JP2001140894A - Fluid bearing device - Google Patents

Fluid bearing device

Info

Publication number
JP2001140894A
JP2001140894A JP31755799A JP31755799A JP2001140894A JP 2001140894 A JP2001140894 A JP 2001140894A JP 31755799 A JP31755799 A JP 31755799A JP 31755799 A JP31755799 A JP 31755799A JP 2001140894 A JP2001140894 A JP 2001140894A
Authority
JP
Japan
Prior art keywords
lubricant
shaft
peripheral surface
sleeve
monomolecular film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31755799A
Other languages
Japanese (ja)
Other versions
JP4274652B2 (en
Inventor
Hideaki Ono
英明 大野
Takafumi Asada
隆文 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31755799A priority Critical patent/JP4274652B2/en
Publication of JP2001140894A publication Critical patent/JP2001140894A/en
Application granted granted Critical
Publication of JP4274652B2 publication Critical patent/JP4274652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the leaking of a lubricant over a long period and seizure between members and resulting wear, in a fluid bearing device in which a gap between a bearing member and a shaft member inserted in a bearing hole therein is filled with the lubricant. SOLUTION: At least either one of the inner peripheral surface of a sleeve 12 or the outer peripheral surface of a shaft 13 is covered with a monomolecular film 19. The lubricant 15 is adsorbed to the monomolecular film 19 and held in the gap 14 between the sleeve 14 and the shaft 13. Even if the sleeve 12 and the shaft 13 tend to make contact with each other because of an excessive force applied to the device, the monomolecular film 19 works as a strong solid lubricant to prevent seizure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハードディスク装
置、光ディスク回転装置、ビデオテープレコーダなどに
用いられる流体軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device used for a hard disk device, an optical disk rotating device, a video tape recorder and the like.

【0002】[0002]

【従来の技術】従来の流体軸受装置に、図6〜図7に示
したような、ビデオテープレコーダに使用されるものが
ある。この流体軸受装置では、下部固定シリンダ1およ
び上部固定シリンダ2に両端を固定した軸3に、スリー
ブ4と一体に構成した回転シリンダ4Aを回転可能に取
り付け、この回転シリンダ4Aの内周の凹部4B内に、
固定軸3に外嵌したリング状のフランジ5と、リング状
のスラスト板6とを配置し、回転シリンダ4Aの外周側
にモータロータ7を設置し、モータロータ7に対向する
下部固定シリンダ1の上部にモータステータ8を取付け
けている。
2. Description of the Related Art Some conventional hydrodynamic bearing devices are used in a video tape recorder as shown in FIGS. In this hydrodynamic bearing device, a rotary cylinder 4A integrally formed with a sleeve 4 is rotatably mounted on a shaft 3 having both ends fixed to a lower fixed cylinder 1 and an upper fixed cylinder 2, and a concave portion 4B on the inner periphery of the rotary cylinder 4A. Within
A ring-shaped flange 5 externally fitted on the fixed shaft 3 and a ring-shaped thrust plate 6 are arranged. A motor rotor 7 is installed on the outer peripheral side of the rotary cylinder 4A. The motor stator 8 is attached.

【0003】また、軸3の外周面とスリーブ4の内周面
のいずれか一方(ここではスリーブ4Aの内周面)に、
ヘリングボーン形状などのラジアル側動圧発生溝4C、
4Dを形成し、フランジ5とスラスト板6のいずれか一
方の対向面(ここではスラスト板6の下面)に、半径方
向に沿うくの字状に曲折したスラスト側動圧発生溝6A
を形成し、これらのラジアル側動圧発生溝4C,4D,
スラスト側動圧発生溝6Aを包含する軸3の周囲の隙間
9に潤滑剤10を満たしている。
In addition, one of the outer peripheral surface of the shaft 3 and the inner peripheral surface of the sleeve 4 (here, the inner peripheral surface of the sleeve 4A)
Radial side dynamic pressure generating groove 4C such as herringbone shape,
4D, and a thrust-side dynamic pressure generating groove 6A bent in a rectangular shape along the radial direction on one of the opposing surfaces of the flange 5 and the thrust plate 6 (here, the lower surface of the thrust plate 6).
And these radial-side dynamic pressure generating grooves 4C, 4D,
A gap 9 around the shaft 3 including the thrust-side dynamic pressure generating groove 6A is filled with a lubricant 10.

【0004】このような流体軸受装置では、モータステ
ータ8に通電して回転磁界を発生させることにより、モ
ータロータ7にトルクを発生させ、それによりスリーブ
4,回転シリンダ4A,スラスト板6を軸3の軸心廻り
に回転させる。するとその際に、スリーブ4の回転に伴
って、ラジアル側動圧発生溝4C、4Dにおいてヘリン
グボーン形状に基くポンピング作用が働き、ヘリングボ
ーン形状の中央部で潤滑剤10の圧力が上昇するため、
スリーブ4がラジアル方向に押圧され、軸3に対して非
接触状態で回転する。また、フランジ5およびスラスト
板6の回転(矢印Aの方向)に伴って、スラスト側動圧
発生溝6Aで曲折形状に基いて曲折部6Bに潤滑剤10
が移送され、曲折部6Bで潤滑剤10の圧力が上昇する
ため、スラスト板6に浮上力が働き、スラスト板6はフ
ランジ5に対して非接触状態で回転する。
In such a hydrodynamic bearing device, a torque is generated in the motor rotor 7 by energizing the motor stator 8 to generate a rotating magnetic field, whereby the sleeve 4, the rotary cylinder 4 A, and the thrust plate 6 are connected to the shaft 3. Rotate around the axis. Then, at that time, with the rotation of the sleeve 4, the pumping action based on the herringbone shape works in the radial-side dynamic pressure generating grooves 4C and 4D, and the pressure of the lubricant 10 increases at the center of the herringbone shape.
The sleeve 4 is pressed in the radial direction, and rotates without contact with the shaft 3. Further, with the rotation of the flange 5 and the thrust plate 6 (in the direction of the arrow A), the lubricant 10 is applied to the bent portion 6B based on the bent shape in the thrust side dynamic pressure generating groove 6A.
Is transferred, and the pressure of the lubricant 10 increases at the bent portion 6 </ b> B, so that a floating force acts on the thrust plate 6, and the thrust plate 6 rotates without contact with the flange 5.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
たような従来の流体軸受装置では、回転中もしくは長時
間放置された時に、図5および図6に示すように、軸3
とスリーブ4の間の隙間から潤滑剤10が下方にモレ落
ちようとする。これは、図7に示すように、軸3または
スリーブ4の表面で潤滑剤10が軽くはじかれ接触角θ
が大きい状態になって漏れ出そうとするのであり、実際
に、衝撃荷重がかかった時等に滴10Aとしてこぼれ出
ることがあった。また、流体軸受装置に過大な力が働い
た時に軸3とスリーブ4とが直接的に強く接触し、焼け
付きを生じること事があった。
However, in the conventional hydrodynamic bearing device as described above, when rotating or left for a long time, the shaft 3 is rotated as shown in FIGS.
The lubricant 10 tends to leak downward from the gap between the sleeve 4 and the sleeve 4. This is because, as shown in FIG. 7, the lubricant 10 is lightly repelled on the surface of the shaft 3 or the sleeve 4 and the contact angle θ
Is large and tends to leak out, and when an impact load is actually applied, it may spill as a drop 10A. Further, when an excessive force acts on the hydrodynamic bearing device, the shaft 3 and the sleeve 4 come into direct strong contact with each other, sometimes causing seizure.

【0006】本発明は上記問題を解決するもので、潤滑
剤の漏れを防止できるとともに、部材どうしの焼け付き
を防止できる流体軸受装置を提供することを目的とする
ものである。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a hydrodynamic bearing device that can prevent leakage of a lubricant and prevent seizure between members.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに、請求項1記載の発明は、軸受部材とその軸受穴に
挿入された軸部材との隙間に潤滑剤を充填した流体軸受
装置において、前記軸受部材の内周面と軸部材の外周面
の少なくとも一方を単分子膜で覆ったことを特徴とす
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a first aspect of the present invention is a fluid bearing device in which a gap between a bearing member and a shaft member inserted into the bearing hole is filled with a lubricant. Wherein at least one of the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member is covered with a monomolecular film.

【0008】上記構成によれば、単分子膜を構成する各
分子の特定の部分が軸受部材の内周面(および/または
軸部材の外周面、以下省略)に共有結合等で強固に絡み
付き、各分子のその他の部分に潤滑剤がその親和性によ
り吸着するため、軸受部材の内周面に対する潤滑剤の接
触角が小さくなる。このことは、軸受部材の内周面の濡
れ性の向上を意味する。またその際に、単分子膜を構成
する各分子の隙間に潤滑剤が浸透するので、潤滑剤と単
分子膜との接触面積が大きくなり、単分子膜に対する潤
滑剤の吸着力は非常に大きくなる。このため、潤滑剤は
軸受隙間からこぼれ落ちたり、滲み出したりしない。ま
た、単分子膜は上記したように軸受部材の内周面に強固
に固着するため、装置に過大な力がかかり軸受部材と軸
部材が互いに接触しそうになっても、単分子膜が強固な
固体潤滑剤の役目を果たし、焼け付きは生じない。
According to the above configuration, a specific portion of each molecule constituting the monomolecular film is firmly entangled with the inner peripheral surface of the bearing member (and / or the outer peripheral surface of the shaft member, hereinafter omitted) by covalent bond or the like, Since the lubricant is adsorbed to the other part of each molecule by its affinity, the contact angle of the lubricant with the inner peripheral surface of the bearing member is reduced. This means that the wettability of the inner peripheral surface of the bearing member is improved. Also, at this time, the lubricant penetrates into the gaps between the molecules constituting the monomolecular film, so that the contact area between the lubricant and the monomolecular film increases, and the adsorbing force of the lubricant on the monomolecular film is extremely large. Become. For this reason, the lubricant does not spill out or seep out from the bearing gap. Further, since the monomolecular film is firmly fixed to the inner peripheral surface of the bearing member as described above, even if an excessive force is applied to the device and the bearing member and the shaft member are likely to come into contact with each other, the monomolecular film is strong. Acts as a solid lubricant and does not cause seizure.

【0009】請求項2記載の発明は、請求項1記載の構
成において、単分子膜を、カルボン酸、アミノシラン、
ポリアクリル酸のいずれかを材料として形成したことを
特徴とする。単分子膜は、上記したような材料をベンゼ
ン等の有機溶媒などの適切な溶媒に溶解し、洗浄した軸
受部材や軸部材の表面に展開させ、溶媒を気化させる、
などの周知の方法により形成される。
According to a second aspect of the present invention, in the configuration of the first aspect, the monomolecular film is formed of a carboxylic acid, an aminosilane,
It is characterized in that any one of polyacrylic acid is formed as a material. The monomolecular film is obtained by dissolving the above-described material in an appropriate solvent such as an organic solvent such as benzene, developing the washed bearing member or shaft member on the surface thereof, and evaporating the solvent.
And the like.

【0010】好ましいカルボン酸には、炭素数1から3
0の、飽和または不飽和の、鎖状または環状の、脂肪族
または芳香族の炭化水素骨格を有し、1から3のカルボ
キシル基を持ったカルボン酸がある。またアミノシラン
には、末端および/またはその他の部位に1以上のアミ
ノ基を持ったポリシランやモノシランなどのアミノシラ
ン化合物がある。
Preferred carboxylic acids include those having 1 to 3 carbon atoms.
There are zero, saturated or unsaturated, linear or cyclic, aliphatic or aromatic hydrocarbon skeletons and carboxylic acids with one to three carboxyl groups. Aminosilanes include aminosilane compounds such as polysilanes and monosilanes having one or more amino groups at terminals and / or other sites.

【0011】またポリアクリル酸には、アクリル酸、ア
クリル酸アルキルエステル(アルキルは炭素数10以
下)それぞれのホモポリマー、これらのコポリマーなど
がある。これらを材料とした単分子膜は、軸受部材や軸
部材を構成する金属材料の表面に共有結合等により強固
に付着することができ、加えて膜自体の潤滑効果が高
く、金属系相手材と組み合わせた時の摩擦係数が小さ
く、非凝着性に優れているなど、軸受装置に良好な特性
を発揮する。これに加えて、軸受部材/軸部材間にチャ
ージ電圧が加わった時に、単分子膜が二面間に反発力を
発生し、摩擦係数を低減することもある。
The polyacrylic acid includes homopolymers of acrylic acid and alkyl acrylate (alkyl has 10 or less carbon atoms) homopolymers and copolymers thereof. A monomolecular film made of these materials can be firmly attached to the surface of the metal material constituting the bearing member or the shaft member by covalent bonding or the like. It exhibits good characteristics for bearing devices, such as a low coefficient of friction when combined and excellent non-adhesion properties. In addition, when a charging voltage is applied between the bearing member and the shaft member, the monomolecular film may generate a repulsive force between the two surfaces to reduce the friction coefficient.

【0012】請求項3記載の発明は、請求項1記載の構
成において、軸受部材の内周面と軸部材の外周面の少な
くとも一方に潤滑剤の圧力を高める動圧発生溝を形成し
たことを特徴とする。上記構成によれば、軸受部材また
は軸部材の回転にともなって潤滑剤が動圧発生溝に移送
され潤滑剤の圧力が上昇するが、その時も上記したよう
に単分子膜によって潤滑剤が保持されるので、潤滑剤の
ラジアル方向の押圧力が高まり、軸受部材と軸部材とが
確実に非接触状態に維持される。
According to a third aspect of the present invention, in the configuration of the first aspect, a dynamic pressure generating groove for increasing the pressure of the lubricant is formed on at least one of the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member. Features. According to the above configuration, the lubricant is transferred to the dynamic pressure generating groove and the pressure of the lubricant increases with the rotation of the bearing member or the shaft member, but the lubricant is held by the monomolecular film as described above at that time. Therefore, the radial pressing force of the lubricant is increased, and the bearing member and the shaft member are reliably maintained in a non-contact state.

【0013】[0013]

【発明の実施の形態】(実施の形態1)以下、本発明の
実施の形態1における流体軸受装置を、図1〜図3を参
照しながら説明する。この流体軸受装置は先に図5を用
いて説明した流体軸受装置の一部を構成可能である。
(Embodiment 1) Hereinafter, a hydrodynamic bearing device according to Embodiment 1 of the present invention will be described with reference to FIGS. This hydrodynamic bearing device can constitute a part of the hydrodynamic bearing device described above with reference to FIG.

【0014】図1において、軸受穴11を有したスリー
ブ12に軸13が挿入されており、スリーブ12と軸1
3との隙間14に潤滑剤15が注入されている。スリー
ブ12および軸13はSUSなどの金属材料で製作され
ており、潤滑剤15は、フッ素オイル(パーフルオロポ
リエーテル)、エステル油、オレフィン油、鉱油、など
から選択されたものである。
In FIG. 1, a shaft 13 is inserted into a sleeve 12 having a bearing hole 11, and the sleeve 12 and the shaft 1 are inserted.
A lubricant 15 is injected into a gap 14 between the lubricant 3 and the lubricant 3. The sleeve 12 and the shaft 13 are made of a metal material such as SUS, and the lubricant 15 is selected from fluorine oil (perfluoropolyether), ester oil, olefin oil, mineral oil, and the like.

【0015】軸13の外周面にはヘリングボーン形状の
動圧発生溝16,17が形成されている。18は潤滑剤
溜まりである。スリーブ12の内周面には、ポリアクリ
ル酸などからなる単分子膜19が形成されている。上記
したような流体軸受装置において、図示しないモータ等
によりスリーブ12を回転させると、スリーブ12の回
転に伴って、動圧発生溝16,17においてヘリングボ
ーン形状に基くポンピング作用が働き、ヘリングボーン
形状の中央部で潤滑剤15の圧力が上昇し、この潤滑剤
15によりスリーブ12がラジアル方向に押圧されて軸
13に対して非接触状態で回転する。
Herringbone-shaped dynamic pressure generating grooves 16 and 17 are formed on the outer peripheral surface of the shaft 13. Reference numeral 18 denotes a lubricant reservoir. A monomolecular film 19 made of polyacrylic acid or the like is formed on the inner peripheral surface of the sleeve 12. In the above-described hydrodynamic bearing device, when the sleeve 12 is rotated by a motor or the like (not shown), a pumping action based on the herringbone shape acts on the dynamic pressure generating grooves 16 and 17 with the rotation of the sleeve 12, thereby forming the herringbone shape. The pressure of the lubricant 15 rises at the center of the sleeve 13, and the sleeve 15 is pressed in the radial direction by the lubricant 15, and the sleeve 12 rotates without contact with the shaft 13.

【0016】その際に、単分子膜19の作用によって潤
滑剤15が隙間14内に保持されるため、スリーブ12
と軸13とが確実に非接触状態に維持される。装置に過
大な力がかかってスリーブ12,軸13が接触しそうに
なった時も、単分子膜19が強固な固体潤滑剤の役目を
果たすため、焼け付きは生じない。これは、図2および
図3に示すように、単分子膜19(材料に応じて厚さt
=2〜20ナノメータ程度)を構成する各分子20のア
ンカー部分20Aがスリーブ12の内周面に共有結合等
で強固に絡み付いて剥がれることがなく、各分子20の
その他の部分に潤滑剤15がその親和性により吸着する
ため、スリーブ12の内周面に対する潤滑剤15の接触
角γが図示したように小さくなること、つまりスリーブ
12の内周面の濡れ性が向上することによる。しかも、
各分子20どうしの隙間に潤滑剤15が浸透するので、
各分子20と潤滑剤15との接触面積が大きくなり、単
分子膜19に対する潤滑剤15の吸着力は非常に大きく
なる。このため、潤滑剤15は隙間14からこぼれ落ち
たり、滲み出したりしない。(実施の形態2)本発明の
実施の形態2における流体軸受装置では、図4に示すよ
うに、スリーブ12の内周面と軸13の外周面とにそれ
ぞれ、単分子膜19,21が形成されている。これによ
り、実施の形態1の軸受装置よりも確実に潤滑剤15が
隙間14内に保持され、スリーブ12と軸13との非接
触状態が維持されるとともに、耐焼き付き性が向上す
る。
At this time, since the lubricant 15 is held in the gap 14 by the action of the monomolecular film 19, the sleeve 12
And the shaft 13 are reliably maintained in a non-contact state. Even when the sleeve 12 and the shaft 13 are likely to come into contact with each other due to an excessive force applied to the device, the seizure does not occur because the monomolecular film 19 serves as a strong solid lubricant. This is because, as shown in FIGS. 2 and 3, the monomolecular film 19 (having a thickness t
(About 2 to 20 nanometers), the anchor portion 20A of each molecule 20 does not become firmly entangled with the inner peripheral surface of the sleeve 12 by a covalent bond or the like and peels off. Due to the affinity, the contact angle γ of the lubricant 15 with respect to the inner peripheral surface of the sleeve 12 is reduced as shown in the drawing, that is, the wettability of the inner peripheral surface of the sleeve 12 is improved. Moreover,
Since the lubricant 15 penetrates into the gaps between the molecules 20,
The contact area between each molecule 20 and the lubricant 15 becomes large, and the adsorbing force of the lubricant 15 to the monomolecular film 19 becomes very large. For this reason, the lubricant 15 does not spill from the gap 14 or bleed out. (Embodiment 2) In the hydrodynamic bearing device according to Embodiment 2 of the present invention, as shown in FIG. 4, monomolecular films 19 and 21 are formed on the inner peripheral surface of the sleeve 12 and the outer peripheral surface of the shaft 13, respectively. Have been. Thereby, the lubricant 15 is more reliably held in the gap 14 than in the bearing device of the first embodiment, the non-contact state between the sleeve 12 and the shaft 13 is maintained, and the seizure resistance is improved.

【0017】なお、軸13の外周面にのみ単分子膜を形
成しても実施の形態1と同様の効果が得られる。軸受部
材の内周面や軸部材の外周面の下部にのみ単分子膜を形
成することも可能である。また動圧発生溝は必要に応じ
て形成すればよく、スリーブ12の内周面にのみ形成す
るようにしてもよいし、スリーブ12の内周面と軸13
の外周面の両者に形成してもよい。
The same effect as in the first embodiment can be obtained by forming a monomolecular film only on the outer peripheral surface of the shaft 13. It is also possible to form a monomolecular film only below the inner peripheral surface of the bearing member or the outer peripheral surface of the shaft member. Further, the dynamic pressure generating groove may be formed as needed, and may be formed only on the inner peripheral surface of the sleeve 12 or may be formed on the inner peripheral surface of the sleeve 12 and the shaft 13.
May be formed on both of the outer peripheral surfaces.

【0018】[0018]

【発明の効果】以上のように本発明によれば、軸受部材
の内周面と軸部材の外周面の少なくとも一方に単分子膜
を形成することにより、軸受部材と軸部材との間に充填
する潤滑剤の漏れを防止することができ、潤滑剤による
高い効果が得られるとともに、耐焼け付き性を向上させ
ることができる。また潤滑剤の漏れに起因する記録媒体
の汚れが生じないので、記録媒体の動作ミスを防止でき
る。
As described above, according to the present invention, by forming a monomolecular film on at least one of the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member, the space between the bearing member and the shaft member is filled. This can prevent the lubricant from leaking, and can provide a high effect by the lubricant and can improve the seizure resistance. Further, since the recording medium is not stained due to the leakage of the lubricant, the operation error of the recording medium can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における流体軸受装置の
断面図
FIG. 1 is a cross-sectional view of a hydrodynamic bearing device according to Embodiment 1 of the present invention.

【図2】図1に示した流体軸受装置の一部拡大断面図FIG. 2 is a partially enlarged sectional view of the hydrodynamic bearing device shown in FIG.

【図3】図1に示した流体軸受装置における単分子膜の
作用を説明する模式図
FIG. 3 is a schematic view illustrating the operation of a monomolecular film in the hydrodynamic bearing device shown in FIG.

【図4】本発明の実施の形態2における流体軸受装置の
一部拡大断面図
FIG. 4 is a partially enlarged sectional view of a hydrodynamic bearing device according to Embodiment 2 of the present invention.

【図5】従来よりある流体軸受装置の概略全体構成を示
す断面図
FIG. 5 is a cross-sectional view showing a schematic overall configuration of a conventional hydrodynamic bearing device.

【図6】図5に示した流体軸受装置の一部拡大断面図6 is a partially enlarged sectional view of the hydrodynamic bearing device shown in FIG.

【図7】図5に示した流体軸受装置における潤滑剤の漏
れを説明する一部拡大断面図
7 is a partially enlarged cross-sectional view illustrating leakage of lubricant in the hydrodynamic bearing device shown in FIG.

【図8】図1に示した流体軸受装置における潤滑剤の漏
れを説明する模式図
FIG. 8 is a schematic diagram illustrating leakage of lubricant in the hydrodynamic bearing device shown in FIG. 1;

【符号の説明】[Explanation of symbols]

11 軸受穴 12 スリーブ(軸受部材) 13 軸(軸部材) 14 隙間 15 潤滑剤 16, 17 動圧発性溝 19 単分子膜 21 単分子膜 11 Bearing hole 12 Sleeve (bearing member) 13 Shaft (shaft member) 14 Clearance 15 Lubricant 16, 17 Dynamic pressure generating groove 19 Monolayer 21 Monolayer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10M 107/28 C10M 107/28 C10N 40:02 C10N 40:02 Fターム(参考) 3J011 AA07 CA02 CA05 JA02 KA02 MA02 MA24 QA02 RA03 SE10 4H104 BB14A BJ01A CB07A CD04A LA03 PA01 PA04 QA12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI theme coat ゛ (reference) C10M 107/28 C10M 107/28 C10N 40:02 C10N 40:02 F-term (reference) 3J011 AA07 CA02 CA05 JA02 KA02 MA02 MA24 QA02 RA03 SE10 4H104 BB14A BJ01A CB07A CD04A LA03 PA01 PA04 QA12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軸受部材とその軸受穴に挿入された軸部
材との隙間に潤滑剤を充填した流体軸受装置において、 前記軸受部材の内周面と軸部材の外周面の少なくとも一
方を単分子膜で覆ったたことを特徴とする流体軸受装
置。
1. A hydrodynamic bearing device in which a lubricant is filled in a gap between a bearing member and a shaft member inserted into the bearing hole, wherein at least one of an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member is a single molecule. A hydrodynamic bearing device characterized by being covered with a membrane.
【請求項2】 単分子膜は、カルボン酸、アミノシラ
ン、ポリアクリル酸のいずれかを材料として形成したこ
とを特徴とする請求項1記載の流体軸受装置。
2. The hydrodynamic bearing device according to claim 1, wherein the monomolecular film is formed of any one of carboxylic acid, aminosilane, and polyacrylic acid.
【請求項3】 軸受部材の内周面と軸部材の外周面の少
なくとも一方に潤滑剤の圧力を高める動圧発生溝を形成
したことを特徴とする請求項1記載の流体軸受装置。
3. The hydrodynamic bearing device according to claim 1, wherein a dynamic pressure generating groove for increasing the pressure of the lubricant is formed on at least one of the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member.
JP31755799A 1999-11-09 1999-11-09 Hydrodynamic bearing device Expired - Fee Related JP4274652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31755799A JP4274652B2 (en) 1999-11-09 1999-11-09 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31755799A JP4274652B2 (en) 1999-11-09 1999-11-09 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2001140894A true JP2001140894A (en) 2001-05-22
JP4274652B2 JP4274652B2 (en) 2009-06-10

Family

ID=18089596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31755799A Expired - Fee Related JP4274652B2 (en) 1999-11-09 1999-11-09 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4274652B2 (en)

Also Published As

Publication number Publication date
JP4274652B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US4892418A (en) Hydrodynamic bearing device
US6243230B1 (en) Disk drive unit with hydrodynamic fluid bearing unit and disk device with said drive unit
JP4045942B2 (en) Hydrodynamic bearing device and magnetic disk device using the same
US6717308B2 (en) Electric spindle motor and method having magnetic starting/stopping device
US6412984B2 (en) Dynamic pressure bearing apparatus
US6242831B1 (en) Reduced stiction for disc drive hydrodynamic spindle motors
JP4195088B2 (en) Dynamic groove bearing with lubricant barrier
JP2004183865A (en) Fluid bearing and disk drive
JPH09303398A (en) Oil retaining bearing unit and motor equipped therewith
JP4127036B2 (en) Hydrodynamic bearing device and disk rotating device
JP2001140894A (en) Fluid bearing device
KR20130021692A (en) Hydrodynamic bearing assembly and manufacturing method thereof
JPH11262214A (en) Spindle motor
JPH06178492A (en) Spindle motor
JP3234030B2 (en) Spindle motor
JP2004052999A (en) Fluid bearing device
JP3892995B2 (en) Hydrodynamic bearing unit
JP5085025B2 (en) Hydrodynamic bearing device
JP3434009B2 (en) Spindle motor
JP2000310225A (en) Fluid bearing device and disk storage unit using the same
JP2002061658A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP3635541B2 (en) Spindle motor
JP2000297818A (en) Fluid bearing device
JP2004239346A (en) Fluid dynamic pressure bearing, motor with the same, and disk drive device with the motor
JP2001241431A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees