JP2001140687A - Air-fuel ratio controlling device for internal combustion engine - Google Patents

Air-fuel ratio controlling device for internal combustion engine

Info

Publication number
JP2001140687A
JP2001140687A JP32874099A JP32874099A JP2001140687A JP 2001140687 A JP2001140687 A JP 2001140687A JP 32874099 A JP32874099 A JP 32874099A JP 32874099 A JP32874099 A JP 32874099A JP 2001140687 A JP2001140687 A JP 2001140687A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32874099A
Other languages
Japanese (ja)
Other versions
JP4304793B2 (en
Inventor
Tsukasa Kuboshima
司 窪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32874099A priority Critical patent/JP4304793B2/en
Priority to DE10057013A priority patent/DE10057013B4/en
Publication of JP2001140687A publication Critical patent/JP2001140687A/en
Application granted granted Critical
Publication of JP4304793B2 publication Critical patent/JP4304793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce emission by properly disposing the output of an air-fuel ratio detecting means according to the operation state of an internal combustion engine (diesel engine) and suppressing the air-fuel ratio to a desired value by controlling the fuel injection quantity and EGR quantity of each cylinder. SOLUTION: An ECU compensates EGR quantity based on the average air- fuel ratio of each cylinder in a relatively lower range out of the EGR range. In a relatively higher range out of the EGR range, the ECU compensates EGR quantity based on the average air-fuel ratio of each cylinder after compensating the fuel injection quantity of each cylinder based on the air-fuel ratio of each cylinder. In a non-EGR range, the average fuel injection quantity between cylinders is compensated based on the average air-fuel ratio of each cylinder after the compensation of the fuel injecting quantity of each cylinder. This can lessen the dispersion of air-fuel ratio of each cylinder and correct the deviation of the average air-fuel ratio of each cylinder. This makes it possible to suppress the quantity of the smoke generated to a specified value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の燃料噴
射量あるいはEGR量を調整して、空燃比を所定値に制
御する内燃機関の空燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine that controls an air-fuel ratio to a predetermined value by adjusting a fuel injection amount or an EGR amount of the internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の燃料噴射量は、機関出力やエ
ミッションの排出量に、また内燃機関のEGR量はエミ
ッションの排出量に直接影響を与えるため、燃料噴射量
及びEGR量を精度良く所定値にコントロールすること
が非常に重要である。しかし、これらは、燃料噴射弁や
EGR弁等の特性のバラツキや環境条件の変化、あるい
は経時劣化等により変化する。一方、エミッションは、
排気中の酸素濃度(空燃比)と強い相関がある。特にデ
ィーゼルエンジンでは、排気中のスモーク(黒煙)を低
減することが重要課題であるが、スモークは、燃料燃焼
時にシリンダ内部が局所的に酸素不足となることにより
発生するため、その発生量は排気中の酸素濃度と非常に
強い相関を有している。従って、内燃機関におけるエミ
ッション(特にディーゼルエンジンのスモーク)を所定
値とするための指標として空燃比を用いることは極めて
有用である。
2. Description of the Related Art Since the fuel injection amount of an internal combustion engine directly affects the engine output and emission amount, and the EGR amount of the internal combustion engine directly affects the emission amount, the fuel injection amount and the EGR amount can be precisely determined. It is very important to control the value. However, these change due to variations in characteristics of the fuel injection valve, the EGR valve, and the like, changes in environmental conditions, deterioration over time, and the like. On the other hand, emissions
There is a strong correlation with the oxygen concentration (air-fuel ratio) in the exhaust. In diesel engines, in particular, reducing smoke (black smoke) in the exhaust gas is an important issue. However, the amount of smoke is generated by the local lack of oxygen in the cylinder during fuel combustion. It has a very strong correlation with the oxygen concentration in the exhaust. Therefore, it is extremely useful to use the air-fuel ratio as an index for setting emission (particularly, smoke of a diesel engine) in an internal combustion engine to a predetermined value.

【0003】そこで、空燃比に基づいて燃料噴射量及び
EGR量をフィードバック制御する従来技術がある。例
えば特開平2−61347号公報に開示されたディーゼ
ルエンジンの燃料噴射制御装置では、空燃比が所定値と
なるようにEGR領域ではEGR量を調整し、非EGR
領域では全気筒の平均燃料噴射量を調整することでエミ
ッションを所定値に制御している。しかし、ディーゼル
エンジンの非EGR領域(高負荷域)あるいはEGR領
域の高負荷運転下においては、センサで検出される空燃
比(全気筒の平均空燃比)が目標値となっていても、気
筒間で空燃比にばらつきがあると、図6に示すように、
そのばらつきが大きくなる程、スモーク量が急激に増加
するという問題がある。この問題に対し、前記従来技術
では気筒間空燃比のばらつきを修正できないため、スモ
ークを十分に低減することが困難であった。
Therefore, there is a conventional technique in which the fuel injection amount and the EGR amount are feedback-controlled based on the air-fuel ratio. For example, in a fuel injection control device for a diesel engine disclosed in Japanese Patent Application Laid-Open No. 2-61347, an EGR amount is adjusted in an EGR region so that an air-fuel ratio becomes a predetermined value, and a non-EGR amount is adjusted.
In the region, the emission is controlled to a predetermined value by adjusting the average fuel injection amount of all cylinders. However, under the non-EGR range (high load range) or high load operation of the EGR range of the diesel engine, even if the air-fuel ratio detected by the sensor (average air-fuel ratio of all cylinders) is the target value, the When there is a variation in the air-fuel ratio at, as shown in FIG.
There is a problem that the smoke amount increases rapidly as the variation increases. In order to solve this problem, it is difficult to sufficiently reduce the smoke because the above-described related art cannot correct the variation in the air-fuel ratio between the cylinders.

【0004】一方、従来技術として特開平9−2033
37号公報に開示された内燃機関の空燃比制御装置があ
る。この従来技術は、気筒間空燃比のばらつきを解消す
るもので、空燃比センサの出力と各気筒の排気タイミン
グとから気筒別に空燃比を算出し、その算出された気筒
別の空燃比に基づいて、気筒毎に燃料噴射量をフィード
バック制御している。しかし、この従来技術をディーゼ
ルエンジンに適用した場合、エンジンの低負荷時には排
気中の酸素濃度が高いため、その中で気筒間空燃比のず
れを検出するには、非常に高い空燃比の検出精度が必要
となり、これは実用上困難である。
On the other hand, Japanese Patent Application Laid-Open No. 9-2033 discloses a prior art.
No. 37 discloses an air-fuel ratio control device for an internal combustion engine. This prior art solves the variation of the air-fuel ratio between cylinders, calculates the air-fuel ratio for each cylinder from the output of the air-fuel ratio sensor and the exhaust timing of each cylinder, and based on the calculated air-fuel ratio for each cylinder. In addition, the fuel injection amount is feedback-controlled for each cylinder. However, when this conventional technology is applied to a diesel engine, since the oxygen concentration in the exhaust gas is high when the engine is under a low load, a very high air-fuel ratio detection accuracy can be used to detect a deviation in the air-fuel ratio between cylinders. This is practically difficult.

【0005】また、内燃機関の空燃比をセンサで検出す
る場合、以下の問題が生じる。 内燃機関の空燃比は、例えば限界電流式の酸素濃度セ
ンサにより検出するのが一般的であり、このセンサの出
力は、原理上、雰囲気圧力すなわち排気圧力の大きさに
より変化し、排気圧力が高いほど大きくなる。従って、
この方式のセンサをディーゼルエンジンに適用した場
合、ディーゼルエンジンは圧縮比が高いことから、排気
圧力の脈動が大きいという特徴を有するため、たとえ空
燃比が一定でも、センサ出力には排気圧脈動に起因する
1サイクル/気筒数に対応した周期的な変動(例えば4
気筒内燃機関では180クランク角度毎の変動)が発生
する。この変動の大きさは、エンジンの運転条件によっ
て変化するため、正確な空燃比に関する情報を得ること
が困難である。特に、1個のセンサの出力から気筒毎の
空燃比を分離して求めようとする場合には、上記問題が
顕著となり、気筒毎の空燃比の正確な検出及びその検出
した空燃比に基づく制御が非常に困難となる。
When the air-fuel ratio of the internal combustion engine is detected by a sensor, the following problem occurs. The air-fuel ratio of an internal combustion engine is generally detected by, for example, a limiting current type oxygen concentration sensor, and the output of this sensor changes in principle depending on the atmospheric pressure, that is, the magnitude of the exhaust pressure, and the exhaust pressure is high. It becomes bigger. Therefore,
When this type of sensor is applied to a diesel engine, the diesel engine has a characteristic that the pulsation of the exhaust pressure is large because the compression ratio is high, so even if the air-fuel ratio is constant, the sensor output is caused by the exhaust pressure pulsation. 1 cycle / periodic variation corresponding to the number of cylinders (for example, 4
In the cylinder internal combustion engine, a variation at every 180 crank angles occurs. Since the magnitude of this variation varies depending on the operating conditions of the engine, it is difficult to obtain accurate information on the air-fuel ratio. In particular, when trying to obtain the air-fuel ratio of each cylinder separately from the output of one sensor, the above problem becomes remarkable, and the accurate detection of the air-fuel ratio of each cylinder and control based on the detected air-fuel ratio are performed. Becomes very difficult.

【0006】内燃機関の排気弁から排出された排気が
排気管中に設けたセンサに到達するまでには時間がかか
るため、時間的な遅れが発生し、この遅れは内燃機関の
運転状態によって変化する。従って、この遅れを考慮し
ないと、1個のセンサの出力から気筒毎の空燃比を分離
して求めようとする場合には、気筒毎の空燃比を正確に
検出できない。 特にディーゼルエンジンにおいては、その燃焼が燃料
の自己着火によるため、サイクル毎の時間的あるいは空
間的な燃焼の安定性が低く、得られる空燃比の情報がサ
イクル毎にばらつく。
It takes a long time for the exhaust gas discharged from the exhaust valve of the internal combustion engine to reach the sensor provided in the exhaust pipe, so that a time delay occurs, and this delay varies depending on the operation state of the internal combustion engine. I do. Therefore, if this delay is not taken into account, the air-fuel ratio for each cylinder cannot be accurately detected when trying to obtain the air-fuel ratio for each cylinder separately from the output of one sensor. In particular, in a diesel engine, since the combustion is caused by self-ignition of fuel, temporal or spatial stability of combustion in each cycle is low, and information on the obtained air-fuel ratio varies in each cycle.

【0007】特にディーゼルエンジンでは、例えば高
地において大気圧が変化したり、噴射系の仕様や特性に
より燃料噴射圧力が変化することでシリンダ内の空気が
有効に利用される度合い(即ち、空気利用率)が変化す
ると、図3及び図4に示すように、空燃比とスモーク発
生量との関係が変化してしまう。従って、これらの変化
によらず目標とする空燃比を一定とすると、スモーク量
を所定値に制御できない。以上の説明のとおり、前記従
来技術を用いて、検出した空燃比を基にディーゼルエン
ジンのエミッションを制御しようとした場合に多くの問
題が存在する。
In particular, in a diesel engine, the degree of effective use of air in the cylinder (ie, the air utilization rate) due to a change in the atmospheric pressure at high altitude or a change in the fuel injection pressure due to the specifications and characteristics of the injection system, for example. ) Changes, the relationship between the air-fuel ratio and the amount of smoke generated changes as shown in FIGS. Therefore, if the target air-fuel ratio is kept constant irrespective of these changes, the smoke amount cannot be controlled to a predetermined value. As described above, there are many problems when attempting to control the emission of a diesel engine based on the detected air-fuel ratio using the above-described conventional technology.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するためのものであり、内燃機関の各運転状態
に応じて空燃比検出手段の出力を適切に処理し、且つ気
筒毎の燃料噴射量及びEGR量の制御により空燃比を所
望値に制御することで、内燃機関のエミッション(特に
ディーゼルエンジンにおけるスモーク)を低減できる内
燃機関の空燃比制御装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to appropriately process the output of an air-fuel ratio detecting means in accordance with each operating state of an internal combustion engine, An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that can reduce the emission of the internal combustion engine (particularly, smoke in a diesel engine) by controlling the air-fuel ratio to a desired value by controlling the fuel injection amount and the EGR amount of the internal combustion engine.

【0009】[0009]

【課題を解決するための手段】(請求項1の手段)空燃
比制御手段は、EGR領域のうち比較的負荷が低い領域
では、第2の特性値に基づいてEGR量を補正し、EG
R領域のうち比較的負荷が高い領域では、第1の特性値
に基づいて気筒毎の燃料噴射量を補正するとともに、第
2の特性値に基づいてEGR量を補正し、非EGR領域
では、第1の特性値に基づいて気筒毎の燃料噴射量を補
正するとともに、第2の特性値に基づいて平均噴射量を
補正する。
The air-fuel ratio control means corrects the EGR amount on the basis of the second characteristic value in the EGR region where the load is relatively low, and adjusts the EGR amount.
In the region where the load is relatively high in the R region, the fuel injection amount for each cylinder is corrected based on the first characteristic value, and the EGR amount is corrected based on the second characteristic value. In the non-EGR region, The fuel injection amount for each cylinder is corrected based on the first characteristic value, and the average injection amount is corrected based on the second characteristic value.

【0010】非EGR領域(高負荷領域)及びEGR領
域のうち比較的高負荷領域では、図6に示したように、
気筒間空燃比のばらつきが大きくなると、スモークの発
生量が急激に増加するため、気筒毎の燃料噴射量を補正
して、気筒間空燃比のばらつきを抑える必要がある。こ
こで、特にディーゼルエンジンでは、高負荷時の方が、
低負荷時と比較して排気中の酸素濃度が低いため、各気
筒毎の空燃比のずれを検出するために、極めて高い検出
精度が要求されることはなく、実用的な空燃比検出手段
の出力に基づいて、各気筒毎の空燃比に対応する第1の
特性値を算出し、その第1の特性値に基づいて気筒毎の
燃料噴射量を補正することができる。
In the non-EGR region (high load region) and the relatively high load region of the EGR region, as shown in FIG.
If the variation in the air-fuel ratio between the cylinders increases, the amount of smoke generated increases rapidly. Therefore, it is necessary to correct the fuel injection amount for each cylinder to suppress the variation in the air-fuel ratio between the cylinders. Here, especially for diesel engines, when the load is high,
Since the oxygen concentration in the exhaust gas is lower than at low load, extremely high detection accuracy is not required to detect the air-fuel ratio deviation for each cylinder. A first characteristic value corresponding to an air-fuel ratio for each cylinder is calculated based on the output, and the fuel injection amount for each cylinder can be corrected based on the first characteristic value.

【0011】一方、EGR領域のうち比較的低負荷領域
では、前述したように排気中の酸素濃度が高く、その中
で空燃比のずれを検出するためには、非常に高い空燃比
の検出精度が必要となるため、気筒毎に空燃比を検出す
ることは実用上困難である。しかし、低負荷領域では、
図6に示したように、気筒毎の空燃比にばらつきが生じ
ても、高負荷時と比較してスモークの発生量が低く、且
つ気筒間空燃比のばらつきが大きくなってもスモーク発
生量は殆ど変化しない。従って、気筒毎の噴射量補正を
行わず、EGR量を補正して気筒間の平均空燃比を制御
する。これにより、実用可能な精度の空燃比検出手段
で、内燃機関の運転状態に応じた適切な気筒毎あるいは
平均の空燃比制御が可能となり、エミッション改善が可
能となる。
On the other hand, in the relatively low load region of the EGR region, as described above, the oxygen concentration in the exhaust gas is high, and in order to detect the deviation of the air-fuel ratio, the detection accuracy of the air-fuel ratio is extremely high. Therefore, it is practically difficult to detect the air-fuel ratio for each cylinder. However, in the low load region,
As shown in FIG. 6, even if the air-fuel ratio varies among the cylinders, the amount of smoke generated is lower than when the load is high, and the amount of smoke generated is larger even if the air-fuel ratio between the cylinders increases. Hardly changes. Therefore, the injection amount correction for each cylinder is not performed, and the EGR amount is corrected to control the average air-fuel ratio between the cylinders. As a result, the air-fuel ratio detecting means having a practically accurate accuracy makes it possible to control the cylinder-by-cylinder or average air-fuel ratio appropriately in accordance with the operating state of the internal combustion engine, thereby making it possible to improve the emission.

【0012】(請求項2の手段)請求項1に記載した内
燃機関の空燃比制御装置において、EGR領域のうち比
較的低負荷領域では、目標空燃比に対応する目標値と、
全気筒の平均空燃比に対応する第2の特性値との差が小
さくなるようにEGR量を補正している。これにより、
気筒間の平均空燃比のずれ(目標空燃比に対するずれ)
に起因するエミッションの悪化を改善できる。
According to a second aspect of the present invention, in the air-fuel ratio control apparatus for an internal combustion engine according to the first aspect, a target value corresponding to the target air-fuel ratio in a relatively low load region in the EGR region;
The EGR amount is corrected so that the difference from the second characteristic value corresponding to the average air-fuel ratio of all cylinders becomes small. This allows
Average air-fuel ratio deviation between cylinders (deviation from target air-fuel ratio)
The deterioration of emission caused by the above can be improved.

【0013】(請求項3の手段)請求項1または2に記
載した内燃機関の空燃比制御装置において、EGR領域
のうち比較的高負荷領域では、気筒毎の空燃比に対応す
る第1の特性値のばらつきが各気筒間で小さくなるよう
に気筒毎の燃料噴射量を補正し、その後、目標空燃比に
対応する目標値と第2の特性値との差が小さくなるよう
にEGR量を補正している。これにより、気筒間空燃比
のばらつき、及び気筒間の平均空燃比のずれ(目標空燃
比に対するずれ)に起因するエミッションの悪化を改善
できる。
(3) The air-fuel ratio control apparatus for an internal combustion engine according to the above (1) or (2), wherein the first characteristic corresponding to the air-fuel ratio of each cylinder in a relatively high load region in the EGR region. The fuel injection amount for each cylinder is corrected so that the variation in the value becomes smaller among the cylinders, and then the EGR amount is corrected so that the difference between the target value corresponding to the target air-fuel ratio and the second characteristic value becomes smaller. are doing. As a result, it is possible to improve the deterioration of the emission caused by the variation of the air-fuel ratio between the cylinders and the deviation of the average air-fuel ratio between the cylinders (the deviation from the target air-fuel ratio).

【0014】また、気筒毎の燃料噴射量を補正した後、
平均空燃比と目標空燃比とのずれが小さくなるようにE
GR量を補正することにより、空燃比の補正中にスモー
ク発生量が増加することを防止できる。即ち、内燃機関
の負荷が大きいため、スモークが発生しやすい状態で、
且つ気筒間空燃比がばらついたままで、全気筒に対する
EGR量を先に補正すると、全気筒の平均空燃比を低く
修正する場合には、空燃比のばらつきにより酸素が不足
している気筒では、さらに酸素不足状態となり、多量の
スモークが発生することとなる。これに対し、先ず気筒
毎の燃料噴射量を調整して気筒毎の空燃比を補正した
後、全気筒に対するEGR量を補正すれば、上記の不具
合を解消することができる。
After correcting the fuel injection amount for each cylinder,
E is set so that the difference between the average air-fuel ratio and the target air-fuel ratio becomes small.
By correcting the GR amount, it is possible to prevent the smoke generation amount from increasing during the correction of the air-fuel ratio. That is, because the load on the internal combustion engine is large, smoke is likely to occur,
In addition, if the EGR amount for all cylinders is corrected first while the inter-cylinder air-fuel ratio remains varied, if the average air-fuel ratio of all cylinders is corrected to be low, cylinders lacking oxygen due to variations in air-fuel ratios will have a further problem. An oxygen deficiency state occurs, and a large amount of smoke is generated. On the other hand, the above problem can be solved by first adjusting the fuel injection amount for each cylinder to correct the air-fuel ratio for each cylinder, and then correcting the EGR amount for all cylinders.

【0015】(請求項4の手段)請求項1〜3に記載し
た何れかの内燃機関の空燃比制御装置において、非EG
R領域では、気筒毎の空燃比に対応する第1の特性値の
ばらつきが各気筒間で小さくなるように気筒毎の燃料噴
射量を補正し、その後、目標空燃比に対応する目標値と
第2の特性値との差が小さくなるように気筒間の平均噴
射量を補正している。これにより、気筒間空燃比のばら
つき、及び気筒間の平均空燃比のずれ(目標空燃比に対
するずれ)に起因するエミッションの悪化を改善でき
る。また、気筒毎の燃料噴射量を補正した後、平均空燃
比と目標空燃比とのずれが小さくなるように気筒間の平
均噴射量を補正することにより、請求項3の場合と同様
に、空燃比の補正中にスモーク発生量が増加することを
防止できる。
According to a fourth aspect of the present invention, in the air-fuel ratio control apparatus for an internal combustion engine according to any one of the first to third aspects, the non-EG
In the R region, the fuel injection amount for each cylinder is corrected so that the variation in the first characteristic value corresponding to the air-fuel ratio for each cylinder becomes smaller between the cylinders. The average injection amount between the cylinders is corrected so that the difference from the characteristic value 2 becomes smaller. As a result, it is possible to improve the deterioration of the emission caused by the variation of the air-fuel ratio between the cylinders and the deviation of the average air-fuel ratio between the cylinders (the deviation from the target air-fuel ratio). Further, after correcting the fuel injection amount for each cylinder, the average injection amount between the cylinders is corrected so that the difference between the average air-fuel ratio and the target air-fuel ratio is reduced, so that the air-fuel ratio is reduced as in the case of claim 3. It is possible to prevent an increase in the amount of smoke generated during correction of the fuel ratio.

【0016】(請求項5の手段)気筒毎空燃比算出手段
は、内燃機関の1サイクル中に複数回サンプルした空燃
比検出手段の出力を内燃機関の1サイクル/気筒数に対
応した区間毎に平均化して特性値を算出すると共に、平
均化する区間の開始タイミングを内燃機関の運転条件毎
に変更する。これにより、一般的な限界電流式の酸素濃
度センサを空燃比検出手段として用いた場合に、排気圧
の脈動が大きいディーゼルエンジンにおいても排気圧脈
動の影響を除去した上で、正確な気筒毎の空燃比を求め
ることが可能となる。また、排気が空燃比検出手段に到
達するまでの遅れが内燃機関の運転状態に応じて変化す
ることを考慮するため、運転状態によらず正確な気筒毎
の空燃比を求めることが可能となる。
(Claim 5) The cylinder-by-cylinder air-fuel ratio calculating means outputs the output of the air-fuel ratio detecting means sampled a plurality of times during one cycle of the internal combustion engine for each section corresponding to one cycle of the internal combustion engine / the number of cylinders. The characteristic value is calculated by averaging, and the start timing of the section to be averaged is changed for each operating condition of the internal combustion engine. With this, when a general limiting current type oxygen concentration sensor is used as the air-fuel ratio detecting means, the influence of the exhaust pressure pulsation is removed even in a diesel engine having a large exhaust pressure pulsation, and an accurate The air-fuel ratio can be determined. In addition, since the delay until the exhaust reaches the air-fuel ratio detecting means changes in accordance with the operating state of the internal combustion engine, it is possible to obtain an accurate air-fuel ratio for each cylinder regardless of the operating state. .

【0017】(請求項6の手段)請求項5に記載した内
燃機関の空燃比制御装置において、気筒毎空燃比制御手
段は、各気筒間で特性値のばらつきが小さくなるように
各気筒への燃料噴射量を調整する。これにより、気筒間
の空燃比のばらつきに起因するエミッションの悪化を改
善することができる。
(Claim 6) In the air-fuel ratio control apparatus for an internal combustion engine according to claim 5, the cylinder-by-cylinder air-fuel ratio control means controls each cylinder so as to reduce variation in characteristic values among the cylinders. Adjust the fuel injection amount. Thus, it is possible to improve the deterioration of the emission caused by the variation in the air-fuel ratio between the cylinders.

【0018】(請求項7の手段)請求項6に記載した内
燃機関の空燃比制御装置において、気筒毎空燃比算出手
段は、区間毎に得られた特性値を、対応する気筒毎に複
数サイクルに渡って平均化して各気筒の特性値とする。
これにより、その燃焼が燃料の自己着火によるために燃
焼毎の時間的あるいは空間的な安定性が低く、得られる
空燃比の情報がサイクル毎にばらつくディーゼルエンジ
ンにおいても、正確な空燃比を検出することが可能とな
る。
According to a seventh aspect of the present invention, in the air-fuel ratio control apparatus for an internal combustion engine according to the sixth aspect, the cylinder-by-cylinder air-fuel ratio calculating means converts the characteristic value obtained for each section into a plurality of cycles for each cylinder. And averaged over the range to obtain the characteristic value of each cylinder.
As a result, since the combustion is caused by the self-ignition of the fuel, the temporal or spatial stability of each combustion is low, and the information on the obtained air-fuel ratio varies from cycle to cycle. It becomes possible.

【0019】(請求項8の手段)請求項5〜7に記載し
た何れかの内燃機関の空燃比制御装置において、気筒毎
空燃比算出手段は、空燃比検出手段の出力を平均化する
区間の開始タイミングを、内燃機関の回転数あるいは負
荷が大きいほど早期とする。この場合、内燃機関の回転
数および負荷が大きいほど、排気が空燃比検出手段に到
達するまでの遅れが小さくなることを考慮するため、内
燃機関の運転状態によらず正確な気筒毎の空燃比を求め
ることが可能となる。
(Eighth Means) In the air-fuel ratio control apparatus for an internal combustion engine according to any one of the fifth to seventh aspects, the cylinder-by-cylinder air-fuel ratio calculation means includes a section for averaging the output of the air-fuel ratio detection means. The start timing is set earlier as the rotation speed or the load of the internal combustion engine increases. In this case, in consideration of the fact that the delay until exhaust reaches the air-fuel ratio detecting means decreases as the rotation speed and the load of the internal combustion engine increase, an accurate air-fuel ratio for each cylinder regardless of the operation state of the internal combustion engine is taken into consideration. Can be obtained.

【0020】(請求項9の手段)請求項1〜8に記載し
た何れかの内燃機関の空燃比制御装置において、目標空
燃比算出手段は、吸気圧検出手段の出力が小さいほど目
標空燃比(目標とする排気酸素濃度)を大きくする。高
地などで大気圧が低下し、それに伴って内燃機関、特に
ディーゼルエンジンの吸気圧が低下すると、空燃比(排
気中の酸素濃度)が同一でも、シリンダ内に吸入される
酸素の絶対量が低下する。このため、燃料燃焼時のシリ
ンダ内の酸素利用度が低下し、結果的にシリンダ内で局
所的に酸素不足となる領域が増加し、スモーク発生量が
増加してしまう。これに対し、本発明によれば、吸気圧
が小さいほど、目標空燃比を大きくするために、上記の
不具合を防止してスモーク発生量を所定値以下とするこ
とが可能となる。
According to a ninth aspect of the present invention, in the air-fuel ratio control apparatus for an internal combustion engine according to any one of the first to eighth aspects, the target air-fuel ratio calculating means sets the target air-fuel ratio as the output of the intake pressure detecting means decreases. (Target exhaust oxygen concentration) is increased. When the atmospheric pressure decreases at high altitudes and the intake pressure of an internal combustion engine, especially a diesel engine, decreases, the absolute amount of oxygen drawn into the cylinder decreases even if the air-fuel ratio (oxygen concentration in exhaust gas) is the same. I do. For this reason, the oxygen utilization in the cylinder during fuel combustion decreases, and as a result, the region in the cylinder where oxygen becomes insufficient locally increases, and the amount of smoke generated increases. On the other hand, according to the present invention, as the intake pressure is smaller, the target air-fuel ratio is increased, so that the above-described problem can be prevented and the amount of generated smoke can be reduced to a predetermined value or less.

【0021】(請求項10の手段)請求項1〜9に記載
した何れかの内燃機関の空燃比制御装置において、目標
空燃比算出手段は、噴射圧検出手段の出力が小さいほど
目標空燃比を大きくする。内燃機関の特性変化等の理由
により、燃料噴射圧力が低下すると、空燃比(排気中の
酸素濃度)が同一でも、燃料噴霧の微粒化および空気と
の混合状態が悪化する。このため、燃料燃焼時のシリン
ダ内の酸素利用度が低下し、結果的にシリンダ内で局所
的に酸素不足となる領域が増加し、スモーク発生量が増
加してしまう。これに対し、本発明によれば、噴射圧が
小さいほど目標空燃比を大きくするために、上記の不具
合を防止してスモーク発生量を所定値以下とすることが
可能である。
According to a tenth aspect of the present invention, in the air-fuel ratio control apparatus for an internal combustion engine according to any one of the first to ninth aspects, the target air-fuel ratio calculating means sets the target air-fuel ratio as the output of the injection pressure detecting means decreases. Enlarge. If the fuel injection pressure decreases due to a change in the characteristics of the internal combustion engine or the like, the atomization of the fuel spray and the state of mixing with air deteriorate even if the air-fuel ratio (oxygen concentration in the exhaust gas) is the same. For this reason, the oxygen utilization in the cylinder during fuel combustion decreases, and as a result, the region in the cylinder where oxygen becomes insufficient locally increases, and the amount of smoke generated increases. On the other hand, according to the present invention, in order to increase the target air-fuel ratio as the injection pressure decreases, it is possible to prevent the above-described problem and reduce the smoke generation amount to a predetermined value or less.

【0022】[0022]

【発明の実施の形態】次に、本発明を4気筒のディーゼ
ルエンジンに適用した実施形態を図面に基づいて説明す
る。図2はディーゼルエンジンの空燃比制御装置のシス
テム図である。本発明の内燃機関であるディーゼルエン
ジン1は、各気筒毎にそれぞれ電磁弁式の燃料噴射弁2
が取り付けられている。燃料噴射弁2は、高圧燃料ポン
プ3から圧送された燃料を蓄圧するコモンレール4(蓄
圧室)を介して高圧燃料が供給され、電磁弁の開閉動作
に伴って気筒内への燃料噴射を行う。コモンレール4に
は、コモンレール4の内圧(噴射圧力)を検出する噴射
圧センサ5が設置されている。
Next, an embodiment in which the present invention is applied to a four-cylinder diesel engine will be described with reference to the drawings. FIG. 2 is a system diagram of an air-fuel ratio control device for a diesel engine. A diesel engine 1, which is an internal combustion engine of the present invention, has a solenoid-operated fuel injection valve 2 for each cylinder.
Is attached. The fuel injection valve 2 is supplied with high-pressure fuel via a common rail 4 (accumulation chamber) that accumulates fuel fed from the high-pressure fuel pump 3 and performs fuel injection into the cylinder as the solenoid valve opens and closes. An injection pressure sensor 5 that detects the internal pressure (injection pressure) of the common rail 4 is provided on the common rail 4.

【0023】ディーゼルエンジン1には、各気筒内に空
気を導入する吸気通路と、各気筒内での燃焼によって生
じた排気ガスを排出する排気通路が接続されている。吸
気通路は、図示しないエアクリーナを介して空気を導入
する吸気管6と、この吸気管6と各気筒とを分岐接続す
る吸気マニホールド7を有し、吸気管6には吸気圧セン
サ8が設置されている。排気通路は、大気に開口する排
気管9と、各気筒より排出される排気ガスを排気管9へ
送る排気マニホールド10を有し、排気管9には排気中
の酸素濃度(空燃比)を検出する酸度濃度センサ11
(本発明の空燃比検出手段)が設置されている。
The diesel engine 1 is connected to an intake passage for introducing air into each cylinder and an exhaust passage for discharging exhaust gas generated by combustion in each cylinder. The intake passage has an intake pipe 6 that introduces air through an air cleaner (not shown), and an intake manifold 7 that branches and connects the intake pipe 6 to each cylinder. An intake pressure sensor 8 is installed in the intake pipe 6. ing. The exhaust passage has an exhaust pipe 9 that opens to the atmosphere and an exhaust manifold 10 that sends exhaust gas discharged from each cylinder to the exhaust pipe 9. The exhaust pipe 9 detects an oxygen concentration (air-fuel ratio) in the exhaust gas. Acidity concentration sensor 11
(Air-fuel ratio detecting means of the present invention) is provided.

【0024】酸素濃度センサ11は、特にガソリンエン
ジン用として広く使われている限界電流形の酸素濃度セ
ンサ11である。本センサ11は、酸素濃度に対応した
出力が得られるが、原理上、出力に圧力依存性があるた
め、たとえ酸素濃度が一定でも、圧力が高いほど出力が
大きくなるという特徴を持つ。排気管9と吸気管6との
間には、排気の一部を吸気管6に還流させるためのEG
R配管12が接続され、このEGR配管12の途中にE
GR弁13が設けられている。EGR弁13は、EGR
制御弁14により弁開度が調整され、その弁開度に応じ
てEGR配管12を流れる排気量(以下EGR量と呼
ぶ)が制御される。
The oxygen concentration sensor 11 is a limiting current type oxygen concentration sensor 11 widely used particularly for gasoline engines. The sensor 11 can obtain an output corresponding to the oxygen concentration. However, in principle, the output has a pressure dependency. Therefore, even if the oxygen concentration is constant, the output increases as the pressure increases. An EG for recirculating a part of the exhaust gas to the intake pipe 6 is provided between the exhaust pipe 9 and the intake pipe 6.
The R pipe 12 is connected, and E
A GR valve 13 is provided. The EGR valve 13 is an EGR valve.
The valve opening is adjusted by the control valve 14, and the amount of exhaust gas flowing through the EGR pipe 12 (hereinafter, referred to as EGR amount) is controlled according to the valve opening.

【0025】本システムは、空燃比制御手段としての機
能を有するエンジン電子制御回路(以下ECU15と呼
ぶ)により制御される。ECU15には、酸素濃度セン
サ11、噴射圧センサ5、吸気圧センサ8、エンジン回
転数センサ16、アクセル開度センサ17、その他、通
常の電子制御式ディーゼルエンジン1に用いられる各種
センサ類が入力回路に接続され、燃料噴射弁2、EGR
制御弁14、高圧燃料ポンプ3等が出力回路に接続され
ている。このECU15は、上記の各センサから入力し
たセンサ信号を基に燃料噴射時期、燃料噴射量、及びE
GR量等を演算し、その演算結果に基づいて高圧燃料ポ
ンプ3、燃料噴射弁2、及びEGR制御弁14の作動を
電子制御する。
This system is controlled by an engine electronic control circuit (hereinafter referred to as ECU 15) having a function as air-fuel ratio control means. The ECU 15 includes an oxygen concentration sensor 11, an injection pressure sensor 5, an intake pressure sensor 8, an engine speed sensor 16, an accelerator opening sensor 17, and various other sensors used in a normal electronically controlled diesel engine 1. And the fuel injection valve 2 and the EGR
The control valve 14, the high-pressure fuel pump 3 and the like are connected to the output circuit. The ECU 15 determines the fuel injection timing, fuel injection amount, and E based on the sensor signals input from each of the above sensors.
The GR amount and the like are calculated, and the operations of the high-pressure fuel pump 3, the fuel injection valve 2, and the EGR control valve 14 are electronically controlled based on the calculation result.

【0026】ところが、燃料噴射弁2やEGR弁13等
の特性のバラツキや環境条件の変化、あるいは経時劣化
等により、各気筒の燃料噴射量あるいはEGR量が予め
計画された所定量からずれると、ディーゼルエンジン1
にとって重要課題であるスモークを増加させてしまう可
能性がある。そこで、本システムでは、ディーゼルエン
ジン1のエミッション(特にスモーク)と相関が強い空
燃比を酸素濃度センサ11により検出し、その空燃比に
基づいて各気筒の燃料噴射量及びEGR量をフィードバ
ック制御して、エミッション(特にスモーク)が所定値
となるようにするものである。
However, if the fuel injection amount or the EGR amount of each cylinder deviates from a predetermined amount due to variations in characteristics of the fuel injection valve 2, the EGR valve 13, etc., changes in environmental conditions, or deterioration over time, etc. Diesel engine 1
There is a possibility of increasing smoke, which is an important issue for the user. Therefore, in the present system, the air-fuel ratio having a strong correlation with the emission (especially, smoke) of the diesel engine 1 is detected by the oxygen concentration sensor 11, and the fuel injection amount and the EGR amount of each cylinder are feedback-controlled based on the air-fuel ratio. , Emission (especially, smoke) is set to a predetermined value.

【0027】次に、空燃比に基づいて各気筒の燃料噴射
量及びEGR量を補正する本システムの作動をECU1
5の処理手順に従って説明する。図1はECU15の処
理手順を示すフローチャートである。 Step100 :エンジン回転数、アクセル開度、吸気圧、そ
の他各種センサからの情報を基に現在のエンジン1の運
転条件を読み込む。 Step101 :予めECU15内に記憶されているマップ等
とStep100 で得られた情報とを合わせて目標空燃比(目
標排気酸素濃度)を算出する。 Step102 :酸素濃度センサ11の信号から実際の空燃比
を読み込む。 Step103 :後述する方法により全気筒の平均空燃比と各
気筒毎の空燃比とをそれぞれ算出する。
Next, the operation of the present system for correcting the fuel injection amount and the EGR amount of each cylinder based on the air-fuel ratio will be described with reference to the ECU 1.
A description will be given according to the processing procedure of No. 5. FIG. 1 is a flowchart showing a processing procedure of the ECU 15. Step 100: The current operating condition of the engine 1 is read based on information from the engine speed, the accelerator opening, the intake pressure, and other various sensors. Step 101: A target air-fuel ratio (target exhaust oxygen concentration) is calculated by combining a map or the like previously stored in the ECU 15 with the information obtained in Step 100. Step 102: The actual air-fuel ratio is read from the signal of the oxygen concentration sensor 11. Step 103: An average air-fuel ratio of all cylinders and an air-fuel ratio of each cylinder are calculated by a method described later.

【0028】Step104 :エンジン負荷(出力トルク)が
所定値より大きいか否かを判定する。具体的には、アク
セル開度やECU15内で計算される燃料噴射指令量と
所定値との比較により、その大小が判定される。Step10
4 でエンジン負荷が低いと判定された場合(判定結果N
O)は、Step105 へ進む。エンジン負荷が低い場合は、
排気中のNOX を低減するためにEGR制御が実行され
る(図7に示すとの領域)。また、エンジン負荷が
低い場合は、図6に示すように、気筒間空燃比がばらつ
いていても、スモークの発生量にそれほど影響を与えな
い。これに対し、EGR量のずれにより各気筒間の平均
空燃比が目標値からずれてしまうと、図5に示すよう
に、エミッション(特にスモーク)が大きく悪化する。
Step 104: It is determined whether or not the engine load (output torque) is larger than a predetermined value. Specifically, the magnitude is determined by comparing the accelerator opening and the fuel injection command amount calculated in the ECU 15 with a predetermined value. Step10
4 when it is determined that the engine load is low (determination result N
O) goes to Step 105. If the engine load is low,
EGR control is performed to reduce NO X in the exhaust gas (region shown in FIG. 7). Further, when the engine load is low, as shown in FIG. 6, even if the inter-cylinder air-fuel ratio varies, it does not significantly affect the amount of smoke generated. On the other hand, when the average air-fuel ratio between the cylinders deviates from the target value due to the deviation of the EGR amount, the emission (especially, smoke) deteriorates significantly as shown in FIG.

【0029】そこで、Step105 では、EGR量を補正す
る必要があるか否かを判断するために、以下の判定を行
う。 Step105 :Step101 で算出した目標空燃比とStep103 で
算出した平均空燃比とのずれが所定値より小さいか否か
を判定する。このStep105 で平均空燃比のずれが所定値
以上と判定された場合(判定結果NO)は、Step106 へ
進む。 Step106 (本発明の低負荷補正手段):ここでは、目標
空燃比に対する平均空燃比のずれが大きいため、そのず
れ量に基づいてEGR制御弁14を操作し、EGR弁1
3の弁開度を変更してEGR量を補正する。これによ
り、平均空燃比を所定値に制御できるため、エミッショ
ンを改善できる。
Therefore, in Step 105, the following determination is made to determine whether the EGR amount needs to be corrected. Step 105: It is determined whether or not the difference between the target air-fuel ratio calculated in Step 101 and the average air-fuel ratio calculated in Step 103 is smaller than a predetermined value. If it is determined in this Step 105 that the deviation of the average air-fuel ratio is equal to or larger than the predetermined value (determination result NO), the process proceeds to Step 106. Step 106 (low load correction means of the present invention): Here, since the deviation of the average air-fuel ratio from the target air-fuel ratio is large, the EGR control valve 14 is operated based on the deviation, and the EGR valve 1
The EGR amount is corrected by changing the valve opening degree of No. 3. Thereby, the average air-fuel ratio can be controlled to a predetermined value, so that the emission can be improved.

【0030】一方、前記Step104 において、エンジン負
荷が高いと判定された場合(判定結果YES)は、Step
107 へ進む。 Step107 :Step103 で算出した各気筒毎の空燃比のばら
つきが予め決められた所定値と比較して大きいか否かを
判定する。ここで、各気筒間空燃比のばらつきが所定値
以上と判定された場合(判定結果NO)は、Step108 へ
進む。 Step108 (本発明の高負荷補正手段と非EGR補正手
段):各気筒毎の噴射量を補正する。即ち、エンジン負
荷が大きい場合は、図6に示したように、気筒間空燃比
のばらつきが大きいとエミッションが大きく悪化するた
め、先ず各気筒の空燃比を揃える(ばらつきを無くす)
ことで、エミッションを改善する。具体的には、空燃比
が低く酸素濃度が低い気筒は噴射量を減らし、逆に空燃
比が高く酸素濃度が高い気筒は噴射量を増やす。
On the other hand, if it is determined in Step 104 that the engine load is high (determination result YES), Step
Proceed to 107. Step 107: It is determined whether or not the variation of the air-fuel ratio for each cylinder calculated in Step 103 is larger than a predetermined value. If it is determined that the variation in the air-fuel ratio between the cylinders is equal to or greater than the predetermined value (determination result NO), the process proceeds to Step 108. Step 108 (high load correction means and non-EGR correction means of the present invention): The injection amount for each cylinder is corrected. That is, when the engine load is large, as shown in FIG. 6, if the variation in the air-fuel ratio between the cylinders is large, the emission is greatly deteriorated. Therefore, first, the air-fuel ratio of each cylinder is made uniform (to eliminate the variation).
By improving emissions. Specifically, a cylinder with a low air-fuel ratio and a low oxygen concentration reduces the injection amount, and conversely, a cylinder with a high air-fuel ratio and a high oxygen concentration increases the injection amount.

【0031】前記Step107 において、気筒間の空燃比ば
らつきが所定値より小さいと判定された場合(判定結果
YES)は、Step109 へ進む。 Step109 :Step105 と同様に、Step101 で算出した目標
空燃比とStep103 で算出した平均空燃比とのずれが所定
値より小さいか否かを判定する。なお、Step107 とStep
109 は、この順序、つまりStep107 の後にStep109 を設
定した方が良い。その理由は、気筒間空燃比のばらつき
が所定値以上ある場合、先に平均空燃比のずれを調整す
ると、全気筒の平均空燃比を低く補正する場合には、空
燃比のばらつきにより酸素が不足している気筒では、さ
らに酸素不足状態となり、多量のスモークが発生するこ
ととなる。これに対し、先ず気筒毎の燃料噴射量を調整
して気筒毎の空燃比を補正した後、全気筒の平均空燃比
を補正すれば、上記の不具合を解消することができるた
めである。
If it is determined in step 107 that the air-fuel ratio variation among the cylinders is smaller than a predetermined value (determination result YES), the flow proceeds to step 109. Step 109: As in Step 105, it is determined whether or not the difference between the target air-fuel ratio calculated in Step 101 and the average air-fuel ratio calculated in Step 103 is smaller than a predetermined value. Step 107 and Step
It is better to set Step 109 in this order, that is, Step 109 after Step 107. The reason is that if the variation in the air-fuel ratio between cylinders is equal to or greater than a predetermined value, the deviation of the average air-fuel ratio is adjusted first, and if the average air-fuel ratio of all cylinders is corrected to be low, oxygen is insufficient due to the variation in the air-fuel ratio. In such a cylinder, a further oxygen deficiency occurs, and a large amount of smoke is generated. On the other hand, the above problem can be solved by first adjusting the fuel injection amount of each cylinder to correct the air-fuel ratio of each cylinder, and then correcting the average air-fuel ratio of all cylinders.

【0032】Step109 で目標空燃比に対する平均空燃比
のずれが所定値以上と判定された場合(判定結果NO)
は、Step110 へ進む。 Step110 :運転条件がEGR領域にあるか否かを判定す
る。ここで運転条件がEGR領域にあると判定された場
合(判定結果YES)は、Step111 へ進む。 Step111 (本発明の高負荷補正手段):EGR量を補正
する。一方、Step110 で運転条件がEGR領域に無いと
判定された場合(判定結果NO)は、Step112 へ進む。
When it is determined in Step 109 that the deviation of the average air-fuel ratio from the target air-fuel ratio is equal to or larger than a predetermined value (determination result NO)
Goes to Step110. Step 110: It is determined whether the operating condition is in the EGR region. If it is determined that the operating condition is in the EGR region (the determination result is YES), the process proceeds to Step 111. Step 111 (high load correction means of the present invention): The EGR amount is corrected. On the other hand, when it is determined in Step 110 that the operating condition is not in the EGR region (the determination result is NO), the process proceeds to Step 112.

【0033】Step112 (非EGR補正手段):全気筒の
平均噴射量を補正する。即ち、全気筒の噴射量を一律に
増減補正する。なお、平均空燃比のずれを補正するため
に、Step106 及びStep111 において噴射量ではなくEG
R量を補正することには、以下の理由がある。つまり、
EGRが行われる領域は、図7に示すように、全負荷条
件に対して比較的エンジン負荷が低いため、こういった
領域で噴射量を増減すると、その増減に対してエンジン
出力が敏感に変化し、運転性に悪影響を与える場合があ
る。これを防ぐために、噴射量ではなくEGR量を補正
している。
Step 112 (Non-EGR correction means): The average injection amount of all cylinders is corrected. That is, the injection amounts of all the cylinders are uniformly increased or decreased. Note that, in order to correct the deviation of the average air-fuel ratio, in Steps 106 and 111, not EG but EG
The reason for correcting the R amount is as follows. That is,
As shown in FIG. 7, since the engine load is relatively low under the full load condition in the region where the EGR is performed, if the injection amount is increased or decreased in such a region, the engine output changes sensitively to the increase or decrease. In some cases, the driving performance may be adversely affected. To prevent this, the EGR amount is corrected instead of the injection amount.

【0034】次に、上記Step103 における平均空燃比及
び気筒毎空燃比の算出方法について図8に示すフローチ
ャートに基づいて詳細に説明する。 Step102 :例えば10クランク角(CA)毎に酸素濃度
センサ11の出力をサンプルする。 Step200 :Step102 でサンプルした信号(センサ出力)
を1サイクル分(4気筒エンジンでは720CA)に渡
り平均化して平均空燃比を算出する。 Step201 :続いて、気筒毎の空燃比を算出する。
Next, the method of calculating the average air-fuel ratio and the air-fuel ratio for each cylinder in Step 103 will be described in detail with reference to the flowchart shown in FIG. Step 102: The output of the oxygen concentration sensor 11 is sampled every 10 crank angles (CA), for example. Step200: Signal sampled in Step102 (sensor output)
Is averaged over one cycle (720 CA for a four-cylinder engine) to calculate an average air-fuel ratio. Step 201: Subsequently, the air-fuel ratio for each cylinder is calculated.

【0035】各気筒から排出された排気ガスは、各気筒
での燃焼順序に従い、例えば図9に示すように#1気筒
→#3気筒→#4気筒→#2気筒の順に酸素濃度センサ
11に到達する。この時、排気ガスが酸素濃度センサに
到達するまでは時間遅れ(図9のΔCA)があり、この
遅れはエンジン回転数が高い程、エンジン負荷が高い
程、小さくなる。従って、前記のStep100 で読み込んだ
エンジン条件により、ΔCA(#1TDCを検出してか
ら#1気筒の排気ガスが酸素濃度センサ11に到達する
までにエンジン1が回転するクランク角度)を算出す
る。
The exhaust gas discharged from each cylinder is sent to the oxygen concentration sensor 11 in the order of # 1 cylinder → # 3 cylinder → # 4 cylinder → # 2 cylinder in the order of combustion in each cylinder, for example, as shown in FIG. To reach. At this time, there is a time delay (ΔCA in FIG. 9) until the exhaust gas reaches the oxygen concentration sensor, and this delay decreases as the engine speed increases and the engine load increases. Therefore, ΔCA (the crank angle at which the engine 1 rotates from the time when the # 1 TDC is detected to the time when the exhaust gas of the # 1 cylinder reaches the oxygen concentration sensor 11) is calculated based on the engine conditions read in Step 100.

【0036】Step202 :Step201 で算出したΔCAを基
にサンプル信号を180CA毎に平均化して気筒毎の空
燃比に対応する値を算出する。例えば、0〜180CA
の平均値→#1気筒、180〜360CAの平均値→#
3気筒、360〜540CAの平均値→#4気筒、54
0〜720CAの平均値→#2気筒とする。これによ
り、排気圧脈動の影響を除去することができる。続い
て、特にディーゼルエンジン1の場合、図10に示すよ
うに、サイクル毎の燃焼ばらつきが大きいため、正確な
空燃比(特に気筒毎の空燃比情報)を得にくい。そこ
で、Step203 〜207 では、以下に示すように、Step200
で算出した平均空燃比、及びStep202 で算出した気筒毎
空燃比を複数サイクル(例えば5サイクル)に渡って平
均化する。
Step 202: A sample signal is averaged every 180 CA based on ΔCA calculated in Step 201 to calculate a value corresponding to the air-fuel ratio for each cylinder. For example, 0 to 180 CA
Average value of # 1 cylinder, average value of 180 to 360 CA → #
3-cylinder, average value of 360 to 540 CA → # 4 cylinder, 54
Average value of 0 to 720 CA → # 2 cylinder. Thereby, the influence of the exhaust pressure pulsation can be eliminated. Subsequently, in the case of the diesel engine 1 in particular, as shown in FIG. 10, since the combustion variation between cycles is large, it is difficult to obtain an accurate air-fuel ratio (particularly, air-fuel ratio information for each cylinder). Therefore, in Steps 203 to 207, as shown below, Step 200
The average air-fuel ratio calculated in step 202 and the air-fuel ratio for each cylinder calculated in step 202 are averaged over a plurality of cycles (for example, five cycles).

【0037】Step203 :回転数、アクセル開度等の変化
により、エンジン1の運転条件が変化したか否かを検出
する。ここで、運転条件が大きく変化した場合(判定結
果YES)は、Step204 へ進む。 Step204 :カウンタNをリセット(N=0)して本制御
を終了する。これは、例えば車両加速時等で運転条件が
大きく変化している間は、空燃比が刻々と変化するた
め、正確な情報が得られないためである。一方、Step20
3 で運転条件が変化していないと判定された場合(判定
結果NO)は、Step205 へ進む。
Step 203: It is detected whether or not the operating conditions of the engine 1 have changed due to changes in the number of revolutions, accelerator opening, and the like. Here, if the operating conditions have changed significantly (determination result YES), the process proceeds to Step 204. Step 204: Reset the counter N (N = 0) and end this control. This is because accurate information cannot be obtained because the air-fuel ratio changes every moment while the driving conditions are largely changed, for example, when the vehicle is accelerating. On the other hand, Step20
If it is determined in 3 that the operating conditions have not changed (determination result NO), the process proceeds to Step 205.

【0038】Step205 :カウンタNが所定値(例えばN
=5)となったか否かを判定する。ここで、所定値とな
っていない場合(判定結果NO)は、今回算出した平均
空燃比及び気筒毎空燃比の値を記憶した上で、Step206
へ進む。 Step206 :カウンタNをインクリメント(N=N+1)
して、再びStep102 へ戻り、上述のStep102 〜203 の処
理を繰り返す。一方、Step205 でカウンタNが所定値と
なった場合(判定結果YES)は、Step207 へ進む。 Step207 :Step205 で記憶されたN回分の平均空燃比及
び気筒毎空燃比の値を平均して複数サイクルの平均空燃
比及び気筒毎空燃比を算出する。これにより、図11に
示すように、排気圧脈動の影響とサイクル毎のバラツキ
を除去した上で、各気筒毎の空燃比に相当する値を安定
的に求めることができる。
Step 205: The counter N has a predetermined value (for example, N
= 5) is determined. Here, if it is not the predetermined value (the determination result is NO), the average air-fuel ratio and the air-fuel ratio for each cylinder calculated this time are stored and stored in Step 206.
Proceed to. Step 206: Increment the counter N (N = N + 1)
Then, the process returns to Step 102 again, and repeats the processes of Steps 102 to 203 described above. On the other hand, if the counter N has reached the predetermined value in Step 205 (determination result YES), the flow proceeds to Step 207. Step 207: The average air-fuel ratio and cylinder-by-cylinder air-fuel ratio for the plurality of cycles are calculated by averaging the average air-fuel ratio and cylinder-by-cylinder air-fuel ratio values stored in Step 205. As a result, as shown in FIG. 11, the value corresponding to the air-fuel ratio for each cylinder can be stably obtained after removing the influence of the exhaust pressure pulsation and the variation for each cycle.

【0039】(本実施形態の効果)上述したように、空
燃比とスモーク発生量との関係では、目標空燃比に対す
る気筒間の平均空燃比のずれが大きくなると、高負荷時
及び低負荷時ともにスモーク発生量が増大する(図5参
照)。一方、気筒間空燃比のばらつきが大きくなると、
高負荷時ではスモーク発生量が増大するが、低負荷時で
はスモーク発生量が殆ど変化しない(図6参照)。この
空燃比とスモークとの相関より、エンジン1の低負荷
時、つまりEGR領域のうち低負荷領域では、気筒毎の
噴射量を補正して気筒間空燃比のばらつきを小さくして
も、スモークを低減できる効果が極めて小さいことが分
かる。
(Effects of the present embodiment) As described above, in the relationship between the air-fuel ratio and the amount of smoke generation, when the deviation of the average air-fuel ratio between the cylinders with respect to the target air-fuel ratio increases, both at high load and low load The amount of smoke generated increases (see FIG. 5). On the other hand, if the variation in the air-fuel ratio between cylinders becomes large,
At high load, the amount of smoke increases, but at low load, the amount of smoke hardly changes (see FIG. 6). From the correlation between the air-fuel ratio and the smoke, when the engine 1 is under a low load, that is, in the low load region of the EGR region, the smoke is reduced even if the injection amount for each cylinder is corrected to reduce the variation in the inter-cylinder air-fuel ratio. It can be seen that the effect that can be reduced is extremely small.

【0040】そこで、本システムは、EGR領域のうち
低負荷領域では、気筒毎の噴射量補正を行わず、EGR
量を補正して気筒間の平均空燃比を制御し、エンジン1
の高負荷時(非EGR領域及びEGR領域のうち高負荷
領域)では、気筒毎の噴射量補正によって気筒間空燃比
のばらつきを小さくし、且つ気筒間の平均空燃比のずれ
を補正することで、それぞれスモーク発生量を所定値に
制御している。これにより、実用可能な精度の酸素濃度
センサ11を用いて、エンジン1の運転状態に応じた適
切な気筒毎あるいは平均の空燃比制御が可能となり、エ
ミッションの改善が可能となる。また、エンジン1の高
負荷時(非EGR領域及びEGR領域のうち高負荷領
域)では、気筒間空燃比のばらつきを補正してから気筒
間の平均空燃比のずれを補正しているので、空燃比補正
中にスモーク発生量が増加することを防止できる。
Therefore, in the present system, in the low load range of the EGR range, the injection amount correction for each cylinder is not performed, and the EGR is not performed.
The engine 1 controls the average air-fuel ratio between cylinders by correcting the amount.
When the load is high (in the non-EGR region and the high load region in the EGR region), the variation in the air-fuel ratio between the cylinders is reduced by correcting the injection amount for each cylinder, and the deviation of the average air-fuel ratio between the cylinders is corrected. , Respectively, to control the amount of smoke generation to a predetermined value. This makes it possible to perform appropriate cylinder-by-cylinder or average air-fuel ratio control in accordance with the operating state of the engine 1 using the oxygen concentration sensor 11 with practical accuracy, and to improve emission. In addition, when the engine 1 is under a high load (high load region in the non-EGR region and the EGR region), the deviation of the average air-fuel ratio between the cylinders is corrected before the deviation of the average air-fuel ratio between the cylinders. It is possible to prevent the smoke generation amount from increasing during the fuel ratio correction.

【0041】本システムは、排気圧の脈動が大きいディ
ーゼルエンジン1に適用しているが、酸素濃度センサ1
1の出力を1サイクル/気筒数=180CA毎に平均化
して気筒毎の空燃比に対応する値を算出しているので、
空燃比検出手段として一般的な限界電流式の酸素濃度セ
ンサ11を用いた場合でも、排気圧脈動の影響を除去し
て正確な空燃比を検出することが可能である。また、上
述のStep200 で算出した平均空燃比、及びStep202 で算
出した気筒毎の空燃比を複数サイクル(例えば5サイク
ル)に渡って平均化することにより、サイクル毎の燃焼
ばらつきの影響を小さくできるので、各気筒毎の空燃比
を安定的に求めることが可能である。
The present system is applied to the diesel engine 1 having a large exhaust pressure pulsation.
Since the output of 1 is averaged for each cycle / number of cylinders = 180 CA to calculate the value corresponding to the air-fuel ratio for each cylinder,
Even when a general limiting current type oxygen concentration sensor 11 is used as the air-fuel ratio detecting means, it is possible to remove the influence of the exhaust pressure pulsation and detect an accurate air-fuel ratio. Further, by averaging the average air-fuel ratio calculated in the above-described Step 200 and the air-fuel ratio of each cylinder calculated in the Step 202 over a plurality of cycles (for example, five cycles), the influence of the combustion variation in each cycle can be reduced. Thus, it is possible to stably obtain the air-fuel ratio for each cylinder.

【0042】(変形例)排気管9の形状の影響や過給機
付きのエンジンにおいては排気タービンの影響により、
各気筒の排気が気筒毎に明確に分離されず、燃焼順序が
前後の気筒(例えば#1気筒に対し#3気筒と#2気
筒)の排気が混ざり合って酸素濃度センサ11に到達す
る場合がある。また、酸素濃度センサ11の応答遅れの
ために、特にエンジン回転数が高い場合には、気筒毎の
空燃比変化にセンサ出力変化が追いつかない場合があ
る。これらいずれの場合でも、図8に示す方法で求めた
気筒毎空燃比は、正確な意味での各気筒の空燃比と等し
くなく、各気筒の空燃比の相対的な大小に対応する特性
値(本発明の第1の特性値)となる。
(Modification) The influence of the shape of the exhaust pipe 9 and the influence of the exhaust turbine in an engine with a supercharger cause
There is a case where the exhaust of each cylinder is not clearly separated for each cylinder, and the exhaust of the cylinders whose combustion order is before and after (for example, the # 3 cylinder and the # 2 cylinder with respect to the # 1 cylinder) is mixed and reaches the oxygen concentration sensor 11. is there. Further, due to a response delay of the oxygen concentration sensor 11, particularly when the engine speed is high, the change in the sensor output may not catch up with the change in the air-fuel ratio for each cylinder. In any of these cases, the air-fuel ratio for each cylinder obtained by the method shown in FIG. 8 is not exactly equal to the air-fuel ratio of each cylinder in a precise sense, and the characteristic value corresponding to the relative magnitude of the air-fuel ratio of each cylinder (( (A first characteristic value of the present invention).

【0043】本システムでは、各気筒の空燃比を直接、
目標空燃比へと補正するのではなく、各気筒の空燃比に
対応する特性値(センサ出力を180CAに渡り平均し
た値)の偏差が極小となるように補正している。従っ
て、前述したケース等にも対応可能な汎用性が非常に大
きな空燃比制御装置とすることができる。また、図1の
Step101 において目標空燃比を算出する場合、エンジン
回転数やアクセル開度等のエンジン条件だけから目標空
燃比を決めると、スモークを所定値以下に抑制できない
場合がある。具体的には、吸気圧あるいは燃料噴射圧が
変化した場合である。例えば高地などで大気圧が低下
し、それに伴い吸気圧が低下すると、たとえ空燃比が同
一でもシリンダ内に吸入される酸素の絶対量が低下する
ことから、燃料燃焼時のシリンダ内の酸素の利用率が低
下し、結果的にシリンダ内で局所的に酸素不足となる領
域が増加してスモーク発生量が増加してしまう。
In this system, the air-fuel ratio of each cylinder is directly
Rather than correcting to the target air-fuel ratio, the correction is performed so that the deviation of the characteristic value (the value obtained by averaging the sensor output over 180 CA) corresponding to the air-fuel ratio of each cylinder is minimized. Therefore, it is possible to provide an air-fuel ratio control device having extremely large versatility capable of coping with the above-described cases and the like. Also, in FIG.
When calculating the target air-fuel ratio in Step 101, if the target air-fuel ratio is determined only from the engine conditions such as the engine speed and the accelerator opening, the smoke may not be suppressed to a predetermined value or less. Specifically, this is a case where the intake pressure or the fuel injection pressure changes. For example, if the atmospheric pressure decreases at high altitudes and the intake pressure decreases, the absolute amount of oxygen drawn into the cylinder decreases even if the air-fuel ratio remains the same. As a result, the area where oxygen is locally insufficient in the cylinder increases, and the amount of smoke generated increases.

【0044】一方、燃料噴射弁2の特性変化あるいは噴
射圧目標値の変更等の理由により、燃料噴射圧力が低下
すると、例えば空燃比が同一でも燃料噴霧の微粒化及び
空気との混合状態が悪化することから、燃料燃焼時のシ
リンダ内の酸素の利用率が低下し、結果的にシリンダ内
で局所的に酸素不足となる領域が増加してスモーク発生
量が増加してしまう。そこで、本システムでは、これら
に対応するために、図12に示すように、吸気圧が小さ
いほど目標空燃比を大きくするように補正変更し、また
図13に示すように、燃料噴射圧力が小さいほど目標空
燃比を大きくするように補正変更している。これによ
り、吸気圧や噴射圧の変化によらず、スモーク量を所定
値とすることが可能である。
On the other hand, when the fuel injection pressure decreases due to a change in the characteristics of the fuel injection valve 2 or a change in the injection pressure target value, for example, even if the air-fuel ratio is the same, the atomization of the fuel spray and the mixing state with air deteriorate. Therefore, the utilization rate of oxygen in the cylinder at the time of fuel combustion decreases, and as a result, the region where oxygen is insufficient in the cylinder locally increases, and the amount of smoke generated increases. Therefore, in the present system, in order to cope with these, as shown in FIG. 12, the correction is changed so that the target air-fuel ratio increases as the intake pressure decreases, and as shown in FIG. 13, the fuel injection pressure decreases. The correction is changed so that the target air-fuel ratio increases as the value increases. This makes it possible to set the smoke amount to a predetermined value regardless of changes in the intake pressure or the injection pressure.

【0045】なお、上述の実施形態では、4気筒のコモ
ンレール式ディーゼルエンジン1を例に説明したが、そ
れ以外の気筒毎に噴射量を調整可能な多気筒内燃機関へ
も適用可能である。例えば6気筒のエンジンに適用する
と、気筒毎空燃比に対応する値を求める際には、排気圧
脈動の影響を除去するための平均化区間を720CA/
6=120CAとする。
In the above embodiment, the four-cylinder common rail diesel engine 1 has been described as an example. However, the present invention can be applied to a multi-cylinder internal combustion engine in which the injection amount can be adjusted for each of the other cylinders. For example, when applied to a six-cylinder engine, when determining a value corresponding to the cylinder-by-cylinder air-fuel ratio, an averaging section for eliminating the influence of exhaust pressure pulsation is set to 720 CA /
6 = 120 CA.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空燃比制御の処理手順を示すフローチャートで
ある。
FIG. 1 is a flowchart showing a processing procedure of air-fuel ratio control.

【図2】空燃比制御装置のシステム図である。FIG. 2 is a system diagram of an air-fuel ratio control device.

【図3】吸気圧とスモークとの相関図である。FIG. 3 is a correlation diagram between intake pressure and smoke.

【図4】燃料噴射圧とスモークとの相関図である。FIG. 4 is a correlation diagram between fuel injection pressure and smoke.

【図5】平均空燃比のずれとスモークとの相関図であ
る。
FIG. 5 is a correlation diagram between the deviation of the average air-fuel ratio and smoke.

【図6】気筒間空燃比のばらつきとスモークとの相関図
である。
FIG. 6 is a correlation diagram of a variation in air-fuel ratio between cylinders and smoke.

【図7】EGR領域を示すトルク特性図である。FIG. 7 is a torque characteristic diagram showing an EGR region.

【図8】空燃比を算出するための処理手順を示すフロー
チャートである。
FIG. 8 is a flowchart showing a processing procedure for calculating an air-fuel ratio.

【図9】酸素濃度センサの時間的な遅れを説明するタイ
ムチャートである。
FIG. 9 is a time chart for explaining a time delay of the oxygen concentration sensor.

【図10】酸素濃度センサの出力を10CA毎にサンプ
ルしたものを複数サイクル分、重ね書きした図面であ
る。
FIG. 10 is a drawing in which the output of the oxygen concentration sensor is sampled every 10 CA and overwritten for a plurality of cycles.

【図11】気筒毎に酸素濃度センサの出力を平均化した
図面である。
FIG. 11 is a drawing in which the output of the oxygen concentration sensor is averaged for each cylinder.

【図12】吸気圧と目標空燃比との相関図である。FIG. 12 is a correlation diagram between an intake pressure and a target air-fuel ratio.

【図13】燃料噴射圧と目標空燃比との相関図である。FIG. 13 is a correlation diagram between a fuel injection pressure and a target air-fuel ratio.

【符号の説明】[Explanation of symbols]

1 ディーゼルエンジン(内燃機関) 5 噴射圧センサ(噴射圧検出手段) 6 吸気管(吸気通路) 7 吸気マニホールド(吸気通路) 8 吸気圧センサ(吸気圧検出手段) 11 酸素濃度センサ(空燃比検出手段) 13 EGR弁(EGR手段) 14 EGR制御弁(EGR手段) 15 ECU(空燃比制御手段) DESCRIPTION OF SYMBOLS 1 Diesel engine (internal combustion engine) 5 Injection pressure sensor (injection pressure detection means) 6 Intake pipe (intake passage) 7 Intake manifold (intake passage) 8 Intake pressure sensor (intake pressure detection means) 11 Oxygen concentration sensor (air-fuel ratio detection means) 13) EGR valve (EGR means) 14 EGR control valve (EGR means) 15 ECU (air-fuel ratio control means)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 43/00 301 F02D 43/00 301E 301H 301N 45/00 312 45/00 312J 312K 324 324 F02M 25/07 570 F02M 25/07 570F 570G 570J G05B 11/36 G05B 11/36 M Fターム(参考) 3G062 AA01 BA04 CA06 GA05 GA06 GA13 GA15 GA17 3G084 AA01 AA03 BA09 BA13 BA20 CA03 CA04 CA09 DA05 DA10 DA12 DA23 EA05 EB09 EB12 EB25 EC01 FA00 FA10 FA11 FA29 FA33 3G092 AA02 AA17 AA18 BA04 BB01 DC09 DC10 DE06S EA03 EA08 EA17 EB01 EB05 EC01 FA08 FA18 FA36 GA05 GA06 HA05Z HB01X HB03Z HD05Z HD07X HE01Z HF08Z 3G301 HA02 HA06 JA03 JA05 JA13 JA21 KA08 KA09 KA23 LA00 MA01 MA11 NA01 NA08 NB03 NC04 ND03 NE17 NE23 PA07Z PB08Z PD02Z PE01Z PF03Z 5H004 GA16 GB12 HA13 HB03 HB04 JA13 JA14 JB20 KC56 LA19 LB06 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02D 43/00 301 F02D 43/00 301E 301H 301N 45/00 312 45/00 312J 312K 324 324 F02M 25/07 570 F02M 25 / 07 570F 570G 570J G05B 11/36 G05B 11/36 MF term (reference) 3G062 AA01 BA04 CA06 GA05 GA06 GA13 GA15 GA17 3G084 AA01 AA03 BA09 BA13 BA20 CA03 CA04 CA09 DA05 DA10 DA12 DA23 EA05 FA10 EB09 FA09 FA33 3G092 AA02 AA17 AA18 BA04 BB01 DC09 DC10 DE06S EA03 EA08 EA17 EB01 EB05 EC01 FA08 FA18 FA36 GA05 GA06 HA05Z HB01X HB03Z HD05Z HD07X HE01Z HF08Z 3G301 HA02 HA06 JA03 JA05 NA13 NA08 NA13 NA03 NA01 NA03 NA01 NA03 NA01 NA08 PD02Z PE01Z PF03Z 5H004 GA16 GB12 HA13 HB03 HB04 JA13 JA14 JB20 KC56 LA19 LB06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の各気筒より排出される排気ガス
中の空燃比を検出する空燃比検出手段と、 排気ガスの一部を前記内燃機関の吸気通路に還流させる
EGR手段と、 前記内燃機関の運転状態に基づいて目標空燃比を算出す
る目標空燃比算出手段と、 前記空燃比検出手段の出力を基に、気筒毎の空燃比に対
応する第1の特性値を算出する気筒毎空燃比算出手段
と、 前記空燃比検出手段の出力を基に、全気筒の平均空燃比
に対応する第2の特性値を算出する平均空燃比算出手段
と、 前記各気筒への燃料噴射量または前記EGR手段によっ
て前記吸気通路へ還流させるEGR量を補正することに
より、前記空燃比検出手段で検出される空燃比が前記目
標空燃比となるように前記気筒毎の空燃比及び全気筒の
平均空燃比を制御する空燃比制御手段とを備え、 この空燃比制御手段は、 EGR領域のうち比較的負荷が低い領域では、前記第2
の特性値に基づいてEGR量を補正する低負荷補正手段
を有し、 EGR領域のうち比較的負荷が高い領域では、前記第1
の特性値に基づいて気筒毎の燃料噴射量を補正するとと
もに、前記第2の特性値に基づいてEGR量を補正する
高負荷補正手段を有し、 非EGR領域では、前記第1の特性値に基づいて気筒毎
の燃料噴射量を補正するとともに、前記第2の特性値に
基づいて平均噴射量を補正する非EGR補正手段を有し
ていることを特徴とする内燃機関の空燃比制御装置。
1. An air-fuel ratio detecting means for detecting an air-fuel ratio in exhaust gas discharged from each cylinder of an internal combustion engine; an EGR means for recirculating a part of exhaust gas to an intake passage of the internal combustion engine; Target air-fuel ratio calculating means for calculating a target air-fuel ratio based on the operating state of the engine; and cylinder-by-cylinder air for calculating a first characteristic value corresponding to the air-fuel ratio for each cylinder based on an output of the air-fuel ratio detecting means. Fuel ratio calculation means, average air-fuel ratio calculation means for calculating a second characteristic value corresponding to the average air-fuel ratio of all cylinders based on the output of the air-fuel ratio detection means, and a fuel injection amount to each cylinder or The air-fuel ratio for each cylinder and the average air-fuel ratio for all cylinders are adjusted so that the air-fuel ratio detected by the air-fuel ratio detection means becomes the target air-fuel ratio by correcting the amount of EGR recirculated to the intake passage by EGR means. Control the air-fuel ratio And a stage, the air-fuel ratio control means is a relatively low load region in the EGR region, the second
Low load correction means for correcting the EGR amount based on the characteristic value of the above. In the EGR region where the load is relatively high, the first load
High load correction means for correcting the fuel injection amount for each cylinder based on the characteristic value of the above, and correcting the EGR amount based on the second characteristic value. In the non-EGR region, the first characteristic value A fuel injection amount for each cylinder based on the second characteristic value, and non-EGR correction means for correcting an average injection amount based on the second characteristic value. .
【請求項2】請求項1に記載した内燃機関の空燃比制御
装置において、 前記低負荷補正手段は、前記目標空燃比に対応する目標
値と前記第2の特性値との差が小さくなるように前記E
GR量を補正することを特徴とする内燃機関の空燃比制
御装置。
2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the low load correction means reduces a difference between a target value corresponding to the target air-fuel ratio and the second characteristic value. E
An air-fuel ratio control device for an internal combustion engine, which corrects a GR amount.
【請求項3】請求項1または2に記載した内燃機関の空
燃比制御装置において、 前記高負荷補正手段は、各気筒間で前記第1の特性値の
ばらつきが小さくなるように前記気筒毎の燃料噴射量を
補正し、その後、前記目標空燃比に対応する目標値と前
記第2の特性値との差が小さくなるように前記EGR量
を補正することを特徴とする内燃機関の空燃比制御装
置。
3. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein said high load correction means is provided for each of said cylinders such that a variation in said first characteristic value among said cylinders is reduced. Air-fuel ratio control for an internal combustion engine, wherein the EGR amount is corrected so that a difference between a target value corresponding to the target air-fuel ratio and the second characteristic value is reduced. apparatus.
【請求項4】請求項1〜3に記載した何れかの内燃機関
の空燃比制御装置において、 非EGR補正手段は、各気筒間で前記第1の特性値のば
らつきが小さくなるように前記気筒毎の燃料噴射量を補
正し、その後、前記目標空燃比に対応する目標値と前記
第2の特性値との差が小さくなるように前記気筒間の平
均噴射量を補正することを特徴とする内燃機関の空燃比
制御装置。
4. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the non-EGR correction means is configured to reduce the variation in the first characteristic value among the cylinders. Correcting the fuel injection amount for each cylinder, and then correcting the average injection amount between the cylinders so that the difference between the target value corresponding to the target air-fuel ratio and the second characteristic value is reduced. An air-fuel ratio control device for an internal combustion engine.
【請求項5】内燃機関の各気筒より排出される排気ガス
中の空燃比を検出する空燃比検出手段と、 前記内燃機関の運転状態に基づいて目標空燃比を算出す
る目標空燃比算出手段と、 前記空燃比検出手段の出力を基に、気筒毎の空燃比に対
応する特性値を算出する気筒毎空燃比算出手段と、 前記特性値に基づき各気筒への燃料噴射量を調整して、
前記空燃比検出手段で検出される空燃比が前記目標空燃
比となるように前記気筒毎の空燃比を制御する気筒毎空
燃比制御手段とを備え、 前記気筒毎空燃比算出手段は、前記内燃機関の1サイク
ル中に複数回サンプルした前記空燃比検出手段の出力を
前記内燃機関の1サイクル/気筒数に対応した区間毎に
平均化して前記特性値を算出すると共に、前記平均化す
る区間の開始タイミングを前記内燃機関の運転条件毎に
変更することを特徴とする内燃機関の空燃比制御装置。
5. An air-fuel ratio detecting means for detecting an air-fuel ratio in exhaust gas discharged from each cylinder of the internal combustion engine, and a target air-fuel ratio calculating means for calculating a target air-fuel ratio based on an operation state of the internal combustion engine. Based on the output of the air-fuel ratio detection means, a cylinder-by-cylinder air-fuel ratio calculation means for calculating a characteristic value corresponding to the air-fuel ratio for each cylinder, adjusting the fuel injection amount to each cylinder based on the characteristic value,
A cylinder-to-cylinder air-fuel ratio control unit that controls an air-fuel ratio of each of the cylinders such that an air-fuel ratio detected by the air-fuel ratio detection unit is the target air-fuel ratio. The output of the air-fuel ratio detecting means sampled a plurality of times during one cycle of the engine is averaged for each section corresponding to one cycle / number of cylinders of the internal combustion engine to calculate the characteristic value, and the characteristic value is calculated. An air-fuel ratio control device for an internal combustion engine, wherein a start timing is changed for each operating condition of the internal combustion engine.
【請求項6】請求項5に記載した内燃機関の空燃比制御
装置において、 前記気筒毎空燃比制御手段は、各気筒間で前記特性値の
ばらつきが小さくなるように各気筒への燃料噴射量を調
整することを特徴とする内燃機関の空燃比制御装置。
6. An air-fuel ratio control apparatus for an internal combustion engine according to claim 5, wherein said cylinder-by-cylinder air-fuel ratio control means controls a fuel injection amount to each cylinder such that a variation in the characteristic value among the cylinders becomes small. An air-fuel ratio control device for an internal combustion engine, characterized by adjusting the following.
【請求項7】請求項6に記載した内燃機関の空燃比制御
装置において、 前記気筒毎空燃比算出手段は、区間毎に得られた前記特
性値を、対応する気筒毎に複数サイクルに渡って平均化
して各気筒の特性値とすることを特徴とする内燃機関の
空燃比制御装置。
7. An air-fuel ratio control apparatus for an internal combustion engine according to claim 6, wherein said cylinder-by-cylinder air-fuel ratio calculating means converts said characteristic value obtained for each section over a plurality of cycles for each corresponding cylinder. An air-fuel ratio control device for an internal combustion engine, wherein the air-fuel ratio control device is characterized by averaging the characteristic values of each cylinder.
【請求項8】請求項5〜7に記載した何れかの内燃機関
の空燃比制御装置において、 前記気筒毎空燃比算出手段は、前記空燃比検出手段の出
力を平均化する区間の開始タイミングを、前記内燃機関
の回転数あるいは負荷が大きいほど早期とすることを特
徴とする内燃機関の空燃比制御装置。
8. An air-fuel ratio control apparatus for an internal combustion engine according to claim 5, wherein said cylinder-by-cylinder air-fuel ratio calculating means sets a start timing of a section for averaging the output of said air-fuel ratio detecting means. An air-fuel ratio control device for an internal combustion engine, wherein the earlier the higher the rotation speed or the load of the internal combustion engine, the earlier.
【請求項9】請求項1〜8に記載した何れかの内燃機関
の空燃比制御装置において、 前記内燃機関の吸気圧を検出する吸気圧検出手段を備
え、 前記目標空燃比算出手段は、前記吸気圧検出手段の出力
が小さいほど前記目標空燃比を大きくすることを特徴と
する内燃機関の空燃比制御装置。
9. The air-fuel ratio control device for an internal combustion engine according to claim 1, further comprising: an intake pressure detection unit configured to detect an intake pressure of the internal combustion engine; An air-fuel ratio control device for an internal combustion engine, wherein the target air-fuel ratio is increased as the output of the intake pressure detecting means decreases.
【請求項10】請求項1〜9に記載した何れかの内燃機
関の空燃比制御装置において、 前記内燃機関の燃料噴射圧を検出する噴射圧検出手段を
備え、 前記目標空燃比算出手段は、前記噴射圧検出手段の出力
が小さいほど前記目標空燃比を大きくすることを特徴と
する内燃機関の空燃比制御装置。
10. The air-fuel ratio control device for an internal combustion engine according to claim 1, further comprising: an injection pressure detection unit configured to detect a fuel injection pressure of the internal combustion engine, wherein the target air-fuel ratio calculation unit includes: An air-fuel ratio control device for an internal combustion engine, wherein the target air-fuel ratio is increased as the output of the injection pressure detecting means decreases.
JP32874099A 1999-11-18 1999-11-18 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4304793B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32874099A JP4304793B2 (en) 1999-11-18 1999-11-18 Air-fuel ratio control device for internal combustion engine
DE10057013A DE10057013B4 (en) 1999-11-18 2000-11-17 Air / fuel ratio control system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32874099A JP4304793B2 (en) 1999-11-18 1999-11-18 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001140687A true JP2001140687A (en) 2001-05-22
JP4304793B2 JP4304793B2 (en) 2009-07-29

Family

ID=18213657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32874099A Expired - Fee Related JP4304793B2 (en) 1999-11-18 1999-11-18 Air-fuel ratio control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4304793B2 (en)
DE (1) DE10057013B4 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336581A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Controller for internal combustion engine
US7461634B2 (en) 2004-03-01 2008-12-09 Toyota Jidosha Kabushiki Kaisha Fuel injection amount correction method for pressure boosting fuel injection apparatus
JP2009041575A (en) * 2002-02-19 2009-02-26 Crf Scpa Method and device for controlling injection of internal-combustion engine, in particular a diesel engine having common rail injection system
JP2009156216A (en) * 2007-12-27 2009-07-16 Toyota Motor Corp Control device for internal combustion engine
JP2010242630A (en) * 2009-04-07 2010-10-28 Hitachi Automotive Systems Ltd Control apparatus and control method of multiple cylinder engine
JP2011185159A (en) * 2010-03-09 2011-09-22 Denso Corp Abnormality diagnosing device of internal combustion engine with supercharger
JP2012077713A (en) * 2010-10-05 2012-04-19 Toyota Motor Corp Multi-cylinder internal combustion engine control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3710081A1 (en) * 1987-03-27 1988-10-06 Bosch Gmbh Robert ENGINE CONTROL SYSTEM WITH ALTITUDE FUEL INJECTION
JPH0261347A (en) * 1988-08-23 1990-03-01 Nissan Motor Co Ltd Fuel injection controller for diesel engine
WO1996035048A1 (en) * 1995-05-03 1996-11-07 Siemens Aktiengesellschaft Process for the selective lambda control of a cylinder in a multi-cylinder internal combustion engine
JPH09203337A (en) * 1996-01-25 1997-08-05 Unisia Jecs Corp Air-fuel ratio controller for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041575A (en) * 2002-02-19 2009-02-26 Crf Scpa Method and device for controlling injection of internal-combustion engine, in particular a diesel engine having common rail injection system
JP4504448B2 (en) * 2002-02-19 2010-07-14 チエルレエフェ ソチエタ コンソルティレ ペル アチオニ Method and apparatus for injection control in an internal combustion engine, in particular a diesel engine with a common rail injection system
US7461634B2 (en) 2004-03-01 2008-12-09 Toyota Jidosha Kabushiki Kaisha Fuel injection amount correction method for pressure boosting fuel injection apparatus
JP2006336581A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Controller for internal combustion engine
JP4618009B2 (en) * 2005-06-03 2011-01-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP2009156216A (en) * 2007-12-27 2009-07-16 Toyota Motor Corp Control device for internal combustion engine
US7783408B2 (en) 2007-12-27 2010-08-24 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
JP4553007B2 (en) * 2007-12-27 2010-09-29 トヨタ自動車株式会社 Control device for internal combustion engine
JP2010242630A (en) * 2009-04-07 2010-10-28 Hitachi Automotive Systems Ltd Control apparatus and control method of multiple cylinder engine
JP2011185159A (en) * 2010-03-09 2011-09-22 Denso Corp Abnormality diagnosing device of internal combustion engine with supercharger
JP2012077713A (en) * 2010-10-05 2012-04-19 Toyota Motor Corp Multi-cylinder internal combustion engine control device

Also Published As

Publication number Publication date
DE10057013A1 (en) 2001-05-23
DE10057013B4 (en) 2011-02-24
JP4304793B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
US6988485B2 (en) Fuel injection control device for internal combustion engine
US6962140B1 (en) Diesel engine control system and control method
US5934249A (en) Engine control system and the method thereof
US6910458B2 (en) Fuel injection amount control apparatus for internal combustion engine
JP3493039B2 (en) Internal combustion engine control system
KR100680683B1 (en) Control Device for Internal Combustion Engine
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JP2007278223A (en) Control device for cylinder-injection spark-ignition internal combustion engine
US20030075158A1 (en) Method and device for a mass flow determination via a control valve and for determining a modeled induction pipe pressure
US20050092298A1 (en) Injection control apparatus for an engine
US7574298B2 (en) Fuel injection controller
JP2001140687A (en) Air-fuel ratio controlling device for internal combustion engine
US20080121213A1 (en) Engine control system including means for learning characteristics of individual fuel injectors
JP2003206789A (en) Fuel injection control device of internal combustion engine
US5515834A (en) Air-fuel ratio control system for an internal combustion engine
US5479910A (en) Method and device for controlling an internal combustion engine
JP4792453B2 (en) Intake air amount detection device
JP3757569B2 (en) EGR control device for internal combustion engine
JP2001342885A (en) Fuel injection control device for internal combustion engine
JP2001123879A (en) Combustion state detecting device for internal combustion engine
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JP3562137B2 (en) Control device for internal combustion engine
JPH04101044A (en) Fuel feeding controller for multicylinder internal combustion engine
JP2002030969A (en) Air-fuel ratio control device for cylinder fuel injection type internal combustion engine
JPH0814263B2 (en) Fuel supply control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees