JP2001140701A - Egr device for engine - Google Patents

Egr device for engine

Info

Publication number
JP2001140701A
JP2001140701A JP32372199A JP32372199A JP2001140701A JP 2001140701 A JP2001140701 A JP 2001140701A JP 32372199 A JP32372199 A JP 32372199A JP 32372199 A JP32372199 A JP 32372199A JP 2001140701 A JP2001140701 A JP 2001140701A
Authority
JP
Japan
Prior art keywords
engine
cooling water
egr
passage
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32372199A
Other languages
Japanese (ja)
Inventor
Manabu Miura
学 三浦
Yasuhisa Kitahara
靖久 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP32372199A priority Critical patent/JP2001140701A/en
Publication of JP2001140701A publication Critical patent/JP2001140701A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform normal EGR as soon as possible by promoting a temperature rise of engine cooling water of an engine immediately after starting the engine. SOLUTION: An EGR passage 5 makes a part of exhaust circulate, which exhaust is made to flow from an exhaust passage 4 to an intake passage 2 of an engine 1. An EGR cooler 7 is arranged on the EGR passage 5 for cooling EGR gas by utilizing engine cooling water. A heat accumulator 12 is arranged on the way of a cooling water introduction passage 8 which introduces the engine cooling water to the EGR cooler 7, for keeping the cooling water under heat accumulation during stopping the engine. A bypass passage 10 and a changeover valve 11 are arranged for making at least a part of the engine cooling water bypass the EGR cooler 7 immediately after starting the engine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンのEGR
(排気還流)装置に関し、特にエンジンの暖機促進のた
めの改良に関する。
The present invention relates to an EGR for an engine.
The present invention relates to an (exhaust gas recirculation) device, and more particularly to an improvement for promoting warm-up of an engine.

【0002】[0002]

【従来の技術】従来のエンジンの暖機促進策として、特
開平6−294327号公報に示されるように、ディー
ゼルエンジンにおいて、始動直後、過給機を全負荷状態
として、排気圧力上昇に伴いエンジンの暖機を急速に行
わせることにより、白煙の低減を図るようにしたものが
ある。
2. Description of the Related Art As a conventional measure for promoting warming-up of an engine, as disclosed in JP-A-6-294327, in a diesel engine, immediately after starting, a supercharger is set to a full load state, and the engine is increased with an increase in exhaust pressure. In some cases, white smoke is reduced by rapidly performing warm-up.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、本来、
始動直後には、暖機完了後と比較してEGR量を少なく
せざるを得ず、また排気圧力上昇もあって、前記公報に
記載の技術では燃焼温度が高くなり、その結果、NOx
排出量が悪化するという問題点があった。
However, originally,
Immediately after start-up, the amount of EGR must be reduced as compared with that after completion of warm-up, and there is also a rise in exhaust pressure.
There was a problem that the emission amount deteriorated.

【0004】本発明は、このような実状に鑑み、排気圧
力を上昇させることなく、エンジン冷却水の温度上昇を
促進し、通常EGRをいち早く行うことにより、上記問
題点を解決することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to solve the above-described problems by promoting the temperature rise of the engine cooling water without increasing the exhaust pressure and performing the normal EGR promptly. I do.

【0005】[0005]

【課題を解決するための手段】このため、請求項1に係
る発明では、エンジンの排気通路から吸気通路へ排気の
一部を還流させるEGR通路と、該EGR通路に介装さ
れてエンジン冷却水によりEGRガスを冷却するEGR
クーラとを備えるエンジンのEGR装置において、エン
ジン冷却水通路にてエンジン運転中の高温のエンジン冷
却水をエンジン停止中に蓄熱状態で保管することのでき
る蓄熱器と、エンジン始動直後にエンジン冷却水の少な
くとも一部をEGRクーラをバイパスさせることのでき
るバイパス通路及び切換弁と、を設けたことを特徴とす
る。
According to the present invention, there is provided an EGR passage for recirculating a part of exhaust gas from an exhaust passage of an engine to an intake passage, and engine cooling water interposed in the EGR passage. EGR gas that cools EGR gas
In an EGR device for an engine including a cooler, a regenerator capable of storing high-temperature engine cooling water during engine operation in an engine cooling water passage in a heat storage state while the engine is stopped, and an engine cooling water immediately after the engine starts. A bypass passage and a switching valve capable of at least partially bypassing the EGR cooler are provided.

【0006】請求項2に係る発明では、前記蓄熱器は、
EGRクーラへエンジン冷却水を導入する冷却水導入通
路の途中で、バイパス通路への分岐部より上流に設けら
れることを特徴とする。
[0006] In the invention according to claim 2, the heat accumulator includes:
The cooling water introduction passage for introducing the engine cooling water to the EGR cooler is provided at a position upstream of a branch to the bypass passage.

【0007】請求項3に係る発明では、前記蓄熱器は、
バイパス通路の途中に設けられ、前記切換弁は、エンジ
ン冷却水の温度上昇割合に応じて、バイパス通路側への
切換弁開度が制御されることを特徴とする。
[0007] In the invention according to claim 3, the heat accumulator is:
The switching valve is provided in the middle of the bypass passage, and the opening of the switching valve to the bypass passage is controlled in accordance with the temperature rise rate of the engine coolant.

【0008】請求項4に係る発明では、バイパス通路側
への切換弁開度を、エンジン冷却水とEGRクーラ内冷
却水との温度差に基づいて制御することを特徴とする。
請求項5に係る発明では、EGRクーラ内の冷却水温
度、その温度上昇割合、あるいはEGRクーラ内の水圧
に基づいて、EGRクーラ内の冷却水の沸騰を防止すべ
き条件にて、全冷却水量をEGRクーラへ供給するよう
に切換弁を強制的に切換えるバイパス停止手段を設けた
ことを特徴とする。
The invention according to claim 4 is characterized in that the opening degree of the switching valve to the bypass passage is controlled based on the temperature difference between the engine cooling water and the cooling water in the EGR cooler.
In the invention according to claim 5, based on the temperature of the cooling water in the EGR cooler, the temperature rise rate, or the water pressure in the EGR cooler, the total amount of the cooling water is set under the condition that the boiling of the cooling water in the EGR cooler should be prevented. A bypass stop means for forcibly switching the switching valve so as to supply the EGR cooler to the EGR cooler.

【0009】請求項6に係る発明では、EGR弁の全閉
時に排気の一部をEGRクーラに流通させるように、E
GRクーラの出口側から排気通路へ排気を戻す排気戻し
通路を設けたことを特徴とする。
In the invention according to claim 6, when the EGR valve is fully closed, a part of the exhaust gas is circulated to the EGR cooler.
An exhaust return passage for returning exhaust gas from the outlet side of the GR cooler to the exhaust passage is provided.

【0010】請求項7に係る発明では、EGRクーラ出
口側のガス温度に基づいてEGR弁の開度制御値を補正
する補正手段を設けたことを特徴とする。
[0010] The invention according to claim 7 is characterized in that a correction means for correcting the opening control value of the EGR valve based on the gas temperature at the outlet side of the EGR cooler is provided.

【0011】[0011]

【発明の効果】請求項1に係る発明によれば、蓄熱器に
より、エンジン冷却水通路にてエンジン運転中の高温の
エンジン冷却水をエンジン停止中に蓄熱状態で保管し、
エンジン始動直後に、蓄熱器から高温のエンジン冷却水
を供給すると共に、エンジン冷却水の少なくとも一部を
EGRクーラをバイパスさせることで、エンジン冷却水
の温度上昇を促進することができる。
According to the first aspect of the present invention, the high-temperature engine cooling water during the operation of the engine in the engine cooling water passage is stored in the heat storage state while the engine is stopped by the heat storage device.
Immediately after the start of the engine, high-temperature engine cooling water is supplied from the regenerator and at least a part of the engine cooling water is bypassed to the EGR cooler, so that the temperature rise of the engine cooling water can be promoted.

【0012】請求項2に係る発明によれば、蓄熱器を、
EGRクーラへエンジン冷却水を導入する冷却水導入通
路の途中で、バイパス通路への分岐部より上流に設ける
ことで、蓄熱器からエンジンまでの冷却水路容量を比較
的大きくして、エンジン内部での急激な冷却水温度変化
による熱衝撃を抑制でき、また、切換弁制御と独立して
蓄熱器から高温のエンジン冷却水を供給することができ
る。
According to the second aspect of the invention, the regenerator is
By providing the cooling water introduction passage for introducing engine cooling water to the EGR cooler in the middle of the cooling water introduction passage from the branch to the bypass passage, the capacity of the cooling water passage from the heat accumulator to the engine is relatively large, and the internal combustion engine is provided with It is possible to suppress a thermal shock due to a sudden change in cooling water temperature, and to supply high-temperature engine cooling water from a heat storage unit independently of switching valve control.

【0013】請求項3に係る発明によれば、蓄熱器をバ
イパス通路の途中に設けて、エンジン冷却水の温度上昇
割合に応じて、バイパス通路側への切換弁開度を制御す
ることで、冷却水温度が安定して上昇するために必要な
分だけ、EGRクーラ内の冷却水を流すようにして、冷
却水温度の安定的な上昇と、熱衝撃の防止とを図ること
ができる。また、EGRクーラ内の冷却水温度も、全量
をバイパスする場合よりは早く上昇するため、EGRク
ーラ内の冷却水温度が低い場合に起こる排気側PM排出
量の増加を抑止することができる。
According to the third aspect of the present invention, the regenerator is provided in the middle of the bypass passage, and the opening degree of the switching valve to the bypass passage is controlled in accordance with the temperature rise rate of the engine cooling water. By allowing the cooling water in the EGR cooler to flow by an amount necessary for the cooling water temperature to stably increase, it is possible to stably increase the cooling water temperature and prevent thermal shock. Further, since the temperature of the cooling water in the EGR cooler also rises faster than in the case where the entire amount is bypassed, it is possible to suppress an increase in the exhaust-side PM discharge amount that occurs when the temperature of the cooling water in the EGR cooler is low.

【0014】請求項4に係る発明によれば、バイパス通
路側への切換弁開度を、エンジン冷却水とEGRクーラ
内冷却水との温度差に基づいて制御することで、EGR
ガス温度の急激な変化を抑え、燃焼のギクシャク感を軽
減できる。
According to the fourth aspect of the present invention, the degree of opening of the switching valve to the bypass passage is controlled based on the temperature difference between the engine cooling water and the cooling water in the EGR cooler, so that the EGR is performed.
A sudden change in gas temperature can be suppressed, and the jerky feeling of combustion can be reduced.

【0015】請求項5に係る発明によれば、EGRクー
ラ内の冷却水温度、その温度上昇割合、あるいはEGR
クーラ内の水圧に基づいて、EGRクーラ内の冷却水の
沸騰を防止すべき条件にて、バイパスを停止して、全冷
却水量をEGRクーラへ供給するように切換えること
で、EGRクーラでの急激な温度上昇による残留水の沸
騰を確実に防止することができる。
According to the fifth aspect of the invention, the temperature of the cooling water in the EGR cooler, the rate of the temperature rise, or the EGR
On the basis of the water pressure in the cooler, the bypass is stopped under conditions that should prevent the boiling of the cooling water in the EGR cooler, and the entire cooling water is switched to be supplied to the EGR cooler. Boiling of residual water due to an excessive temperature rise can be reliably prevented.

【0016】請求項6に係る発明によれば、EGR弁の
全閉時に排気の一部をEGRクーラに流通させるよう
に、EGRクーラの出口側から排気通路へ排気を戻す排
気戻し通路を設けることで、極低水温時にEGRを行わ
ない場合でも、排気の一部をEGRクーラへ流すこと
で、排気との熱交換によりEGRクーラ内の冷却水の温
度上昇を図り、その後エンジン冷却水と混合させること
で、より一層の暖機促進が可能となる。
According to the sixth aspect of the present invention, an exhaust return passage for returning exhaust gas from the outlet side of the EGR cooler to the exhaust passage is provided so that a part of the exhaust gas flows through the EGR cooler when the EGR valve is fully closed. Therefore, even when the EGR is not performed at the extremely low water temperature, a part of the exhaust gas is caused to flow to the EGR cooler, whereby the temperature of the cooling water in the EGR cooler is increased by heat exchange with the exhaust gas, and then mixed with the engine cooling water. Thereby, it is possible to further promote warm-up.

【0017】請求項7に係る発明によれば、EGRクー
ラ出口側のガス温度に基づいてEGR弁の開度制御値
(EGR率)を補正することで、暖機未完の場合に、全
量あるいは一部の冷却水がEGRクーラをバイパスする
ため、EGRクーラ内に残留する冷却水とエンジンを循
環する冷却水とに温度差が生じても、より適切なEGR
を行うことができる。
According to the seventh aspect of the invention, by correcting the opening control value (EGR rate) of the EGR valve based on the gas temperature at the exit side of the EGR cooler, if the warm-up is not completed, the total amount or the one Since the cooling water of the section bypasses the EGR cooler, even if a temperature difference occurs between the cooling water remaining in the EGR cooler and the cooling water circulating in the engine, a more appropriate EGR
It can be performed.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施の形態につい
て図面に基づいて説明する。図1は本発明の第1実施形
態を示すディーゼルエンジンのEGR装置のシステム図
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of an EGR device for a diesel engine showing a first embodiment of the present invention.

【0019】ディーゼルエンジン1の吸気通路2には、
過給機3、詳しくは、排気通路4側の排気タービン3a
により駆動される吸気コンプレッサ3bが介装されてい
る。この過給機3は、排気タービン3a側に可変ノズル
機構が付いており、そのノズル開度を調整することで、
任意の過給圧に制御可能である。
In the intake passage 2 of the diesel engine 1,
The supercharger 3, more specifically, the exhaust turbine 3a on the exhaust passage 4 side
An intake compressor 3b driven by the compressor is interposed. This supercharger 3 has a variable nozzle mechanism on the exhaust turbine 3a side, and by adjusting the nozzle opening degree,
It is possible to control to any boost pressure.

【0020】排気通路4から吸気通路2へは、排気の一
部(EGRガス)を還流させるべく、EGR通路5が設
けられ、該EGR通路5にはEGR量を制御するEGR
弁6が介装されている。
An EGR passage 5 is provided from the exhaust passage 4 to the intake passage 2 to recirculate a part of the exhaust gas (EGR gas). The EGR passage 5 controls an EGR amount.
Valve 6 is interposed.

【0021】また、EGR通路5のEGR弁6上流に
は、EGRクーラ7が介装されている。EGRクーラ7
は、エンジン1の冷却水出口からエンジン冷却水を冷却
水導入通路8により導いて、このエンジン冷却水により
EGRガスを冷却し、冷却水戻し通路9よりエンジン冷
却水をエンジン1の冷却水入口側に戻すようになってい
る。
An EGR cooler 7 is provided upstream of the EGR valve 6 in the EGR passage 5. EGR cooler 7
Guides engine cooling water from a cooling water outlet of the engine 1 through a cooling water introduction passage 8, cools the EGR gas with the engine cooling water, and supplies the engine cooling water to a cooling water inlet side of the engine 1 through a cooling water return passage 9. To return to.

【0022】ここで、冷却水導入通路8の途中から、冷
却水戻し通路9の途中へ、EGRクーラ7をバイパスす
るバイパス通路10が設けられ、このバイパス通路10
の入口側、すなわち、EGRクーラ7へ向かう冷却水導
入通路8とEGRクーラ7をバイパスするバイパス通路
10との分岐部に、切換弁11が設けられている。この
切換弁11は流路を切換えるのみならず、開度制御によ
り各流量を調整可能である。
Here, a bypass passage 10 for bypassing the EGR cooler 7 is provided from the middle of the cooling water introduction passage 8 to the middle of the cooling water return passage 9.
A switching valve 11 is provided on the inlet side of the EGR cooler 7, that is, at a branch point between a cooling water introduction passage 8 toward the EGR cooler 7 and a bypass passage 10 that bypasses the EGR cooler 7. The switching valve 11 can adjust not only the flow path but also each flow rate by controlling the opening degree.

【0023】また、冷却水導入通路8の途中で、バイパ
ス通路10への分岐部(切換弁11)上流に、蓄熱器1
2が設けられており、この蓄熱器12は、エンジン運転
中の高温のエンジン冷却水をエンジン停止中に蓄熱状態
で保管することができる。
Further, in the middle of the cooling water introduction passage 8, upstream of the branch (switching valve 11) to the bypass passage 10,
2 is provided, and this regenerator 12 can store high-temperature engine cooling water during engine operation in a heat-storage state while the engine is stopped.

【0024】また、EGRクーラ7には、その内部の冷
却水通路にリリーフ弁13が設けられ、EGRクーラ7
内の冷却水の圧力が所定値以上となったときに、リリー
フ弁13が開弁して、内部の冷却水をリリーフ通路14
より冷却水戻し通路9へ逃がすことができるようになっ
ている。
The EGR cooler 7 is provided with a relief valve 13 in a cooling water passage inside the EGR cooler 7.
When the pressure of the cooling water in the inside becomes equal to or higher than a predetermined value, the relief valve 13 is opened, and the cooling water in the inside of the
It can be made to escape to the cooling water return passage 9 more.

【0025】また、EGR通路5のEGRクーラ7とE
GR弁6との間から、排気通路4の排気タービン3a下
流へ連通する排気戻し通路15が設けられ、この排気戻
し通路15には排気絞り弁16が介装されている。
The EGR cooler 7 in the EGR passage 5 and E
An exhaust return passage 15 communicating with the GR valve 6 and communicating with the exhaust passage 4 downstream of the exhaust turbine 3 a is provided. The exhaust return passage 15 is provided with an exhaust throttle valve 16.

【0026】前記EGR弁6、切換弁11及び排気絞り
弁16の作動はエンジンコントロールユニット20によ
り制御され、エンジンコントロールユニット20には、
これらの制御のため、エンジン回転数及び負荷に関する
情報の他、冷却水導入通路8の上流側(蓄熱器12上
流)にてエンジン冷却水温度Twを検出する熱電対等の
エンジン冷却水温度センサ21、EGRクーラ7内の冷
却水温度(クーラ内冷却水温度)Tcoolを検出する熱電
対等のクーラ内冷却水温度センサ22、EGRクーラ7
出口側のEGRガス温度(クーラ出口ガス温度)Tgas
を検出する熱電対等のクーラ出口ガス温度センサ23等
から検出信号が入力されている。
The operations of the EGR valve 6, the switching valve 11, and the exhaust throttle valve 16 are controlled by an engine control unit 20.
For these controls, in addition to information on the engine speed and load, an engine cooling water temperature sensor 21 such as a thermocouple that detects the engine cooling water temperature Tw upstream of the cooling water introduction passage 8 (upstream of the regenerator 12), A cooling water temperature sensor 22 in the cooler such as a thermocouple for detecting a cooling water temperature (cooling water temperature in the cooler) Tcool in the EGR cooler 7 and the EGR cooler 7
Outlet side EGR gas temperature (cooler outlet gas temperature) Tgas
A detection signal is input from a cooler outlet gas temperature sensor 23 such as a thermocouple for detecting the temperature.

【0027】ここにおいて、エンジンコントロールユニ
ット20は、図2のフローチャートに従って、切換弁1
1の作動を制御する。ステップ1(図にはS1と記す。
以下同様)では、エンジン冷却水温度Tw及びクーラ内
冷却水温度Tcoolを読込む。
Here, the engine control unit 20 operates according to the flow chart of FIG.
1 is controlled. Step 1 (referred to as S1 in the figure).
In the following, the engine coolant temperature Tw and the cooler internal coolant temperature Tcool are read.

【0028】ステップ2では、エンジン冷却水温度の今
回値Tw(n) と前回値Tw(n-1) とから、単位時間当た
りのエンジン冷却水温度の変化量(温度上昇割合)ΔT
w=Tw(n) −Tw(n-1) を算出する。
In step 2, the amount of change in the engine coolant temperature per unit time (temperature rise rate) ΔT is calculated from the current value Tw (n) and the previous value Tw (n-1) of the engine coolant temperature.
Calculate w = Tw (n) -Tw (n-1).

【0029】ステップ3では、エンジン冷却水温度Tw
とクーラ内冷却水温度Tcoolとの温度差ΔT=Tw−T
coolを算出する。ステップ4では、エンジン冷却水温度
の温度上昇割合ΔTwが所定値DTW1#以上か否かを
判定する。
In step 3, the engine cooling water temperature Tw
Difference ΔT between the cooling water temperature in the cooler Tcool and Twool
Calculate cool. In step 4, it is determined whether or not the temperature increase rate ΔTw of the engine coolant temperature is equal to or greater than a predetermined value DTW1 #.

【0030】一般にエンジン冷却水温度は、エンジン始
動からの経過時間により、図3のような推移を示す。始
動直後の温度上昇割合は大きく、60℃を超えるあたり
から小さくなる。このエンジン冷却水温度の上昇傾向を
考慮して、エンジン冷却水の温度上昇割合ΔTwが所定
値DTW1#(例えば0.05℃/sec )以上の場合
と、所定値DTW1#未満の場合とで、異なる制御を行
う。
Generally, the temperature of the engine cooling water changes as shown in FIG. 3 depending on the elapsed time from the start of the engine. The temperature rise rate immediately after the start is large, and becomes small from around 60 ° C. In consideration of the tendency of the engine cooling water temperature to rise, there are a case where the temperature rising rate ΔTw of the engine cooling water is equal to or more than a predetermined value DTW1 # (for example, 0.05 ° C./sec) and a case where it is less than the predetermined value DTW1 #. Perform different controls.

【0031】ΔTw≧DTW1#の場合は、ステップ5
へ進んで、切換弁11によるバイパス量制御により、E
GRクーラ7への冷却水量を制御すべく、図4に示すよ
うに、エンジン冷却水温度Twとクーラ内冷却水温度T
coolとの温度差ΔTに応じて、EGRクーラ7側への切
換弁開度KVOを設定する。
If ΔTw ≧ DTW1 #, step 5
And the bypass amount is controlled by the switching valve 11 to
In order to control the amount of cooling water to the GR cooler 7, the engine cooling water temperature Tw and the cooling water temperature T in the cooler are controlled as shown in FIG.
The switching valve opening KVO to the EGR cooler 7 is set in accordance with the temperature difference ΔT from cool.

【0032】ここで、前記温度差ΔTがマイナス側の場
合、すなわちクーラ内冷却水温度Tcoolの方が高い場合
は、EGRクーラ7側への切換弁開度KVOを最大値K
VOmax に設定して、全冷却水量をEGRクーラ7を通
過させるようにする。
Here, when the temperature difference ΔT is on the minus side, that is, when the cooling water temperature Tcool in the cooler is higher, the switching valve opening KVO to the EGR cooler 7 is set to the maximum value K
VOmax is set so that the entire cooling water amount passes through the EGR cooler 7.

【0033】前記温度差ΔTがプラス側の場合、すなわ
ちエンジン冷却水温度Twの方が高い場合は、前記温度
差ΔTが小さくなるに伴い、EGRクーラ7側への切換
弁開度KVOを増加させて、バイパス量を減少させつ
つ、EGRクーラ7への冷却水量を増大させるようにす
る。
When the temperature difference ΔT is on the plus side, that is, when the engine cooling water temperature Tw is higher, as the temperature difference ΔT becomes smaller, the switching valve opening KVO to the EGR cooler 7 is increased. Thus, while reducing the bypass amount, the amount of cooling water to the EGR cooler 7 is increased.

【0034】ΔTw<DTW1#の場合は、ステップ6
へ進んで、全冷却水量をEGRクーラ7へ供給すべく、
EGRクーラ7側への切換弁開度KVOを最大値KVO
maxに設定して、バイパス量=0とする。
If ΔTw <DTW1 #, step 6
In order to supply the total cooling water amount to the EGR cooler 7,
The switching valve opening KVO to the EGR cooler 7 is set to the maximum value KVO.
It is set to max, and the bypass amount = 0.

【0035】尚、ステップ5又は6で設定された切換弁
開度KVOは、ステップ7にてデューティDutyに変
換された後、切換弁11に出力される。次に本実施形態
の作用効果について説明する。
The switching valve opening KVO set in step 5 or 6 is output to the switching valve 11 after being converted into a duty Duty in step 7. Next, the operation and effect of the present embodiment will be described.

【0036】エンジン始動直後で、エンジン冷却水の温
度上昇割合ΔTwが所定値以上の場合は、エンジン冷却
水の少なくとも一部がEGRクーラ7をバイパスするよ
うに、切換弁11がバイパス通路10側へ切換えられ
る。従って、蓄熱器12に保管されていた高温のエンジ
ン冷却水の一部ないし全部がEGRクーラ7を介するこ
となくバイパス通路10よりエンジン1に供給される。
When the temperature rise rate ΔTw of the engine cooling water is equal to or more than a predetermined value immediately after the engine is started, the switching valve 11 is moved to the bypass passage 10 so that at least a part of the engine cooling water bypasses the EGR cooler 7. Is switched. Therefore, part or all of the high-temperature engine cooling water stored in the regenerator 12 is supplied to the engine 1 from the bypass passage 10 without passing through the EGR cooler 7.

【0037】その後、エンジン冷却水温度の上昇によ
り、その温度上昇割合ΔTwが所定値未満となると、切
換弁11はEGRクーラ11側に切換えられ、エンジン
冷却水の全部がEGRクーラ7に供給され、EGRガス
の冷却がなされるようになる。
Thereafter, when the temperature rise rate ΔTw becomes less than a predetermined value due to an increase in the temperature of the engine cooling water, the switching valve 11 is switched to the EGR cooler 11 side, and the entire engine cooling water is supplied to the EGR cooler 7. The EGR gas is cooled.

【0038】これによれば、エンジン冷却水を保温する
ことが可能な蓄熱器12を設けて、前回運転時の高温の
エンジン冷却水を保温し、再始動時のエンジン冷却水温
度の上昇促進を図ることで、図3に示す通常EGR領域
へと早く移行させることができる。その際、始動直後は
EGRクーラ7をバイパスさせてエンジン冷却水を循環
させることで、EGRクーラ7内に残留する水量分だけ
循環する冷却水量が減少し、より一層、エンジン冷却水
温度の上昇が促進される。
According to this, the regenerator 12 capable of keeping the temperature of the engine cooling water is provided to keep the high temperature of the engine cooling water at the time of the previous operation and to promote the rise of the temperature of the engine cooling water at the time of restart. By doing so, it is possible to quickly shift to the normal EGR region shown in FIG. At that time, immediately after the start, the engine cooling water is circulated by bypassing the EGR cooler 7, so that the amount of cooling water circulated by the amount of water remaining in the EGR cooler 7 is reduced, and the engine cooling water temperature is further increased. Promoted.

【0039】また、蓄熱器12をEGRクーラ7の出口
側に設置した場合、再始動時に、温水が急激にエンジン
1に導入されるため、エンジン本体との間に温度差が生
じ、熱衝撃が加わり、燃焼等にも悪影響を及ぼす。そこ
で、蓄熱器12をEGRクーラ7の入口側に設置するこ
とで、蓄熱器12からエンジン入口までに冷却水路容量
が存在するため、エンジン1内部の急激な冷却水温度変
化を抑制し、上記熱衝撃を抑えることができる。
When the regenerator 12 is installed on the outlet side of the EGR cooler 7, hot water is rapidly introduced into the engine 1 at the time of restart, so that a temperature difference occurs between the regenerator 12 and the engine body, and thermal shock occurs. In addition, it has an adverse effect on combustion and the like. Therefore, by installing the regenerator 12 on the inlet side of the EGR cooler 7, since the cooling water channel capacity exists from the regenerator 12 to the engine inlet, a rapid change in the cooling water temperature inside the engine 1 is suppressed, Shock can be suppressed.

【0040】特に、蓄熱器12の容量とエンジン冷却水
量との関係から、温度上昇が最適になるように、蓄熱器
12からエンジン入口までのEGR冷却水路の容量を最
適化することで、すなわち、図5に示すように、EGR
冷却水路にある程度の容積を持たせることで、EGR冷
却水路が比較的小さい場合に生じる熱衝撃を抑えること
ができ、また燃焼への悪影響も抑えることができる。
In particular, by optimizing the capacity of the EGR cooling water passage from the heat accumulator 12 to the engine inlet so that the temperature rise is optimal, from the relationship between the capacity of the heat accumulator 12 and the amount of engine cooling water, As shown in FIG.
By providing the cooling water passage with a certain volume, a thermal shock generated when the EGR cooling water passage is relatively small can be suppressed, and a bad influence on combustion can also be suppressed.

【0041】また、始動直後に、バイパス通路10側へ
の切換弁開度(EGRクーラ7側への切換弁開度KV
O)を、エンジン冷却水とクーラ内冷却水との温度差Δ
Tに基づいて制御することで、EGRガス温度の急激な
変化を抑え、適切な温度のEGRガスを吸気に還流する
ことができ、燃焼のギクシャク感を軽減できる。
Immediately after the start, the switching valve opening toward the bypass passage 10 (the switching valve opening KV toward the EGR cooler 7).
O) is the temperature difference Δ between the engine cooling water and the cooling water in the cooler.
By controlling based on T, a sudden change in the EGR gas temperature can be suppressed, the EGR gas at an appropriate temperature can be recirculated to the intake air, and the jerky feeling of combustion can be reduced.

【0042】上記に加えて、更に以下のような作用効果
がある。低水温時にEGRクーラ7への冷却水導入を制
限しているため、排気との熱交換によりEGRクーラ7
にて急激な温度上昇が起こる可能性があり、EGRクー
ラ7内の残留水が沸騰する可能性がある。
In addition to the above, there are the following further operational effects. Since the introduction of the cooling water to the EGR cooler 7 is restricted at a low water temperature, the EGR cooler 7
, There is a possibility that a sharp rise in temperature may occur, and there is a possibility that residual water in the EGR cooler 7 will boil.

【0043】そこで、図6のフローチャートに示すよう
に、クーラ内冷却水温度Tcoolが所定値(例えば90
℃)以上、又は、その温度上昇割合ΔTcoolが所定値
(例えば1.0℃/sec )以上か否かを判定し(ステッ
プ21)、YESの場合、残留水の沸騰を防止するため
に、切換弁11によるバイパスを停止し、全冷却水量を
EGRクーラ7へ導入する(ステップ23)。また、E
GRクーラ7内の残留水の温度分布にむらが生じ、正確
に温度が測定できないような場合でも、沸騰によるEG
Rクーラ7内の残留水圧の上昇を防ぐため、リリーフ弁
13を設け、強制的にEGRクーラ7内の圧力を開放す
ると共に、リリーフ弁13の作動(すなわちEGRクー
ラ7内の水圧の上昇)と連動して(ステップ22)、切
換弁11によるバイパスを停止し、全冷却水量をEGR
クーラ7へ導入する(ステップ23)。本フローがEG
Rクーラ7内の冷却水の沸騰防止のためのバイパス停止
手段に相当する。
Therefore, as shown in the flowchart of FIG. 6, the cooling water temperature Tcool in the cooler is set to a predetermined value (for example, 90%).
° C) or the temperature rise rate ΔTcool is greater than or equal to a predetermined value (eg, 1.0 ° C / sec) (step 21). If YES, the switching is performed to prevent boiling of the residual water. The bypass by the valve 11 is stopped, and the total amount of cooling water is introduced into the EGR cooler 7 (step 23). Also, E
Even when the temperature distribution of the residual water in the GR cooler 7 becomes uneven and the temperature cannot be measured accurately, the EG due to boiling
In order to prevent the residual water pressure in the R cooler 7 from rising, a relief valve 13 is provided to forcibly release the pressure in the EGR cooler 7 and to operate the relief valve 13 (that is, increase the water pressure in the EGR cooler 7). In conjunction with this (step 22), the bypass by the switching valve 11 is stopped, and the total cooling water amount is reduced to EGR.
It is introduced into the cooler 7 (step 23). This flow is EG
It corresponds to a bypass stop means for preventing boiling of the cooling water in the R cooler 7.

【0044】また、排気戻し通路15により、極低水温
時にEGRガスを吸気へ還流しない場合(EGR弁6全
閉)でも、排気の一部をEGRクーラ7へ流し、その後
排気タービン3a下流の排気通路4へ排出することで、
排気との熱交換によりEGRクーラ3内の残留水の温度
上昇を図り、その後エンジン冷却水と混合させること
で、より一層の暖機促進が可能となる。
Further, even when the EGR gas is not recirculated to the intake air at the extremely low coolant temperature (the EGR valve 6 is fully closed), a part of the exhaust gas flows to the EGR cooler 7 and then the exhaust gas downstream of the exhaust turbine 3a. By discharging to passage 4,
By increasing the temperature of the residual water in the EGR cooler 3 by heat exchange with the exhaust gas, and then mixing the residual water with the engine cooling water, it is possible to further promote warm-up.

【0045】この際、全排気が排気戻し通路15を通過
するのを防ぐため、排気戻し通路15の途中に排気絞り
弁16を設けて、排気絞りを行う。可変ノズル式過給機
3の絞り損失と排気絞り弁16の絞り損失とが同じにな
るためのそれぞれの開度(ノズル開度及び排気絞り弁開
度)は、1対1の対応をするので、予め図7に示すよう
なテーブルを設けておき、可変ノズル式過給機3のノズ
ル開度に応じて、排気絞り弁16の開度を制御するとよ
い。
At this time, in order to prevent all exhaust gas from passing through the exhaust return passage 15, an exhaust throttle valve 16 is provided in the exhaust return passage 15 to perform exhaust throttle. Since the throttle opening of the variable nozzle supercharger 3 and the throttle loss of the exhaust throttle valve 16 become the same, each opening (nozzle opening and exhaust throttle valve opening) has a one-to-one correspondence. A table as shown in FIG. 7 may be provided in advance, and the opening of the exhaust throttle valve 16 may be controlled according to the nozzle opening of the variable nozzle supercharger 3.

【0046】また、暖機未完の場合、全量あるいは一部
の冷却水はEGRクーラ7をバイパスするため、EGR
クーラ7内に残留する冷却水とエンジン1を循環する冷
却水とに、温度差が生じる。
When the warm-up is not completed, the whole or a part of the cooling water bypasses the EGR cooler 7, and
A temperature difference occurs between the cooling water remaining in the cooler 7 and the cooling water circulating in the engine 1.

【0047】そこで、従来のエンジン冷却水温度Twの
みの補正に加え、クーラ出口ガス温度Tgas からもEG
R率を補正する。すなわち、図8のフローチャートに示
すように、エンジン冷却水温度Tw及びクーラ出口ガス
温度Tgas を読込み(ステップ31)、これらに基づい
て、図9に示すマップから、EGR率補正係数を設定す
る(ステップ32)。具体的には、エンジン冷却水温度
Twが低い程、また、クーラ出口ガス温度Tgas が低い
ほど、EGR率補正係数を0に近づけて、EGR率を減
少させ、逆に、エンジン冷却水温度Twが高い程、ま
た、クーラ出口ガス温度Tgas が高いほど、EGR率補
正係数を1に近づけて、EGR率を増大させ、通常EG
Rに戻す。これにより、燃焼状態をより正確に把握し、
適切なEGRを行うことができる。本フローがEGR制
御弁6の開度制御値に対する補正手段に相当する。
Therefore, in addition to the conventional correction of only the engine coolant temperature Tw, the EG is also obtained from the cooler outlet gas temperature Tgas.
Correct the R rate. That is, as shown in the flowchart of FIG. 8, the engine cooling water temperature Tw and the cooler outlet gas temperature Tgas are read (step 31), and based on these, the EGR rate correction coefficient is set from the map shown in FIG. 9 (step 31). 32). Specifically, as the engine coolant temperature Tw is lower and the cooler outlet gas temperature Tgas is lower, the EGR rate correction coefficient is made closer to 0 to reduce the EGR rate. As the temperature of the cooler outlet gas Tgas increases, the EGR rate correction coefficient approaches 1 to increase the EGR rate.
Return to R. As a result, the combustion state can be grasped more accurately,
Appropriate EGR can be performed. This flow corresponds to correction means for the opening control value of the EGR control valve 6.

【0048】次に本発明の第2実施形態について説明す
る。第1実施形態では、蓄熱器内の冷却水とエンジン冷
却水との混合時の熱衝撃を防止するため、蓄熱器をエン
ジンの冷却水出口側に置いたり、配管容量を拡大するな
どの対策を行わなければならないが、蓄熱器をエンジン
の冷却水出口側に置いただけでは熱衝撃の防止は不十分
であり、また、熱衝撃を防止するだけの配管容量の拡大
は、配管の大型化を招くだけでなく、冷却水容量の増加
を招き、暖機が完了するまでの時間が長くなるため、暖
機の早期完了という点から考えると必ずしも効率の良い
ものではない。
Next, a second embodiment of the present invention will be described. In the first embodiment, in order to prevent thermal shock when mixing the cooling water in the regenerator and the engine cooling water, measures such as placing the regenerator on the cooling water outlet side of the engine and expanding the piping capacity are taken. This must be done, but simply placing the regenerator on the cooling water outlet side of the engine is not enough to prevent thermal shock, and expanding the piping capacity just to prevent thermal shock leads to an increase in the size of the piping. In addition, the cooling water capacity is increased, and the time until the completion of the warm-up is increased. Therefore, it is not necessarily efficient in terms of the early completion of the warm-up.

【0049】そこで、上記の点を踏まえて改良されたの
が、第2実施形態である。図10は本発明の第2実施形
態を示すディーゼルエンジンのEGR装置のシステム図
であり、第1実施形態(図1)に対し、主に切換弁11
及び蓄熱器12の配置が異なる。
Therefore, the second embodiment is improved based on the above points. FIG. 10 is a system diagram of an EGR device for a diesel engine according to a second embodiment of the present invention, which is different from the first embodiment (FIG. 1) mainly in the switching valve 11.
And the arrangement of the heat accumulator 12 is different.

【0050】ここでは、EGRクーラ7への冷却水導入
通路8の途中から、冷却水戻し通路9の途中へ、EGR
クーラ7をバイパスするバイパス通路10が設けられ、
このバイパス通路10の出口側、すなわち、EGRクー
ラ11からの冷却水戻し通路9とEGRクーラ7をバイ
パスするバイパス通路10との合流部に、切換弁11が
設けられている。
Here, from the middle of the cooling water introduction passage 8 to the EGR cooler 7 to the middle of the cooling water return passage 9, the EGR
A bypass passage 10 that bypasses the cooler 7 is provided.
The switching valve 11 is provided at the outlet side of the bypass passage 10, that is, at the junction of the cooling water return passage 9 from the EGR cooler 11 and the bypass passage 10 bypassing the EGR cooler 7.

【0051】また、バイパス通路10の途中に、蓄熱器
12が設けられており、この蓄熱器12は、エンジン運
転中の高温のエンジン冷却水をエンジン停止中に蓄熱状
態で保管することができる。
A regenerator 12 is provided in the middle of the bypass passage 10. The regenerator 12 can store high-temperature engine cooling water during operation of the engine in a state of storing heat while the engine is stopped.

【0052】また、エンジン冷却水温度センサ21は、
冷却水戻し通路9の下流側(切換弁11下流)に設けら
れている。ここにおいて、エンジンコントロールユニッ
ト20は、図11のフローチャートに従って、切換弁1
1の作動を制御する。
The engine cooling water temperature sensor 21
It is provided downstream of the cooling water return passage 9 (downstream of the switching valve 11). Here, the engine control unit 20 controls the switching valve 1 according to the flowchart of FIG.
1 is controlled.

【0053】ステップ1〜4までは、第1実施形態(図
2)と同様である。ステップ4での判定の結果、ΔTw
≧DTW1#の場合は、切換弁11によるバイパス量制
御により、EGRクーラ7への冷却水量を制御すべく、
ステップ11以降へ進む。
Steps 1 to 4 are the same as in the first embodiment (FIG. 2). As a result of the determination in step 4, ΔTw
When ≧ DTW1 #, the amount of cooling water to the EGR cooler 7 is controlled by the bypass amount control by the switching valve 11,
Proceed to step 11 and subsequent steps.

【0054】ステップ11では、図12に示すように、
エンジン冷却水の温度上昇割合ΔTwに応じて、蓄熱器
12側の要求値としてのEGRクーラ7側への切換弁開
度KVOCを設定する。
In step 11, as shown in FIG.
The switching valve opening KVOC to the EGR cooler 7 as a required value on the regenerator 12 is set according to the temperature rise rate ΔTw of the engine cooling water.

【0055】ここで、温度上昇割合ΔTwが所定値DT
W1#より大きいときほど、EGRクーラ7側への切換
弁開度KVOCを大きくして(0→最大値KVOCmax
)、より多くの冷却水量をEGRクーラ7を通過さ
せ、蓄熱器12側からエンジン1に高温のエンジン冷却
水を供給することによるΔTwの過剰な増加を抑制す
る。
Here, the temperature rise rate ΔTw is equal to the predetermined value DT.
The switching valve opening KVOC to the EGR cooler 7 side is increased as the value is larger than W1 # (0 → maximum value KVOCmax).
), An excessive increase in ΔTw due to supplying a larger amount of cooling water through the EGR cooler 7 and supplying high-temperature engine cooling water to the engine 1 from the regenerator 12 is suppressed.

【0056】次のステップ12では、エンジン冷却水温
度Twとクーラ内冷却水温度Tcoolとの温度差ΔTが所
定値DTW2#未満か否かを判定する。この判定の結
果、ΔT<DTW2#の場合は、ステップ13へ進ん
で、図13に示すように、エンジン冷却水温度Twとク
ーラ内冷却水温度Tcoolとの温度差ΔTに応じて、EG
Rクーラ7側の要求値としてのEGRクーラ7側への切
換弁開度KVOegr を設定する。
In the next step 12, it is determined whether or not the temperature difference ΔT between the engine coolant temperature Tw and the cooler internal coolant temperature Tcool is less than a predetermined value DTW2 #. If the result of this determination is that ΔT <DTW2 #, the routine proceeds to step 13, where as shown in FIG. 13, EG is determined according to the temperature difference ΔT between the engine coolant temperature Tw and the cooler internal coolant temperature Tcool.
A switching valve opening KVOegr to the EGR cooler 7 as a required value for the R cooler 7 is set.

【0057】ここで、前記温度差ΔTがマイナス側の場
合、すなわちクーラ内冷却水温度Tcoolの方が高い場合
は、EGRクーラ7側への切換弁開度KVOegr を最大
値KVOegr max に設定して、より多くの冷却水量をE
GRクーラ7を通過させるようにする。
Here, when the temperature difference ΔT is on the minus side, that is, when the cooling water temperature Tcool in the cooler is higher, the switching valve opening KVOegr to the EGR cooler 7 is set to the maximum value KVOegrmax. More cooling water
It is made to pass through the GR cooler 7.

【0058】前記温度差ΔTがプラス側の場合、すなわ
ちエンジン冷却水温度Twの方が高い場合は、前記温度
差ΔTが小さくなるに伴い、EGRクーラ7側への切換
弁開度KVOegr を増大させ、バイパス通路10側(蓄
熱器12側)からの供給量を増大させて、より多くの冷
却水量をEGRクーラ7に供給するようにする。
When the temperature difference ΔT is on the plus side, that is, when the engine cooling water temperature Tw is higher, the switching valve opening KVOegr to the EGR cooler 7 increases as the temperature difference ΔT decreases. By increasing the supply amount from the bypass passage 10 side (the regenerator 12 side), a larger amount of cooling water is supplied to the EGR cooler 7.

【0059】ΔT≧DTW2#の場合は、ステップ12
からステップ15へ進んで、EGRクーラ7側の要求値
としてのEGRクーラ7側への切換弁開度KVOegr =
0に設定する。
If ΔT ≧ DTW2 #, step 12
Then, the process proceeds to step 15, and the switching valve opening KVOegr to the EGR cooler 7 as the required value on the EGR cooler 7 side =
Set to 0.

【0060】ステップ16では、蓄熱器12側の要求値
であるEGRクーラ7側への切換弁開度KVOCと、E
GRクーラ7側の要求値であるEGRクーラ7側への切
換弁開度KVOegr とを加算して、最終的なEGR通路
7側への切換弁開度KVO=KVOC+KVOegr を設
定する。
At step 16, the switching valve opening KVOC to the EGR cooler 7, which is the required value of the regenerator 12, and E
The switching valve opening KVOegr to the EGR cooler 7 which is the required value of the GR cooler 7 is added to set the final switching valve opening KVO = KVOC + KVOegr to the EGR passage 7.

【0061】一方、ステップ4での判定の結果、ΔTw
<DTW1#の場合は、エンジン1内部の急激な冷却水
温度変化が発生していないと判断し、ステップ14へ進
んで、蓄熱器12側の要求値としてのEGRクーラ7側
への切換弁開度KVOC=0に設定し、ステップ12へ
進む。また、ステップ12での判定の結果、ΔT≧DT
W2#の場合は、EGRクーラ7側の要求値としてEG
Rクーラ7側への切換弁開度KVOegr =0に設定す
る。
On the other hand, as a result of the determination in step 4, ΔTw
In the case of <DTW1 #, it is determined that no sudden change in the coolant temperature inside the engine 1 has occurred, and the routine proceeds to step 14, where the switching valve to the EGR cooler 7 as the required value of the regenerator 12 is opened. The degree KVOC is set to 0, and the routine proceeds to step 12. Also, as a result of the determination in step 12, ΔT ≧ DT
In the case of W2 #, the required value on the EGR cooler 7 side is EG
The switching valve opening KVOegr = 0 to the R cooler 7 is set to zero.

【0062】尚、ステップ16で設定された切換弁開度
KVOは、ステップ17にてデューティDutyに変換
された後、切換弁11に出力される。また、図12中の
KVOCmax 及び図13中のKVOegr max は、以下の
ような関係がある値である。
The switching valve opening KVO set in step 16 is converted to a duty Duty in step 17 and then output to the switching valve 11. Further, KVOCmax in FIG. 12 and KVOegrmax in FIG. 13 are values having the following relationship.

【0063】 (1)KVOCmax +KVOegr max =1(全開開度) (2)0≦KVOCmax ≦1、0≦KVOegr max ≦1 これらの値を設定することで、蓄熱器12側あるいはE
GRクーラ7側の切換弁開度に対する要求値の重み付け
をすることができる。
(1) KVOCmax + KVOegrmax = 1 (full opening) (2) 0 ≦ KVOCmax ≦ 1, 0 ≦ KVOegrmax ≦ 1 By setting these values, the heat storage unit 12 side or E
The required value can be weighted with respect to the switching valve opening on the GR cooler 7 side.

【0064】本実施形態では、蓄熱器12をバイパス通
路10の途中に設けて、エンジン冷却水の温度上昇割合
ΔTwに応じて、バイパス通路10側への切換弁開度
(EGRクーラ7側への切換弁開度KVO)を制御する
ことで、冷却水温度が安定して上昇するために必要な分
だけ、EGRクーラ7内の冷却水を流すようにして、図
14に示すような冷却水温度の安定的な上昇を図ること
ができると共に、熱衝撃の発生を防止することができ
る。
In the present embodiment, the regenerator 12 is provided in the middle of the bypass passage 10, and the switching valve opening to the bypass passage 10 (the opening to the EGR cooler 7) is changed in accordance with the temperature rise rate ΔTw of the engine cooling water. By controlling the switching valve opening degree KVO), the cooling water in the EGR cooler 7 is allowed to flow by an amount necessary for stably increasing the cooling water temperature, and the cooling water temperature as shown in FIG. Can be stably raised, and the occurrence of thermal shock can be prevented.

【0065】また、EGRクーラ7内の冷却水温度も、
全量をバイパスする場合よりは早く上昇するため、図1
5にコールドスタート時のEGRガス冷却のエミッショ
ンに与える影響を示すように、クーラ内冷却水温度が低
い場合に起こる、排気側PM(パーティキュレート)排
出量の増加を抑止することができる。
The temperature of the cooling water in the EGR cooler 7 is also
As it rises faster than bypassing the entire volume,
As shown in FIG. 5, the effect on the EGR gas cooling emission at the time of cold start can be suppressed from increasing the exhaust PM (particulate) emission, which occurs when the temperature of the cooling water in the cooler is low.

【0066】以上、発明の実施の形態として、ディーゼ
ルエンジンを例に挙げたが、ガソリンエンジン等他のエ
ンジンに適用可能であることは言うまでもない。
As described above, a diesel engine has been described as an embodiment of the present invention, but it is needless to say that the present invention can be applied to other engines such as a gasoline engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態を示すディーゼルエン
ジンのEGR装置のシステム図
FIG. 1 is a system diagram of an EGR device for a diesel engine showing a first embodiment of the present invention.

【図2】 第1実施形態の切換弁制御のフローチャートFIG. 2 is a flowchart of switching valve control according to the first embodiment;

【図3】 エンジン始動後のエンジン冷却水温度の推移
を示す図
FIG. 3 is a diagram showing a change in engine coolant temperature after the engine is started;

【図4】 切換弁開度テーブルを示す図FIG. 4 is a view showing a switching valve opening degree table;

【図5】 EGR冷却水路容積による冷却水温度の推移
を比較する図
FIG. 5 is a diagram comparing changes in cooling water temperature according to EGR cooling water channel volume;

【図6】 EGRクーラ内冷却水の沸騰防止制御のフロ
ーチャート
FIG. 6 is a flowchart of control for preventing boiling of cooling water in an EGR cooler.

【図7】 可変ノズル式過給機のノズル開度と排気絞り
弁開度との関係を示す図
FIG. 7 is a diagram showing a relationship between a nozzle opening degree and an exhaust throttle valve opening degree of a variable nozzle type supercharger.

【図8】 EGR率補正制御のフローチャートFIG. 8 is a flowchart of EGR rate correction control.

【図9】 EGR率補正係数マップを示す図FIG. 9 is a diagram showing an EGR rate correction coefficient map;

【図10】 本発明の第2実施形態を示すディーゼルエ
ンジンのEGR装置のシステム図
FIG. 10 is a system diagram of an EGR device for a diesel engine showing a second embodiment of the present invention.

【図11】 第2実施形態の切換弁制御のフローチャー
FIG. 11 is a flowchart of switching valve control according to a second embodiment.

【図12】 蓄熱器側要求による切換弁開度テーブルを
示す図
FIG. 12 is a diagram showing a switching valve opening degree table according to a regenerator request;

【図13】 EGRクーラ側要求による切換弁開度テー
ブルを示す図
FIG. 13 is a diagram showing a switching valve opening degree table according to an EGR cooler side request;

【図14】 蓄熱器バイパス制御の効果を示す図FIG. 14 is a diagram showing the effect of regenerator bypass control.

【図15】 コールドスタート時のEGRガス冷却のエ
ミッションに与える影響を示す図
FIG. 15 is a diagram showing the effect of EGR gas cooling on emissions during a cold start.

【符号の説明】[Explanation of symbols]

1 エンジン 2 吸気通路 3 過給機 4 排気通路 5 EGR通路 6 EGR弁 7 EGRクーラ 8 冷却水導入通路 9 冷却水戻し通路 10 バイパス通路 11 切換弁 12 蓄熱器 13 リリーフ弁 14 リリーフ通路 15 排気戻し通路 16 排気絞り弁 20 エンジンコントロールユニット 21 エンジン冷却水温度センサ 22 クーラ内冷却水温度センサ 23 クーラ出口ガス温度センサ REFERENCE SIGNS LIST 1 engine 2 intake passage 3 supercharger 4 exhaust passage 5 EGR passage 6 EGR valve 7 EGR cooler 8 cooling water introduction passage 9 cooling water return passage 10 bypass passage 11 switching valve 12 heat storage device 13 relief valve 14 relief passage 15 exhaust return passage 16 Exhaust throttle valve 20 Engine control unit 21 Engine cooling water temperature sensor 22 Cooler internal cooling water temperature sensor 23 Cooler outlet gas temperature sensor

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】エンジンの排気通路から吸気通路へ排気の
一部を還流させるEGR通路と、該EGR通路に介装さ
れてエンジン冷却水によりEGRガスを冷却するEGR
クーラとを備えるエンジンのEGR装置において、 エンジン冷却水通路にてエンジン運転中の高温のエンジ
ン冷却水をエンジン停止中に蓄熱状態で保管することの
できる蓄熱器と、 エンジン始動直後にエンジン冷却水の少なくとも一部を
EGRクーラをバイパスさせることのできるバイパス通
路及び切換弁と、 を設けたことを特徴とするエンジンのEGR装置。
An EGR passage for recirculating a part of exhaust gas from an exhaust passage of an engine to an intake passage, and an EGR disposed in the EGR passage for cooling EGR gas by engine cooling water.
An EGR device for an engine including a cooler, a regenerator capable of storing high-temperature engine cooling water during engine operation in an engine cooling water passage in a heat storage state while the engine is stopped, and an engine cooling water immediately after the engine starts. An EGR device for an engine, comprising: a bypass passage and a switching valve capable of at least partially bypassing an EGR cooler.
【請求項2】前記蓄熱器は、EGRクーラへエンジン冷
却水を導入する冷却水導入通路の途中で、バイパス通路
への分岐部より上流に設けられることを特徴とする請求
項1記載のエンジンのEGR装置。
2. The engine according to claim 1, wherein said regenerator is provided in a cooling water introduction passage for introducing engine cooling water to an EGR cooler and upstream of a branch to a bypass passage. EGR device.
【請求項3】前記蓄熱器は、バイパス通路の途中に設け
られ、前記切換弁は、エンジン冷却水の温度上昇割合に
応じて、バイパス通路側への切換弁開度が制御されるこ
とを特徴とする請求項1記載のエンジンのEGR装置。
3. The regenerator is provided in the middle of a bypass passage, and the opening of the switching valve to the bypass passage is controlled in accordance with the rate of temperature rise of the engine coolant. The EGR device for an engine according to claim 1, wherein
【請求項4】バイパス通路側への切換弁開度を、エンジ
ン冷却水とEGRクーラ内冷却水との温度差に基づいて
制御することを特徴とする請求項1〜請求項3のいずれ
か1つに記載のエンジンのEGR装置。
4. An opening degree of a switching valve to a bypass passage is controlled based on a temperature difference between engine cooling water and cooling water in an EGR cooler. An EGR device for an engine according to any one of the preceding claims.
【請求項5】EGRクーラ内の冷却水温度、その温度上
昇割合、あるいはEGRクーラ内の水圧に基づいて、E
GRクーラ内の冷却水の沸騰を防止すべき条件にて、全
冷却水量をEGRクーラへ供給するように切換弁を強制
的に切換えるバイパス停止手段を設けたことを特徴とす
る請求項1〜請求項4のいずれか1つに記載のエンジン
のEGR装置。
5. An EGR cooler according to claim 1, wherein the temperature of the cooling water in the EGR cooler, the rate of temperature rise thereof, or the water pressure in the EGR cooler.
A bypass stop means for forcibly switching a switching valve so as to supply a total amount of cooling water to the EGR cooler under a condition in which boiling of the cooling water in the GR cooler is to be prevented. Item 5. An EGR device for an engine according to any one of Items 4.
【請求項6】EGR弁の全閉時に排気の一部をEGRク
ーラに流通させるように、EGRクーラの出口側から排
気通路へ排気を戻す排気戻し通路を設けたことを特徴と
する請求項1〜請求項5のいずれか1つに記載のエンジ
ンのEGR装置。
6. An exhaust return passage for returning exhaust gas from the outlet side of the EGR cooler to the exhaust passage so that a part of the exhaust gas flows to the EGR cooler when the EGR valve is fully closed. An EGR device for an engine according to any one of claims 1 to 5.
【請求項7】EGRクーラ出口側のガス温度に基づいて
EGR弁の開度制御値を補正する補正手段を設けたこと
を特徴とする請求項1〜請求項6のいずれか1つに記載
のエンジンのEGR装置。
7. The apparatus according to claim 1, further comprising a correction means for correcting an EGR valve opening control value based on a gas temperature at an EGR cooler outlet side. Engine EGR device.
JP32372199A 1999-11-15 1999-11-15 Egr device for engine Pending JP2001140701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32372199A JP2001140701A (en) 1999-11-15 1999-11-15 Egr device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32372199A JP2001140701A (en) 1999-11-15 1999-11-15 Egr device for engine

Publications (1)

Publication Number Publication Date
JP2001140701A true JP2001140701A (en) 2001-05-22

Family

ID=18157875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32372199A Pending JP2001140701A (en) 1999-11-15 1999-11-15 Egr device for engine

Country Status (1)

Country Link
JP (1) JP2001140701A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002660A (en) * 2004-06-17 2006-01-05 Hino Motors Ltd Egr system for engine
JP2006348793A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2007100665A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Exhaust gas passage structure for internal combustion engine
WO2007058225A1 (en) * 2005-11-17 2007-05-24 Toyota Jidosha Kabushiki Kaisha Engine cooling medium circulation device
JP2011106289A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Egr gas cooling device
WO2014017014A1 (en) * 2012-07-23 2014-01-30 株式会社デンソー Egr systems and exhaust heat exchanger systems
JP2014080925A (en) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd Control device of internal combustion engine and control method thereof
CN103968409A (en) * 2014-04-08 2014-08-06 深圳市中创达热工技术有限公司 High-temperature low-oxygen combustion device
WO2016207112A1 (en) * 2015-06-23 2016-12-29 Volvo Truck Corporation An internal combustion engine system
JP2017129080A (en) * 2016-01-21 2017-07-27 株式会社豊田中央研究所 Exhaust gas circulation system
JP2018145893A (en) * 2017-03-06 2018-09-20 株式会社デンソー Exhaust gas recirculation device
KR20190067525A (en) * 2017-12-07 2019-06-17 현대자동차주식회사 Apparatus of controlling egr apparatus and method using the same
CN111622867A (en) * 2020-06-05 2020-09-04 安徽江淮汽车集团股份有限公司 Exhaust gas recirculation system, method and vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002660A (en) * 2004-06-17 2006-01-05 Hino Motors Ltd Egr system for engine
JP4484242B2 (en) * 2004-06-17 2010-06-16 日野自動車株式会社 Engine EGR system
JP2006348793A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2007100665A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Exhaust gas passage structure for internal combustion engine
WO2007058225A1 (en) * 2005-11-17 2007-05-24 Toyota Jidosha Kabushiki Kaisha Engine cooling medium circulation device
US7921829B2 (en) 2005-11-17 2011-04-12 Toyota Jidosha Kabushiki Kaisha Engine cooling medium circulation device
JP2011106289A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Egr gas cooling device
WO2014017014A1 (en) * 2012-07-23 2014-01-30 株式会社デンソー Egr systems and exhaust heat exchanger systems
JP2014080925A (en) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd Control device of internal combustion engine and control method thereof
CN103968409A (en) * 2014-04-08 2014-08-06 深圳市中创达热工技术有限公司 High-temperature low-oxygen combustion device
WO2016207112A1 (en) * 2015-06-23 2016-12-29 Volvo Truck Corporation An internal combustion engine system
WO2016206720A1 (en) * 2015-06-23 2016-12-29 Volvo Truck Corporation An internal combustion engine system
JP2017129080A (en) * 2016-01-21 2017-07-27 株式会社豊田中央研究所 Exhaust gas circulation system
JP2018145893A (en) * 2017-03-06 2018-09-20 株式会社デンソー Exhaust gas recirculation device
KR20190067525A (en) * 2017-12-07 2019-06-17 현대자동차주식회사 Apparatus of controlling egr apparatus and method using the same
KR102406139B1 (en) * 2017-12-07 2022-06-07 현대자동차 주식회사 Apparatus of controlling egr apparatus and method using the same
CN111622867A (en) * 2020-06-05 2020-09-04 安徽江淮汽车集团股份有限公司 Exhaust gas recirculation system, method and vehicle

Similar Documents

Publication Publication Date Title
US7650753B2 (en) Arrangement for cooling exhaust gas and charge air
US6789512B2 (en) Method for operating an internal combustion engine, and motor vehicle
RU2655594C2 (en) Method for heating vehicle cabin, system and method of administration of heating vehicle
US5740786A (en) Internal combustion engine with an exhaust gas recirculation system
RU2628682C2 (en) Engine system for vehicle
JP5993759B2 (en) Engine intake cooling system
US20090125217A1 (en) Method and apparatus for controlling low pressure egr valve of a turbocharged diesel engine
CN106337724B (en) System and method for flowing a mixture of coolants to a charge air cooler
US20090229543A1 (en) Cooling device for engine
US9850802B2 (en) Coolant control device
US10047704B2 (en) Control device for internal combustion engine
US20160363038A1 (en) Heat exchange apparatus of vehicle
JP2001140701A (en) Egr device for engine
US20080271721A1 (en) Arrangement and a Method for Recirculation of Exhaust Gases of an Internal Combustion Engine
CN105781812A (en) EGR (exhaust gas recirculation) cooling closed-loop control system and method for cooling EGR gas
GB2472228A (en) Reducing the fuel consumption of an i.c. engine by using heat from an EGR cooler to heat engine oil after cold-starting
US10655529B2 (en) Engine system
KR102496807B1 (en) Control system for flowing of coolant and cotrol method for the same
JP2016000971A (en) Internal combustion engine system with supercharger
JP2014009617A (en) Cooling device of internal combustion engine
US20190107036A1 (en) Method for operating a combustion machine, combustion machine and motor vehicle
US20080257526A1 (en) Device for Thermal Control of Recirculated Gases in an Internal Combustion Engine
JP4115237B2 (en) diesel engine
JP3729994B2 (en) Exhaust gas recirculation device
KR20190040454A (en) Method for operating an internal combustion engine, internal combustion engine and motor vehicle