JP2001139371A - Zirconia sintered compact for optical connector - Google Patents

Zirconia sintered compact for optical connector

Info

Publication number
JP2001139371A
JP2001139371A JP31560699A JP31560699A JP2001139371A JP 2001139371 A JP2001139371 A JP 2001139371A JP 31560699 A JP31560699 A JP 31560699A JP 31560699 A JP31560699 A JP 31560699A JP 2001139371 A JP2001139371 A JP 2001139371A
Authority
JP
Japan
Prior art keywords
optical connector
zirconia sintered
sintered body
phase
tetragonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31560699A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kobayashi
善宏 小林
Hiroshi Maruyama
博 丸山
Toshihiko Maeda
寿彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31560699A priority Critical patent/JP2001139371A/en
Publication of JP2001139371A publication Critical patent/JP2001139371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a zirconia sintered compact for an optical connector having execute durability in a high-temperature atmosphere where moisture exists. SOLUTION: This zirconia sintered compact for the optical connector consisting of ZrO2 as an essential component and containing Y2O3 as a stabilizer is composed mainly of a crystal phase of a tetragonal crystal and is constituted by specifying the solid solution quantity of the Y2O3 in the tetragonal crystal phase to 2.6 to 4 mol%, the average crystal grain size to <=0.5 μm and the ratio of the cubic crystal phase determined by a Rietveld method to 14 to 25 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、フェルールやスリ
ーブなどの光コネクタ用部材に好適なジルコニア焼結体
に関する。
The present invention relates to a zirconia sintered body suitable for optical connector members such as ferrules and sleeves.

【0002】[0002]

【従来の技術】近年、通信における情報量の増大に伴
い、光ファイバを用いた光通信が使用されている。この
光通信において、光ファイバ同士の接続、あるいは光フ
ァイバと各種光素子との接続には光コネクタが用いられ
ている。
2. Description of the Related Art In recent years, with an increase in the amount of information in communication, optical communication using optical fibers has been used. In this optical communication, an optical connector is used for connection between optical fibers or connection between an optical fiber and various optical elements.

【0003】例えば、光ファイバ同士を接続するコネク
タの場合、フェルールに形成された貫通孔に光ファイバ
の端部を保持し、一対のフェルールをスリーブの両端か
ら挿入して、内部で凸球面状に加工した端面同士を当接
させるようにした構造となっている。
For example, in the case of a connector for connecting optical fibers, an end of the optical fiber is held in a through hole formed in a ferrule, a pair of ferrules are inserted from both ends of a sleeve, and a convex spherical shape is formed inside. The structure is such that the processed end faces are brought into contact with each other.

【0004】上記フェルールやスリーブの材質としては
セラミックス、金属、プラスチック、ガラス等、さまざ
まなものが試作されてきたが、現在は大半がセラミック
ス製となっている。その理由は、セラミックスは加工精
度が高いため、内径、外径の公差を1μm以下と高精度
にすることができ、またセラミックスは摩擦係数が低い
ため光ファイバの挿入性に優れ、剛性が高く熱膨張係数
が低いことから外部応力や温度変化に対して安定であ
り、耐食性にも優れているためである。
Various materials such as ceramics, metals, plastics and glass have been produced as materials for the ferrules and sleeves, but most are now made of ceramics. The reason is that ceramics have high processing accuracy, so that the tolerance of the inner diameter and outer diameter can be as high as 1 μm or less, and ceramics have a low coefficient of friction, so they have excellent optical fiber insertion properties, and have high rigidity and high heat resistance. This is because the low expansion coefficient is stable against external stress and temperature change, and is excellent in corrosion resistance.

【0005】さらに、セラミックスとしては、近年、ア
ルミナからジルコニアに大半が置き代わりつつある。こ
のジルコニア焼結体は、ヤング率がアルミナの約半分と
低いため、2個のフェルールの先端面同士を当接する際
に、小さな応力で密着性を高めることができ、また強
度、靱性が高いことから信頼性を向上することができる
(特公平8−30775号公報参照)。
Further, in recent years, most ceramics have been replaced with zirconia from alumina. Since this zirconia sintered body has a Young's modulus as low as about half that of alumina, when the tip surfaces of two ferrules come into contact with each other, it is possible to increase the adhesion with a small stress and to have high strength and toughness. Therefore, the reliability can be improved (see Japanese Patent Publication No. 8-30775).

【0006】上記光コネクタ用ジルコニア焼結体とし
て、ZrO2を主成分として安定化剤として2.5〜
3.5モル%程度(約4.5〜6.2重量%)のY23
を含有する原料を成形し、焼成して平均結晶粒径0.4
〜0.6μmとした正方晶の結晶相を主体とした部分安
定化ジルコニア焼結体が提案されている(特開平6−3
37327号公報参照)。
The zirconia sintered body for an optical connector includes ZrO 2 as a main component and a stabilizer of 2.5 to 2.5%.
About 3.5 mol% (about 4.5 to 6.2 wt%) of Y 2 O 3
Is formed and fired to obtain an average grain size of 0.4
A partially stabilized zirconia sintered body mainly composed of a tetragonal crystal phase having a thickness of about 0.6 μm has been proposed (Japanese Patent Laid-Open No. 6-3).
No. 37327).

【0007】又、ZrO2を主成分とし、安定化剤とし
てY23を含有する原料にAl23を0.2〜0.3重
量%添加した原料を成形し、焼成した正方晶の結晶相を
主体とした光コネクタ用の部分安定化ジルコニアが提案
されている(特開平10−260336号公報参照)。
A raw material containing ZrO 2 as a main component and Y 2 O 3 as a stabilizer and 0.2 to 0.3% by weight of Al 2 O 3 added to the raw material is molded and fired. A partially stabilized zirconia for an optical connector mainly composed of the above-mentioned crystal phase has been proposed (see Japanese Patent Application Laid-Open No. 10-260336).

【0008】更に、ZrO2を主成分とし、安定化剤と
してY23を含有する光コネクタ用ジルコニア焼結体に
おいて、正方晶相中のY23濃度を3.0モル%以上に
保持した部分安定化ジルコニアが提案されている(Jour
nal of the Ceramic Societyof Japan誌、1999年9月号
参照)。
Further, in a zirconia sintered body for an optical connector containing ZrO 2 as a main component and Y 2 O 3 as a stabilizer, the concentration of Y 2 O 3 in a tetragonal phase is adjusted to 3.0 mol% or more. Retained partially stabilized zirconia has been proposed (Jour
nal of the Ceramic Society of Japan, September 1999).

【0009】[0009]

【発明が解決しようとする課題】ところが、上記のいず
れの従来例においても、Y23を含む部分安定化ジルコ
ニア焼結体は、水分の存在する高温雰囲気中に曝される
と、正方晶の結晶が単斜晶に相変態して強度、靱性等の
特性が劣化するという問題があった。
However, in any of the above-mentioned conventional examples, the partially stabilized zirconia sintered body containing Y 2 O 3 cannot be made into a tetragonal crystal when exposed to a high-temperature atmosphere in which water is present. There is a problem in that the crystal of (1) undergoes a phase transformation to monoclinic to deteriorate properties such as strength and toughness.

【0010】また、上記の光コネクタは、使用用途によ
っては、悪環境中で長時間使用されることがあるため、
加速試験として、一対のフェルールをスリーブの両端か
ら挿入して、内部で凸球面状に加工した端面同士を当接
させた状態での光コネクタを85℃の熱水中に曝す試験
が行われることがある。この際に、ジルコニア焼結体か
らなるフェルール等の光コネクタ用部材は、上述した相
変態により接続した面が変形し、フェルール端面の凸球
面の曲率半径が大きくなってしまうという現象が生じや
すく、その結果、接続不良や過大な接続損失を生じると
いう問題があった。
[0010] Further, the above-mentioned optical connector may be used for a long time in a bad environment depending on the use purpose.
As an accelerated test, a test is performed in which a pair of ferrules are inserted from both ends of the sleeve and the optical connector is exposed to hot water at 85 ° C with the end surfaces processed into a convex spherical shape in contact with each other. There is. At this time, the optical connector member such as a ferrule made of a zirconia sintered body is likely to cause a phenomenon that the connected surface is deformed by the above-described phase transformation and the radius of curvature of the convex spherical surface of the ferrule end surface is increased, As a result, there has been a problem that poor connection or excessive connection loss occurs.

【0011】[0011]

【課題を解決するための手段】そこで本発明は、上記問
題点に鑑みてなされたものであり、ZrO2を主成分と
し、安定化剤としてY23を含有した光コネクタ用ジル
コニア焼結体において、正方晶の結晶相を主体とし、該
正方晶相中のY23固溶量が2.6〜4モル%、平均結
晶粒径が0.5μm以下、かつリートベルト法によって
求めた立方晶相の割合が14〜25体積%であることを
特徴とする。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above-mentioned problems, and has been made in view of the above-mentioned problems, and is directed to a zirconia sinter for an optical connector containing ZrO 2 as a main component and Y 2 O 3 as a stabilizer. In the body, the main component is a tetragonal crystal phase, the amount of solid solution of Y 2 O 3 in the tetragonal phase is 2.6 to 4 mol%, the average crystal grain size is 0.5 μm or less, and it is determined by Rietveld method The ratio of the cubic phase is 14 to 25% by volume.

【0012】即ち、本発明者等が種々実験を行った結
果、安定化剤としてY23を含む部分安定化ジルコニア
焼結体において、平均結晶粒径を0.5μm以下、正方
晶ジルコニア中のY23固溶量が2.6〜4モル%、か
つ立方晶相の割合を14〜25体積%とすることによっ
て、高温水中での耐久性を向上させることを見出したの
である。この理由は、正方晶中の単斜晶への相変態を抑
制するY23を増量し、かつ相変態を起こさない立方晶
相の割合を増やすことによって水の影響が低減され、高
温水中での相変態を低減させたものと考えられる。
That is, as a result of various experiments conducted by the present inventors, a partially stabilized zirconia sintered body containing Y 2 O 3 as a stabilizing agent has an average crystal grain size of 0.5 μm or less. It has been found that the durability in high-temperature water is improved by setting the solid solution amount of Y 2 O 3 to 2.6 to 4 mol% and the ratio of the cubic phase to 14 to 25 vol%. The reason for this is that the effect of water is reduced by increasing the amount of Y 2 O 3 that suppresses the phase transformation to monoclinic in the tetragonal crystal and increasing the proportion of the cubic phase that does not undergo phase transformation. It is considered that the phase transformation at the step was reduced.

【0013】[0013]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0014】図1(a)に示すように、光コネクタ用の
フェルール1は、中央に光ファイバを挿入する貫通孔1
aを有し、該貫通孔1aの後端側には光ファイバの挿入
を容易にするために円錐部1bを備え、先端外周にはス
リーブ挿入時にガイド面となる球面部1cを備えてい
る。
As shown in FIG. 1A, a ferrule 1 for an optical connector has a through hole 1 for inserting an optical fiber in the center.
The rear end of the through hole 1a is provided with a conical portion 1b for facilitating insertion of an optical fiber, and the distal end outer periphery is provided with a spherical portion 1c serving as a guide surface when the sleeve is inserted.

【0015】また、図1(b)に示すように、スリーブ
2は筒状体であり、その軸方向にスリット2aを有する
ことにより、フェルール1を弾性的に保持するものであ
るが、スリット2aはなくても良い。さらに、内周面に
3箇所程度の凸部を形成し、この凸部でフェルール1を
支持することもできる。
As shown in FIG. 1 (b), the sleeve 2 is a cylindrical body, and has a slit 2a in the axial direction to elastically hold the ferrule 1; May not be required. Further, about three convex portions may be formed on the inner peripheral surface, and the ferrule 1 may be supported by these convex portions.

【0016】上記フェルール1は、詳細を後述するジル
コニア焼結体で形成され、図2に示すように、その後方
を金属製の支持体3に接合し、上記貫通孔1aに光ファ
イバ4を挿入して接合した後、先端面1dを曲率半径1
0〜25mm程度の凸球面状に研摩する。このような一
対のフェルール1をスリーブ2の両端から挿入し、バネ
等で押圧して先端面1d同士を当接させることによっ
て、光ファイバ4同士の接続を行うことができる。
The ferrule 1 is formed of a zirconia sintered body which will be described in detail later. As shown in FIG. 2, the rear side thereof is joined to a metal support 3, and an optical fiber 4 is inserted into the through hole 1a. After joining, the tip surface 1d has a radius of curvature of 1
Polish to a convex spherical shape of about 0 to 25 mm. The optical fibers 4 can be connected to each other by inserting such a pair of ferrules 1 from both ends of the sleeve 2 and pressing them with a spring or the like to bring the tip surfaces 1d into contact with each other.

【0017】上記フェルール1やスリーブ2を成すジル
コニア焼結体は、ZrO2を主成分とし、安定化剤とし
てY23を含有し、正方晶の結晶相を主体とし、該正方
晶相中のY23固溶量が2.6〜4モル%、平均結晶粒
径が0.5μm以下、かつリートベルト法によって求め
た立方晶相の割合が14〜25体積%となっており、こ
のようにすることによって、水分の存在する高温中での
相変態を防止できる。
The zirconia sintered body forming the ferrule 1 and the sleeve 2 contains ZrO 2 as a main component, contains Y 2 O 3 as a stabilizer, and mainly has a tetragonal crystal phase. Has a Y 2 O 3 solid solution amount of 2.6 to 4 mol%, an average crystal grain size of 0.5 μm or less, and has a cubic phase ratio of 14 to 25% by volume determined by the Rietveld method. By doing so, it is possible to prevent phase transformation in a high temperature where moisture exists.

【0018】本発明のジルコニア焼結体は、正方晶相を
主体とすることによって、応力を受けた際に、この正方
晶結晶が単斜晶結晶に変態して体積膨張し、クラックの
進展を防止するという応力誘起変態のメカニズムによっ
て、焼結体の強度、靱性を向上でき、部分安定化ジルコ
ニアと呼ばれている。
Since the zirconia sintered body of the present invention is mainly composed of a tetragonal phase, when subjected to a stress, the tetragonal crystal is transformed into a monoclinic crystal and expands in volume, so that the crack progresses. The mechanism of preventing stress-induced transformation can improve the strength and toughness of the sintered body, and is called partially stabilized zirconia.

【0019】また、本発明のジルコニア焼結体は、単斜
晶相を含まず、主体をなす正方晶相の他に相変態に対し
て安定な立方晶を含むことで、前記応力誘起変態のメカ
ニズムをほとんど損なわずに高温水中での相変態特性を
大きく向上させることができる。
Further, the zirconia sintered body of the present invention does not include a monoclinic phase, but also includes a cubic crystal which is stable against phase transformation in addition to a tetragonal phase which is a main component, so that the stress-induced transformation can be prevented. The phase transformation characteristics in high-temperature water can be greatly improved without substantially impairing the mechanism.

【0020】ここで、リートベルト法で求めた立方晶相
の割合を14〜25体積%としたのは、14体積%未満
であると高温水中下において相変態を生じやすくなり、
又、25体積%を越えると、抗折強度等の機械特性が劣
化することによる。
Here, the reason why the ratio of the cubic phase determined by the Rietveld method is 14 to 25% by volume is that if it is less than 14% by volume, phase transformation easily occurs in high-temperature water,
On the other hand, if it exceeds 25% by volume, mechanical properties such as bending strength are deteriorated.

【0021】なお、ジルコニア焼結体中の立方晶と正方
晶の存在割合は、X線回折測定結果から、正方晶のピー
ク高さや面積比より求められていたが、立方晶及び正方
晶の主ピークが重なるためにピーク分離が非常に難し
く、正確な結晶比率を求めることが出来なかった。その
ため、従来法により決定された結晶比率により、特性の
制御を行う場合、特性のばらつきが生じ、従来法で見か
け上、同一の結晶比率であっても全く特性が異なるとい
う問題があった。
The cubic and tetragonal abundances in the zirconia sintered body were determined from the peak heights and area ratios of the tetragonal crystals from the results of X-ray diffraction measurement. Since the peaks overlap, it is very difficult to separate the peaks, so that an accurate crystal ratio cannot be obtained. Therefore, when the characteristics are controlled based on the crystal ratio determined by the conventional method, there is a problem that the characteristics are varied, and even if the crystal ratio is the same in the conventional method, the characteristics are completely different.

【0022】これに対し、本発明において立方晶相の比
率は、焼結体のX線回折測定をCuKα線を用いて、2
θが20〜80゜の範囲の測定を行った後、この回折図
形からリートベルト法(泉富士夫、日本結晶学会誌、第
27巻、第23項(1985))により正方晶と立方晶
の混合物比や格子定数等をパラメータとして計算により
求められたX線回折図形と試料の実測のX線回折図形と
の相違を最小二乗法で近似させていくことにより解析し
求めた。
On the other hand, in the present invention, the ratio of the cubic phase is determined by X-ray diffraction measurement of the sintered body using CuKα radiation.
is measured in the range of 20 to 80 °, and a mixture of tetragonal and cubic crystals is obtained from this diffraction pattern by the Rietveld method (Fujio Izumi, Journal of the Crystallographic Society of Japan, vol. 27, paragraph 23 (1985)). The difference between the X-ray diffraction pattern calculated by using the ratio, the lattice constant, and the like as parameters and the measured X-ray diffraction pattern of the sample was analyzed and approximated by approximating the least-squares method.

【0023】このリートベルト法を用いて算出した立方
晶相の比率と高温水中での相変態特性との関係が非常に
相関性に優れていること、しかもこの方法により求めた
立方晶相の比率で高温水中での相変態特性を制御した場
合に非常に再現性に優れることから、このリートベルト
法により真の結晶相比率を求めることができるという結
論に至り、この方法で求めた結晶相比率での特定範囲に
制御することで、高温水中での相変態特性に優れたばら
つきの少ない良好な結晶体を安定して製造出来るのであ
る。
The relationship between the ratio of the cubic phase calculated using the Rietveld method and the phase transformation characteristics in high-temperature water is very excellent, and the ratio of the cubic phase determined by this method is very high. It is very reproducible when controlling the phase transformation characteristics in high-temperature water by using this method, and concluded that the Rietveld method can be used to determine the true crystal phase ratio. By controlling the temperature in the specific range described above, it is possible to stably produce a good crystal having excellent phase transformation characteristics in high-temperature water and little variation.

【0024】また、本発明のジルコニア焼結体におい
て、平均結晶粒径を0.5μm以下としたのは、これよ
り大きくなると相変態が生じやすくなり、必要な特性が
得られないためである。
The reason why the average crystal grain size of the zirconia sintered body of the present invention is set to 0.5 μm or less is that if the average crystal grain size is larger than this, phase transformation is likely to occur, and required characteristics cannot be obtained.

【0025】さらに、正方晶ジルコニア中のY23固溶
量が2.6〜4モル%としたのは、2.6モル%未満で
あると、高温水中下で相変態を生じて変形し、フェルー
ル端面の凸球面の曲率半径が大きくなる等必要な特性が
得られないためである。また、4モル%を越えると、ジ
ルコニアの中に立方晶が増し、前記の応力誘起変態によ
ってジルコニアの高強度・高靱性を発現する正方晶の割
合が少なくなるためである。
Furthermore, the reason why the Y 2 O 3 solid solution amount in tetragonal zirconia is set to 2.6 to 4 mol% is that if it is less than 2.6 mol%, phase transformation occurs in high-temperature water and deformation occurs. However, this is because required characteristics such as an increase in the radius of curvature of the convex spherical surface of the ferrule end surface cannot be obtained. On the other hand, if it exceeds 4 mol%, cubic crystals increase in zirconia, and the proportion of tetragonal crystals that exhibit high strength and high toughness of zirconia due to the stress-induced transformation decreases.

【0026】なお、正方晶中のY23固溶量は、上記リ
ートベルト法で正方晶の格子定数a,cを決定し、下記
数1により算出した。
The amount of solid solution of Y 2 O 3 in the tetragonal crystal was calculated by the following equation 1 after determining the lattice constants a and c of the tetragonal crystal by the Rietveld method.

【0027】[0027]

【数1】 (Equation 1)

【0028】次に、上記フェルール1及びスリーブ2の
製造方法について説明する。
Next, a method of manufacturing the ferrule 1 and the sleeve 2 will be described.

【0029】まず、出発原料のZrO2には不純物とし
てAl23やSiO2、TiO2、あるいはCaO、Na
2O、Fe23等が含まれているが、この原料を酸やア
ルカリ等の薬品で処理したり、あるいは比重差を利用し
た重力選鉱等の手法にて精製し純度を高める。そして、
ZrO2にY23 を3〜5モル%添加混合し、中和共
沈または加水分解等の方法により反応・固溶させる。
First, ZrO 2 as a starting material contains Al 2 O 3 , SiO 2 , TiO 2 , or CaO, Na as impurities.
Although it contains 2 O, Fe 2 O 3, etc., this raw material is treated with a chemical such as acid or alkali, or purified by a method such as gravity separation utilizing a specific gravity difference to increase the purity. And
The Y 2 O 3 was added and mixed 3-5 mol% ZrO 2, was sink neutralizing co is reacted, solid solution by a method such as hydrolysis.

【0030】次に、得られた原料を押出成形やプレス成
形や射出成形等により所定形状に成形し、必要があれば
切削等を行った後、大気雰囲気中で焼成する。
Next, the obtained raw material is formed into a predetermined shape by extrusion molding, press molding, injection molding, or the like, and if necessary, cut and the like, and then fired in the air atmosphere.

【0031】この時に0.5μm以下という小さな平均
結晶粒径を得るために、1200〜1550℃という低
温で焼成し、かつ緻密な焼結体としなければならない
が、これは原料の1次粒子径を小さくして、比表面積を
大きくすることで達成することができる。フェルール1
やスリーブ2はこの焼結体をさらに研磨、研削を行うこ
とによって得ることができる。
At this time, in order to obtain a small average crystal grain size of 0.5 μm or less, it must be fired at a low temperature of 1200 to 1550 ° C. to form a dense sintered body. Can be achieved by making the specific surface area smaller and increasing the specific surface area. Ferrule 1
The sleeve 2 can be obtained by further polishing and grinding this sintered body.

【0032】ここで、焼成温度と平均結晶粒径は比例の
関係にあり、焼成温度が高くなるに従い平均結晶粒径も
大きくなる。本発明のジルコニア焼結体においては、焼
成温度1200゜で平均粒径0.12μm、1370゜
で0.23μm、1550゜で0.5μmとなる。
Here, the firing temperature and the average crystal grain size are in a proportional relationship, and the higher the firing temperature, the larger the average crystal grain size. In the zirconia sintered body of the present invention, the average particle size is 0.12 μm at 1200 ° C., 0.23 μm at 1370 °, and 0.5 μm at 1550 °.

【0033】又、本発明の光コネクタ用ジルコニア焼結
体において、平均結晶粒径が0.5μm以下、正方晶の
結晶相を主体とし、該正方晶相中のY23固溶量が2.
6〜4モル%、かつリートベルト法によって求めた立方
晶相の割合が14〜25体積%とするには、上述したよ
うにZrO2にY23を3〜5モル%添加混合し、焼成
温度を1200〜1550゜の範囲内で焼成することに
より達成出来うるが、焼成温度が高いほど、又焼成温度
保持時間が長いほど、立方晶相の割合が増加し、正方晶
中のY23固溶量は減少し、更に粒径は大きくなる傾向
がある。
In the zirconia sintered body for an optical connector according to the present invention, the average crystal grain size is 0.5 μm or less, and the main component is a tetragonal crystal phase, and the amount of Y 2 O 3 solid solution in the tetragonal phase is small. 2.
In order to make 6 to 4 mol% and the ratio of the cubic phase determined by the Rietveld method to 14 to 25 vol%, as described above, 3 to 5 mol% of Y 2 O 3 is added to ZrO 2 and mixed. It can be achieved by firing at a firing temperature in the range of 1200 to 1550 °, but as the firing temperature is higher and the firing temperature holding time is longer, the proportion of the cubic phase increases, and Y 2 in the tetragonal crystal is increased. The amount of O 3 solid solution tends to decrease and the particle size tends to increase.

【0034】なお、図2では光ファイバ4同士を接続す
るための光コネクタを示したが、上記フェルール1やス
リーブ2は、レーザダイオードやフォトダイオード等の
光素子と光ファイバを接続する光モジュールに用いるこ
ともできる。
FIG. 2 shows an optical connector for connecting the optical fibers 4 to each other. However, the ferrule 1 and the sleeve 2 are used for an optical module for connecting an optical element such as a laser diode or a photodiode to the optical fiber. It can also be used.

【0035】また、本発明における光コネクタ用ジルコ
ニア焼結体は、上述した光ファイバ同士、又は光ファイ
バと各種光素子との接続に用いるさまざまな部材に適用
することができ、上述したフェルール1やスリーブ2に
限らない。例えば、光ファイバ同士を完全に接続するた
めに用いるスプライサや、光モジュールに用いるダミー
フェルール等にも適用することができる。
The zirconia sintered body for an optical connector according to the present invention can be applied to various members used for connecting the optical fibers described above or between the optical fibers and various optical elements. It is not limited to the sleeve 2. For example, the present invention can be applied to a splicer used for completely connecting optical fibers to each other, a dummy ferrule used for an optical module, and the like.

【0036】[0036]

【実施例】以下本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0037】出発原料としてZrO2へのY23の添加
量を変えることによって、種々の組成からなるジルコニ
ア原料を用意した。
Zirconia raw materials having various compositions were prepared by changing the amount of Y 2 O 3 added to ZrO 2 as a starting material.

【0038】それぞれ、最終製品の寸法が外径2.5m
m、長さ10.5mmとなるように、図1に示すフェル
ールの形状に押出成形し、この成形体を1200〜15
50℃で焼成し、正方晶ジルコニア中のY23固溶量及
び立方晶相の割合を表1に示すように変えてフェルール
1を作製した。なお、平均結晶粒径は走査型電子顕微鏡
で撮影した像を用いてコード法により測定した。
Each of the final products has an outer diameter of 2.5 m.
m and a length of 10.5 mm are extruded into the shape of the ferrule shown in FIG.
It was baked at 50 ° C., and ferrule 1 was produced by changing the amount of Y 2 O 3 dissolved in tetragonal zirconia and the ratio of the cubic phase as shown in Table 1. The average crystal grain size was measured by a code method using an image taken with a scanning electron microscope.

【0039】それぞれの組成についてフェルール1を作
製し、光ファイバ4を接着し、先端面1dを凸球面の曲
率半径が平均15mm程度となるように研磨した後、図
2に示すように一対のフェルール1をスリーブ2内部で
接続させた状態で、85℃の熱水中に14日間放置し
た。その後、形状測定器により、フェルール1の先端面
1dの試験前後の曲率半径の変化量(増加量)を調べ
た。表1にそれぞれの条件における曲率半径の変化量を
示した。
A ferrule 1 was prepared for each composition, an optical fiber 4 was adhered, and the tip surface 1d was polished so that the radius of curvature of the convex spherical surface was about 15 mm on average. Then, as shown in FIG. 1 was connected in the sleeve 2 and left in hot water at 85 ° C. for 14 days. Then, the amount of change (increase) in the radius of curvature of the tip surface 1d of the ferrule 1 before and after the test was examined using a shape measuring instrument. Table 1 shows the amount of change in the radius of curvature under each condition.

【0040】この結果より、正方晶ジルコニア中のY2
3固溶量が2.6モル%未満もしくは4モル%を越え
たもの、もしくは/かつリートベルト法によって求めた
立方晶相の割合が14体積%未満もしくは25体積%を
越えたもの(No.1,2,3,4,5,6,7,12,13,18,19,24,25,30,
31,36)では、曲率半径の変動量が最低でも5.7mmと
大きい。
From these results, it was found that Y 2 in tetragonal zirconia
O 3 which amount of solid solution exceeds or 4 mole% less than 2.6 mol%, or / and that the proportion of cubic phase obtained by Rietveld method exceeds or 25% by volume less than 14 vol% (No .1,2,3,4,5,6,7,12,13,18,19,24,25,30,
31, 36), the variation in the radius of curvature is as large as 5.7 mm at least.

【0041】これらに対し、本発明の正方晶ジルコニア
中のY23固溶量が2.6〜4モル%、かつリートベル
ト法によって求めた立方晶相の割合が14〜25体積%
のもの(No.8,9,10,11,14,15,16,17,20,21,22,23,26,2
7,28,29,32,33,34,35)では、全て曲率半径の変化量が
1mm未満となっており、曲率半径測定の誤差の範囲内
に入る小さな値となっている。
On the other hand, the amount of Y 2 O 3 dissolved in the tetragonal zirconia of the present invention is 2.6 to 4 mol%, and the ratio of the cubic phase determined by the Rietveld method is 14 to 25 vol%.
(No. 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 22, 23, 26, 2
7, 28, 29, 32, 33, 34, and 35), the amount of change in the radius of curvature is less than 1 mm, which is a small value that falls within the range of the error in the radius of curvature measurement.

【0042】即ち、正方晶ジルコニア中のY23固溶量
が2.6〜4モル%、平均結晶粒径が0.5μm以下、
かつリートベルト法によって求めた立方晶相の割合が1
4〜25体積%とすることによって、熱水中の試験を行
ってもフェルール端面の曲率半径の変化がなくなった。
That is, the solid solution amount of Y 2 O 3 in tetragonal zirconia is 2.6 to 4 mol%, the average crystal grain size is 0.5 μm or less,
And the ratio of the cubic phase determined by the Rietveld method is 1
By setting the content to 4 to 25% by volume, there was no change in the radius of curvature of the end face of the ferrule even in a test in hot water.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】以上のように本発明によれば、ZrO2
を主成分とし、安定化剤としてY23を含有した光コネ
クタ用ジルコニア焼結体において、正方晶の結晶相を主
体とし、該正方晶相中のY23固溶量が2.6〜4モル
%、平均結晶粒径が0.5μm以下、かつリートベルト
法によって求めた立方晶相の割合が14〜25体積%と
して光コネクタ用ジルコニア焼結体を構成したことによ
って、水分の存在する高温雰囲気中での耐久性に優れた
光コネクタ用ジルコニア焼結体を得ることができる。
As described above, according to the present invention, ZrO 2
It was the main component, in the optical connector zirconia sintered body containing Y 2 O 3 as a stabilizer, mainly the tetragonal phase, Y 2 O 3 solid solution amount in the positive direction phase two. By forming the zirconia sintered body for an optical connector with 6 to 4 mol%, an average crystal grain size of 0.5 μm or less, and a cubic phase ratio of 14 to 25% by volume determined by the Rietveld method, the water content is reduced. A zirconia sintered body for optical connectors having excellent durability in an existing high-temperature atmosphere can be obtained.

【0045】さらに、本発明によれば、上記ジルコニア
焼結体で光コネクタ用部材を形成することによって、熱
水中での試験を行ってもフェルール端面の曲率半径の変
化量を飛躍的に小さくすることができ、長期間良好に使
用することができる。
Further, according to the present invention, by forming the optical connector member from the above-mentioned zirconia sintered body, the amount of change in the radius of curvature of the end face of the ferrule is drastically reduced even in a test in hot water. And can be favorably used for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)は本発明のジルコニア焼結体を用
いた光コネクタ用部材を示す図である。
FIGS. 1A and 1B are views showing a member for an optical connector using a zirconia sintered body of the present invention.

【図2】本発明のジルコニア焼結体からなる光コネクタ
用部材を用いた光コネクタを示す断面図である。
FIG. 2 is a sectional view showing an optical connector using an optical connector member made of a zirconia sintered body of the present invention.

【符号の説明】[Explanation of symbols]

1:フェルール 2:スリーブ 3:支持体 4:光ファイバ 1: Ferrule 2: Sleeve 3: Support 4: Optical fiber

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H036 QA16 QA20 QA45 4G031 AA08 AA12 BA14 BA21 CA01 CA04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H036 QA16 QA20 QA45 4G031 AA08 AA12 BA14 BA21 CA01 CA04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ZrO2を主成分とし、安定化剤としてY2
3を含有した光コネクタ用ジルコニア焼結体におい
て、正方晶の結晶相を主体とし、該正方晶相中のY23
固溶量が2.6〜4モル%、平均結晶粒径が0.5μm
以下、かつリートベルト法によって求めた立方晶相の割
合が14〜25体積%であることを特徴とする光コネク
タ用ジルコニア焼結体。
1. ZrO 2 as a main component and Y 2 as a stabilizer.
In a zirconia sintered body for an optical connector containing O 3 , a tetragonal crystal phase is mainly used, and Y 2 O 3
2.6-4 mol% solid solution, average crystal grain size 0.5 μm
A zirconia sintered body for an optical connector, wherein the ratio of a cubic phase determined by a Rietveld method is 14 to 25% by volume.
JP31560699A 1999-11-05 1999-11-05 Zirconia sintered compact for optical connector Pending JP2001139371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31560699A JP2001139371A (en) 1999-11-05 1999-11-05 Zirconia sintered compact for optical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31560699A JP2001139371A (en) 1999-11-05 1999-11-05 Zirconia sintered compact for optical connector

Publications (1)

Publication Number Publication Date
JP2001139371A true JP2001139371A (en) 2001-05-22

Family

ID=18067389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31560699A Pending JP2001139371A (en) 1999-11-05 1999-11-05 Zirconia sintered compact for optical connector

Country Status (1)

Country Link
JP (1) JP2001139371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151059A (en) * 2007-12-20 2009-07-09 Lightron Fiber-Optic Devices Inc Bidirectional optical transmission/reception module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141673A (en) * 1983-12-27 1985-07-26 日本碍子株式会社 Zirconia ceramic and manufacture
JPH06337327A (en) * 1993-05-28 1994-12-06 Tosoh Corp Fiber connector parts made of zirconia
JP2001080962A (en) * 1999-07-09 2001-03-27 Tosoh Corp Zirconia sintered compact and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141673A (en) * 1983-12-27 1985-07-26 日本碍子株式会社 Zirconia ceramic and manufacture
JPH06337327A (en) * 1993-05-28 1994-12-06 Tosoh Corp Fiber connector parts made of zirconia
JP2001080962A (en) * 1999-07-09 2001-03-27 Tosoh Corp Zirconia sintered compact and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151059A (en) * 2007-12-20 2009-07-09 Lightron Fiber-Optic Devices Inc Bidirectional optical transmission/reception module

Similar Documents

Publication Publication Date Title
KR100332008B1 (en) Capillary for optical fiber connector and method of manufacturing the same
EP3381871A1 (en) Optical glass
US6358874B1 (en) Zirconium ceramic material, optical fiber connector member using the same, and method of producing the same
AU730505B2 (en) Ferrule for optical fiber connector
JP2001139371A (en) Zirconia sintered compact for optical connector
JP2001240468A (en) Sintered body of zirconia for light connector and process for producing the same
JP4535539B2 (en) Zirconia sintered body for optical connector and manufacturing method thereof
JP2003104776A (en) Production method for ceramic sintered compact
JP2004175625A (en) Member for optical connector, and its manufacturing method
JP2551407B2 (en) Optical fiber connector
JP3210824B2 (en) Optical fiber connector components
JP3981434B2 (en) Ferrule
JP2001181032A (en) Sintered zirconia for optical connector and method for producing the same
JP2003073165A (en) Zirconia sintered compact for optical connector and its manufacturing method
JP2000335970A (en) Zirconia sintered compact for optical connector and production of the sintered compact
JP2006256957A (en) Zirconia sintered compact, its manufacturing method and member for optical connector, sleeve and ferrule using the same
JP3911451B2 (en) Ferrule manufacturing method
JP2004026544A (en) Member for optical connector, and its manufacturing method
JPH10260336A (en) Ferrule of optical connector and its production
JP2003294985A (en) Ferrule for optical fiber and method for manufacturing the same and optical connector
JP3195858B2 (en) Optical fiber connector parts made of zirconia
JP4373959B2 (en) Ferrule, optical receptacle and optical module
JPH0763950A (en) Optical fiber connector parts made of zirconia
JP2003073164A (en) Method of manufacturing ceramic sintered compact
JP2006104059A (en) Zirconia sintered compact, its production method and member for optical connector, sleeve and ferrule using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316