JP2001133309A - Measuring method of powder quantity - Google Patents

Measuring method of powder quantity

Info

Publication number
JP2001133309A
JP2001133309A JP31239199A JP31239199A JP2001133309A JP 2001133309 A JP2001133309 A JP 2001133309A JP 31239199 A JP31239199 A JP 31239199A JP 31239199 A JP31239199 A JP 31239199A JP 2001133309 A JP2001133309 A JP 2001133309A
Authority
JP
Japan
Prior art keywords
powder
container
shape
measuring
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31239199A
Other languages
Japanese (ja)
Inventor
Minoru Tada
多田稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP31239199A priority Critical patent/JP2001133309A/en
Publication of JP2001133309A publication Critical patent/JP2001133309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the quantity of a powder changing the powder surface shape. SOLUTION: The powder shape of the upper surface of the powder is measured from above the powder, and the powder quantity is calculated by the comparative calculation with the shape of a powder vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】粉体容器中の粉体容量を計量
する方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for measuring a powder volume in a powder container.

【0002】[0002]

【従来の技術】粉体容器中の粉体量を計量する方法は重
量で計量する方法や粉体の容器上面からの粉面までの距
離を超音波や、錘付きの目盛りのついたテ−プ等で測定
し計量する方法がとられている。
2. Description of the Related Art A method of measuring the amount of powder in a powder container is a method of measuring by weight, a method of measuring the distance from the upper surface of the powder to the powder surface by using an ultrasonic wave or a scale with a weight. A method of measuring and measuring with a pump or the like is adopted.

【0003】粉体容器の中の粉体容量を計量するに当た
って重量で正確に測定する方法は、粉体容器とそれを支
持する架台の間に重量測定器具を設置して測定する方法
や粉体容器全体を吊り下げてその重量を測定する方法が
最も一般的であるが新しく粉体容器を製作して計量する
場合は良いがすでに作られている粉体容器の場合は容器
と架台の大幅な改造が必要で特に大型の粉体容器では難
しく極めて困難である。又、粉体容器の上面から粉体ま
での距離を測定する方法も粉体表面がいつもほぼ同じ場
合にはその距離のみを測定することで粉体容量を算出す
ることは可能であり、このような場合に良く使用されて
いる。しかし粉体の場合液体と異なり表面は水平になら
ないので、粉体容器の使い方によって容器内部の粉体表
面形状は種々変化する。例をもって示せば、粉体を容器
に受け入れる時は粉体はその安息角に従って上に凸の山
状となり、粉体を容器の底から抜き出す時は下に凸のす
り鉢状に変化する。特に粉体容器からの粉体抜き口が数
カ所にある場合には粉体の抜き方によって粉体容器内の
粉体上部粉面形状は大幅に変化する。このような場合に
は粉体表面までの距離を図る従来の方法では形状が分か
らない為量を正確に測ることは殆ど不可能であった。
[0003] In measuring the volume of powder in a powder container, a method of accurately measuring by weight includes a method of installing a weight measuring instrument between a powder container and a gantry supporting the container, and a method of measuring powder. The most common method is to hang the entire container and measure its weight, but it is good to make a new powder container and weigh it. Remodeling is necessary, especially for large powder containers, which is difficult and extremely difficult. In addition, the method of measuring the distance from the upper surface of the powder container to the powder can also calculate the powder volume by measuring only the distance when the powder surface is almost the same. It is often used in such cases. However, in the case of powder, unlike a liquid, the surface does not become horizontal, so that the shape of the powder surface inside the container changes variously depending on how the powder container is used. For example, when the powder is received in the container, the powder has a convex mountain shape according to the angle of repose, and when the powder is withdrawn from the bottom of the container, the powder changes to a convex mortar shape. In particular, when there are several powder outlets from the powder container, the shape of the upper surface of the powder in the powder container greatly changes depending on the method of extracting the powder. In such a case, it is almost impossible to accurately measure the amount because the shape is not known by the conventional method for measuring the distance to the powder surface.

【0004】[0004]

【発明が解決しようとする課題】粉体容器中の粉体表面
形状が時間の経過で大幅に変化する粉体の容量を簡便な
方法で正確に計量する方法を提供する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for accurately and accurately measuring the volume of a powder in which the surface shape of the powder in the powder container changes significantly with the passage of time.

【0005】[0005]

【課題を解決するための手段】本発明者は粉体容器中の
粉体表面形状が時間の経過で大幅に変化する粉体の容量
を、粉体容器中の粉体上部表面の形状を測りこの形状と
粉体容器の形状の差から粉体容量を計測することを着想
し本発明に到達した。
Means for Solving the Problems The present inventor measures the volume of powder whose surface shape changes greatly over time in the powder container, and measures the shape of the upper surface of the powder in the powder container. The inventors arrived at the present invention with the idea of measuring the powder volume from the difference between this shape and the shape of the powder container.

【0006】すなわち、(1)粉体容器内の粉体量を計
量するのに粉体上部から粉体上面の粉体形状を計測して
粉体容器の形状との比較計算により粉体量を計算算出す
る方法、(2)センサ−をある一定間隔で一直線に取り
付けた、回転移動式腕木を回転させ、腕木に取り付けた
センサ−で腕木と粉体表面の距離を測定し、粉体面の形
状を緻密に測定して、粉体容器内部の粉体容積量を測定
する方法、に関する。
That is, (1) measuring the amount of powder in the powder container, measuring the powder shape on the upper surface of the powder from the upper portion of the powder, and calculating the amount of powder by comparison with the shape of the powder container; (2) Rotating a rotatable arm attached with a sensor at a certain interval in a straight line, measuring the distance between the arm and the powder surface with the sensor attached to the arm, The present invention relates to a method for measuring a shape precisely and measuring a volume of powder inside a powder container.

【0007】[0007]

【発明の実施の形態】本発明で、対象とする粉体はその
粒子径、粒度分布、真比重など特に特定されないが通常
平均粒子径1μm〜20mm、粒度分布 0.5μm〜
30mm、真比重 0.4〜8.0g/cm3等が適用
できる。粉体容器に粉体を入れると粉体は安息角に従っ
て山盛り状態になる。一方粉体容器の底の中心部から粉
体を抜き出すと粉体は中心部から良く抜け底に凹のすり
ばち状になる。又抜き出しを底の端部から抜き出すとそ
の抜き出し部を最低部とする傾斜が粉体容器内に発生す
る。更にこの粉体抜き出し中に粉体の受け入れを始める
と内部の粉体上部表面形状は種々に変化する。このよう
な場合には粉体量は重量で測定するのが良い。しかし先
にも述べたようにすでに作られた粉体容器を使用する場
合には容器の改造が難しく、重量測定は困難であるの
で、粉体容積量を測る必要がある。しかしながら従来の
ように粉体容器の上部から粉体表面の距離を数点測定す
る方法ではほぼ水平な又は常にほぼ同じ形状の表面でな
い粉体では計量は無理である。従ってこのように粉面形
状が変化する場合にはすなおに粉体表面形状を図り、元
々分かっている粉体容器形状との差を計算算出すること
で粉体量を測ることを着想した。即ち、容器上部と粉体
面の高さの距離を多数測定し、粉体面の形状を緻密に測
定すれば良いことが解った。具体的方法としては、コス
トは高くなるが、容器上部に多数の固定式の距離センサ
−を取り付ける方法がある。本発明では、センサ−をあ
る一定間隔で一直線に取り付けた、回転移動式腕木を設
置することが特に有効である。センサ−の配置は周方向
で均等に測定できるように配置し、配置する数は多いほ
ど精度はあがるので経済性と必要精度のバランスで決め
る必要がある。腕木の数、センサ−の数、腕木の回転速
度は容器の大きさ、取り扱う物質、粉体受け入れ速度、
粉体払い出し速度によって異なるが、例えば、腕木の数
は1〜6本、センサ−数は0.2〜3ケ/m、回転速度
は0.05〜5回転/分位である。距離測定センサ−と
しては音波、超音波、レ−ザ−等がある。図1に示すよ
うに、腕木を回転させ、腕木に取り付けたセンサ−で腕
木と粉体表面の距離を測定し、あらかじめわかっている
センサ−と粉体容器底部との距離から差し引くことで粉
体容器底部からの粉体高さがわかり、この高さに各測定
点がカバ−する範囲の断面積をかけてこれを全測定点分
合計することで粉体容器内部の粉体容積量を測定するこ
とが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the target powder is not particularly specified, such as its particle diameter, particle size distribution, and true specific gravity, but usually has an average particle diameter of 1 μm to 20 mm and a particle size distribution of 0.5 μm to
30 mm, a true specific gravity of 0.4 to 8.0 g / cm 3 or the like can be applied. When the powder is put into the powder container, the powder is heaped up according to the angle of repose. On the other hand, when the powder is extracted from the central portion of the bottom of the powder container, the powder is well removed from the central portion and has a concave tongue shape at the bottom. When the extraction is withdrawn from the bottom end, an inclination with the extraction portion as the lowest portion occurs in the powder container. Furthermore, when powder reception is started during this powder extraction, the internal powder upper surface shape changes variously. In such a case, the amount of the powder is preferably measured by weight. However, as described above, in the case of using a powder container that has already been manufactured, it is difficult to modify the container and it is difficult to measure the weight. Therefore, it is necessary to measure the volume of the powder. However, in the conventional method of measuring the distance of the powder surface from the top of the powder container at several points, it is impossible to measure a powder that is not substantially horizontal or has a surface of almost the same shape. Therefore, in the case where the powder surface shape changes in this way, the idea is to measure the powder amount by calculating the difference between the powder surface shape and the originally known powder container shape. That is, it was found that the distance between the upper part of the container and the height of the powder surface was measured many times, and the shape of the powder surface was precisely measured. As a specific method, there is a method of mounting a large number of fixed distance sensors on the upper part of the container, although the cost is high. In the present invention, it is particularly effective to install a rotatable and movable crosspiece in which sensors are mounted in a straight line at a certain interval. The sensors are arranged so that they can be measured uniformly in the circumferential direction, and the greater the number of sensors, the higher the accuracy. Therefore, it is necessary to determine the balance between economy and required accuracy. The number of arms, the number of sensors and the rotation speed of the arms depend on the size of the container, the material to be handled, the powder receiving speed,
For example, the number of arms is 1 to 6, the number of sensors is 0.2 to 3 / m, and the rotation speed is 0.05 to 5 rotations / minute, depending on the powder dispensing speed. Examples of the distance measuring sensor include a sound wave, an ultrasonic wave, and a laser. As shown in FIG. 1, the arm is rotated, the distance between the arm and the powder surface is measured by a sensor attached to the arm, and the distance between the sensor and the bottom of the powder container known in advance is subtracted from the powder. The height of the powder from the bottom of the container is known, and the height is multiplied by the cross-sectional area of the range covered by each measurement point, and this is added up for all the measurement points to measure the volume of powder inside the powder container. You can do it.

【0008】[0008]

【実施例】(実施例1)粉体(塩化ビニル樹脂)は平均
粒子径が120μm、粒度分布が1〜250μm、粒子
真比重が1.4g/cm3のものを使用した。粉体容器
(塩化ビニル製品貯槽)は内径4m直胴高さ8m下部円
錐形の粉体容器を使用した。粉体容器上内部に回転移動
する腕木を4本設け、その各腕木に超音波発信器を3つ
づつ間隔を開けて下向きに取り付けた。各腕木の取り付
け位置は周方向で重ならないようにすることで周方向で
12点計測できるようにした。回転速度は1回転4分3
秒とした。超音波発信は各腕木の3つが干渉し合わない
ように3秒間隔で点滅させた、従って各腕木の発信器は
3秒×3の9秒間隔で計測した。これにより一周する間
に各発信器では(4分×60秒+3秒)/9秒で27点
が計測され、これの12倍の発信器により粉体容器断面
積当り324点の計測をした。粉体容器の水平断面積は
12.56m2である。粉体量の算出は各発信器につい
て各発信時の超音波デ−タから各発信器と粉体表面まで
の垂直距離を算出しあらかじめ判明している各発信器と
粉体容器底部の垂直距離から差し引くことで各発信時の
粉体表面の粉体容器底部からの距離が算出し、これに各
計測点当りの断面積をかけることで各計測点の各計測時
の粉体量が計算され一周分319点の粉体量を合計する
ことで粉体容器内の粉体量全量が算出出来る。これを図
2の計算を説明するための模式図で説明する。腕木につ
けた各発信器は粉体容器の断面上を4分3秒で一周し、
この間に27点の発信計測し粉体高さを算出する。(H
1−1、H1−2、H1−3、H1−・・、…、H1−
27)、さらに発信器は12ケあるので各発信器ごとに
( H2−1、H2−2、H2−3、H2−・・、…、
H2−27)、…・( H12−1、H12−2、H1
2−3、H12−・・、…、H12−27)の粉体高さ
を計測算出する。。一方各測定点ごとの断面積は全断面
積を円周方向に発信器の数12ケで分割した12ケの同
心円で囲まれたド−ナツ状の断面積に分割し、さらにこ
れを各発信器が一周する間に測定する27ケに分割する
ことで各発信点ごとの断面積を算出出来る。(A1−
1、A1−2、A1−3、…、A1−27)、(A2−
1、A2−2、A2−3、…、A2−27)、…・・、
(A12−1、A12−2、A12−3、…、A12−
27)、この各発信点ごとの断面積と粉体高さをかける
ことで各発信点ごとの粉体量が算出され一周分の発信点
の合計で全粉体量が計測できた。(全粉体量=H1−1
×A1−1+H1−2×A1−2+……・+H12−2
7×A12−27)。この測定値の量を確認する為全量
を抜き出して重量測定し比重換算した結果実量との測定
誤差は約4%で十分実用出来ることが分かった。
EXAMPLES (Example 1) Powder (vinyl chloride resin) having an average particle diameter of 120 µm, a particle size distribution of 1 to 250 µm, and a true particle specific gravity of 1.4 g / cm 3 was used. The powder container (vinyl chloride product storage tank) used was a conical powder container having an inner diameter of 4 m, a straight body height of 8 m and a lower part. Four arms that rotatably move were provided inside the powder container, and three ultrasonic transmitters were attached to each of the arms in a downward direction at intervals. Attachment positions of each arm are not overlapped in the circumferential direction so that 12 points can be measured in the circumferential direction. Rotation speed is 1 rotation 4 minutes 3
Seconds. The ultrasonic wave was blinked at intervals of 3 seconds so that three of the arms did not interfere with each other. Therefore, the transmitter of each arm was measured at intervals of 3 seconds × 3 at intervals of 9 seconds. As a result, 27 points were measured at (4 minutes × 60 seconds + 3 seconds) / 9 seconds in each transmitter during one round, and 324 points per powder container cross-sectional area were measured by 12 times the transmitter. The horizontal cross-sectional area of the powder container is 12.56 m 2 . To calculate the amount of powder, calculate the vertical distance between each transmitter and the surface of the powder from the ultrasonic data at the time of each transmission for each transmitter and determine the vertical distance between each transmitter and the bottom of the powder container that is known in advance. The distance from the bottom of the powder container at the time of each transmission is calculated by subtracting from this, and the amount of powder at each measurement point at each measurement point is calculated by multiplying this by the cross-sectional area per each measurement point. The total amount of powder in the powder container can be calculated by summing the amount of powder at 319 points for one round. This will be described with reference to a schematic diagram for explaining the calculation in FIG. Each transmitter attached to the arm crosses around the cross section of the powder container in 4 minutes and 3 seconds,
During this time, 27 points are transmitted and measured to calculate the powder height. (H
1-1, H1-2, H1-3, H1 -..., H1-
27) Further, since there are twelve transmitters, (H2-1, H2-2, H2-3, H2 -...,...,
H2-27), ... (H12-1, H12-2, H1
, H12 -..., H12-27) are measured and calculated. . On the other hand, the cross-sectional area at each measurement point is divided into a donut-shaped cross-sectional area surrounded by 12 concentric circles obtained by dividing the total cross-sectional area by the number of transmitters in the circumferential direction and further transmitting this to each transmitting point. The cross-sectional area at each transmission point can be calculated by dividing into 27 measuring points during one round of the vessel. (A1-
1, A1-2, A1-3,..., A1-27), (A2-
1, A2-2, A2-3,..., A2-27),.
(A12-1, A12-2, A12-3, ..., A12-
27) By multiplying the cross-sectional area at each transmission point by the powder height, the amount of powder at each transmission point was calculated, and the total powder amount could be measured as the sum of the transmission points for one round. (Total powder amount = H1-1
× A1-1 + H1-2 × A1-2 +... + H12-2
7 x A12-27). In order to confirm the amount of this measured value, the whole amount was extracted, weighed, and converted to specific gravity. As a result, it was found that the measurement error from the actual amount was about 4% and was sufficiently practical.

【0009】(比較例1)粉体(塩化ビニル樹脂)は平
均粒子径が120μm、粒度分布が1〜250μm、粒
子真比重が1.4g/cm3のものを使用した。粉体容
器は内径4m直胴高さ8m下部円錐形の粉体容器(塩化
ビニル製品貯槽)を使用した。粉体容器上部に固定式の
超音波発信器を2つ1mの間隔を開けて下向きに取り付
けた。粉体容器内の粉体表面距離デ−タを採取したが粉
体の受け入れ中と排出中では粉体容器内部の粉体の形状
が上に凸から凹へと変化し、さらに受け入れ中に排出が
重なると粉体表面形状は千変万化し2点距離デ−タで粉
体量を計量することは難しく、ある時点で粉体を抜き出
して実際量に比較すると約22%の狂いを生じ計量にな
らなかった。
Comparative Example 1 A powder (vinyl chloride resin) having an average particle diameter of 120 μm, a particle size distribution of 1 to 250 μm, and a true particle specific gravity of 1.4 g / cm 3 was used. The powder container used was a conical powder container (vinyl chloride product storage tank) having an inner diameter of 4 m, a straight body height of 8 m, and a lower part. Two fixed ultrasonic transmitters were attached to the upper part of the powder container downward at an interval of 1 m. The powder surface distance data in the powder container was collected, but the shape of the powder inside the powder container changed from upward convex to concave during receiving and discharging of the powder, and further discharged during receiving , The surface shape of the powder changes so much that it is difficult to measure the amount of powder with two-point distance data. Did not.

【0010】[0010]

【発明の効果】すでに製作されている粉体容器を使用し
て粉体表面形状の変化する粉体容量を計量可能にする。
According to the present invention, it is possible to measure the powder volume in which the powder surface shape changes using a powder container already manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粉体形状の測定による粉体量を図る方
法を説明する図である。
FIG. 1 is a view for explaining a method of determining a powder amount by measuring a powder shape according to the present invention.

【符号の説明】[Explanation of symbols]

1 粉体容器 2 腕木(回転式) 3 センサ− 4 粉体容器底部 H 粉面高さ Reference Signs List 1 powder container 2 arm (rotary) 3 sensor 4 powder container bottom H powder surface height

【図2】粉体量の計算の仕方を説明する為の模式図であ
る。
FIG. 2 is a schematic diagram for explaining how to calculate a powder amount.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉体容器内の粉体量を計量するのに粉体
上部から粉体上面の粉体形状を計測して粉体容器の形状
との比較計算により粉体量を計算算出する方法。
In order to measure the amount of powder in a powder container, the shape of the powder on the upper surface of the powder is measured from the upper portion of the powder, and the amount of the powder is calculated by comparison with the shape of the powder container. Method.
【請求項2】 センサ−をある一定間隔で一直線に取り
付けた、回転移動式腕木を回転させ、腕木に取り付けた
センサ−で腕木と粉体表面の距離を測定し、粉体面の形
状を緻密に測定して、粉体容器内部の粉体容積量を測定
する方法。
2. A rotary movable arm, in which sensors are mounted in a straight line at a certain interval, is rotated, and a distance between the arm and the powder surface is measured by the sensor mounted on the arm, so that the shape of the powder surface is precisely determined. And measuring the volume of powder inside the powder container.
JP31239199A 1999-11-02 1999-11-02 Measuring method of powder quantity Pending JP2001133309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31239199A JP2001133309A (en) 1999-11-02 1999-11-02 Measuring method of powder quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31239199A JP2001133309A (en) 1999-11-02 1999-11-02 Measuring method of powder quantity

Publications (1)

Publication Number Publication Date
JP2001133309A true JP2001133309A (en) 2001-05-18

Family

ID=18028696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31239199A Pending JP2001133309A (en) 1999-11-02 1999-11-02 Measuring method of powder quantity

Country Status (1)

Country Link
JP (1) JP2001133309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844925B1 (en) * 2015-01-29 2016-01-20 株式会社中嶋製作所 Feed remaining amount measuring device and barn management system using the same
WO2016143515A1 (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
WO2016143514A1 (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844925B1 (en) * 2015-01-29 2016-01-20 株式会社中嶋製作所 Feed remaining amount measuring device and barn management system using the same
WO2016143515A1 (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
WO2016143514A1 (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
JP2016165424A (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
JP2016165423A (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
EP3270096A4 (en) * 2015-03-10 2018-04-11 FUJIFILM Corporation Measurement system, measurement method, and measurement program
US10724892B2 (en) 2015-03-10 2020-07-28 Fujifilm Corporation Measurement system, measurement method, and measurement program
US10962400B2 (en) 2015-03-10 2021-03-30 Fujifilm Corporation Measurement system, and measurement method

Similar Documents

Publication Publication Date Title
US20220205824A1 (en) Yield monitoring apparatus, systems, and methods
EP0957337B1 (en) Method and apparatus for measuring the thickness of a coated material
EP2943321B1 (en) Concrete mixture measurement sensor and method
CN106908028B (en) Piping lane sedimentation detecting system and detection method
EP2212658B1 (en) The method and apparatus for forming the calibration chart for the underground fuel tanks
CN102322815B (en) High-precision and high-volume measurement device and method based on three-dimensional laser scanning
US5646375A (en) Symmetrical load cells for use in conjuction with rotary machines
US5700982A (en) Symmetrical load cells for use in conjunction with rotary machines
US20110138892A1 (en) Methods and Systems for Determining Process Variables Using Location of Center of Gravity
CN205593882U (en) Measure apparent density's device
CN110346028B (en) Method for correcting standard weight block of weight sensing system of unmanned sales counter
JP2001133309A (en) Measuring method of powder quantity
EP0877234A2 (en) Improvements in or relating to mass flow measuring apparatuses
CN104016232B (en) Dynamic weighing mechanism for lifting device
EP0169848A1 (en) Method of flow measurement and flow meter
RU2460987C1 (en) Method of determining surface tension coefficient and wetting angle
CN109060074A (en) Device for storing liquid, by storage solution balance detection method, liquid storage detection device
US5798487A (en) Weighing device for rotary filling machines
CN208672092U (en) Device for storing liquid, liquid storage detection device and unmanned plane
JPS5847219A (en) Storage measuring device of silo for storing powder and particle
EP3152527B1 (en) Fluid flow testing
IL115042A (en) Process and device for determining the centre of gravity and the intertial tensor of a body
EP2607868B1 (en) Electronic scale, electronic scale system, and weighing operation method for object to be weighed
JP4443258B2 (en) Weighing method and rotary weight filling device
CN113336096B (en) Hoisting machinery state detection method and device, electronic equipment and storage medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees