JP2001138841A - Shock absorber of vehicle - Google Patents

Shock absorber of vehicle

Info

Publication number
JP2001138841A
JP2001138841A JP2000263079A JP2000263079A JP2001138841A JP 2001138841 A JP2001138841 A JP 2001138841A JP 2000263079 A JP2000263079 A JP 2000263079A JP 2000263079 A JP2000263079 A JP 2000263079A JP 2001138841 A JP2001138841 A JP 2001138841A
Authority
JP
Japan
Prior art keywords
pipe
outer diameter
absorbing device
vehicle
bumper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000263079A
Other languages
Japanese (ja)
Other versions
JP3380537B2 (en
Inventor
Hiroshi Yoshida
寛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OM Industry Co Ltd
Original Assignee
OM Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OM Industry Co Ltd filed Critical OM Industry Co Ltd
Priority to JP2000263079A priority Critical patent/JP3380537B2/en
Publication of JP2001138841A publication Critical patent/JP2001138841A/en
Application granted granted Critical
Publication of JP3380537B2 publication Critical patent/JP3380537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light and inexpensive shock absorber which is of a type utilizing plastic deformation and has stable energy absorbing characteristic. SOLUTION: This shock absorber for a vehicle which is interposed between a bumper 2 of a vehicle and a car body frame 1 to absorb shock energy received by the bumper 2 by converting into deformation energy, is so constructed that a plastic worked straight pipe body is partially reduced in diameter or enlarged in diameter to form pipe parts 4, 15, 3 different in outside diameter, and the pipe parts 4, 15, 3 are connected to each other through stepped parts 5 which can be formed between the respective edges of the pipe parts 4, 15, 3 to constitute a three-step pipe body 14. The pipe parts 3, 4 positioned at both ends of the three-step pipe body 14 are respectively connected to the bumper 2 and the car body frame 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車輌のバンパーと
車体フレームとの間に介装し、バンパーが受けた衝撃エ
ネルギーを変形エネルギーに転換して吸収する衝撃吸収
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock absorbing device interposed between a bumper of a vehicle and a vehicle body frame to convert shock energy received by the bumper into deformation energy and absorb it.

【0002】[0002]

【従来の技術】車輌衝突時の搭乗者に対する衝撃を緩和
する衝撃吸収装置には、実公平06-005271号やUSP4,537,
734号に見られるシリンダタイプ(衝撃エネルギーをシリ
ンダの縮退エネルギーとして吸収するタイプ)や、特開
平09-086309号、特公昭59-009775号にみられる塑性変形
(例えば座屈)を利用したタイプ(衝撃エネルギーを部材
の変形エネルギーに転換して吸収するタイプ)がある。
シリンダタイプは、安定したエネルギー吸収特性を持っ
ている長所があるが、精密で部品点数も多く、重くて高
価な短所がある。塑性変形を利用するタイプは、軽量で
安価な長所があるものの、エネルギー吸収特性がシリン
ダタイプより劣る短所がある。
2. Description of the Related Art Japanese Patent Publication No. H06-005271, US Pat. No. 4,537,
Cylinder type (type that absorbs impact energy as degenerate energy of cylinder) seen in No. 734 and plastic deformation seen in JP-A-09-086309 and JP-B-59-009775
There is a type that utilizes (for example, buckling) (a type that converts impact energy into deformation energy of a member and absorbs it).
The cylinder type has the advantage of having stable energy absorption characteristics, but has the disadvantage of being precise, having many parts, and being heavy and expensive. The type using plastic deformation has advantages in that it is lightweight and inexpensive, but has a disadvantage in that energy absorption characteristics are inferior to cylinder types.

【0003】[0003]

【発明が解決しようとする課題】以上の説明で明らかな
ように、塑性変形を利用するタイプの衝撃吸収装置は、
軽量で安価な点から、車輌製造コスト低減が望まれる近
年の傾向に適している。そこで、塑性変形を利用するタ
イプであって、エネルギー吸収特性が安定し、軽量、安
価な衝撃吸収装置の開発のため、検討した。
As apparent from the above description, a shock absorbing device of the type utilizing plastic deformation is:
Since it is lightweight and inexpensive, it is suitable for the recent tendency to reduce vehicle manufacturing costs. Therefore, a study was conducted to develop a lightweight and inexpensive shock absorbing device that is a type that utilizes plastic deformation, has stable energy absorption characteristics, and is inexpensive.

【0004】[0004]

【課題を解決するための手段】上記課題を検討した結
果、車輌のバンパーと車体フレームとの間に介装し、バ
ンパーが受けた衝撃エネルギーを変形エネルギーに転換
して吸収する衝撃吸収装置であって、塑性加工可能な直
管体(加工前の直線状管体)を部分的に縮径又は拡径して
外径の異なる管部を形成し、各管部端縁間に形成できる
段差を介してこの管部相互を結んで多段管体を構成して
なり、この多段管体両端に位置する管部をそれぞれバン
パー及び車体フレームに連結する車輌の衝撃吸収装置で
ある。本発明の衝撃吸収装置は、車体フレームに対する
バンパーを支持する。
SUMMARY OF THE INVENTION As a result of studying the above problems, there is provided an impact absorbing device interposed between a vehicle bumper and a vehicle body frame to convert impact energy received by the bumper into deformation energy and absorb it. In order to form a pipe with a different outer diameter by partially reducing or expanding the diameter of a straight pipe that can be plastically processed (a straight pipe before processing), a step that can be formed between the edges of each pipe A multi-stage pipe is formed by connecting the pipes to each other via a pipe, and the pipes located at both ends of the multi-stage pipe are connected to a bumper and a body frame, respectively. The shock absorbing device of the present invention supports a bumper for a vehicle body frame.

【0005】本発明の衝撃吸収装置は、外径の小さな管
部が外径の大きな管部に押し込まれる過程で衝撃エネル
ギーを吸収する。衝撃エネルギーの一部は各管部を圧縮
するが、ほとんどが前記管部の押し込みに従って生じる
段差の捲れ込み(塑性変形)に費やされ、吸収されるわけ
である。
[0005] The shock absorbing device of the present invention absorbs impact energy in the process of pushing a small outside diameter tube into a large outside diameter tube. A part of the impact energy compresses each pipe part, but most of the energy is consumed and absorbed by the stepped up (plastic deformation) caused by the pushing of the pipe part.

【0006】ここで、多段管体を、(a)各管部端縁間に
成形できる段差をこの管部それぞれに対して折り返した
り、(b)段差を介して結んだ管部の一方の外径より他方
の内径が大きい関係にあるように構成すればよい。(a)
の構成を適用すれば、段差が既に捲れ込み始めた状態に
あるので、初期の塑性変形に要するエネルギーが小さく
て済み、円滑に捲れ込みが進んでいく。
Here, the multistage pipe body is formed by (a) folding a step which can be formed between the edges of each pipe section for each of the pipe sections, or (b) forming a step outside the one side of the pipe section connected through the step section. What is necessary is just to comprise so that the other inside diameter may be larger than a diameter. (a)
When the configuration is applied, since the step has already begun to be rolled up, the energy required for the initial plastic deformation is small, and the rolling up proceeds smoothly.

【0007】また、(b)の構成を適用すると、連なる管
部相互が容易に重なるように押し込まれていくので、ひ
いては段差の捲れ込みも良好に進んでいく。管部の一方
の外径より他方の内径が大きい関係とは、すなわち段差
の幅Wが外径の大きな管部の肉厚tよりも大きいことを
意味する。ここで、段差を介して結ばれる管部のサイズ
について触れておくと、概ね次のような関係が望まし
い。今、結ばれる外径の小さな管部の長さをH1、肉厚
をt1、外径の大きな管部の長さをH2、肉厚をt2、両
管部を結ぶ段差の幅Wとした場合、t1>t2、そしてW
>t2となる。
In addition, when the configuration shown in (b) is applied, the continuous pipes are pushed into each other so as to easily overlap each other. The relationship that the inner diameter of one of the pipes is larger than the outer diameter of the other means that the width W of the step is larger than the wall thickness t of the pipe having a larger outer diameter. Here, when referring to the size of the pipe portion connected via the step, the following relationship is generally desirable. Assume that the length of the tube having a small outer diameter is H1, the thickness is t1, the length of the tube having a large outer diameter is H2, the thickness is t2, and the width W of the step connecting the two tubes is H. , T1> t2, and W
> T2.

【0008】具体的には、(1)塑性加工可能な円形直管
体を部分的に縮径又は拡径して略円形の大外径管部及び
小外径管部を形成し、各管部の軸心が略同一線上となる
ように各管部端縁を段差で結んで2段管体を構成してな
り、前記大外径管部を車体フレームの衝撃を受ける側に
当接固定した衝撃吸収装置を基本とし、(2)塑性加工可
能な円形直管体を部分的に縮径又は拡径して略円形の小
外径管部、中外径管部及び大外径管部を形成し、各管部
の軸心が略同一線上となるように各管部端縁を段差で結
んでこの管部を径の大きさ順に並ぶ3段管体を構成して
なり、前記大外径管部を車体フレームの衝撃を受ける側
に当接固定した衝撃吸収装置を好適な構成とする。
[0008] Specifically, (1) a circular straight pipe body capable of being plastically worked is partially reduced or expanded to form a substantially circular large outer diameter pipe section and a substantially circular outer diameter pipe section. The ends of the pipes are connected by a step so that the axes of the pipes are substantially on the same line to form a two-stage pipe, and the large-diameter pipe is abutted and fixed to the impact-receiving side of the body frame. (2) Partially reducing or expanding the diameter of a plastically processable circular straight pipe to reduce the substantially circular small, medium, and large external diameter pipes Forming a three-stage pipe body in which the ends of the pipe sections are connected by steps so that the axes of the pipe sections are substantially on the same line, and the pipe sections are arranged in order of diameter. An impact absorbing device in which the diameter pipe portion is fixedly abutted on the impact receiving side of the vehicle body frame has a preferable configuration.

【0009】本発明の衝撃吸収装置は多段構造が好まし
いが、設置スペースの関係から段数には事実上の制限が
付きまとう。3段管体は加工工数的にも現実的で、例え
ば標準的な金属丸パイプ(円形直管体)の両端から一定長
さをそれぞれ縮径及び拡径すれば、3段管体からなる衝
撃吸収装置を容易に実現できる。また、この3段管体か
らなる衝撃吸収装置は、小外径管部の傾倒を中外径管部
が抑制し、小中外径管部が一体となって大外径管部へ押
し込むことができる。
Although the shock absorbing device of the present invention preferably has a multi-stage structure, the number of stages is practically limited due to the installation space. The three-stage pipe is realistic in terms of processing man-hours. For example, if a constant length is reduced and expanded from both ends of a standard metal round pipe (circular straight pipe), the impact of the three-stage pipe An absorption device can be easily realized. Further, in the shock absorbing device including the three-stage pipe body, the tilting of the small outer diameter pipe section is suppressed by the middle outer diameter pipe section, and the small middle diameter outer pipe section can be integrally pushed into the large outer diameter pipe section. .

【0010】ここで、上記3段管体からなる衝撃吸収装
置について、小外径管部の長さをH1、肉厚をt1、中外
径管部の長さをH2、肉厚をt2、大外径管部の長さをH
3、肉厚をt3、小中外径管部を結ぶ段差の幅W1、中大
外径管部を結ぶ段差の幅W2とすれば、t1>t2>t3、
そしてW1>t2及びW2>t3となる。上述のように、標
準的な金属丸パイプを縮径及び拡径して3段管体とする
場合、縮径して得られる小外径管部のt1は、必然的に
中外径管部のt2より大きくなる。また、拡径して得ら
れる大外径管部のt3は、必然的に中外径管部のt2より
小さくなる。このように、縮径及び拡径の2種の塑性加
工を1本の金属パイプに施すことで、好適な3段管体か
らなる衝撃吸収装置を製造できる利点がある。
Here, regarding the shock absorbing device composed of the three-stage pipe, the length of the small outer diameter pipe is H1, the thickness is t1, the length of the middle outer diameter is H2, the thickness is t2, and the thickness is t2. The length of the outer tube is H
3. Assuming that the wall thickness is t3, the width W1 of the step connecting the small and medium outer diameter pipes, and the width W2 of the step connecting the middle and large outer diameter pipes, t1>t2> t3,
Then, W1> t2 and W2> t3. As described above, when a standard metal round pipe is reduced in diameter and expanded to form a three-stage pipe, t1 of the small outer diameter pipe obtained by reducing the diameter is inevitably equal to that of the middle outer diameter pipe. It becomes larger than t2. Further, t3 of the large outer diameter pipe obtained by expanding the diameter is necessarily smaller than t2 of the middle outer diameter pipe. As described above, by performing two types of plastic working, that is, diameter reduction and diameter expansion, on a single metal pipe, there is an advantage that it is possible to manufacture a shock absorber including a suitable three-stage pipe body.

【0011】[0011]

【発明の実施の形態】以下本発明の実施形態について、
図を参照しながら説明する。図1は2段管体9からなる
衝撃吸収装置の縦断面図、図2は図1中A−A断面図、
図3は図1中B−B断面図、図4は図1の状態から衝撃
吸収装置に衝撃が加わった際の衝撃吸収の度合いと2段
管体9の変形の度合いとの関係を示した図1相当縦断面
図で、衝撃エネルギーをほとんど吸収し終えた状態を表
している。図1及び図4中、衝撃エネルギーの大きさを
2段管体9中の太線白抜矢印で、変形エネルギーを塑性
変形量(押し込み量)の大きさで示した2段管体9外の細
線白抜矢印でそれぞれ示している。また、実際には図4
の状態に至る段階でほとんど衝撃エネルギーは吸収し終
えてなくなっているが、説明の便宜上、太線白抜矢印を
残している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a shock absorbing device composed of a two-stage tube 9, FIG. 2 is a sectional view taken along line AA in FIG.
FIG. 3 is a sectional view taken along the line BB in FIG. 1, and FIG. 4 shows the relationship between the degree of shock absorption and the degree of deformation of the two-stage tube body 9 when a shock is applied to the shock absorbing device from the state of FIG. 1 is a longitudinal sectional view corresponding to FIG. 1 and shows a state in which impact energy is almost completely absorbed. 1 and 4, a thin line outside the two-stage tube 9 in which the magnitude of the impact energy is indicated by a bold-line outline arrow in the two-stage tube 9 and the deformation energy is indicated by the amount of plastic deformation (indentation). Each is indicated by a white arrow. Actually, FIG.
Although the impact energy has almost completely been absorbed at the stage of reaching the state, the solid white arrow is left for convenience of explanation.

【0012】本例の衝撃吸収装置は、バンパー2と車体
フレーム1との間に介装した2段管体9で衝撃エネルギ
ーを変形エネルギーに転換して吸収する。2段管体9
は、断面略円形の大外径管部3及び小外径管部4からな
り、各管部3,4の軸心が略同一線上となるように両管
部3,4端縁を段差5で結び、前記大外径管部3を車体
フレーム1の衝撃を受ける側に当接固定している。段差
5は、大外径管部3及び小外径管部4それぞれの端縁が
2段管体の延在方向でオーバーラップし、これら管部
3,4それぞれに対して折り返している。こうした2段
管体9は、大外径管部3は直管体として、縮径(スェー
ジング加工)により小外径管部4を形成し、折り返した
段差5を形成するため、更に2段管体9の延在方向に圧
縮するプレス加工を施すと、容易に製造できる。
In the shock absorbing device of this embodiment, the impact energy is converted into deformation energy and absorbed by a two-stage pipe 9 interposed between the bumper 2 and the body frame 1. Two-stage pipe 9
Is composed of a large outer diameter tube portion 3 and a small outer diameter tube portion 4 having a substantially circular cross section, and the edges of both the tube portions 3, 4 are stepped so that the axes of the respective tube portions 3, 4 are substantially on the same line. And the large outer diameter pipe portion 3 is fixedly abutted on the side of the vehicle body frame 1 which receives the impact. In the step 5, the ends of the large outer diameter tube portion 3 and the small outer diameter tube portion 4 overlap in the extending direction of the two-stage tube, and are folded back to the respective tube portions 3, 4. In such a two-stage pipe body 9, the large outer diameter pipe part 3 is a straight pipe body, the small outer diameter pipe part 4 is formed by reducing the diameter (swinging process), and the folded step 5 is formed. By performing press working for compressing in the direction in which the body 9 extends, it can be easily manufactured.

【0013】本例の2段管体を車体フレーム1の衝撃を
受ける側に当接固定するため、大外径管部3に、複数の
ボルト孔10を有する取付フランジ6を溶接している。ま
た、車体フレーム1側の管体取付座11に設けた管部通過
孔12の孔径を大外径管部3の外径よりも小さく形成し、
押し込まれる大外径管部3を受けたり、捲れ込む段差5
と共に小外径管部4を押し込めるようにしている。2段
管体9とバンパー2側との組付けは、図1及び図3に見
られるように、小外径管部4端に直交する組付パイプ7
を溶接し、この組付パイプ7とバンパー2のボルト孔13
とにボルト8を挿通して、ねじ止め固定している。
In order to abut and fix the two-stage pipe body of this embodiment on the side of the body frame 1 which receives an impact, a mounting flange 6 having a plurality of bolt holes 10 is welded to the large outer diameter pipe section 3. Also, the diameter of the pipe passage hole 12 provided in the pipe mounting seat 11 on the body frame 1 side is formed smaller than the outer diameter of the large outer diameter pipe section 3,
A step 5 that receives or rolls in the large-diameter tube portion 3 to be pushed in
At the same time, the small outer diameter tube portion 4 can be pushed. As shown in FIGS. 1 and 3, the two-stage pipe 9 and the bumper 2 are attached to each other by an assembling pipe 7 orthogonal to the end of the small outer diameter pipe 4.
And bolt holes 13 of the assembled pipe 7 and bumper 2 are welded.
And a screw 8 is inserted and screwed and fixed.

【0014】本例の衝撃吸収装置では、図4に見られる
ように、バンパー2に衝突が加わると段差5が大外径管
部3に向かって捲れ込んでいく。大外径管部3を直管体
のままとして、金属丸パイプを縮径して小外径管部4を
形成すると、小外径管部4が厚肉となり都合がよい。こ
の場合、大外径管部3及び小外径管部4は共に断面略円
形となり、両軸心が略同一線上となるので、エネルギー
吸収効率がよく、安定したエネルギー吸収特性(バンパ
ー移動量に対する捲れ込み荷重は矩形波形特性となる)
を有する衝撃吸収装置となる。小外径管部4は中実体で
あってもよい。
In the shock absorbing device of the present embodiment, as shown in FIG. 4, when a collision is applied to the bumper 2, the step 5 rolls up toward the large outer diameter tube portion 3. If the small outer diameter pipe 4 is formed by reducing the diameter of the metal round pipe while the large outer diameter pipe 3 remains a straight pipe, the small outer diameter pipe 4 becomes thicker, which is convenient. In this case, both the large outer diameter tube portion 3 and the small outer diameter tube portion 4 are substantially circular in cross section, and both axes are substantially collinear, so that the energy absorption efficiency is good and the energy absorption characteristics are stable (with respect to the amount of bumper movement). (The winding load has a rectangular waveform characteristic.)
The shock absorbing device has the following. The small outer diameter tube portion 4 may be a solid body.

【0015】図5は本発明の3段管体14からなる衝撃吸
収装置の縦断面図である。本例の衝撃吸収装置は、図5
に見られるように、断面略円形の金属丸パイプの一端か
らH1(図10参照、以下同じ)の長さの範囲で縮径した小
外径管部4、同じく他端からH3の長さの範囲で拡径し
た大外径管部3、そして残る長さH2の金属丸パイプそ
のまま(直管体)の中外径管部15を、それぞれ段差5を介
して結んだ構造である。段差5における塑性変形が円周
方向で等しくなるように、各管部3,4,15の軸心は略同
一線上に揃えている。また、本例の段差5は、共に3段
管体の延在方向に直交する面としている。車輌に対する
取り付け方は、上述の例(図1以下)と同様であるために
説明を省略する。本例では、車体フレーム1に管部通過
孔を設けず、小中外径管部4,15を奥へ押し込まないよ
うにしているが、例えば小外径管部4のみが通過できる
管部通過孔を設けてもよい。
FIG. 5 is a longitudinal sectional view of the shock absorbing device comprising the three-stage tube 14 of the present invention. FIG. 5 shows a shock absorbing device of this example.
As can be seen from the figure, a small outer diameter pipe portion 4 whose diameter is reduced from one end of a metal round pipe having a substantially circular cross section to H1 (see FIG. 10; the same applies hereinafter), and a length of H3 from the other end. The structure is such that the large outer diameter pipe portion 3 whose diameter is expanded in the range and the middle outer diameter pipe portion 15 as it is (the straight pipe body) of the metal round pipe of the remaining length H2 are connected via the step 5. The axial centers of the pipe portions 3, 4, 15 are aligned on substantially the same line so that the plastic deformation at the step 5 is equal in the circumferential direction. In addition, the step 5 in this example is a surface that is orthogonal to the extending direction of the three-stage tube. The method of attaching to the vehicle is the same as in the above-described example (FIG. 1 et seq.), And a description thereof will not be repeated. In the present embodiment, the pipe passage holes are not provided in the body frame 1 so that the small and medium outer diameter pipe sections 4 and 15 are not pushed into the inside. For example, the pipe passage holes through which only the small outer diameter pipe section 4 can pass. May be provided.

【0016】図6〜図8は図5の状態から衝撃吸収装置
に衝撃が加わった際の衝撃吸収の度合いと3段管体14の
変形の度合いとの関係を示した図5相当縦断面図、図6
は図5の状態から中外径管部15が大外径管部3に押し込
まれた状態、図7は図6の状態から小外径管部4が中外
径管部15に押し込まれ始めた状態、そして図8は衝撃エ
ネルギーをほとんど吸収し終えた状態を表している。各
図中、衝撃エネルギーの大きさを3段管体14中の太線白
抜矢印で、変形エネルギーを塑性変形量(押し込み量)の
大きさで示した3段管体14外の細線白抜矢印でそれぞれ
示している。また、実際には図8の状態に至る段階でほ
とんど衝撃エネルギーは吸収し終えてなくなっている
が、説明の便宜上、太線白抜矢印を残している。
FIGS. 6 to 8 are longitudinal sectional views corresponding to FIG. 5 showing the relationship between the degree of shock absorption and the degree of deformation of the three-stage tube 14 when a shock is applied to the shock absorbing device from the state of FIG. , FIG.
5 shows a state in which the middle and outer diameter tube portions 15 have been pushed into the large and outer diameter tube portions 3 from the state of FIG. 5, and FIG. 7 shows a state in which the small and outer diameter tube portions 4 have begun to be pushed into the middle and outer diameter tube portions 15 from the state of FIG. 8 shows a state in which almost all impact energy has been absorbed. In each figure, the magnitude of the impact energy is indicated by a bold-line outline arrow in the three-stage tube 14, and the deformation energy is indicated by the magnitude of the amount of plastic deformation (indentation amount) of the thin-line outline outside the three-stage tube 14. Are indicated by. In addition, although the impact energy is almost not completely absorbed until the state shown in FIG. 8 is reached, a bold white outline arrow is left for convenience of explanation.

【0017】図5の状態からバンパー2に対して衝突が
加わると、小外径管部4にはもちろん、段差5を介して
中大外径管部3,15にも衝撃が伝達され、小外径管部4
は中外径管部15へ、中外径管部15は大外径管部3へと押
し込まれるように変位し始める。段差5の塑性変形によ
る捲り込みは、押し込む管部(例えば中外径管部15)自身
ではなく、押し込まれる管部(例えば大外径管部3)が段
差5と共に内側へ捲り込むことで実現する。ここで、本
例の3段管体では、直管体の中外径管部15の厚みt2を
基準として、縮径した小外径管部4の厚みt1が最も厚
く、逆に拡径した大外径管部3の肉厚t3が最も薄くな
っている。また、小中外径管部4,15間の段差5の幅W1
はt2よりも大きく、大中外径管部3,15間の段差5の幅
W2はt3よりも大きい。このため、段差5の捲り込みに
よる塑性変形は、図6に見られるように、まず大外径管
部3に中外径管部15が押し込まれる態様で生じる。
When a collision is applied to the bumper 2 from the state shown in FIG. 5, the impact is transmitted not only to the small outer diameter pipe portion 4 but also to the middle and large outer diameter pipe portions 3 and 15 through the step 5, and the small Outer diameter tube part 4
Starts to be displaced so as to be pushed into the medium / outside diameter tube portion 15 and the medium / outside diameter tube portion 15 into the large outside diameter tube portion 3. Rolling-in of the step 5 due to plastic deformation is realized not by the pipe section to be pushed in (for example, the middle outer diameter pipe section 15) itself, but by the tube section to be pushed in (for example, the large outer diameter pipe section 3) being rolled inward together with the step 5. . Here, in the three-stage pipe body of the present example, the thickness t1 of the reduced outer diameter pipe section 4 is the thickest, and conversely, the enlarged diameter t2 of the small outer diameter pipe section 4 is based on the thickness t2 of the middle outer diameter pipe section 15 of the straight pipe body. The thickness t3 of the outer diameter tube portion 3 is the thinnest. Also, the width W1 of the step 5 between the small and medium outer diameter pipe sections 4 and 15
Is larger than t2, and the width W2 of the step 5 between the large and middle outer diameter pipe portions 3, 15 is larger than t3. For this reason, the plastic deformation due to the rolling-in of the step 5 occurs in such a manner that the middle outer diameter tube portion 15 is first pushed into the large outer diameter tube portion 3 as shown in FIG.

【0018】こうして、衝撃エネルギーは、まず前記小
中外径管部4,15を一体とした押し込み、すなわち中大
外径管部3,15間の段差5の捲れ込みという変形エネル
ギーとして吸収される。同時に、小外径管部4を中外径
管部15へ押し込む変形エネルギーとしても衝撃エネルギ
ーは利用されるため、図6に見られるように、小中外径
管部4,15間の段差5の捲れ込みも僅かながら生じてい
る。
In this way, the impact energy is first absorbed as the deformation energy of pushing the small and medium-diameter tube sections 4 and 15 together, that is, the stepping-up of the step 5 between the medium and large-diameter tube sections 3 and 15. At the same time, since the impact energy is also used as the deformation energy for pushing the small outer diameter tube portion 4 into the middle outer diameter tube portion 15, as shown in FIG. There is also a slight crowding.

【0019】本例では、車体フレーム1の存在によっ
て、中大外径管部3,15間の段差5の捲れ込みは制限さ
れている(図6参照)ので、次に、図7に見られるよう
に、衝撃エネルギーは小中外径管部4,15間の段差5の
捲れ込みという変形エネルギーとして吸収され始める。
これでもなお衝撃エネルギーが残っていれば、更に、図
8に見られるように、車体フレーム1に制限されるまで
小中外径管部4,15間の段差5の捲れ込みは進行する。
こうして、両段差5の捲り込みという変形エネルギーへ
の転換によって衝撃エネルギーは大幅に吸収され、車体
フレーム1に伝達される衝撃エネルギーをほとんどなく
すことができる。
In this example, the presence of the body frame 1 limits the winding of the step 5 between the middle and large outer diameter pipe portions 3 and 15 (see FIG. 6). As described above, the impact energy starts to be absorbed as deformation energy, which is the winding of the step 5 between the small and medium outer diameter pipe portions 4 and 15.
If the impact energy still remains, the step-up 5 between the small and medium-diameter outer tube portions 4 and 15 further proceeds until the impact energy is limited as shown in FIG.
In this manner, the impact energy is largely absorbed by the conversion of the two steps 5 into the deformation energy of being rolled up, and the impact energy transmitted to the vehicle body frame 1 can be almost eliminated.

【0020】本発明の衝撃吸収装置は、外径の異なる管
部を3段以上並んだ3段管体14がより好ましく、このこ
とは特に斜め方向からバンパー2に衝撃が加わった場合
に証明される。図9は図5の状態から衝撃吸収装置に斜
め方向から衝撃が加わった際の衝撃吸収の度合いと3段
管体14の変形の度合いとの関係を示した図5相当縦断面
図である。記述したように、小中大外径管部3,4,15そ
れぞれはt1>t2>t3の関係にあり、各段差5に対し
てW1>t2及びW2>t3の関係にある。加えて、各管部
の相対的長さの長短は傾倒の難易に関係があり、本例で
は小外径管部4の長さH1は中外径管部15の長さH2より
も長く、中外径管部15の長さH2と大外径管部3の長さ
H3はほぼ等しくなっている。このため、バンパー2に
斜め方向から衝撃が加わった場合、図9に見られるよう
に、小外径管部4は段差5を少し捲り込みながら傾倒す
るもの、中外径管部15が小外径管部4を支持し、図2同
様中外径管部15が大外径管部3に押し込まれるように塑
性変形し、衝撃エネルギーを吸収できるようになってい
る。
The shock absorbing device of the present invention is more preferably a three-stage tube body 14 in which three or more tube portions having different outer diameters are arranged, and this is proved particularly when an impact is applied to the bumper 2 from an oblique direction. You. FIG. 9 is a longitudinal sectional view corresponding to FIG. 5 showing the relationship between the degree of shock absorption and the degree of deformation of the three-stage pipe body 14 when a shock is applied to the shock absorbing device from an oblique direction from the state of FIG. As described above, each of the small, medium and large outer diameter pipe portions 3, 4, and 15 has a relationship of t1>t2> t3, and has a relationship of W1> t2 and W2> t3 with respect to each step 5. In addition, the relative length of each tube portion is related to the difficulty of tilting. In this example, the length H1 of the small outer diameter tube portion 4 is longer than the length H2 of the middle outer diameter tube portion 15, and The length H2 of the diameter tube portion 15 and the length H3 of the large outer diameter tube portion 3 are substantially equal. For this reason, when an impact is applied to the bumper 2 from an oblique direction, as shown in FIG. 9, the small outer diameter tube portion 4 tilts while slightly rolling the step 5, and the middle outer diameter tube portion 15 The tube portion 4 is supported, and the middle and outer diameter tube portions 15 are plastically deformed so as to be pushed into the large outer diameter tube portion 3 as in FIG. 2, so that impact energy can be absorbed.

【0021】このように、3段管体、ひいては多段管体
からなる本発明の衝撃吸収装置は、連なる各管部相互が
互いの傾倒を抑制し、塑性変形方向を最終的には同一
(上記例で言えば中外径管部15が大外径管部3に押し込
まれる)にすることで、衝撃の印加方向を問わず、等し
く衝撃エネルギーを吸収できる。また、吸収可能な衝撃
エネルギーの量は、各段差に生じる捲り込み量の合計に
比例する。各段差の捲り込み量は、押し込む管部と押し
込まれる管部との関係で長さの短い方に従うので、好ま
しくは各管部の長さが等しい方がよい。上記例では、H
2=H3であり、H1についてもバンパーとの取付代を除
いて考えれば他の管部の長さに等しく、およそH1=H2
=H3になっている。
As described above, in the shock absorbing device of the present invention composed of a three-stage tube and a multi-stage tube, each of the continuous tube portions suppresses the inclination of each other, and the plastic deformation direction is finally the same.
(In the above example, the middle and outer diameter tube portions 15 are pushed into the large outer diameter tube portion 3), so that the impact energy can be equally absorbed regardless of the direction in which the impact is applied. In addition, the amount of impact energy that can be absorbed is proportional to the total amount of entanglement generated at each step. The roll-in amount of each step follows the shorter length in relation to the pipe section to be pushed in and the pipe section to be pushed in. Therefore, it is preferable that the lengths of the respective pipe sections are equal. In the above example, H
2 = H3, and H1 is equal to the length of the other pipes except for the mounting allowance with the bumper.
= H3.

【0022】[0022]

【実施例】3段管体からなる衝撃吸収装置のエネルギー
吸収測定試験を実施した。供試体(衝撃吸収装置)は図10
に示す外形で、鋼製円形直管体φ50.8mmから、小外径管
部は外径φ1=34.8mmでH1=45.0mm及びt1=2.95mm、
中外径管部は外径φ2=50.8mmでH2=50.0mm及びt2=
2.30mm、大外径管部は外径φ3=66.0mmでH3=50.0mm及
びt3=2.00mmの3段管体を構成している。前記から、
W1=8.0mm、W2=7.6mmとなる。また、各段差は5.0mm
の長さで管部それぞれに対して折り返している。試験
は、小外径管部に荷重を掛けて各管部を押し込む方法
で、押し込み量(=バンパー変位量,mm)に対するエネル
ギー吸収量を押し込み荷重(kN)として計測した。試験結
果のグラフを図11に示す。供試体は、段差を別途成形加
工しており、この段差が最初に構造変形する押し込み量
13mmまでは一度大きな押し込み荷重を必要とする。本発
明に従う段差の捲れ込み(塑性変形)は、前記押し込み荷
重を超えて一度落ち込んだ後、押し込み量13mm以上で観
測され、そのエネルギー吸収特性は概ね矩形波形特性と
なっている。これから、段差が当初より塑性変形するよ
うに加工しておけば、本発明の衝撃吸収装置は矩形波形
特性に従うエネルギー吸収特性を有することが確認でき
た。
EXAMPLE An energy absorption measurement test was performed on an impact absorbing device comprising a three-stage tube. Fig. 10 shows the test specimen (shock absorber).
With the outer shape shown in the figure, from a steel circular straight pipe φ50.8mm, the small outer diameter pipe part has an outer diameter φ1 = 34.8mm, H1 = 45.0mm and t1 = 2.95mm,
Medium and outer diameter tube section has outer diameter φ2 = 50.8mm, H2 = 50.0mm and t2 =
The large-diameter tube section has a diameter of 2.30 mm, an outer diameter of φ3 = 66.0 mm, and constitutes a three-stage pipe body of H3 = 50.0 mm and t3 = 2.00 mm. From the above,
W1 = 8.0 mm and W2 = 7.6 mm. In addition, each step is 5.0mm
The length is folded back to each of the pipes. In the test, a load was applied to the small outer diameter pipe section and each pipe section was pushed in, and the amount of energy absorbed with respect to the pushing amount (= bumper displacement amount, mm) was measured as the pushing load (kN). FIG. 11 shows a graph of the test results. The specimen has a step formed separately, and this step is the amount of indentation at which the structural deformation occurs first.
Up to 13mm requires a large indentation load once. The indentation (plastic deformation) of the step according to the present invention is observed once at an indentation of 13 mm or more after having once dropped beyond the indentation load, and its energy absorption characteristics are substantially rectangular waveform characteristics. From this, it was confirmed that the shock absorbing device of the present invention had an energy absorbing characteristic according to a rectangular waveform characteristic if the step was processed so as to be plastically deformed from the beginning.

【0023】[0023]

【発明の効果】本発明の車輌の衝撃吸収装置は、下記の
ような効果を備えている。 (1)エネルギー吸収特性は急激にエネルギー吸収量が増
え、直に定率吸収となる特性(矩形波形特性)を示し、エ
ネルギー吸収効率がよい。 (2)径の大きさ順に管部を並べた多段管体は、バンパー
支持剛性が得やすく、曲げモーメント分布に対応した断
面が得られる。 (3)塑性変形する段差は、管部の端縁外周に存在するた
め、安定した塑性変形を得やすい。 (4)取付対象となるブラケット等への荷重伝播が圧縮で
あるため、強度的に安定している。 (5)金属パイプを用いた縮径、拡径又はプレス加工は、
成形が容易で、安定した形状の製品を得やすい。 (6)縮径した管部は肉厚が厚く、拡径した管部は肉厚が
薄くなり、効率よく塑性変形を生じさせるに適した管部
相互のサイズ関係を実現しやすい。 (7)従来同様な二重管式衝撃吸収装置に比べ、パイプ相
互の精度、潤滑性、防塵性、固定支持を確保する構造が
不要であり、重量、コスト、信頼性で勝る。 (8)多段管体の段数を増やせば、塑性変形量を増やすこ
とができ、エネルギー吸収量を容易に増やすことができ
る。
The shock absorbing device for a vehicle according to the present invention has the following effects. (1) The energy absorption characteristic shows a characteristic (rectangular waveform characteristic) in which the amount of energy absorption sharply increases and immediately becomes a constant rate absorption, and the energy absorption efficiency is good. (2) A multistage pipe body in which pipe sections are arranged in the order of the diameters can easily obtain bumper support rigidity and a cross section corresponding to a bending moment distribution. (3) Since the step that undergoes plastic deformation is present at the outer periphery of the end of the pipe, stable plastic deformation is easily obtained. (4) Since the load is transmitted to the bracket to be mounted by compression, the strength is stable. (5) Diameter reduction, diameter expansion or press working using metal pipes,
It is easy to mold and it is easy to obtain products with stable shapes. (6) The reduced-diameter tube portion has a large thickness, and the enlarged-diameter tube portion has a small thickness, so that it is easy to realize a size relationship between the tube portions suitable for efficiently causing plastic deformation. (7) Compared with the conventional double-pipe type shock absorber, there is no need for a structure that ensures the accuracy, lubricity, dustproofness, and fixed support of the pipes, and is superior in weight, cost, and reliability. (8) If the number of stages of the multi-stage tube is increased, the amount of plastic deformation can be increased, and the amount of energy absorption can be easily increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の2段管体からなる衝撃吸収装置の縦断
面図である。
FIG. 1 is a longitudinal sectional view of a shock absorbing device comprising a two-stage tube of the present invention.

【図2】図1中A−A断面図である。FIG. 2 is a sectional view taken along the line AA in FIG.

【図3】図1中B−B断面図である。FIG. 3 is a sectional view taken along line BB in FIG.

【図4】衝撃エネルギーを殆ど吸収し終えた状態を示し
た図1相当縦断面図である。
FIG. 4 is a longitudinal sectional view corresponding to FIG. 1 showing a state in which almost all impact energy has been absorbed.

【図5】本発明の3段管体からなる衝撃吸収装置の縦断
面図である。
FIG. 5 is a longitudinal sectional view of the shock absorbing device including the three-stage tube of the present invention.

【図6】図5の状態から中外径管部が大外径管部に押し
込まれた状態を示した図5相当縦断面図である。
6 is a longitudinal sectional view corresponding to FIG. 5, showing a state in which the middle outer diameter pipe portion is pushed into the large outer diameter pipe portion from the state of FIG. 5;

【図7】図6の状態から小外径管部が中外径管部に押し
込まれ始めた状態を示した図5相当縦断面図である。
7 is a longitudinal sectional view corresponding to FIG. 5, showing a state in which the small outer diameter tube portion has begun to be pushed into the middle outer diameter tube portion from the state of FIG. 6;

【図8】衝撃エネルギーを殆ど吸収し終えた状態を示し
た図5相当縦断面図である。
FIG. 8 is a longitudinal sectional view corresponding to FIG. 5, showing a state in which almost all impact energy has been absorbed.

【図9】図5の状態から衝撃吸収装置に斜め方向から衝
撃が加わった際を示した図5相当縦断面図である。
9 is a longitudinal sectional view corresponding to FIG. 5 and showing a state where a shock is applied to the shock absorbing device from an oblique direction from the state of FIG. 5;

【図10】供試体に用いた衝撃吸収装置を示す縦断面図で
ある。
FIG. 10 is a longitudinal sectional view showing the shock absorbing device used for the test specimen.

【図11】供試体におけるエネルギー吸収測定試験の結果
を表すグラフである。
FIG. 11 is a graph showing the results of an energy absorption measurement test on a test sample.

【符号の説明】[Explanation of symbols]

1 車体フレーム 2 バンパー 3 大外径管部 4 小外径管部 5 段差 6 取付フランジ 7 組付パイプ 8 ボルト 9 2段管体 10 ボルト孔 11 管体取付座 12 管部通過孔 13 ボルト孔 14 3段管体 15 中外径管部 DESCRIPTION OF SYMBOLS 1 Body frame 2 Bumper 3 Large outer diameter pipe part 4 Small outer diameter pipe part 5 Step 6 Mounting flange 7 Assembling pipe 8 Bolt 9 Two-stage pipe body 10 Bolt hole 11 Pipe mounting seat 12 Pipe passage hole 13 Bolt hole 14 Three-stage pipe 15 Medium outer diameter pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 車輌のバンパーと車体フレームとの間に
介装し、バンパーが受けた衝撃エネルギーを変形エネル
ギーに転換して吸収する衝撃吸収装置であって、塑性加
工可能な直管体を部分的に縮径又は拡径して外径の異な
る管部を形成し、各管部端縁間に形成できる段差を介し
て該管部相互を結んで多段管体を構成してなり、該多段
管体両端に位置する管部をそれぞれバンパー及び車体フ
レームに連結することを特徴とする車輌の衝撃吸収装
置。
1. An impact absorbing device interposed between a bumper of a vehicle and a body frame to convert impact energy received by the bumper into deformation energy and absorb the deformation energy. The multi-stage pipe body is formed by gradually reducing or expanding the diameter to form pipe sections having different outer diameters, and connecting the pipe sections to each other through a step that can be formed between the ends of the pipe sections. An impact absorbing device for a vehicle, wherein pipe sections located at both ends of a pipe body are connected to a bumper and a body frame, respectively.
【請求項2】 各管部端縁間に成形できる段差を該管部
それぞれに対して折り返した請求項1記載の車輌の衝撃
吸収装置。
2. The impact absorbing device for a vehicle according to claim 1, wherein a step that can be formed between the edges of each tube portion is turned back to each of the tube portions.
【請求項3】 段差を介して結んだ管部の一方の外径よ
り他方の内径が大きい関係にある請求項1記載の車輌の
衝撃吸収装置。
3. The shock absorbing device for a vehicle according to claim 1, wherein the inner diameter of one of the pipe portions connected via the step is larger than the outer diameter of the other.
【請求項4】 塑性加工可能な円形直管体を部分的に縮
径又は拡径して略円形の大外径管部及び小外径管部を形
成し、各管部の軸心が略同一線上となるように各管部端
縁を段差で結んで2段管体を構成してなり、前記大外径
管部を車体フレームの衝撃を受ける側に当接固定した請
求項1記載の車輌の衝撃吸収装置。
4. A circular straight pipe body capable of being plastically worked is partially reduced or expanded to form a substantially circular large outer diameter pipe section and a substantially circular outer diameter pipe section, and the axis of each pipe section is substantially 2. The large-diameter pipe section is fixed to an impact-receiving side of the vehicle body frame by forming a two-stage pipe body by connecting the ends of the pipe sections with a step so as to be on the same line. Vehicle shock absorber.
【請求項5】 塑性加工可能な円形直管体を部分的に縮
径又は拡径して略円形の小外径管部、中外径管部及び大
外径管部を形成し、各管部の軸心が略同一線上となるよ
うに各管部端縁を段差で結んで該管部を径の大きさ順に
並ぶ3段管体を構成してなり、前記大外径管部を車体フ
レームの衝撃を受ける側に当接固定した請求項1記載の
車輌の衝撃吸収装置。
5. A circular straight pipe body capable of being plastically worked is partially reduced or expanded to form a substantially circular small outer diameter pipe section, a middle outer diameter pipe section, and a large outer diameter pipe section. The pipe edges are connected by steps so that the axes of the pipes are substantially on the same line to form a three-stage pipe body in which the pipe parts are arranged in order of diameter. 2. The impact absorbing device for a vehicle according to claim 1, wherein the impact absorbing device is fixedly abutted on a side receiving the impact.
JP2000263079A 1999-09-02 2000-08-31 Vehicle shock absorber Expired - Fee Related JP3380537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263079A JP3380537B2 (en) 1999-09-02 2000-08-31 Vehicle shock absorber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24855899 1999-09-02
JP11-248558 1999-09-02
JP2000263079A JP3380537B2 (en) 1999-09-02 2000-08-31 Vehicle shock absorber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002270789A Division JP3501228B2 (en) 1999-09-02 2002-09-17 Vehicle shock absorber

Publications (2)

Publication Number Publication Date
JP2001138841A true JP2001138841A (en) 2001-05-22
JP3380537B2 JP3380537B2 (en) 2003-02-24

Family

ID=26538836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263079A Expired - Fee Related JP3380537B2 (en) 1999-09-02 2000-08-31 Vehicle shock absorber

Country Status (1)

Country Link
JP (1) JP3380537B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854574B2 (en) 2002-05-29 2005-02-15 Asteer Co., Ltd. Shock absorber
US6908129B2 (en) 2003-02-06 2005-06-21 Asteer Co., Ltd. Shock absorber
US7021686B2 (en) 2001-09-27 2006-04-04 Shape Corporation Tubular energy management system for absorbing impact energy
US7182191B2 (en) * 2002-07-11 2007-02-27 Autoliv Asp, Inc. Motion damper
JP2008512627A (en) * 2004-09-07 2008-04-24 シエイプ コーポレイション Plastic energy management beam
JP2009056857A (en) * 2007-08-30 2009-03-19 Aisin Seiki Co Ltd Bumper device for vehicle
JP2010511555A (en) * 2006-12-08 2010-04-15 コスマ エンジニアリング ユーロープ アクチェンゲゼルシャフト Energy absorber
KR101018143B1 (en) * 2008-08-29 2011-02-28 주식회사 포스코 Method for molding of vehicles' bumper crash box having reinforcement portion and bumper crash box for vehicles
JP2011085156A (en) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd Impact absorbing member
US8123263B2 (en) 2001-09-27 2012-02-28 Shape Corp. Energy management beam
JP2015030295A (en) * 2013-07-31 2015-02-16 川崎重工業株式会社 Railway vehicle collision energy absorption device and railway vehicle
CN111619487A (en) * 2020-06-03 2020-09-04 长沙理工大学 Fluid-solid coupling four-stage collision energy absorption device
CN112407027A (en) * 2019-08-22 2021-02-26 株式会社万都 Two-way adjusting pipe column and vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240933B2 (en) 2001-09-27 2007-07-10 Shape Corporation Tubular energy management system for absorbing impact energy
US8123263B2 (en) 2001-09-27 2012-02-28 Shape Corp. Energy management beam
US7021686B2 (en) 2001-09-27 2006-04-04 Shape Corporation Tubular energy management system for absorbing impact energy
US7393029B2 (en) 2001-09-27 2008-07-01 Shape Corporation Plastic energy management beam
US6854574B2 (en) 2002-05-29 2005-02-15 Asteer Co., Ltd. Shock absorber
US7182191B2 (en) * 2002-07-11 2007-02-27 Autoliv Asp, Inc. Motion damper
US6908129B2 (en) 2003-02-06 2005-06-21 Asteer Co., Ltd. Shock absorber
JP2007503561A (en) * 2003-08-26 2007-02-22 シエイプ コーポレイション A cylindrical energy management system for absorbing impact energy.
JP2008512627A (en) * 2004-09-07 2008-04-24 シエイプ コーポレイション Plastic energy management beam
JP2010511555A (en) * 2006-12-08 2010-04-15 コスマ エンジニアリング ユーロープ アクチェンゲゼルシャフト Energy absorber
JP2009056857A (en) * 2007-08-30 2009-03-19 Aisin Seiki Co Ltd Bumper device for vehicle
KR101018143B1 (en) * 2008-08-29 2011-02-28 주식회사 포스코 Method for molding of vehicles' bumper crash box having reinforcement portion and bumper crash box for vehicles
JP2011085156A (en) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd Impact absorbing member
JP2015030295A (en) * 2013-07-31 2015-02-16 川崎重工業株式会社 Railway vehicle collision energy absorption device and railway vehicle
CN112407027A (en) * 2019-08-22 2021-02-26 株式会社万都 Two-way adjusting pipe column and vehicle
CN111619487A (en) * 2020-06-03 2020-09-04 长沙理工大学 Fluid-solid coupling four-stage collision energy absorption device
CN111619487B (en) * 2020-06-03 2021-03-26 长沙理工大学 Fluid-solid coupling four-stage collision energy absorption device

Also Published As

Publication number Publication date
JP3380537B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
US6702345B1 (en) Vehicular shock absorber
JP3380537B2 (en) Vehicle shock absorber
JP3327030B2 (en) Impact energy absorbing device and its mounting structure
JP2002331888A (en) Bumper fitting structure
US7694787B2 (en) Shock absorbing member for vehicle
JPWO2005075254A1 (en) Vehicle shock absorber
US6908129B2 (en) Shock absorber
JP4057837B2 (en) Shock absorbing member
EP2502791B1 (en) Shock absorber and bumper device for vehicle
JPH1067339A (en) Strut tower for automobile especially passenger car
JPWO2013024883A1 (en) Shock absorbing member
JP5316935B2 (en) Steel pipe for impact energy absorption for automobile and method for manufacturing the same
US20090243314A1 (en) Bumper structure
JP2005510392A (en) Bumper crash tower with rings of different strength
JPH10138950A (en) Shock absorbing member and manufacture therefor
JP2003312535A (en) Impact energy absorbing member
JP3501228B2 (en) Vehicle shock absorber
JP4795713B2 (en) Shock absorber
JP4039032B2 (en) Impact energy absorbing member
JP4383591B2 (en) Impact energy absorbing device and vehicle bumper device using the impact energy absorbing device
JP5631723B2 (en) Shock absorbing member
JP5632147B2 (en) Crash box
CN215971754U (en) Auxiliary frame energy absorption structure
JPH0868110A (en) Double-tube type structural member for space truss
JP2006008088A (en) Impact absorption device for vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees