面39などの計測音波が
反射する面の面積にも基本的に比例する。この計測例に
おいては、A0は0.25の強度、A1は0.65の強度
となっている。しかし、実際に計測される強度は、上記
のように、発振回路27の出力変動などにより変動して
いるため、接触状態を示す値は、A1/A0、すなわち
強度比Kとして数値化される。このときの強度比Kは、
2.6である。
An example of the measurement of the contact state between the two sliding members will be described below. The sliding surface 9 of the sliding member 1 is in friction with the sliding surface 5 of the sliding member 3 slightly wet with oil, and the sliding member 1 has a pressing load P100N and an amplitude 10
mm and a vibration frequency of 20 Hz. The inside of the bottomed hole 15 is the sliding surface 5 of the sliding member 3.
Wetting oil is full. At this time, as shown in FIG. 2, the primary reflected wave of the reflected wave reflected from the reference surface 39, which is the bottom surface of the bottomed hole 15, has an intensity amplitude B0 and the secondary reflected wave is smaller than the primary reflected wave. Is also observed as an attenuated waveform. The intensity of this reflected wave is constant irrespective of the sliding state and the pressing load P. The reciprocating propagation distance of the measurement sound wave reflected by the reference surface 39 is 16 mm, and the sound speed in the cast iron is 492.
Since it is 0 m / s, the reflected wave is observed 3.25 μs after the oscillation of the measurement sound wave. On the other hand, the reflected wave reflected from the sliding surface 5 is observed with a time delay, that is, a time difference t as long as the traveling distance is long. Since the reciprocating propagation distance of the measurement sound wave reflected on the sliding surface 5 is 20 mm, the primary reflection wave from the sliding surface 5 is 4.0 mm from the oscillation of the measurement sound wave.
After 7 μs, it is observed as the intensity amplitude A1 of the reflected wave. These intensities are also basically proportional to the area of the surface on which the measurement sound wave is reflected, such as the sliding surface 5 and the reference surface 39. In this measurement example, A0 has an intensity of 0.25 and A1 has an intensity of 0.65. However, since the actually measured intensity fluctuates due to the output fluctuation of the oscillation circuit 27 as described above, the value indicating the contact state is quantified as A1 / A0, that is, the intensity ratio K. The intensity ratio K at this time is
2.6.

【0029】押しつけ荷重Pを200Nと大きくし、他
は上記と同じの条件で計測を行った場合、すなわち摺動
面の摩擦を大きくした場合の結果を示す。押しつけ荷重
Pの増加により、図3に示すように、摺動部材3の摺動
面5で計測音波は直進する割合が増え、逆に摺動面5で
反射する反射波は減り、結果として反射波の強度は小さ
くなる。したがって、基準面39からの反射波の強度A
0は変化しないのに対し、摺動面5からの反射波の強度
A2は小さくなる。この計測例においては、A2は0.
3の強度となっており、このときの強度比Kは、1.2
である。このように、摺動部材1の摺動面9と摺動部材
3の摺動面5との接触状態が変化し、摩擦が大きな状態
になるにつれ、強度比Kの値は小さくなって行く。
The results are shown in the case where the pressing load P is increased to 200 N and the measurement is performed under the same conditions as above except that the friction of the sliding surface is increased. Due to the increase of the pressing load P, as shown in FIG. 3, the ratio of the measured sound wave going straight on the sliding surface 5 of the sliding member 3 increases, and the reflected wave reflected on the sliding surface 5 decreases, and as a result, the reflected wave The wave intensity becomes smaller. Therefore, the intensity A of the reflected wave from the reference surface 39
While 0 does not change, the intensity A2 of the reflected wave from the sliding surface 5 decreases. In this measurement example, A2 is equal to 0.
The intensity ratio K at this time is 1.2.
It is. As described above, the state of contact between the sliding surface 9 of the sliding member 1 and the sliding surface 5 of the sliding member 3 changes, and as the friction increases, the value of the strength ratio K decreases.

【0030】摺動部材1の押しつけ荷重Pを1〜400
Nまで変化させた時の各々の押しつけ荷重Pでの平均強
度比Kの値と摩耗速度(mm/h)とを対比した結果の一
例を示すと、図4に示しすように、摺動部材1の押し付
け押しつけ荷重Pの増加により反射波の平均強度比Kが
減少して行くにつれ、摩耗速度は増加していく結果とな
る。このように強度比Kの減少と摩耗速度の増加との間
には相関があるため、強度比Kの値を観測することで、
摩耗速度の変化に基づき接触状態の変化を検出すること
ができる。図4に示す結果では、摩耗速度は、押しつけ
荷重Pが200Nを境に、10-5mm/hから急激に増
加していき、摩耗が激しい異常状態になる。また、押し
つけ荷重Pが200Nのときは、強度比Kは1である。
したがって、強度比Kの値を観測することで、強度比K
が1に近づくに連れ、摺動部材1の摺動部材3への押し
つけ荷重が200Nに近づき、摺動部材3の摺動面5の
摩耗が激しくなる異常な接触状態になることを事前に検
知することができる。
The pressing load P of the sliding member 1 is 1 to 400
An example of the result of comparing the value of the average strength ratio K at each pressing load P and the wear rate (mm / h) when changed to N is shown in FIG. As the average intensity ratio K of the reflected wave decreases due to the increase in the pressing load P of 1, the wear rate increases. Since there is a correlation between the decrease in the strength ratio K and the increase in the wear rate, by observing the value of the strength ratio K,
The change in the contact state can be detected based on the change in the wear rate. In the results shown in Figure 4, the wear rate, pressing load P is the boundary of 200 N, will rapidly increase from 10- 5 mm / h, the wear becomes severe abnormal state. When the pressing load P is 200 N, the strength ratio K is 1.
Therefore, by observing the value of the intensity ratio K, the intensity ratio K
It is detected in advance that as the value approaches 1, the pressing load of the sliding member 1 against the sliding member 3 approaches 200 N, resulting in an abnormal contact state in which the sliding surface 5 of the sliding member 3 becomes severely worn. can do.

【0031】次に、本実施形態の接触状態計測装置を備
えた機器や装置などの一例として、本実施形態の接触状
態計測装置を備えた冷凍や空調用のスクロール圧縮機に
ついて説明する。スクロール圧縮機49内には、図5に
示すように、冷媒51と潤滑油53とを混入したものが
封入されている。冷媒51は、非塩素系のHFC(Hydro
Fluorocarbon)冷媒であり、潤滑油53は、エーテル系
潤滑油を混合したものを用いている。なお、冷媒は非塩
素系のHFCに限らず、HC(Hydro Carbon)冷媒を用い
ることもでき、また、潤滑油としてはエーテル系潤滑油
を用いたが、エステル系潤滑油を用いることもできる。
Next, a scroll compressor for refrigerating or air-conditioning provided with the contact state measuring device of the present embodiment will be described as an example of an apparatus or a device including the contact state measuring device of the present embodiment. As shown in FIG. 5, the scroll compressor 49 is filled with a mixture of a refrigerant 51 and a lubricating oil 53. The refrigerant 51 is a non-chlorine HFC (Hydro
Fluorocarbon) refrigerant, and the lubricating oil 53 is a mixture of ether lubricating oil. The refrigerant is not limited to non-chlorinated HFC, but HC (Hydro Carbon) refrigerant can be used. Further, although ether lubricating oil is used as lubricating oil, ester lubricating oil can also be used.

【0032】このスクロール圧縮機49において、スク
ロール圧縮機49の筐体56の上部の蓋部57に設けら
れた吸込流路55から吸入された潤滑油53を含んだ冷
媒51は、一旦、筐体56の底部59に設けられた油溜
61に入る。筐体56の中央部に設置されているスクロ
ール圧縮機49の駆動手段であるモータ63が起動する
と、冷媒51は、筐体56の上下方向に延在するモータ
63のシャフト65の芯部に設けられた流路67を通流
して吸い上げられ、モータ63の上方に設けられ、流路
67と連通する背圧室69に入る。背圧室69内には、
シャフト65に連動して回転する羽状のバランスウエイ
ト71が設けられており、バランスウエイト71の回転
攪拌により、背圧室69内の潤滑油53を含む冷媒51
は霧状になり、背圧室69内の壁面を濡らす。
In the scroll compressor 49, the refrigerant 51 containing the lubricating oil 53 sucked from the suction passage 55 provided in the upper cover 57 of the housing 56 of the scroll compressor 49 temporarily The oil enters a sump 61 provided at the bottom 59 of the oil tank 56. When the motor 63, which is the driving means of the scroll compressor 49 installed at the center of the housing 56, starts, the refrigerant 51 is provided at the core of the shaft 65 of the motor 63 extending in the up-down direction of the housing 56. The fluid flows through the flow path 67 and is sucked up, and enters the back pressure chamber 69 provided above the motor 63 and communicating with the flow path 67. In the back pressure chamber 69,
A wing-shaped balance weight 71 that rotates in conjunction with the shaft 65 is provided, and the rotational weight of the balance weight 71 causes the refrigerant 51 containing the lubricating oil 53 in the back pressure chamber 69.
Becomes a mist and wets the wall surface in the back pressure chamber 69.

【0033】背圧室69内には、図6に示すように、シ
ャフト65の回転運動を旋回運動に変換するためのオル
ダムリング73と背圧室60内の壁面の対向する位置に
設けられたキー溝75などで構成されるオルダム機構部
77がある。キー溝75は、背圧室69の壁面からシャ
フト65方向に向けて突出させて形成された突出部76
の平面状の上面に、背圧室69の壁面からシャフト65
方向に向けて形成された溝である。シャフト65の端部
にはシャフト65の軸に対して偏芯した位置に設けられ
た円柱状の偏芯軸部79が形成されており、この偏芯軸
部79が、背圧室69の上部に配設される旋回スクロー
ル81の下部に形成された円筒状の軸挿入部83に挿入
されることにより、シャフト65と旋回スクロール81
とが連結される。
In the back pressure chamber 69, as shown in FIG. 6, an Oldham ring 73 for converting the rotational movement of the shaft 65 into a turning movement and a wall surface in the back pressure chamber 60 are provided opposite to each other. There is an Oldham mechanism 77 including a key groove 75 and the like. The key groove 75 has a projection 76 formed by projecting from the wall surface of the back pressure chamber 69 toward the shaft 65.
Of the shaft 65 from the wall surface of the back pressure chamber 69
It is a groove formed toward the direction. At the end of the shaft 65, a column-shaped eccentric shaft portion 79 provided at a position eccentric with respect to the axis of the shaft 65 is formed. The shaft 65 and the orbiting scroll 81 are inserted into a cylindrical shaft insertion portion 83 formed at the lower portion of the orbiting scroll 81 disposed on the shaft 65.
Are linked.

【0034】オルダムリング73の下面には、2つのキ
ー溝75に対応する位置に、キー溝75に挿入される下
面側突起85が形成されている。また、オルダムリング
73の上面には、旋回スクロール81の下面の対向する
位置に形成された凹部87に対応する位置に上面側突起
89が形成されている。なお、オルダムリング73の各
々対向する位置に形成された下面側突起85と上面側突
起89とは、交互にほぼ90度間隔で形成されている。
シャフト65の回転運動が旋回スクロール81に伝えら
れたとき、旋回スクロール81の運動が、旋回スクロー
ル81の凹部87に挿入されたオルダムリング73の上
面側突起89と、背圧室69のキー溝75に挿入された
下面側突起85とにより制限され、旋回スクロール81
が自転することを防ぐ。
On the lower surface of the Oldham ring 73, a lower surface side projection 85 inserted into the key groove 75 is formed at a position corresponding to the two key grooves 75. On the upper surface of the Oldham ring 73, an upper surface side projection 89 is formed at a position corresponding to a concave portion 87 formed at a position facing the lower surface of the orbiting scroll 81. In addition, the lower surface side protrusion 85 and the upper surface side protrusion 89 formed at the positions opposing each other on the Oldham ring 73 are alternately formed at intervals of approximately 90 degrees.
When the rotational movement of the shaft 65 is transmitted to the orbiting scroll 81, the movement of the orbiting scroll 81 is controlled by the upper side projection 89 of the Oldham ring 73 inserted into the recess 87 of the orbiting scroll 81 and the key groove 75 of the back pressure chamber 69. The orbiting scroll 81 is limited by the lower surface side projection 85 inserted into the
To prevent them from spinning.

【0035】このときオルダムリング73は、キー溝7
5に沿った方向91への往復運動を行う。旋回スクロー
ル81は、キー溝75に沿った方向91への往復運動に
加えて、旋回スクロール81の凹部87とオルダムリン
グ73の上面側突起89とにより、キー溝75に沿った
方向91に垂直な方向93への往復運動も行うことがで
きる。したがって、旋回スクロール81は、偏芯軸部7
9の偏芯回転運動により、振れ回り運動し、固定スクロ
ール95に対して旋回運動する。これにより、旋回スク
ロール81の上部に螺旋状に形成された歯部97と、固
定スクロール95の下部に螺旋状に形成された歯部99
とが噛み合わされることで、両歯部97と99との間に
形成された空間の容積が両歯部97と99との相対的な
移動により変動することで、吸引された冷媒51を圧縮
しながら旋回スクロール81と固定スクロール95との
中心部101へ導く。圧縮された冷媒51は、中心部1
01から固定スクロール95に形成された流路103
と、図示していない排出流路とを介して吐出口105か
ら、高圧の冷媒51として吐出される。
At this time, the Oldham ring 73 is
A reciprocating motion in the direction 91 along 5 is performed. The orbiting scroll 81 is perpendicular to the direction 91 along the key groove 75 by the concave portion 87 of the orbiting scroll 81 and the upper surface side projection 89 of the Oldham ring 73 in addition to the reciprocating motion in the direction 91 along the key groove 75. A reciprocating movement in the direction 93 can also be performed. Therefore, the orbiting scroll 81 is mounted on the eccentric shaft 7.
Due to the eccentric rotation of 9, the eccentric rotation moves and the orbit moves with respect to the fixed scroll 95. As a result, a spirally formed tooth portion 97 above the orbiting scroll 81 and a spirally formed tooth portion 99 below the fixed scroll 95.
And the volume of the space formed between the teeth 97 and 99 fluctuates due to the relative movement between the teeth 97 and 99, thereby compressing the sucked refrigerant 51. While moving, it is guided to the center 101 of the orbiting scroll 81 and the fixed scroll 95. The compressed refrigerant 51 is supplied to the center 1
01 to the channel 103 formed in the fixed scroll 95
, And discharged from the discharge port 105 as a high-pressure refrigerant 51 through a discharge flow path (not shown).

【0036】この圧縮過程の動作において、信頼性が厳
しく要求されるのは、往復運動するオルダムリング73
の下面側突起85と下面側突起85が挿入されるキー溝
75との接触状態である。相対的に摺動運動する2つの
摺動部材、すなわち背圧室69の壁面に形成された突出
部76とオルダムリング73の下面側突起85とは、図
7において紙面に対して垂直方向に往復運動する下面側
突起85の左側面107と突出部76のキー溝75の左
側面109と、そして下面側突起85の底面111とキ
ー溝75の底面113とを摺動面として、各々摩擦状態
で摺動運動する。キー溝75の底面113には、深さ
0.1mmの有底穴15aを穿設し、有底穴15aの底
面により基準面39aを形成している。突出部76の下
面115には、超音波プローブ11aが設置されてい
る。同様に、キー溝75の左側面109にも、有底穴1
5bを穿設することにより、基準面39bを形成し、突
出部76の左側外面117には、超音波プローブ11b
が設置されている。なお、この往復運動するオルダムリ
ング73は、正弦運動し、両端部では静止しているが、
中央部では最高毎秒0.8mまでの速度に達する。ま
た、オルダムリング73の下面側突起85が突出部76
の摺動面に対して及ぼす垂直方向への圧力は、運転モー
ドによって異なるが、1MPaから最大10MPaまで
変化する。
In the operation of this compression process, strict reliability is required because the reciprocating Oldham ring 73
Is in contact with the key groove 75 into which the lower surface side projection 85 is inserted. The two sliding members relatively slidingly moving, that is, the projecting portion 76 formed on the wall surface of the back pressure chamber 69 and the lower surface side projection 85 of the Oldham ring 73 reciprocate in a direction perpendicular to the paper surface in FIG. The left side surface 107 of the moving lower surface side projection 85, the left side surface 109 of the key groove 75 of the projection 76, and the bottom surface 111 of the lower surface side projection 85 and the bottom surface 113 of the key groove 75 are used as sliding surfaces, respectively. Make a sliding motion. A bottomed hole 15a having a depth of 0.1 mm is formed in the bottom surface 113 of the key groove 75, and the bottom surface of the bottomed hole 15a forms a reference surface 39a. The ultrasonic probe 11a is installed on the lower surface 115 of the protrusion 76. Similarly, the left side surface 109 of the key groove 75 is
5b, a reference surface 39b is formed, and the left outer surface 117 of the projection 76 is provided with an ultrasonic probe 11b.
Is installed. The reciprocating Oldham ring 73 performs a sinusoidal motion and is stationary at both ends.
In the central part, speeds up to 0.8 m / s are reached. Further, the lower surface side projection 85 of the Oldham ring 73 is
The vertical pressure exerted on the sliding surface varies depending on the operation mode, but varies from 1 MPa to a maximum of 10 MPa.

【0037】このようなスクロール圧縮機49の運転制
御システムは、図8に示すように、超音波プローブ11
a、11bで受信した反射波の強度比K、すなわち接触
状態を検出する接触状態計測装置119からの強度比K
の値に基づいて、運転制御部121中にある異常状態検
知回路123で、異常状態に近づいていることを検知
し、運転を継続するか停止するかを判定する。運転を停
止する場合には、スクロール圧縮機49内のモータ63
の動作を制御するモータ制御回路125に司令を出し、
スクロール圧縮機49の作動を停止する。また、同時
に、運転制御部121は、スクロール圧縮機49の作動
を停止したことを知らせるアラームを鳴動させる。
As shown in FIG. 8, the operation control system of the scroll compressor 49 includes the ultrasonic probe 11
a, 11b, the intensity ratio K of the reflected waves received from the contact state measuring device 119 for detecting the contact state.
The abnormal state detection circuit 123 in the operation control unit 121 detects that the vehicle is approaching an abnormal state, and determines whether to continue or stop the operation, based on the value of. When the operation is stopped, the motor 63 in the scroll compressor 49 is stopped.
Command to the motor control circuit 125 for controlling the operation of
The operation of the scroll compressor 49 is stopped. At the same time, the operation control unit 121 sounds an alarm notifying that the operation of the scroll compressor 49 has been stopped.

【0038】このスクロール圧縮機49の運転制御部1
21では、図4で示したように、反射波の強度比Kの値
が、1.0より大きければ、許容摩耗速度が10-5mm
/hより遅く接触状態は正常であると判断するが、強度
比Kの値が、1.0になると、許容摩耗速度が10-5
m/h以上となる異常状態に移行すると判定する。例え
ば、摩耗の進行によりオルダムリング73の下面側突起
85の摺動面107、111などが削られてキー溝75
の摺動面109、113との接触面積が減少することに
よるオルダムリング73の下面側突起85のキー溝75
への押しつけ荷重Pの増加や、オルダムリング73の下
面側突起85の摺動面107、111とキー溝75の摺
動面109、113との間などへの異物の混入などによ
るオルダムリング73の運動状態の変化によるオルダム
リング73の下面側突起85のキー溝75への押しつけ
荷重Pの増加した場合などには、オルダムリング73の
下面側突起85の摺動面107、111とキー溝75の
摺動面109、113との間摩擦が大きくなる。このよ
うな場合、摩擦が大きくなり、摩耗速度が10-5mm/
h以上となる異常状態に近づくことにより、強度比Kの
値が、1.0になると、モータ制御回路125に司令を
出しスクロール圧縮機49の作動を停止するとともに、
スクロール圧縮機49の作動を停止したことを知らせる
アラームを鳴動させる。これにより、スクロール圧縮機
49のオルダム機構部77などの破損を防止することが
できる。
The operation control unit 1 of the scroll compressor 49
In 21, as shown in FIG. 4, the value of the intensity ratio K of the reflected wave is larger than 1.0, the allowable wear rate is 10- 5 mm
/ Slower contact than h is determined to be normal, but the value of the intensity ratio K is equal to or 1.0, the allowable wear rate is 10- 5 m
It is determined that the state shifts to an abnormal state of not less than m / h. For example, as the wear progresses, the sliding surfaces 107 and 111 of the lower surface side projection 85 of the Oldham ring 73 are shaved and the key groove 75 is removed.
The keyway 75 of the lower surface side projection 85 of the Oldham ring 73 due to the reduction of the contact area with the sliding surfaces 109 and 113 of the Oldham ring 73
Of the Oldham ring 73 due to an increase in the pressing load P against the sliding surface, or the intrusion of foreign matter between the sliding surfaces 107 and 111 of the lower surface side projection 85 of the Oldham ring 73 and the sliding surfaces 109 and 113 of the key groove 75. For example, when the pressing load P of the lower surface side projection 85 of the Oldham ring 73 against the key groove 75 increases due to a change in the motion state, the sliding surfaces 107 and 111 of the lower surface side projection 85 of the Oldham ring 73 and the key groove 75 The friction between the sliding surfaces 109 and 113 increases. In this case, the friction is increased, the wear rate of 10- 5 mm /
When the value of the intensity ratio K becomes 1.0 by approaching the abnormal state of h or more, a command is issued to the motor control circuit 125, and the operation of the scroll compressor 49 is stopped.
An alarm is sounded informing that the operation of the scroll compressor 49 has been stopped. Thereby, breakage of the Oldham mechanism 77 and the like of the scroll compressor 49 can be prevented.

【0039】このように本実施形態の接触状態計測装置
では、摺動部材3の摺動面5に有底穴15を穿設するこ
とで基準面39が形成され、固定された摺動部材3の摺
動面5と反対側の面に設置された超音波プローブ11か
ら計測音波を発振し、反射波解析手段35で、超音波プ
ローブ11が受信した摺動面5からの反射波と基準面3
9からの反射波との強度比Kを算出している。摺動面5
からの反射波の強度は、摺動面にかかる押しつけ荷重P
に相関して変化し、一方、基準面39からの反射波は、
常に一定である。したがって、反射波の強度比Kによ
り、摺動部材1の摺動面9と摺動部材3の摺動面5との
接触状態を数値化することができるため、2つの摺動部
材の摺動面の接触状態を定量的に計測できる。
As described above, in the contact state measuring device of this embodiment, the reference surface 39 is formed by forming the bottomed hole 15 in the sliding surface 5 of the sliding member 3, and the fixed sliding member 3 is fixed. A measurement sound wave is oscillated from the ultrasonic probe 11 installed on the surface opposite to the sliding surface 5 of the sensor, and the reflected wave from the sliding surface 5 received by the ultrasonic probe 11 and the reference surface 3
The intensity ratio K with respect to the reflected wave from No. 9 is calculated. Sliding surface 5
The intensity of the reflected wave from
, While the reflected wave from the reference plane 39 is
Always constant. Therefore, the state of contact between the sliding surface 9 of the sliding member 1 and the sliding surface 5 of the sliding member 3 can be quantified by the intensity ratio K of the reflected wave, so that the sliding of the two sliding members is possible. The contact state of the surface can be quantitatively measured.

【0040】さらに、強度比Kは、摺動面5の摩耗速度
と相関しているため、強度比Kを観測することで、摺動
部材1の摺動面9と摺動部材3の摺動面5との接触状態
が異常状態、例えば摩耗が激しくなり摺動面の破壊が起
こるような状態になることを事前に検知することができ
る。また、摺動面5からの反射波に対応する受信信号4
7aと基準面39からの反射波に対応する受信信号47
bとは各々の反射波の受信時刻の時間差tに基づいて波
形分離回路33で分離することができるため、増幅回路
31は、摺動面5からの反射波と基準面39からの反射
波とを受信信号47として同時に増幅処理でき、AGC
回路などの比較的簡単な回路で構成でき、経時的に増幅
率が変動するSTC回路(Sensitivity Time Control、
時間的感度制御回路)などのような複雑な回路を用いる
必要がない。加えて、AGC回路などのような簡単な回
路構成の増幅回路31などを用いても正確な接触状態の
計測ができる。
Further, since the strength ratio K is correlated with the wear rate of the sliding surface 5, by observing the strength ratio K, the sliding surface 9 of the sliding member 1 It is possible to detect in advance that the contact state with the surface 5 is abnormal, for example, a state in which abrasion becomes severe and breakage of the sliding surface occurs. Also, the reception signal 4 corresponding to the reflected wave from the sliding surface 5
7a and the received signal 47 corresponding to the reflected wave from the reference surface 39
b can be separated by the waveform separation circuit 33 on the basis of the time difference t between the reception times of the respective reflected waves, so that the amplification circuit 31 compares the reflected wave from the sliding surface 5 and the reflected wave from the reference surface 39 with each other. Can be simultaneously amplified as a reception signal 47, and AGC
STC circuit (Sensitivity Time Control,
There is no need to use a complicated circuit such as a temporal sensitivity control circuit). In addition, accurate measurement of the contact state can be performed by using an amplifier circuit 31 having a simple circuit configuration such as an AGC circuit.

【0041】さらに、本実施形態の接触状態計測装置を
備えたスクロール圧縮機49などのような圧縮機では、
摺動部材の摺動面の接触状態が異常状態になるのを事前
に検知することができ、圧縮機の破損を防止し、信頼性
の高い冷凍装置や空調システムなどを得ることができ
る。また、強度比Kを連続的に検出して摩耗速度の変化
率を算出すれば、この変化率から摺動部材の寿命予測も
できる。
Further, in a compressor such as a scroll compressor 49 provided with the contact state measuring device of the present embodiment,
It is possible to detect in advance that the contact state of the sliding surface of the sliding member becomes abnormal, prevent damage to the compressor, and obtain a highly reliable refrigeration apparatus or air conditioning system. If the rate of change of the wear rate is calculated by continuously detecting the strength ratio K, the life of the sliding member can be predicted from the rate of change.

【0042】また、本実施形態では、有底穴15内は空
洞になっているが、摺動面に形成された穴が問題になる
場合には、有底穴15に摺動部3と密度が違う金属や合
成樹脂など充填することもできる。ただし、摺動部材3
と有底穴15内の物質と密度の差が大きいほど、基準面
39での計測音波の反射の割合が多くなるため、反射波
の強度を大きくする必要がある場合などは、有底穴15
内は、空洞、すなわち空気である方がよい。さらに、本
実施形態では、有底穴15を1つ穿設しているが、複数
穿設することもできる。
Further, in this embodiment, the inside of the bottomed hole 15 is hollow, but if the hole formed in the sliding surface becomes a problem, the bottomed hole 15 and the sliding portion 3 are provided with the density. However, it can also be filled with different metals or synthetic resins. However, the sliding member 3
The larger the difference between the material and the density in the bottomed hole 15 is, the larger the ratio of the reflection of the measurement sound wave on the reference surface 39 becomes.
The interior should be hollow, ie air. Further, in the present embodiment, one bottomed hole 15 is formed, but a plurality of holes may be formed.

【0043】また、本実施形態の接触状態計測装置で
は、固定側の摺動部材3の摺動面5に有底穴15を穿設
することで基準面39が形成されているが、図9に示す
ように、固定側の摺動部材3の表面126とこの摺動部
材3の表面126上に形成されたコーティング膜127
との界面を基準面129としてもよい。この場合、可動
側の摺動部材1の摺動面9は、コーティング膜127の
表面と摺動することになり、このコーティング膜127
の表面が摺動面131となる。計測音波は、コーティン
グ膜127と摺動部材3の表面126との界面である基
準面129とコーティング膜127の摺動面131とで
反射する。これらの基準面129と摺動面131とで反
射した2つの反射波に対応する受信信号の強度比Kによ
り接触状態を検出できる。
In the contact state measuring device of the present embodiment, the reference surface 39 is formed by forming the bottomed hole 15 in the sliding surface 5 of the fixed sliding member 3 as shown in FIG. As shown in the figure, the surface 126 of the sliding member 3 on the fixed side and the coating film 127 formed on the surface 126 of the sliding member 3
May be used as the reference plane 129. In this case, the sliding surface 9 of the movable sliding member 1 slides on the surface of the coating film 127, and this coating film 127
Is the sliding surface 131. The measurement sound wave is reflected by a reference surface 129 which is an interface between the coating film 127 and the surface 126 of the sliding member 3 and a sliding surface 131 of the coating film 127. The contact state can be detected from the intensity ratio K of the received signals corresponding to the two reflected waves reflected by the reference surface 129 and the sliding surface 131.

【0044】例えば、鋳鉄からなる摺動部材3に対し、
耐摺動性に優れる厚さ100μmのNiP膜をコーティ
ングしてコーティング膜127を形成する。計測音波
は、ほぼ図2に示すようになるが、コーティング膜12
7内の音速は、摺動部材3よりも速い5300m/sで
ある。したがって、基準面129からの反射波と摺動面
131からの反射波との受信時刻の時間差tは、伝播距
離差Lが200μm、音速vが5300m/sであるこ
とから、式(1)により、0.0377μsとなる。摺
動面131からの反射波の強度は、接触状態の変化に伴
い変化するが、摺動部材1の摺動面9と接触していない
基準面129からの反射波の強度は、通常変化すること
はない。このように、摺動部材の摺動面に有底穴を形成
するなどの加工をせずに、コーティング膜と摺動部材の
界面に基準面を設定することによっても接触状態を検出
できる。また、耐摺動性を高めるために表面にコーティ
ング膜が形成されている摺動部材では、そのコーティン
グ膜をそのまま使えるため、接触状態計測装置を設置す
るための摺動部材の加工工数を低減できる。
For example, for the sliding member 3 made of cast iron,
A coating film 127 is formed by coating a 100 μm thick NiP film having excellent sliding resistance. The measurement sound wave is substantially as shown in FIG.
The speed of sound in 7 is 5300 m / s, which is faster than that of the sliding member 3. Accordingly, the time difference t between the reception times of the reflected wave from the reference surface 129 and the reflected wave from the sliding surface 131 is represented by the following equation (1) since the propagation distance difference L is 200 μm and the sound speed v is 5300 m / s. , 0.0377 μs. The intensity of the reflected wave from the sliding surface 131 changes with a change in the contact state, but the intensity of the reflected wave from the reference surface 129 not in contact with the sliding surface 9 of the sliding member 1 usually changes. Never. As described above, the contact state can be detected by setting the reference surface at the interface between the coating film and the sliding member without performing processing such as forming a bottomed hole in the sliding surface of the sliding member. In addition, in the case of a sliding member having a coating film formed on the surface to enhance the sliding resistance, the coating film can be used as it is, so that the number of processing steps of the sliding member for installing the contact state measuring device can be reduced. .

【0045】また、本実施形態では、計測音波の発振と
反射波の受信を1つの超音波プローブ11で行っている
が、発振器と受信器を別個に設けることもできる。さら
に、接触状態計測制御部13は、発振回路27、受信回
路29、増幅回路31、波形分離回路33、反射波形解
析回路35、計測制御回路37などを一体的に制御盤な
どとして構成してもよいし、別体のユニットの集合とし
て構成してもしてもよい。例えば、計測制御回路37、
波形分離回路33、反射波解析回路35などは、1つの
コンピュータユニットなどで構成してもよい。
In this embodiment, the oscillation of the measurement sound wave and the reception of the reflected wave are performed by one ultrasonic probe 11, but an oscillator and a receiver may be separately provided. Further, the contact state measurement control unit 13 may be configured integrally with the oscillation circuit 27, the reception circuit 29, the amplification circuit 31, the waveform separation circuit 33, the reflection waveform analysis circuit 35, the measurement control circuit 37, and the like as a control panel. Alternatively, they may be configured as a set of separate units. For example, the measurement control circuit 37,
The waveform separation circuit 33, the reflected wave analysis circuit 35, and the like may be configured by one computer unit or the like.

【0046】また、本実施形態では、摺動面5、9が平
滑である場合を前提として説明たが、本発明の接触状態
計測装置は、粗い摺動面と粗い摺動面または粗い摺動面
と平滑な摺動面とが摺動するような、摺動面が部分的に
接触している状態においても適用できる。この場合に
は、反射波の強度比Kは、同じ接触状態であっても経時
的に変動することになるが、例えば、強度比Kを所定の
時間間隔で平均して平均強度比Kとすれば、経時的な押
しつけ荷重Pの変化に応じて平均強度比Kが変化するの
で、接触状態を定量的に計測することができる。
Although the present embodiment has been described on the premise that the sliding surfaces 5 and 9 are smooth, the contact state measuring device of the present invention can be applied to a rough sliding surface and a rough sliding surface or a rough sliding surface. The present invention can also be applied in a state where the sliding surfaces are partially in contact with each other such that the surfaces slide on the smooth sliding surfaces. In this case, the intensity ratio K of the reflected wave fluctuates with time even in the same contact state. For example, the intensity ratio K is averaged at a predetermined time interval to be equal to the average intensity ratio K. For example, the average strength ratio K changes according to the change of the pressing load P over time, so that the contact state can be quantitatively measured.

【0047】(第2の実施形態)第2の実施形態につい
て、図10及び図11を参照して説明する。図10は、
本発明を適用してなる接触状態計測装置の概略構成と動
作を示す断面図である。図11は、摩耗深さに対する合
成波の強度に応じた信号出力との関係を示す図である。
なお、本実施形態では、第1の実施形態と同一のものに
は同じ符号を付して説明を省略し、第1の実施形態と相
違する構成及び特徴部などについて説明する。また、図
10では、第1の実施形態と相違する摺動部材部分の構
成のみを示している。本実施形態が、第1の実施形態と
相違する点は、図9に示すように、固定された摺動部材
3の摺動面5に計測音波の4分の1波長の深さを有する
複数の有底穴133を穿設していることである。
(Second Embodiment) A second embodiment will be described with reference to FIGS. FIG.
It is a sectional view showing a schematic structure and operation of a contact state measuring device to which the present invention is applied. FIG. 11 is a diagram illustrating a relationship between a wear depth and a signal output according to the intensity of a composite wave.
Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted, and the configuration and features different from those in the first embodiment will be described. FIG. 10 shows only the configuration of the sliding member different from that of the first embodiment. This embodiment differs from the first embodiment in that, as shown in FIG. 9, a plurality of sliding surfaces 5 of a fixed sliding member 3 having a depth of a quarter wavelength of a measurement sound wave are provided. Is provided with the bottomed hole 133.

【0048】ここで、一般に、振幅a、距離x、波長
λ、時間t、周期Tとすると、波の強度Aは、 A=a・sin{2π(x/λ−t/T) } …(3) で表される。異なる反射面からの2つの反射波が同じ振
幅aであり、各々の反射面からの距離xが、往復路でλ/
2違うと仮定し、摺動面と基準面からの反射波を各々A
n、A0とすると、式(3)は、 A0+An=a・sin{2π(x/λ)+2π(λ/2/λ) } =a・sin{2π(x/λ+1/2) } =a・sin{2π(x/λ+1/2) } …(4) となる。この式で、 x=(m+1/2)λ …(5) のとき、摺動面と基準面からの反射波は逆位相となり、
摺動面と基準面からの反射波は互いに打ち消し合うこと
になる。そこで、2つの反射波がほぼ逆位相になるよう
に有底穴または溝の深さを超音波の波長のほぼ4分の1
とし、かつ摺動面と基準面からの反射波の強度が等しく
なるように、摺動面と基準面の計測音波が反射する部分
の面積を等しく設定しておけば、摺動開始状態、すなわ
ち摩耗の初期状態では、反射波の進路長差がほぼ半波長
になり摺動面と基準面からの反射波が互いに打ち消し合
う。このため、摺動面からの反射波と基準面からの反射
波との合成波の強度は、ほぼ0または小さなものにな
る。この初期状態から摺動面の摩耗が進行し、反射波の
進路長差が半波長より短くなると、摺動面と基準面から
の反射波の波形が逆位相状態からずれるため、2つの反
射波の合成波の強度は、次第に大きくなる。したがっ
て、2つの反射波の合成波の強度に応じた信号出力は、
摩耗の初期状態では、ほぼ0または小さく、摩耗が進行
すると、大きくなるので、本実施形態の図示していない
接触状態制御部の反射波解析手段は、この2つの反射波
の合成波の強度に応じた信号出力として接触状態を数値
化している。
Here, assuming that the amplitude a, the distance x, the wavelength λ, the time t, and the period T are generally, the intensity A of the wave is A = a · sinπ2π (x / λ−t / T)} ( 3) is represented by Two reflected waves from different reflecting surfaces have the same amplitude a, and the distance x from each reflecting surface is λ /
2 and assume that the reflected waves from the sliding surface and the reference surface are A
Assuming that n and A0, the equation (3) is expressed as follows: A0 + An = a · sin {2π (x / λ) + 2π (λ / 2 / λ)} = a · sin {2π (x / λ + /)) = a · sin {2π (x / λ + /)) (4) In this equation, when x = (m + 1/2) λ (5), the reflected waves from the sliding surface and the reference surface have opposite phases,
The reflected waves from the sliding surface and the reference surface cancel each other. Therefore, the depth of the bottomed hole or groove is set to approximately one quarter of the wavelength of the ultrasonic wave so that the two reflected waves have almost the opposite phases.
And, so that the intensity of the reflected wave from the sliding surface and the reference surface is equal, if the area of the portion where the measurement sound wave is reflected on the sliding surface and the reference surface is set to be equal, the sliding start state, that is, In the initial state of abrasion, the path length difference of the reflected wave becomes substantially half the wavelength, and the reflected waves from the sliding surface and the reference surface cancel each other. For this reason, the intensity of the combined wave of the reflected wave from the sliding surface and the reflected wave from the reference surface becomes substantially zero or small. If the wear of the sliding surface progresses from this initial state, and the path length difference of the reflected wave becomes shorter than half a wavelength, the waveforms of the reflected wave from the sliding surface and the reference surface deviate from the opposite phase, so that the two reflected waves The intensity of the composite wave gradually increases. Therefore, the signal output according to the intensity of the composite wave of the two reflected waves is
In the initial state of abrasion, it is almost zero or small, and as the abrasion progresses, it becomes large. Therefore, the reflected wave analyzing means of the contact state control unit (not shown) of the present embodiment determines the intensity of the composite wave of the two reflected waves. The contact state is digitized as a corresponding signal output.

【0049】本実施形態の鋳鉄からなる摺動部材3に対
して10MHzの超音波を計測音波として用いると、波
長は0.48mmになる。そこで、計測音波が照射され
る摺動面5に、計測音波の4分の1波長に相当する0.
12mmの深さの有底穴133を一定間隔で形成してい
る。また、複数の有底穴133間の間隔と数は、上記の
ように、複数の有底穴133の底面、すなわち基準面1
35の面積の合計が、摺動面5の計測音波が反射する面
積とほぼ等しくなるようにした。したがって、摺動面5
で反射してくる計測音波の反射波の強度と基準面135
で反射してくる計測音波の反射波の強度とはほぼ等しく
なる。なお、基準面135の面積の合計面積は、超音波
プローブ11の送受信面となる先端板16の面積の半分
以下になっている。
When a 10 MHz ultrasonic wave is used as a measurement sound wave for the sliding member 3 made of cast iron of the present embodiment, the wavelength becomes 0.48 mm. Therefore, the sliding surface 5 to which the measurement sound wave is applied is applied to the sliding surface 5 corresponding to a quarter wavelength of the measurement sound wave.
The bottomed holes 133 having a depth of 12 mm are formed at regular intervals. Further, as described above, the interval and the number between the plurality of bottomed holes 133 are determined by the bottom surface of the plurality of bottomed holes 133, that is, the reference surface 1
The total area of 35 was set to be substantially equal to the area of the sliding surface 5 from which the measurement sound wave was reflected. Therefore, the sliding surface 5
Intensity of the reflected sound wave of the measurement sound wave reflected by the reference plane 135
Is almost equal to the intensity of the reflected wave of the measurement sound wave reflected at the. The total area of the reference surface 135 is equal to or less than half the area of the end plate 16 serving as the transmitting / receiving surface of the ultrasonic probe 11.

【0050】一方、反射面5からの反射波と基準面13
5からの反射波は、波の伝播方向に、深さが2分の1波
長ずれている。すなわち、摺動面5からの反射波と基準
面135からの反射波が、同じ強度でほぼ逆位相になる
ため、2つの反射波は互いに打ち消し合い、摺動開始状
態、すなわち摩耗の初期状態での合成波の信号出力の検
出強度はほぼ0になる。実際には、基準面135の面積
や有底穴133の深さの誤差などがあるため、完全に0
にはならず、小さな出力がある。摺動面5に摩耗が生
じ、有底穴133の深さが浅くなると、摺動面5からの
反射波と基準面135からの反射波の位相差は、180
度よりも小さくなって逆位相状態からずれた結果とし
て、摺動面5からの反射波と基準面135からの反射波
との合成波の強度が増加する。本実施形態では、図10
に示すように、摩耗の初期状態では、摺動面5からの反
射波と基準面135からの反射波との合成波の強度に応
じた信号出力は、約2.3mVであるが、摺動面5の摩
耗が進んで摺動面5が摩耗により削られた深さ、すなわ
ち摩耗深さが深くなるにつれ、有底穴133の深さが浅
くなり、信号出力が上昇する。摩耗深さに対する信号出
力の上昇は、最初は直線的であるが、摩耗深さが深くな
るにつれ飽和する傾向を示す。
On the other hand, the reflected wave from the reflecting surface 5 and the reference surface 13
The reflected wave from 5 has a depth shifted by a half wavelength in the propagation direction of the wave. That is, since the reflected wave from the sliding surface 5 and the reflected wave from the reference surface 135 have almost the same phase with the same intensity, the two reflected waves cancel each other out, and in the sliding start state, that is, in the initial state of wear. , The detection intensity of the signal output of the composite wave becomes substantially zero. Actually, since there is an error in the area of the reference plane 135 and the depth of the bottomed hole 133, it is completely zero.
There is a small output without becoming. When the sliding surface 5 is worn and the depth of the bottomed hole 133 is reduced, the phase difference between the reflected wave from the sliding surface 5 and the reflected wave from the reference surface 135 becomes 180.
As a result, the intensity of the composite wave of the reflected wave from the sliding surface 5 and the reflected wave from the reference surface 135 increases. In the present embodiment, FIG.
As shown in the figure, in the initial state of wear, the signal output according to the intensity of the composite wave of the reflected wave from the sliding surface 5 and the reflected wave from the reference surface 135 is about 2.3 mV, As the wear of the surface 5 progresses and the sliding surface 5 is shaved by the wear, that is, as the wear depth increases, the depth of the bottomed hole 133 decreases and the signal output increases. The increase in signal power versus wear depth is initially linear, but tends to saturate as the wear depth increases.

【0051】このように、本実施形態の接触状態計測装
置では、摺動面5に、計測音波の波長の4分の1の深さ
を有する複数の有底穴133を穿設し、かつ摺動面5の
計測音波が反射する部分の面積と基準面135の面積と
がほぼ同じになるように、複数の有底穴133を形成し
ている。これにより、摩耗の初期状態では、摺動面5か
らの反射波と基準面135からの反射波とが互いに打ち
消し合い、受信した反射波の合成波の強度に応じた信号
出力は、ほぼ0または小さな値となり、摩耗が進むにつ
れ信号出力は大きくなる。したがって、摺動部材3の摺
動面5からの反射波と基準面135からの反射波との合
成波の強度に応じた信号出力により、接触状態を数値化
して定量的に計測することができる。
As described above, in the contact state measuring device of the present embodiment, the sliding surface 5 is provided with a plurality of bottomed holes 133 having a depth of a quarter of the wavelength of the measurement sound wave, and The plurality of bottomed holes 133 are formed such that the area of the portion of the moving surface 5 where the measurement sound wave reflects is substantially equal to the area of the reference surface 135. As a result, in the initial state of wear, the reflected wave from the sliding surface 5 and the reflected wave from the reference surface 135 cancel each other, and the signal output according to the intensity of the composite wave of the received reflected wave is almost 0 or The value becomes small, and the signal output increases as the wear progresses. Therefore, the contact state can be quantified and quantitatively measured by a signal output corresponding to the intensity of the composite wave of the reflected wave from the sliding surface 5 of the sliding member 3 and the reflected wave from the reference surface 135. .

【0052】さらに、第1の実施形態では、2つの摺動
部材の接触状態を、摺動部材の押しつけ荷重Pの変化に
相関する強度比Kで数値化しているため、摺動部材の押
しつけ荷重Pの変化がないような条件下で用いられる摺
動部材の接触状態を計測することはできない。しかし、
本実施形態の接触状態計測装置は、有底穴133を複数
穿設するため加工工数は増加するが、摺動部材の押しつ
け荷重Pの変化がないような条件下で用いられる摺動部
材であっても、その接触状態の変化を検出することがで
きる。加えて、本実施形態では、2つの反射波を分離す
る必要がないため、第1の実施形態の接触状態計測制御
部13のように波形分離回路33は必要なく、装置構成
を簡素化できる。
Further, in the first embodiment, the contact state between the two sliding members is quantified by the strength ratio K which is correlated with the change in the pressing load P of the sliding members. It is impossible to measure the contact state of a sliding member used under conditions where there is no change in P. But,
The contact state measuring device of the present embodiment is a sliding member used under the condition that there is no change in the pressing load P of the sliding member, although the number of processing steps is increased because a plurality of the bottomed holes 133 are formed. However, the change in the contact state can be detected. In addition, in the present embodiment, since it is not necessary to separate two reflected waves, the waveform separation circuit 33 is not required unlike the contact state measurement control unit 13 of the first embodiment, and the device configuration can be simplified.

【0053】また、本実施形態の接触状態計測装置を備
えたスクロール圧縮機49などのような圧縮機では、潤
滑油の供給量不足などの内部潤滑状態の変化やオルダム
機構部77への異物の混入などにより、摺動部材の摺動
面の摩擦が大きくなることによる摩耗の度合いから接触
状態が異常状態になるのを事前に検知することができ
る。したがって、圧縮機の破損を防止し、信頼性の高い
冷凍装置や空調システムなどを得ることができる。
Further, in a compressor such as the scroll compressor 49 provided with the contact state measuring device of the present embodiment, a change in the internal lubricating state such as an insufficient amount of lubricating oil or a foreign matter to the Oldham mechanism 77 is prevented. It is possible to detect in advance that the contact state is abnormal due to the degree of wear caused by increased friction of the sliding surface of the sliding member due to mixing or the like. Therefore, damage to the compressor can be prevented, and a highly reliable refrigeration apparatus and air conditioning system can be obtained.

【0054】さらに、本実施形態では、有底穴133を
複数穿設しているが、有底穴の深さや、基準面135の
面積に関する条件が同じであれば有底穴133を1つに
することもできる。
Further, in the present embodiment, a plurality of the bottomed holes 133 are formed, but if the conditions regarding the depth of the bottomed holes and the area of the reference plane 135 are the same, the number of the bottomed holes 133 is reduced to one. You can also.

【0055】また、第1及び第2の実施形態では、摺動
部材1、3は鋳鉄製であるが、本発明の接触状態計測装
置は、鋳鉄以外の金属や合成樹脂などからなる摺動部材
にも適用することができる。
Although the sliding members 1 and 3 are made of cast iron in the first and second embodiments, the contact state measuring device of the present invention is a sliding member made of a metal other than cast iron or a synthetic resin. Can also be applied.

【0056】また、本発明を適用してなる接触状態計測
装置は、第1の実施形態において例示したスクロール圧
縮機49に限らず、様々な構成の圧縮機、膨張機、ポン
プなどの容積式流体機械、さらにすべり軸受など摺動す
る部材を有する様々な機器や装置などに適用できる。
Further, the contact state measuring apparatus to which the present invention is applied is not limited to the scroll compressor 49 exemplified in the first embodiment, but may be a positive displacement type fluid such as a compressor, an expander, or a pump having various structures. The present invention can be applied to various machines and devices having a sliding member such as a machine and a sliding bearing.

【0057】[0057]

【発明の効果】本発明によれば、2つの摺動部材の摺動
面の接触状態を定量的に計測することができる。
According to the present invention, the contact state between the sliding surfaces of the two sliding members can be quantitatively measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用してなる接触状態計測装置の第1
の実施形態の概略構成と動作を示す図である。
FIG. 1 shows a first example of a contact state measuring device to which the present invention is applied.
It is a figure showing a schematic structure and operation of an embodiment.

【図2】摺動部材の押しつけ荷重100Nでの摺動面か
らの反射波と基準面からの反射波の強度を示す図であ
る。
FIG. 2 is a diagram showing the intensity of a reflected wave from a sliding surface and a reflected wave from a reference surface at a pressing load of 100N of the sliding member.

【図3】摺動部材の押しつけ荷重200Nでの摺動面か
らの反射波と基準面からの反射波の強度を示す図であ
る。
FIG. 3 is a diagram showing the intensity of a reflected wave from a sliding surface and a reflected wave from a reference surface when a pressing load of the sliding member is 200N.

【図4】押しつけ荷重Pに対する反射波の強度比Kと摩
耗速度との関係を示す図である。
FIG. 4 is a diagram showing a relationship between an intensity ratio K of a reflected wave to a pressing load P and a wear rate.

【図5】第1の実施形態の接触状態計測装置を備えた圧
縮機本体の概略構成を示す断面図である。
FIG. 5 is a cross-sectional view illustrating a schematic configuration of a compressor main body including the contact state measuring device according to the first embodiment.

【図6】第1の実施形態の接触状態計測装置を備えた圧
縮機のオルダム機構部の一部を破断して概略構成を示し
た分解斜視図である。
FIG. 6 is an exploded perspective view showing a schematic configuration of a compressor provided with the contact state measuring device according to the first embodiment, in which a part of an Oldham mechanism section is cut away.

【図7】オルダム機構部へ第1の実施形態の接触状態計
測装置を取り付けた状態を示す断面図である。
FIG. 7 is a cross-sectional view illustrating a state where the contact state measuring device according to the first embodiment is attached to the Oldham mechanism.

【図8】第1の実施形態の接触状態計測装置を備えた圧
縮機全体の概略構成を示す図である。
FIG. 8 is a diagram illustrating a schematic configuration of an entire compressor including the contact state measuring device according to the first embodiment.

【図9】本発明を適用してなる接触状態計測装置の第1
の実施形態の変形例を示す図である。
FIG. 9 shows a first example of a contact state measuring device to which the present invention is applied.
It is a figure showing a modification of the embodiment.

【図10】本発明を適用してなる接触状態計測装置の第
2の実施形態の概略構成と動作を示す断面図である。
FIG. 10 is a cross-sectional view showing a schematic configuration and operation of a second embodiment of the contact state measuring device to which the present invention is applied.

【図11】摩耗深さに対する合成波の強度に応じた信号
出力との関係を示す図である。
FIG. 11 is a diagram showing a relationship between a wear depth and a signal output according to the intensity of a composite wave.

【符号の説明】[Explanation of symbols]

1,3 摺動部材 5,9 摺動面 11 超音波プローブ 27 発振回路 29 受信回路 35 反射波解析回路 39,135 基準面 1,3 sliding member 5,9 sliding surface 11 ultrasonic probe 27 oscillation circuit 29 receiving circuit 35 reflected wave analysis circuit 39,135 reference plane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水本 宗男 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 柳瀬 裕一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 藤本 芳貴 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 2G024 BA30 CA02 CA13 DA12  ──────────────────────────────────────────────────続 き Continued on the front page (72) Muneo Mizumoto 502 Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratories, Hitachi, Ltd. (72) Inventor Yoshitaka Fujimoto 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Hitachi Air Conditioning Systems Co., Ltd. Shimizu Production Headquarters F-term (reference) 2G024 BA30 CA02 CA13 DA12

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 相対的に摺動運動する2つの摺動部材の
うち、一方の摺動部材内に音波を放射し、前記一方の摺
動部材の摺動面での反射波と前記一方の摺動部材の前記
摺動面を除く部分に設定された基準面での反射波との関
係に基づいて前記2つの摺動部材の接触状態を計測する
接触状態計測方法。
1. A sound wave is radiated in one of two sliding members which relatively slide and moves, and a reflected wave on a sliding surface of the one sliding member and the one of the two sliding members are compared with each other. A contact state measuring method for measuring a contact state between the two sliding members based on a relationship with a reflected wave at a reference surface set on a portion of the sliding member other than the sliding surface.
【請求項2】 前記摺動面での反射波と前記基準面での
反射波との強度比を算出し、前記2つの摺動部材の接触
状態を前記強度比により数値化することを特徴とする請
求項1に記載の接触状態計測方法。
2. The method according to claim 1, wherein an intensity ratio between a reflected wave on the sliding surface and a reflected wave on the reference surface is calculated, and a contact state between the two sliding members is quantified by the intensity ratio. The method for measuring a contact state according to claim 1.
【請求項3】 前記基準面となる底面を有する前記音波
の波長のほぼ4分の1の深さで、かつ前記底面の面積が
前記摺動面の前記計測音波が反射する部分の面積とほぼ
等しい有底穴を形成し、前記摺動面での反射波と前記基
準面での反射波との合成波の強度に基づいて前記2つの
摺動部材の接触状態を数値化することを特徴とする請求
項1に記載の接触状態計測方法。
3. The depth of the sound wave having a bottom surface serving as the reference surface, which is substantially one-fourth of the wavelength of the sound wave, and the area of the bottom surface is substantially equal to the area of the sliding surface on which the measurement sound wave is reflected. Forming an equal bottomed hole, and quantifying the contact state of the two sliding members based on the intensity of the composite wave of the reflected wave on the sliding surface and the reflected wave on the reference surface. The method for measuring a contact state according to claim 1.
【請求項4】 相対的に摺動運動する2つの摺動部材の
うち、一方の摺動部材内に音波を放射する音波放射手段
と、前記一方の摺動部材の摺動面での反射波及び前記一
方の摺動部材の前記摺動面を除く部分に設定された基準
面での反射波の受信手段と、前記摺動面での反射波及び
前記基準面での反射波の関係に基づいて前記2つの摺動
部材の接触状態を数値化する反射波解析手段とを備えて
なる接触状態計測装置。
4. A sound wave radiating means for radiating a sound wave into one of two sliding members which relatively slide and move, and a reflected wave on a sliding surface of said one sliding member. And receiving means for receiving a reflected wave on a reference surface set on a portion of the one sliding member other than the sliding surface, based on a relationship between a reflected wave on the sliding surface and a reflected wave on the reference surface. And a reflected wave analyzing means for quantifying the contact state of the two sliding members.
【請求項5】 前記基準面が、前記摺動面に穿設された
有底穴の底面であることを特徴とする請求項4に記載の
接触状態計測装置。
5. The contact state measuring device according to claim 4, wherein the reference surface is a bottom surface of a bottomed hole formed in the sliding surface.
【請求項6】 前記基準面が、前記摺動面上に形成され
た被膜と前記摺動面との界面であり、前記被膜は、前記
摺動部材と異なる密度を有する材料で形成されているこ
とを特徴とする請求項4に記載の接触状態計測装置。
6. The reference surface is an interface between a coating formed on the sliding surface and the sliding surface, and the coating is formed of a material having a density different from that of the sliding member. The contact state measuring device according to claim 4, wherein:
【請求項7】 前記基準面が、前記摺動面に穿設された
有底穴の底面であり、前記有底穴の深さは、前記音波の
波長のほぼ4分の1で、前記底面の面積は、前記摺動面
の前記測音波が反射する部分の面積とほぼ等しいことを
特徴とする請求項4に記載の接触状態計測装置。
7. The reference surface is a bottom surface of a bottomed hole formed in the sliding surface, and the depth of the bottomed hole is approximately one-fourth of the wavelength of the sound wave. 5. The contact state measuring device according to claim 4, wherein an area of the contact surface is substantially equal to an area of a portion of the sliding surface where the sound wave is reflected.
【請求項8】 前記有底穴が複数形成され、該複数の有
底穴の底面の面積の合計が、前記摺動面の前記音波が反
射する部分の面積とほぼ等しいことを特徴とする請求項
7に記載の接触状態計測装置。
8. A method according to claim 1, wherein a plurality of said bottomed holes are formed, and a total area of a bottom surface of said plurality of bottomed holes is substantially equal to an area of a portion of said sliding surface on which said sound wave is reflected. Item 8. The contact state measuring device according to Item 7.
【請求項9】請求項4乃至8のいずれかに記載の接触状
態計測装置と、該接触状態計測装置で計測した相対的に
摺動運動する2つの摺動部材の接触状態に基づいて運転
を制御する制御手段とを備えてなる圧縮機。
9. An operation is performed based on the contact state between the contact state measuring device according to any one of claims 4 to 8 and two sliding members relatively slidingly measured by the contact state measuring device. A compressor comprising control means for controlling.
JP32355299A 1999-11-15 1999-11-15 Contact state measuring method and measuring device Expired - Fee Related JP3616908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32355299A JP3616908B2 (en) 1999-11-15 1999-11-15 Contact state measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32355299A JP3616908B2 (en) 1999-11-15 1999-11-15 Contact state measuring method and measuring device

Publications (2)

Publication Number Publication Date
JP2001141617A true JP2001141617A (en) 2001-05-25
JP3616908B2 JP3616908B2 (en) 2005-02-02

Family

ID=18155984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32355299A Expired - Fee Related JP3616908B2 (en) 1999-11-15 1999-11-15 Contact state measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP3616908B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458793A (en) * 2008-03-31 2009-10-07 Hitachi Ltd Determining wear in a sliding surface of a rotary machine
KR101138282B1 (en) * 2009-04-29 2012-04-26 포항공과대학교 산학협력단 Metal scale analysis apparatus and its method
CN111024813A (en) * 2019-12-13 2020-04-17 长安大学 Ultrasonic detection method for judging lubricating state of rolling bearing under actual working condition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173151A (en) * 1985-01-29 1986-08-04 Matsushita Electric Ind Co Ltd Detector for lubricating condition of lubricating agent
JPH032559A (en) * 1989-03-16 1991-01-08 Hitachi Ltd Ultrasonic flaw detecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173151A (en) * 1985-01-29 1986-08-04 Matsushita Electric Ind Co Ltd Detector for lubricating condition of lubricating agent
JPH032559A (en) * 1989-03-16 1991-01-08 Hitachi Ltd Ultrasonic flaw detecting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458793A (en) * 2008-03-31 2009-10-07 Hitachi Ltd Determining wear in a sliding surface of a rotary machine
JP2009243997A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Rotary machine
JP4547439B2 (en) * 2008-03-31 2010-09-22 株式会社日立製作所 Rotating machine
KR101138282B1 (en) * 2009-04-29 2012-04-26 포항공과대학교 산학협력단 Metal scale analysis apparatus and its method
CN111024813A (en) * 2019-12-13 2020-04-17 长安大学 Ultrasonic detection method for judging lubricating state of rolling bearing under actual working condition
CN111024813B (en) * 2019-12-13 2022-03-15 长安大学 Ultrasonic detection method for judging lubricating state of rolling bearing under actual working condition

Also Published As

Publication number Publication date
JP3616908B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
US8695405B2 (en) Bearing, arrangement for determining properties of a lubricant in a bearing and method for determining properties of a lubricant in a bearing
US20020040592A1 (en) Apparatus for determining and/or monitoring the viscosity of a medium in a container
US5777228A (en) Method and apparatus for measuring change in state of object to be measured using flexural and torsional vibrations
KR20180094091A (en) Monitoring of Sliding Ring Seals
JP2020139950A (en) Variable displacement reciprocating piston unit generating piston stroke speed and piston stroke length signal
RU2668961C1 (en) Ultrasonic flow measuring device and method for manufacture thereof
JP2001141617A (en) Method and apparatus for measuring contact state
WO2002060626A1 (en) Method of machining multi-layer workpiece
US5161126A (en) Acoustic flute web edge sensor
JP2001099070A (en) Refrigerating and air-conditioning compressor
WO2018078853A1 (en) Deterioration diagnosis device and air conditioner
JP7204949B2 (en) Compressor system, compressor and refrigeration cycle equipment
US5929336A (en) Dry bearing detection apparatus
US20030089180A1 (en) Coriolis mass flow meter
EP3270149A1 (en) Method and arrangement for the analysis of gas characteristics by measuring speed of sound
US20190072087A1 (en) Gear pump and method for monitoring a gear pump
JP3238281B2 (en) Detector of refrigerant mixing rate and oil amount in lubricating oil in container
JP3988033B2 (en) Apparatus and system for detecting abnormality of contact surface of mechanical parts that move relative to each other
Imaichi et al. A vibration source in refrigerant compressors
CN111492144B (en) Compressor
JPH0210000A (en) Service life calculating method for pump
JPH0694687A (en) Detecting device for refrigerant mixing ratio in lubricant in refrigerating compressor
EP2815220B1 (en) A pressure measuring device
CA3041917A1 (en) Method and device for examining a sample
EP3306236B1 (en) A device for detecting a non-optimal lubrication condition in a compressor of a refrigeration system, a compressor unit which comprises the device and a method for detecting a non-optimal lubrication condition in a compressor of a refrigeration system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees