JP2001131640A - Method for producing high strength cold rolled steel sheet excellent in deep drawability - Google Patents

Method for producing high strength cold rolled steel sheet excellent in deep drawability

Info

Publication number
JP2001131640A
JP2001131640A JP31407699A JP31407699A JP2001131640A JP 2001131640 A JP2001131640 A JP 2001131640A JP 31407699 A JP31407699 A JP 31407699A JP 31407699 A JP31407699 A JP 31407699A JP 2001131640 A JP2001131640 A JP 2001131640A
Authority
JP
Japan
Prior art keywords
rolling
temperature
transformation point
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31407699A
Other languages
Japanese (ja)
Other versions
JP4432165B2 (en
Inventor
Tsutomu Kami
力 上
Akio Tosaka
章男 登坂
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31407699A priority Critical patent/JP4432165B2/en
Publication of JP2001131640A publication Critical patent/JP2001131640A/en
Application granted granted Critical
Publication of JP4432165B2 publication Critical patent/JP4432165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high strength cold rolled steel sheet exhibiting tensile strength equal to or below 440 MPa by which forming is made easy before the forming and having high formability capable of securing the strength of the formed parts after strain aging treatment after the forming by making the tensile strength higher than the strength before the strain aging treatment at least by >=50 MPa. SOLUTION: At the time of subjecting steel in which Ti, Nb and Cu are compositely added, to hot rolling, slab heating temperature and rough rolling finishing temperature are controlled in such a manner that the difference between the A3 transformation point and the starting temperature of austenite- ferrite transformation progressing in the process of the rolling: the Ar3 transformation point, i.e., ΔT = the A3 transformation point-the Ar3 transformation point satisfies ΔT<=100 deg.C, also, rough rolling is executed at the Ar3 transformation point or more, finish rolling starting temperature is controlled to lower than the Ar3 transformation point, and the total draft at least in the temperature region of 500 to 750 deg.C is controlled to >=50%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車用鋼板等
に用いられる深絞り性に優れた冷延鋼板の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet having excellent deep drawability used for a steel sheet for automobiles and the like.

【0002】自動車のパネル等に使用される冷延鋼板に
は、優れた深絞り性が要求される。この深絞り性を向上
させるためには、鋼板の機械的特性として、ランクフォ
ード値(平均r値、以下r値と略す。)及び延性(E
l)が良好であることが必要とされる。一方、近年、自
動車の車体軽量化及び安全性向上を目的として、引張張
力340 〜590 MPa というような、より高強度の鋼板を自
動車のパネル等に用いようとする機運が急速に高くなっ
てきている。このような高強度の鋼板であっても、プレ
ス成形の際には優れた深絞り性が要求されることはいう
までもない。そこで、高強度と優れた深絞り性という背
反する特性を具備する鋼板の開発が要請されているとこ
ろである。
[0002] Cold-rolled steel sheets used for automobile panels and the like are required to have excellent deep drawability. In order to improve the deep drawability, as a mechanical property of the steel sheet, a Rankford value (mean r value, hereinafter abbreviated as r value) and ductility (E) are used.
l) is required to be good. On the other hand, in recent years, there has been a rapid increase in the tendency to use higher-strength steel sheets having a tensile strength of 340 to 590 MPa for automobile panels and the like for the purpose of reducing the body weight and improving safety of automobiles. I have. It goes without saying that even such a high-strength steel sheet requires excellent deep drawability during press forming. Therefore, there is a demand for the development of a steel sheet having contradictory characteristics of high strength and excellent deep drawability.

【0003】[0003]

【従来の技術】これまで冷延鋼板の深絞り性改善のため
に、各種の手段が提案されている。例えば、持公昭44
−17268号公報、特公昭44−17269号公報及
び特公昭44−17270号公報には、低炭素リムド鋼
に2 回の冷間圧延−焼鈍を繰り返すことにより、r値を
2.18まで高めた冷延鋼板の製造方法が開示されている。
しかし、この方法により製造された冷延鋼板は、今日に
必要とされる十分な深絞り性を具備しているとは必ずし
も言えなかった。
2. Description of the Related Art Various means have been proposed for improving the deep drawability of cold rolled steel sheets. For example,
No. 17268, JP-B-44-17269 and JP-B-44-17270 show that the r-value is obtained by repeating cold rolling and annealing twice on a low carbon rimmed steel.
A method for producing cold rolled steel sheets up to 2.18 is disclosed.
However, the cold-rolled steel sheet manufactured by this method cannot always be said to have sufficient deep drawability required today.

【0004】一方、特開平2−47222号公報、特開
平3−150316号公報には、微量Ti及びNbを含有し
た極低炭素鋼を用い、粗圧延を950 ℃以下Ar3 変態点以
上とし、仕上圧延をAr3 変態点未満600 ℃以上で潤滑圧
延し、Ar3 変態点未満の全圧下率が60%以上の加工圧延
を施し、高r値を得る方法が開示されている。しかし、
この方法は、高強度と高r値を両立させる技術とはいえ
なかった。なぜならこの方法では、高強度を得るために
Si、Mn、及びPなどの強化成分を多量に含有させる必要
があり、その結果、深絞り性に好ましくない集合組織が
形成され、r値が低下するという問題があるからであ
る。
On the other hand, JP-A-2-47222 and JP-A-3-150316 use ultra-low carbon steel containing trace amounts of Ti and Nb, and perform rough rolling at 950 ° C. or lower and an Ar 3 transformation point or higher. the finish rolling lubrication rolling at Ar 3 transformation point below 600 ° C. or higher, Ar 3 total rolling reduction of less than transformation point is subjected to a machining rolled 60% or more, a method of obtaining a high r value is disclosed. But,
This method was not a technique for achieving both high strength and high r value. Because in this method, to get high strength
This is because it is necessary to include a large amount of reinforcing components such as Si, Mn, and P, and as a result, there is a problem that an unfavorable texture for deep drawability is formed and the r value decreases.

【0005】更に、特開平6−65646号公報には、
Ti及びNbを添加した極低炭素鋼に強化成分としてSi、M
n、P、Ni、Mo及びCuを含有し、仕上圧延をAr3 変態点
以上の温度で開始し、その圧延途中にて圧延加工を施す
ことなく20℃/s以上の冷却速度で30℃以上の冷却を行
ってAr3 変態点以下の温度とし、引き続きAr3 変態点以
下、500 ℃以上の温度域にて潤滑圧延を施しながら、Ar
3 変態点以下の合計圧下率が50%以上95%以下の圧延加
工を行う方法が開示されている。この方法では、仕上圧
延中にオーステナイト→フェライト変態が進行するた
め、先鋭な{111}集合組織の形成が阻害されやす
く、製品特性が安定しないという問題があった。
Further, Japanese Patent Application Laid-Open No. 6-65646 discloses that
Si and M as strengthening components in ultra low carbon steel with Ti and Nb added
Including n, P, Ni, Mo and Cu, finish rolling is started at a temperature not lower than the Ar 3 transformation point, and 30 ° C. or more at a cooling rate of 20 ° C./s or more without rolling during the rolling. a temperature below Ar 3 transformation point performs cooling, subsequently Ar 3 or less transformation point, while subjected to a lubrication rolling at a temperature range of not lower than 500 ° C., Ar
A method is disclosed in which a rolling process is performed in which the total draft of three transformation points or less is 50% or more and 95% or less. In this method, since austenite-> ferrite transformation progresses during finish rolling, there is a problem that formation of a sharp {111} texture is easily hindered and product characteristics are not stable.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決し、高強度で格段に優れた深絞り性を有
する冷延鋼板の製造方法を提案することを目的とする。
一般に、材料の強度が高くなると成形加工が困難となる
ため、この発明では、成形加工前は成形が容易な440MPa
相当以下の引張強度を示し、成形後の歪時効処理後に引
張強度が少なくとも50MPa 以上は歪時効処理前の強度よ
り増加することで成形部品の強度を確保できる高成形性
を有する高強度冷延鋼板を提供する。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems advantageously and to propose a method for producing a cold-rolled steel sheet having high strength and remarkably excellent deep drawability.
Generally, molding becomes difficult when the strength of the material is high.
A high-strength cold-rolled steel sheet with a high formability that shows a considerably lower tensile strength, and ensures that the strength of the molded part can be secured by increasing the tensile strength after strain aging treatment after molding by at least 50 MPa or more before the strain aging treatment. I will provide a.

【0007】[0007]

【課題を解決するための手段】発明者らは、高強度かつ
深絞り性を向上させるべく鋭意研究を重ねた結果、鋼の
成分組成と製造条件とを特定することにより優れた深絞
り性を有する高強度の冷延鋼板が得られることを見い出
した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to improve the high strength and the deep drawability, and as a result, by specifying the composition of the steel and the manufacturing conditions, it has become possible to obtain an excellent deep drawability. It has been found that a high-strength cold-rolled steel sheet can be obtained.

【0008】より具体的には、フェライト域での熱間圧
延により熱延加工組織を形成させ、その後の再結晶焼鈍
により{111}集合組織を発達させる製造プロセスを
活用して、高強度かつ高r値の特性を有する冷延鋼板を
製造するにあたり、C:0.01wt%以下、Si:1.5 wt%以
下、Mn:1.0 wt%以下、Ti:0.01〜0.20wt%、Nb:0.00
5 〜0.07wt%、Cu:0.5 〜1.5 wt%、Al:0.02〜0.10wt
%、P:0.05wt%以下、S:0.01wt%以下及びN:0.01
wt%以下を含有し、残部は実質的にFeの組成になるスラ
ブを熱間圧延する際、A3変態点と圧延中に進行するオー
ステナイト−フェライト変態開始温度:Ar3 変態点との
差:△T=A3変態点−Ar3 変態点が△T≦100 となるよ
うに、スラブ加熱温度及び粗圧延終了温度を制御し、か
つ、粗圧延をAr3 変態点以上で行い、仕上圧延開始温度
をAr3 変態点未満とすることが強化成分が多い鋼では重
要であることを見い出した。
More specifically, a high-strength and high-strength steel is formed by utilizing a manufacturing process in which a hot-rolled structure is formed by hot rolling in a ferrite region, and {111} texture is developed by recrystallization annealing. In producing a cold-rolled steel sheet having r-value characteristics, C: 0.01 wt% or less, Si: 1.5 wt% or less, Mn: 1.0 wt% or less, Ti: 0.01 to 0.20 wt%, Nb: 0.00
5 to 0.07 wt%, Cu: 0.5 to 1.5 wt%, Al: 0.02 to 0.10 wt%
%, P: 0.05 wt% or less, S: 0.01 wt% or less, and N: 0.01
It contained the following wt%, the balance being substantially when the slab formed in the composition of Fe to hot rolling, the austenite progresses during rolling and A 3 transformation point - ferrite transformation start temperature difference between the Ar 3 transformation point: ΔT = A 3 transformation point−Ar 3 transformation point is controlled so that ΔT ≦ 100, slab heating temperature and rough rolling end temperature are controlled, rough rolling is performed at Ar 3 transformation point or higher, and finish rolling starts It has been found that it is important that the temperature be lower than the Ar 3 transformation point in steels with many strengthening components.

【0009】すなわち、この発明の第1の態様は、C:
0.01wt%以下、Si:1.5 wt%以下、Mn:1.0 wt%以下、
Ti:0.01〜0.20wt%、Nb:0.005 〜0.07wt%、Cu:0.5
〜1.5 wt%、Al:0.02〜0.10wt%、P:0.05wt%以下、
S:0.01wt%以下及びN:0.01wt%以下を含有し、残部
は実質的にFeの組成になるスラブを熱間圧延する際、A3
変態点と圧延中に進行するオーステナイト−フェライト
変態開始温度:Ar3 変態点との差△T=A3変態点−Ar3
変態点が△T≦100 ℃を満たすように、スラブ加熱温度
及び粗圧延終了温度を制御し、かつ粗圧延をAr3 変態点
以上で行い、仕上圧延開始温度をAr3 変態点未満とし、
少なくとも500 〜750 ℃の温度域での合計圧下率が50%
以上となる圧延を行い、熱間圧延後に巻取り又は焼鈍工
程にて再結晶処理を施し、その後庄下率50%以上、95%
以下の冷間圧延を行った後、750℃以上900 ℃以下の温
度域にて再結晶焼鈍を施すことを特徴とする深絞り性に
優れた高強度冷延鋼板の製造方法である。この発明の第
2の態様では、上記第1の態様において、Ni:0.3 〜1.
5 wt%を含有することができる。また、この発明の第3
の態様では、上記第1又は第2の態様における仕上圧延
後の再結晶処理において、少なくとも700 〜500 ℃間の
冷却速度を2 ℃/秒以上にすることができる。さらに、
この発明の第4の態様では、上記第1又は第2の態様に
おける冷間圧延後の再結晶焼鈍に引き続き、250 〜650
℃の温度範囲に加熱することにより、引張強度490 MPa
以上を有する深絞り性に優れた高強度冷延鋼板を製造す
ることができる。
That is, a first aspect of the present invention provides a method for producing a C:
0.01 wt% or less, Si: 1.5 wt% or less, Mn: 1.0 wt% or less,
Ti: 0.01 to 0.20 wt%, Nb: 0.005 to 0.07 wt%, Cu: 0.5
~ 1.5 wt%, Al: 0.02-0.10 wt%, P: 0.05 wt% or less,
When hot-rolling a slab containing S: 0.01 wt% or less and N: 0.01 wt% or less, and the balance is substantially Fe, A 3
Transformation point and austenite-ferrite transformation start temperature progressing during rolling: difference between Ar 3 transformation point ΔT = A 3 transformation point-Ar 3
The slab heating temperature and the rough rolling end temperature are controlled so that the transformation point satisfies ΔT ≦ 100 ° C., and the rough rolling is performed at the Ar 3 transformation point or higher, and the finish rolling start temperature is set to less than the Ar 3 transformation point,
50% total reduction at least in the temperature range of 500 to 750 ° C
After performing the above rolling, after hot rolling, rewinding is performed in the winding or annealing process.
This is a method for producing a high-strength cold-rolled steel sheet excellent in deep drawability, comprising performing recrystallization annealing in a temperature range of 750 ° C. to 900 ° C. after performing the following cold rolling. According to a second aspect of the present invention, in the first aspect, Ni: 0.3 to 1.
Can contain 5 wt%. Further, the third aspect of the present invention.
In the aspect, in the recrystallization treatment after finish rolling in the first or second aspect, the cooling rate between at least 700 to 500 ° C. can be set to 2 ° C./sec or more. further,
In the fourth aspect of the present invention, subsequent to the recrystallization annealing after the cold rolling in the first or second aspect, 250 to 650
490 MPa tensile strength by heating to the temperature range of ℃
A high-strength cold-rolled steel sheet excellent in deep drawability having the above features can be manufactured.

【0010】この発明に従い製造される冷延鋼板は、出
荷段階で最終特性を出現させておくものと、出荷段階で
は最終特性を出現させず、需要者側で最終加工後、熱処
理を施すことで所望特性を発現させるものの2種類を包
含する。上記の第1、第2及び第3の態様は後者の出荷
段階では最終特性を出現させない場合、一方上記第4の
態様は、前者の出荷段階で最終特性を出現させた場合に
相当する。
[0010] The cold-rolled steel sheet manufactured according to the present invention has the final characteristics appearing at the shipping stage, and the final characteristics do not appear at the shipping stage. Includes two types that exhibit desired properties. The first, second and third aspects correspond to the case where the final characteristic does not appear in the latter shipping stage, while the fourth aspect corresponds to the case where the final characteristic appears in the former shipping stage.

【0011】[0011]

【発明の実施の形態】以下、この発明をより具体的に説
明する。まず、この発明において、鋼板の成分組成を前
記の範囲に限定した理由は次のとおりである。 ●C:0.01wt%以下 Cは、r値の向上と密接な関係のある{111}再結晶
集合組織の発達を阻害するので、極力低減することが好
ましいが、0.01wt%以下であれば許容できる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically. First, in the present invention, the reason why the component composition of the steel sheet is limited to the above range is as follows. ● C: 0.01 wt% or less C inhibits the development of {111} recrystallization texture, which is closely related to the improvement of the r value, so it is preferable to reduce it as much as possible. it can.

【0012】●Si:1.5 wt%以下 Siは、伸びの低下を抑制し、また、強度を向上させる有
用な成分であるが、Si量が1.5 wt%を超えると延性を低
下させるだけでなく、表面性状を悪化させてしまうので
上限を1.5 wt%とした。より好ましくは1.0 wt%以下と
する。また、オーステナイト形成元素を鋼の強化成分と
して添加した場合には、Siは熱延中のオーステナイト→
フェライト変態開始温度の低下を抑制するために有効な
成分となるため、0.2 wt%以上を添加することが好まし
い。
Si: 1.5 wt% or less Si is a useful component that suppresses the decrease in elongation and improves the strength. However, when the Si content exceeds 1.5 wt%, not only does the ductility decrease, The upper limit is set to 1.5 wt% because the surface properties are deteriorated. More preferably, the content is 1.0 wt% or less. Also, when an austenite-forming element is added as a steel strengthening component, Si becomes austenite during hot rolling →
Since it is an effective component for suppressing a decrease in the ferrite transformation start temperature, it is preferable to add 0.2 wt% or more.

【0013】●Mn:1.0 wt%以下 Mnは、鋼の強化成分として有効に働くが、Mn量が1.0 wt
%を超えると延性の低下を招くので、1.0 wt%以下に限
定した。より好ましくは0.5 wt%以下とする。なお、Mn
はオーステナイト形成成分であるため、多量の添加は熱
延中のオーステナイト→フェライト変態開始温度の低下
を招くので、好ましくは0.5 wt%以下とする。
Mn: 1.0 wt% or less Mn works effectively as a reinforcing component of steel, but the amount of Mn is 1.0 wt%
%, The ductility is reduced, so the content is limited to 1.0 wt% or less. More preferably, the content is 0.5 wt% or less. Note that Mn
Is an austenite-forming component, and if added in a large amount, lowers the onset temperature of austenite-> ferrite transformation during hot rolling, so is preferably 0.5 wt% or less.

【0014】●Ti:0.01〜0.20wt% Tiは鋼中のC、Nを析出物として固定し、{111}再
結晶集合組織の発達、ひいてはr値の向上に有効に寄与
するが、Ti量が0.01wt%未満ではその効果が乏しく、一
方、0.20wt%を超えるとむしろ延性を低下させるので、
含有量は0.01〜0.20wt%の範囲に限定した。なお、この
Ti添加によるr値の向上効果は、Cu、Nbの複合添加、更
には低温スラブ加熱との組合せにより一層高められる。
すなわち、Nbとの複合添加により熱間圧延の仕上圧延時
には好ましい熱延加工組織が形成され かつ、Tiはオー
ステナイト→フェライト変態の進行を阻害しないので、
熱間圧延の仕上圧延をフェライト域で実施し易い。ま
た、冷延−焼鈍前の工程において、Ti及びNbによる炭窒
化物はCuの析出サイトとなり、冷延後の再結晶焼鈍時の
{111}再結晶集合組織形成を促進する効果がある。
Ti: 0.01 to 0.20 wt% Ti fixes C and N in the steel as precipitates and effectively contributes to the development of {111} recrystallization texture and, consequently, the improvement of the r value. If the content is less than 0.01 wt%, the effect is poor. On the other hand, if it exceeds 0.20 wt%, the ductility is rather reduced.
The content was limited to the range of 0.01 to 0.20 wt%. Note that this
The effect of improving the r value by the addition of Ti can be further enhanced by the combined addition of Cu and Nb, and further by the combination with the low-temperature slab heating.
That is, a preferable hot-rolled work structure is formed at the time of finish rolling of hot rolling due to the addition of Nb and Ti, and Ti does not hinder the progress of austenite → ferrite transformation.
Finish rolling of hot rolling can be easily performed in the ferrite region. Further, in the process before cold rolling and annealing, carbonitrides by Ti and Nb become Cu precipitation sites, and have an effect of promoting the formation of {111} recrystallized texture during recrystallization annealing after cold rolling.

【0015】●Nb:0.005 〜0.07wt% NbもTi同様に、C、Nを析出物として固定し、{11
1}再結晶集合組織の発達、ひいてはr値の向上に有効
に寄与する。このNbの効果は上述のようにTi、Cuとの複
合添加により一層高まり、r値向上のために寄与する。
この効果は、Nb量が0.005 wt%未満では現れず、一方、
0.07%以上の添加は延性の低下を招くだけでなく、熱間
圧延時のオーステナイト→フェライト変態の進行を大幅
に遅滞させるために仕上圧延途中でオーステナイト→フ
ェライト変態が進行することとなるから、高r値が得ら
れ難い。
Nb: 0.005 to 0.07 wt% Nb also fixes C and N as precipitates like Ti,
1} Contributes effectively to the development of recrystallized texture and, consequently, the improvement of the r-value. The effect of Nb is further enhanced by the addition of Ti and Cu as described above, and contributes to the improvement of the r value.
This effect does not appear when the Nb content is less than 0.005 wt%, while
Addition of 0.07% or more not only causes a decrease in ductility, but also causes austenite → ferrite transformation to progress during finish rolling in order to significantly delay the progress of austenite → ferrite transformation during hot rolling. It is difficult to obtain an r value.

【0016】●Cu:0.5 〜1.5 wt% Cuは、Ti、Nbとの複合添加及び後述する△Tを適切に選
択することにより、r値の向上に有効な{111}再結
晶集合組織を発達させるのに有効に寄与する。Cu添加量
が0.5 wt%未満では十分な高強度化が達成されず、1.5
wt%を超えると熱延後の低温変態相が形成し易く、r値
が低下するので、Cu含有量は0.5 〜1.5wt%とした。な
お、この発明では、このCu、Nb及びTiの複合添加とスラ
ブ低温加熱とによりフェライト粒径を細粒化させるため
ことができ、 従来本発明鋼のようにC 量の低い鋼で問題
となるような耐2 次加工脆性も改善できる。従って従来
この問題を改善するために必要とされていたBを積極的
に添加する必要はなく、 B添加による材質劣化もないた
め、良好な加工性を確保しやすい。
Cu: 0.5 to 1.5 wt% Cu develops a {111} recrystallized texture effective for improving the r-value by complex addition with Ti and Nb and appropriately selecting ΔT described later. Effectively contributes to If the added amount of Cu is less than 0.5 wt%, sufficiently high strength cannot be achieved,
If the content exceeds wt%, a low-temperature transformation phase after hot rolling tends to be formed, and the r value decreases. Therefore, the Cu content is set to 0.5 to 1.5 wt%. In the present invention, the ferrite grain size can be reduced by the combined addition of Cu, Nb and Ti and the low-temperature heating of the slab, which is a problem in steels having a low C content, such as the conventional steel of the present invention. Such secondary working brittleness resistance can also be improved. Therefore, it is not necessary to actively add B, which has been conventionally required to solve this problem, and there is no material deterioration due to the addition of B, so that good workability can be easily secured.

【0017】●Al:0.02〜0.10wt% Alは、脱酸を行うため及び炭窒化物形成成分の歩留り向
上のために添加されるが、含有量が0.02wt%未満では効
果がなく、0.10wt%以上では逆に延性の低下を招く。
Al: 0.02 to 0.10 wt% Al is added for deoxidization and for improving the yield of carbonitride-forming components. However, if the content is less than 0.02 wt%, there is no effect. On the other hand, if it is more than%, ductility is reduced.

【0018】●P:0.05wt%以下 Pは、固溶強化成分として鋼の強化に有効に寄与する
が、0.05wt%を超えて添加すると、熱間仕上圧延後の熱
処理中にFeTiP又はFeNbPなどの燐化合物を形成し、冷
延−再結晶後の{111}集合組織の先鋭性を低下させ
るため、0.05wt%以下であることが望ましい。
P: 0.05 wt% or less P effectively contributes to the strengthening of steel as a solid solution strengthening component. However, if it is added in excess of 0.05 wt%, FeTiP or FeNbP will be used during heat treatment after hot finish rolling. In order to reduce the sharpness of the {111} texture after cold rolling and recrystallization, the content is preferably 0.05% by weight or less.

【0019】●S:0.01wt%以下 Sが多量に含有されると介在物量が増加し、延性の低下
を招くので、S量は極力低減することが望ましいが0.01
wt%までは許容される。
S: 0.01 wt% or less When a large amount of S is contained, the amount of inclusions increases and the ductility is reduced. Therefore, it is desirable to reduce the S content as much as possible.
Up to wt% is acceptable.

【0020】●N:0.01wt%以下 NもCと同様に極力低減することが好ましいが、0.01wt
%以下であれば許容できる。
N: 0.01 wt% or less It is preferable to reduce N as much as possible like C.
% Or less is acceptable.

【0021】●Ni:0.3 〜1.5 wt% Niは、鋼片の表面欠陥の低減に有効な成分であり、また
強度の向上にも有効な成分であるため、必要に応じて添
加することができる。Niの効果は、0.3 wt%以上の添加
で出現し、一方、1.5 wt%超えると、むしろr値を低下
させるので、Ni含有量は0.3 〜1.5 wt%とした。
Ni: 0.3 to 1.5 wt% Ni is a component effective for reducing the surface defects of the steel slab and is also a component effective for improving the strength. Therefore, Ni can be added as necessary. . The effect of Ni appears at an addition of 0.3 wt% or more. On the other hand, when it exceeds 1.5 wt%, the r value is rather lowered, so the Ni content was set to 0.3 to 1.5 wt%.

【0022】以上、この発明の成分組成範囲について説
明した。この発明では、Cu、Ti及びNbの複合添加によ
り、熱延中に進行するオーステナイト−フェライト変態
が低温側へ移行し、かつオーステナイト+フェライトが
共存する2相領域が拡大する。このため、従来方法のよ
うに仕上げ圧延開始温度をAr3 変態点以下に制御するだ
けでは、仕上圧延開始温度がオーステナイト+フェライ
トの2相領域になる。このように、仕上圧延開始温度が
オーステナイトとフェライトが共存する2相域にある
と、仕上圧延時におけるオーステナイト相とフェライト
相の変形抵抗の差からフェライト粒が伸展粒となりαフ
ァイバー組織が発達しやすい。したがって、次工程の焼
鈍で{100}集合組織が形成され、高r値化に有効な
{111}集合組織の発達が阻害される問題があった。
本発明者らは、A3変態点と圧延中に進行するオーステナ
イト→フェライト変態開始温度Ar3 との差:△T=A3
Ar3 が△T≦100 ℃となるようなスラブ加熱温度(SR
T)及び粗圧延終了温度を与えることにより、粗圧延後
のオーステナイト結晶粒が微細化し、仕上圧延開始まで
にオーステナイト→フェライト変態が短時間でかつ高温
で進行させることができることを見い出した。
The component composition range of the present invention has been described above. In the present invention, due to the composite addition of Cu, Ti, and Nb, the austenite-ferrite transformation that proceeds during hot rolling shifts to a lower temperature side, and the two-phase region where austenite + ferrite coexists is expanded. Therefore, just by controlling the finish rolling start temperature below the Ar 3 transformation point as in the conventional method, the finish rolling start temperature is in the two-phase region of austenite + ferrite. As described above, when the finish rolling start temperature is in the two-phase region where austenite and ferrite coexist, the ferrite grains become extended grains due to the difference in deformation resistance between the austenite phase and the ferrite phase during finish rolling, and the α-fiber structure easily develops. . Therefore, there was a problem that {100} texture is formed by annealing in the next step, and development of {111} texture effective for increasing the r-value is hindered.
The present inventors have found that the difference between the A 3 transformation point and the austenite → ferrite transformation start temperature Ar 3 progressing during rolling: ΔT = A 3
A slab heating temperature (SR at which Ar 3 satisfies ΔT ≦ 100 ° C.
It has been found that by giving T) and the rough rolling end temperature, the austenite crystal grains after rough rolling are refined, and the transformation of austenite to ferrite can be advanced in a short time and at a high temperature before the start of finish rolling.

【0023】次に、この発明の製造条件について具体例
を用いて説明する。 C:0.002 wt%、Si:0.7 wt%、Mn:0.1 wt%、P:0.
01wt%、S:0.01wt%、Al:0.049 wt%、Ti:0.068 wt
%、Nb:0.015 wt%、Cu:1.2 wt%、Ni:0.5 wt%及び
N:0.002 wt%を含有し、残部は実質的にFeの組成にな
るスラブを用い、実験室にてスラブ加熱温度及び粗圧延
終了温度を種々に変えて△Tを変化させた。この条件下
で仕上圧延開始温度を840 ℃又は780 ℃、仕上圧延終了
温度を680℃とし、500 ℃〜750 ℃の温度域で合計圧下
率を60%とする圧延を行い、その後、焼鈍工程にて再結
晶処理を施し、その後圧下率80%の冷間圧延を行った
後、880 ℃の温度にて再結晶焼鈍を施した。
Next, the manufacturing conditions of the present invention will be described with reference to specific examples. C: 0.002 wt%, Si: 0.7 wt%, Mn: 0.1 wt%, P: 0.
01 wt%, S: 0.01 wt%, Al: 0.049 wt%, Ti: 0.068 wt
%, Nb: 0.015% by weight, Cu: 1.2% by weight, Ni: 0.5% by weight and N: 0.002% by weight, the remainder being a slab having a substantially Fe composition, and a slab heating temperature in a laboratory. ΔT was changed by changing the rough rolling end temperature variously. Under these conditions, the finish rolling start temperature is 840 ° C or 780 ° C, the finish rolling end temperature is 680 ° C, and rolling is performed at a total draft of 60% in the temperature range of 500 ° C to 750 ° C. Then, after cold rolling at a reduction of 80%, recrystallization annealing was performed at a temperature of 880 ° C.

【0024】△Tによる冷延−焼鈍後のr値の変化を図
1に、スラブ加熱温度による△T変化を図2にそれぞれ
示す。この図2から、スラブ加熱温度の上昇に伴い、熱
延中のオーステナイト→フェライト変態開始温度が低下
し、△Tが増加することがわかる。そして、図1に示す
とおり、△T≦100 ℃かつ仕上圧延開始温度がAr3 変態
点未満を満足した条件にて、高r値が得られていること
がわかる。
FIG. 1 shows a change in r value after cold rolling and annealing due to ΔT, and FIG. 2 shows a change in ΔT according to the slab heating temperature. From FIG. 2, it can be seen that as the slab heating temperature increases, the austenite → ferrite transformation start temperature during hot rolling decreases, and ΔT increases. As shown in FIG. 1, it can be seen that a high r value is obtained under the condition that ΔT ≦ 100 ° C. and the finish rolling start temperature is less than the Ar 3 transformation point.

【0025】上述の条件を満たすスラブ加熱温度の好適
範囲は900 〜1050℃である。900 ℃未満では、スラブ加
熱時にフェライト→オーステナイト変態が進行しないの
で、結果的に仕上げ圧延時のフェライト粒径が粗大化
し、r値が低下する。一方、1050℃を超えるスラブ加熱
温度では、△Tを100 ℃以下に制御することが困難とな
る。
The preferred range of the slab heating temperature satisfying the above conditions is 900 to 1050 ° C. If the temperature is lower than 900 ° C., the ferrite → austenite transformation does not proceed during slab heating, and consequently the ferrite grain size during finish rolling becomes coarse and the r-value decreases. On the other hand, at a slab heating temperature exceeding 1050 ° C., it is difficult to control ΔT to 100 ° C. or less.

【0026】ここに、△Tの測定方法について述べる。
ここでのA3変態点は、対象となる鋼のオーステナイト→
フェライト変態温度であり、変態による熱膨張変化測定
又は変態発熱測定により求められた温度、又は平衡状態
図計算から求められた温度を用いる。一方、熱延中に進
行するオーステナイト→フェライト変態開始温度:Ar 3
変態点は、対象鋼のスラブを実験室で実機をシュミレイ
ト圧延したときの材温変化から評価される。なお、A3
態点と熱延中に進行するオーステナイト−フェライト変
態開始点Ar3 との乖離は、高強度化のために添加された
オーステナイト形成成分であるCu及びNiによるオーステ
ナイト→フェライト変態点の低温化やNb添加等に起因す
る変態進行の遅滞化などにより起こると推定される。
Here, a method of measuring ΔT will be described.
A hereThreeThe transformation point is the austenite of the target steel →
Ferrite transformation temperature, measurement of thermal expansion change due to transformation
Or the temperature determined by transformation heat measurement, or the equilibrium state
The temperature obtained from the figure calculation is used. On the other hand,
Austenite to ferrite transformation start temperature: Ar Three 
The transformation point is a slab of the target steel in the laboratory
It is evaluated from the change in material temperature when rolling. AThreeStrange
State and austenite-ferrite transformation progressing during hot rolling
State starting point ArThree Is added to increase the strength
Austenite by austenite forming components Cu and Ni
Knight → ferrite transformation temperature caused by low temperature and Nb addition
It is presumed to be caused by a delay in the progress of transformation.

【0027】●熱間圧延条件 この発明においては、上述のとおり△Tが100 ℃以下に
なるようなスラブ加熱温度及び粗圧延終了温度に制御す
る必要がある。粗圧延は仕上圧延前のフェライト粒径を
細粒化するためAr3 変態点以上とする必要がある。 逆に
Ar3 変態点未満では、 仕上圧延前にフェライト粒の粗大
化が進行し、 r 値が低下する。 かつ、 仕上圧延開始温度
をAr3 変態点未満として仕上圧延開始温度がフェライト
単相域にあることが重要である。仕上圧延開始温度がオ
ーステナイトとフェライトとの2相域にあると、前述し
たとおり、オーステナイト相とフェライト相の変形抵抗
の差からフェライト粒が伸展粒となりαファイバー組織
が発達し易く、次工程の焼鈍で{100}集合組織が形
成され、高r値化に有効な{111}集合組織の発達が
阻害されるためである。このように仕上圧延開始温度を
フェライト単相域にするために、より望ましくは△Tを
70℃以下にする。
Hot Rolling Conditions In the present invention, it is necessary to control the slab heating temperature and the rough rolling end temperature so that ΔT becomes 100 ° C. or less as described above. Rough rolling needs to be at least the Ar 3 transformation point in order to reduce the ferrite grain size before finish rolling. vice versa
Below the transformation point of Ar 3 , the ferrite grains become coarser before finish rolling, and the r value decreases. Further, it is important that the finish rolling start temperature is in the ferrite single phase region by setting the finish rolling start temperature below the Ar 3 transformation point. When the finish rolling start temperature is in the two-phase region of austenite and ferrite, as described above, the ferrite grains become extended grains due to the difference in deformation resistance between the austenite phase and the ferrite phase, so that the α-fiber structure easily develops, and annealing in the next step is performed. This results in the formation of {100} texture, which hinders the development of {111} texture effective for increasing the r-value. In order to set the finish rolling start temperature in the ferrite single phase region in this way, it is more desirable to set ΔT to
Keep below 70 ° C.

【0028】更に、この発明では、熱延工程において少
なくとも500 ℃〜750 ℃の温度域を合計圧下率が50%以
上となる圧延を行うことを必須とする。このように熱間
圧延において、低温域で高圧下圧延を施すと、鋼中に歪
みが蓄積されて、再結晶焼鈍後の{111}集合組織の
発達が促進される。この効果を得るためには、圧延温度
は750 ℃以下とする必要があるが、500 ℃を下回ると圧
延荷重が高くなるという問題が発生する。また、上記温
度範囲における合計庄下率が50%に満たないと、歪み蓄
積効果が得られない。したがって、この発明では少なく
とも750 〜500℃の温度範囲を合計圧下率が50%以上の
高圧下率で圧延する。なお、かかる圧延を潤滑下で行う
と、鋼板表面に加えられる剪断歪みの蓄積が抑制され、
その結果、再結晶後の{111}集合組織の発達が更に
促進されるので望ましい。具体的には、油潤滑下で上記
圧延を行う。
Further, in the present invention, it is essential to perform rolling in a temperature range of at least 500 ° C. to 750 ° C. in a hot rolling step so that the total draft is 50% or more. As described above, in hot rolling, when high-pressure rolling is performed in a low temperature range, strain is accumulated in steel, and the development of {111} texture after recrystallization annealing is promoted. To obtain this effect, the rolling temperature must be 750 ° C. or lower, but if it is lower than 500 ° C., there arises a problem that the rolling load increases. On the other hand, if the total lowering rate in the above temperature range is less than 50%, the strain accumulation effect cannot be obtained. Therefore, in the present invention, at least a temperature range of 750 to 500 ° C. is rolled at a high reduction of 50% or more. When such rolling is performed under lubrication, the accumulation of shear strain applied to the steel sheet surface is suppressed,
As a result, the development of the {111} texture after recrystallization is further promoted, which is desirable. Specifically, the above rolling is performed under oil lubrication.

【0029】●焼鈍温度:750 〜900 ℃ 巻取りにて再結晶処理をする場合は、巻取り温度を700
℃を超える温度とする。巻取り温度が700 ℃以下では、
以下の再結晶焼鈍処理を行う。この再結晶焼鈍処理で
は、再結晶集合組織を形成させるのであるが、そのため
には焼鈍温度を750 ℃以上にすることが必要である。と
はいえ、900 ℃を超えると結晶粒が粗大化し、肌荒れの
原因になるので、焼鈍温度は750 〜900 ℃の範囲に限定
する。
● Annealing temperature: 750 to 900 ° C. When performing recrystallization by winding, the winding temperature is set to 700 ° C.
The temperature shall be higher than ° C. If the winding temperature is below 700 ° C,
The following recrystallization annealing treatment is performed. In this recrystallization annealing treatment, a recrystallized texture is formed. For this purpose, it is necessary to set the annealing temperature to 750 ° C. or higher. Nevertheless, if the temperature exceeds 900 ° C., the crystal grains become coarse and the surface becomes rough, so the annealing temperature is limited to the range of 750 to 900 ° C.

【0030】●焼鈍後の冷却:少なくとも700 〜500 ℃
間の冷却速度を2℃/秒以上 熱間圧延後の焼鈍により再結晶集合組織を形成させた後
の冷却過程において、少なくとも700 〜500 ℃間の冷却
速度を2℃/秒以上にした場合には、冷延−焼鈍後のr
値が更に大きくなる。 図1に示した仕上圧延開始温度が
Ar3 変態点未満でかつ、△Tが60℃以下を満足する熱延
板に対し、880 ℃で40秒の再結晶焼鈍を行い、その後圧
下率82%の冷間圧延を行った後、880 ℃の温度にて再結
晶焼鈍を施した。その熱延板の再結晶焼鈍時の冷却過程
における、700 〜500 ℃間の冷却速度を0.2 〜10℃/sの
間で種々に変化させて製品を得た場合のr値変化を図3
に示す。図3より、明らかに2 ℃/s以上の冷却速度とす
ることにより、更なる高r値が達成されている。この理
由は、連続冷却曲線図においてCu析出のノーズが600 ℃
付近にあり、この温度域を冷却速度2 ℃/秒以上で冷却
することにより、Cu析出が抑制され、冷延−再結晶焼鈍
時に{111}集合組織が良く発達するためと考えられ
る。さらに、700 〜500 ℃間の冷却速度を2℃/秒以上
にすると、冷延−再結晶焼鈍以降の加熱処理又は成形後
の歪時効処理による引張強度の上昇量を大きくする効果
がある。なお、700 ℃を超える温度域及び500 ℃未満の
温度域での冷却速度は特に限定されない。
● Cooling after annealing: at least 700-500 ° C
In the cooling process after forming a recrystallized texture by annealing after hot rolling, if the cooling rate between 700 and 500 ° C is set to 2 ° C / second or more, Is r after cold rolling and annealing.
The value becomes even larger. The finish rolling start temperature shown in FIG.
A hot-rolled sheet having a temperature lower than the Ar 3 transformation point and satisfying ΔT of 60 ° C. or less is subjected to recrystallization annealing at 880 ° C. for 40 seconds, and then cold-rolled at a rolling reduction of 82%. Recrystallization annealing was performed at a temperature of ° C. Fig. 3 shows the r-value change when the product was obtained by changing the cooling rate between 700 and 500 ° C variously between 0.2 and 10 ° C / s in the cooling process during the recrystallization annealing of the hot rolled sheet.
Shown in FIG. 3 clearly shows that a higher r value is achieved by setting the cooling rate to 2 ° C./s or more. The reason for this is that the nose of Cu precipitation is 600 ° C in the continuous cooling curve diagram.
It is considered that, by cooling this temperature region at a cooling rate of 2 ° C./sec or more, Cu precipitation is suppressed, and {111} texture develops well during cold rolling and recrystallization annealing. Further, when the cooling rate between 700 and 500 ° C. is 2 ° C./sec or more, there is an effect of increasing the amount of increase in tensile strength due to heat treatment after cold rolling and recrystallization annealing or strain aging treatment after forming. The cooling rate in the temperature range exceeding 700 ° C. and the temperature range below 500 ° C. is not particularly limited.

【0031】●冷間圧延 冷延圧下率が50%未満では、{111}集合組織が発達
しないため、十分なr値が得れらない。一方、95%を超
えると却ってr値が低下する。望ましくは80%以上の庄
下率とする。
[Cold Rolling] If the rolling reduction of the cold rolling is less than 50%, a {111} texture does not develop, so that a sufficient r value cannot be obtained. On the other hand, if it exceeds 95%, the r-value will rather decrease. Desirably, the lowering rate is 80% or more.

【0032】●冷延板再結晶焼鈍 {111}集合組織を有する冷延加工集合組織を700 〜
950 ℃で再結晶焼鈍することにより{111}集合組織
を発達させ、高いr値を得る。焼鈍温度が700℃未満の
場合には、再結晶組織が未発達であり、また、950 ℃を
超えると冷却過程でオーステナイト→フェライト変態に
より結晶方位がランダム化し、ともに低いr値しか得ら
れない。
● Cold-rolled sheet recrystallization annealing The cold-rolled texture having {111} texture is 700 to
By performing recrystallization annealing at 950 ° C., {111} texture is developed and a high r value is obtained. When the annealing temperature is lower than 700 ° C., the recrystallized structure is not developed, and when the temperature exceeds 950 ° C., the crystal orientation is randomized due to austenite → ferrite transformation in the cooling process, and both have low r values.

【0033】この冷延−再結晶焼鈍板においては、析出
硬化が生じていないので引張強さが低く、成形性の面か
らは有利と言える。例えば、需要家側にて、加工歪量が
10%の成形品に対して、加熱を250 ℃で20分行うことに
より歪時効し、引張強度は加工前のそれよりも50MPa 以
上、上昇させることができる。なお、これらの冷延後の
再結晶焼鈍は、高温短時間の熱処理となる溶融亜鉛めっ
き等の焼鈍プロセスで兼用させることができる。
In this cold-rolled and recrystallized annealed sheet, since no precipitation hardening occurs, the tensile strength is low and it can be said that it is advantageous from the viewpoint of formability. For example, on the customer side,
By subjecting a 10% molded article to heating at 250 ° C. for 20 minutes, strain aging is effected, and the tensile strength can be increased by 50 MPa or more than that before processing. The recrystallization annealing after the cold rolling can be used also in an annealing process such as hot-dip galvanizing, which is a heat treatment at a high temperature for a short time.

【0034】この発明では、当然ながら、需要者への出
荷の時点で高強度化させておくことも可能であり、この
場合、以下の加熱処理を行う。 ●加熱温度:250 〜650 ℃ この加熱処理により、微細Cuを析出させて成形部品に必
要な強度を十二分に確保する。そのためには250 ℃以上
に加熱する必要があるが、650 ℃を超えると、十分な強
度上昇が認められなくなるので、加熱温度は250 〜650
℃の範囲にした。なお、需要家側でこの発明の冷延−再
結晶焼鈍板及び冷延−再結晶焼鈍された溶融亜鉛メッキ
鋼板などを成形し、成形後にこの加熱処理を実施するこ
とにより、高強度化を達成できる。
According to the present invention, it is of course possible to increase the strength at the time of shipment to the consumer. In this case, the following heat treatment is performed. ● Heating temperature: 250 to 650 ° C By this heat treatment, fine Cu is precipitated and the necessary strength for molded parts is secured more than enough. For this purpose, it is necessary to heat to 250 ° C or higher.
° C range. A high strength is achieved by forming the cold-rolled and recrystallized annealed sheet and the cold-rolled and recrystallized annealed hot-dip galvanized steel sheet on the customer side and performing this heat treatment after the forming. it can.

【0035】かくして、この発明に従う成分組成及び製
造条件を満足させることにより、引張強度が490 MPa 以
上かつr値が2.5 以上の深絞り性に優れた熱延鋼板を得
ることができる。
Thus, by satisfying the component composition and the production conditions according to the present invention, a hot-rolled steel sheet excellent in deep drawability having a tensile strength of 490 MPa or more and an r-value of 2.5 or more can be obtained.

【0036】[0036]

【実施例】(実施例1)表1に示す成分組成になる連続
鋳造スラブを975 ℃に加熱し、△T=A3変態点−Ar3
態点が100 ℃未満になるように粗圧延終了温度を調整
し、仕上圧延開始温度をAr3 未満とし、500 〜750 ℃で
の圧下率:60%の潤滑圧延を施し、巻取り温度550 ℃の
条件で板厚4mmの熱延鋼板とした。次いで、均熱条件が
880 ℃で40秒、均熱後の700 〜500 ℃間の冷却速度を5
℃/ 秒とする再結晶焼鈍を行ってから、圧下率82.5%の
冷間圧延を行い最終板厚0.7 mmの冷延鋼板とした。次
に、860 ℃で40秒間、均熱する再結晶焼鈍を行った。こ
のときのr値及び引張強度(TS)を表2に示す。ま
た、これらの冷延鋼板に予歪10%を付与した後、350 ℃
で20分間の時効処理を行った後のTS値、及び500 ℃で
60分間の加熱処理後のTS値も併せて表2に示す。表2
から分かるように、この発明の要件を満足する場合には
いずれも、加工前( 冷延再結晶焼鈍後) は440MPa以下の
引張強度を示し、 予歪み付与後の時効処理後の引張強度
が440 MPa 以上で、加工後の歪み時効処理後に引張強度
が少なくとも50MPa 以上は歪時効処理前よりも増加し、
また、加熱処理後の引張強度が490 MPa 以上で、かつ冷
延−焼鈍後のr値が3.0 以上という、優れた機械的特性
が得られた。
EXAMPLE 1 A continuous cast slab having the composition shown in Table 1 was heated to 975 ° C., and rough rolling was completed so that ΔT = A 3 transformation point−Ar 3 transformation point was less than 100 ° C. temperature was adjusted to a finish rolling start temperature is less than Ar 3, 500 rolling reduction at to 750 ° C.: subjected to 60% of the lubricating rolled to a hot rolled steel plate having a plate thickness of 4mm under the conditions of the coiling temperature 550 ° C.. Next, the soaking condition
Cooling rate between 700-500 ° C after soaking at 880 ° C for 40 seconds, 5
After performing recrystallization annealing at ℃ / sec, cold rolling was performed at a rolling reduction of 82.5% to obtain a cold-rolled steel sheet having a final thickness of 0.7 mm. Next, recrystallization annealing was performed by heating at 860 ° C. for 40 seconds. Table 2 shows the r value and the tensile strength (TS) at this time. After applying a pre-strain of 10% to these cold-rolled steel sheets,
Value after aging treatment for 20 minutes at 500 ° C
Table 2 also shows the TS value after the heat treatment for 60 minutes. Table 2
As can be seen, in all cases satisfying the requirements of the present invention, before processing (after cold rolling recrystallization annealing), the tensile strength is 440 MPa or less, and the tensile strength after aging treatment after imparting prestrain is 440 MPa. MPa or more, the tensile strength after strain aging treatment after processing at least 50 MPa or more increases before strain aging treatment,
In addition, excellent mechanical properties such that the tensile strength after the heat treatment was 490 MPa or more and the r value after cold rolling and annealing was 3.0 or more were obtained.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】(実施例2)表1に示したA、B鋼を用
い、熱延鋼板(板厚4mm)を潤滑圧延により製造した。
このとき、熱間圧延時の諸条件、熱延板焼鈍時の焼鈍温
度及び冷却速度、その後の冷間圧延の庄下率、冷延板再
結晶焼鈍温度を表3に示すように変化させた。これらの
冷延鋼板の一部についてはを予歪み12%付与後、各温度
で歪時効処理を施した。また、これらの冷延鋼板の残り
の全部は加熱処理を各温度で60分実施した。得られた
鋼板の機械的性質について調べた結果を表4に示す。表
4から明らかなように、この発明に従う適正条件で製造
された場合はいずれも、高r値が得られている。所望の
特性を満足する高強度で深絞り性に優れた冷延鋼板を製
造することができた。
(Example 2) Using the A and B steels shown in Table 1, hot rolled steel sheets (sheet thickness 4 mm) were manufactured by lubricating rolling.
At this time, various conditions at the time of hot rolling, the annealing temperature and cooling rate at the time of annealing of the hot-rolled sheet, the reduction ratio of the subsequent cold rolling, and the recrystallization annealing temperature of the cold-rolled sheet were changed as shown in Table 3. . Some of these cold-rolled steel sheets were subjected to a strain aging treatment at each temperature after a pre-strain of 12% was applied. In addition, all of the remaining cold-rolled steel sheets were subjected to a heat treatment at each temperature for 60 minutes. Table 4 shows the results of examining the mechanical properties of the obtained steel sheet. As is evident from Table 4, high r values were obtained in all cases when manufactured under the proper conditions according to the present invention. A cold-rolled steel sheet having high strength and excellent deep drawability that satisfies the desired properties could be produced.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【発明の効果】かくして、この発明によれば、成形前は
成形が容易な440 MPa 相当以下の引張強度を示し.成形
後の歪時効処理後に引張強度が少なくとも50MPa 以上歪
時効処理前の強度より増加することで成形部品の強度を
確保できる高成形性を有する高強度冷延鋼板を提供する
ことができる。
Thus, according to the present invention, before forming, it exhibits a tensile strength of 440 MPa or less, which is easy to form. It is possible to provide a high-strength cold-rolled steel sheet having high formability capable of securing the strength of a formed part by increasing the tensile strength after the strain aging treatment after forming by at least 50 MPa or more than the strength before the strain aging treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 △T=A3変態点−Ar3 変態点および仕上圧延
開始温度が冷延−焼鈍後のr値に及ぼす影響を示すグラ
フである。
FIG. 1 is a graph showing the effect of ΔT = A 3 transformation point−Ar 3 transformation point and the finish rolling start temperature on r value after cold rolling and annealing.

【図2】 スラブ加熱温度および粗圧延終了温度が△T
及びAr3 変態点に及ぼす影響を示すグラフである。
FIG. 2 shows a slab heating temperature and a rough rolling end temperature of ΔT.
3 is a graph showing the effect on the Ar and transformation point.

【図3】 熱延板−焼鈍時の冷却速度が冷延−焼鈍後の
r値に及ぼす影響を示すグラフである。
FIG. 3 is a graph showing the effect of the cooling rate during hot-rolled sheet-annealing on the r value after cold-rolling-annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K037 EA01 EA04 EA13 EA15 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 FB03 FB05 FE01 FF03 FJ05 FJ06 FK02 FK03 FL01 FL05 FM01 FM04 JA06 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Osamu Furukun 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term in the Technical Research Institute, Kawasaki Steel Co., Ltd. 4K037 EA01 EA04 EA13 EA15 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 FB03 FB05 FE01 FF03 FJ05 FJ06 FK02 FK03 FL01 FL05 FM01 FM04 JA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.01wt%以下、 Si:1.5 wt%以下、 Mn:1.0 wt%以下、 Ti:0.01〜0.20wt%、 Nb:0.005 〜0.07wt%、 Cu:0.5 〜1.5 wt%、 Al:0.02〜0.10wt%、 P:0.05wt%以下、 S:0.01wt%以下及び N:0.01wt%以下 を含有し、残部は実質的にFeの組成になるスラブを熱間
圧延する際、A3変態点と圧延中に進行するオーステナイ
ト−フェライト変態開始温度:Ar3 変態点との差△T=
A3変態点−Ar3 変態点が△T≦100 ℃を満たすように、
スラブ加熱温度及び粗圧延終了温度を制御し、かつ粗圧
延をAr3 変態点以上で行い、仕上圧延開始温度をAr3
態点未満とし、少なくとも500 〜750 ℃の温度域での合
計圧下率が50%以上となる圧延を行い、熱間圧延後に巻
取り又は焼鈍工程にて再結晶処理を施し、その後圧下率
50%以上、95%以下の冷間圧延を行った後、750 ℃以上
900℃以下の温度域にて再結晶焼鈍を施すことを特徴と
する深絞り性に優れた高強度冷延鋼板の製造方法。
C: 0.01 wt% or less, Si: 1.5 wt% or less, Mn: 1.0 wt% or less, Ti: 0.01 to 0.20 wt%, Nb: 0.005 to 0.07 wt%, Cu: 0.5 to 1.5 wt%, When hot rolling a slab containing Al: 0.02 to 0.10 wt%, P: 0.05 wt% or less, S: 0.01 wt% or less, and N: 0.01 wt% or less, with the balance being substantially Fe composition, austenite progresses during rolling and a 3 transformation point - ferrite transformation start temperature difference between the Ar 3 transformation point △ T =
A 3 transformation point-Ar 3 transformation point should satisfy ΔT ≦ 100 ° C.
Controls slab heating temperature and rough rolling end temperature, and the rough rolling performed by Ar 3 transformation point or higher, the finish rolling start temperature and Ar less than 3 transformation point, the total reduction ratio in the temperature range of at least 500 to 750 ° C. is Rolling to 50% or more, hot rolling, rewinding in the winding or annealing process, then rolling reduction
After cold rolling of 50% or more and 95% or less, 750 ° C or more
A method for producing a high-strength cold-rolled steel sheet having excellent deep drawability, wherein recrystallization annealing is performed in a temperature range of 900 ° C or lower.
【請求項2】 Ni:0.3 〜1.5 wt%を含有することを特
徴とする請求項1記載の深絞り性に優れた高強度冷延鋼
板の製造方法。
2. The method for producing a high-strength cold-rolled steel sheet having excellent deep drawability according to claim 1, wherein Ni is contained in an amount of 0.3 to 1.5 wt%.
【請求項3】 仕上圧延後の再結晶処理において、少な
くとも700 〜500 ℃間の冷却速度を2 ℃/秒以上にする
ことを特徴とする請求項1又は2記載の深絞り性に優れ
た高強度冷延鋼板の製造方法。
3. The high drawability according to claim 1, wherein a cooling rate between 700 ° C. and 500 ° C. is set to 2 ° C./sec or more in the recrystallization treatment after finish rolling. Manufacturing method of high strength cold rolled steel sheet.
【請求項4】 冷間圧延後の再結晶焼鈍に引き続き、25
0 〜650 ℃の温度範囲に加熱することを特徴とする、引
張強度490 MPa 以上を有する請求項1又は2又は3記載
の深絞り性に優れた高強度冷延鋼板の製造方法。
4. Following recrystallization annealing after cold rolling, 25
The method for producing a high-strength cold-rolled steel sheet excellent in deep drawability according to claim 1, wherein the steel sheet is heated to a temperature range of 0 to 650 ° C. and has a tensile strength of 490 MPa or more.
JP31407699A 1999-11-04 1999-11-04 Manufacturing method of high-strength cold-rolled steel sheet with excellent deep drawability Expired - Fee Related JP4432165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31407699A JP4432165B2 (en) 1999-11-04 1999-11-04 Manufacturing method of high-strength cold-rolled steel sheet with excellent deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31407699A JP4432165B2 (en) 1999-11-04 1999-11-04 Manufacturing method of high-strength cold-rolled steel sheet with excellent deep drawability

Publications (2)

Publication Number Publication Date
JP2001131640A true JP2001131640A (en) 2001-05-15
JP4432165B2 JP4432165B2 (en) 2010-03-17

Family

ID=18048949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31407699A Expired - Fee Related JP4432165B2 (en) 1999-11-04 1999-11-04 Manufacturing method of high-strength cold-rolled steel sheet with excellent deep drawability

Country Status (1)

Country Link
JP (1) JP4432165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288037A (en) * 2022-12-13 2023-06-23 安钢集团冷轧有限责任公司 Ultra-deep drawing cold-rolled automobile steel and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288037A (en) * 2022-12-13 2023-06-23 安钢集团冷轧有限责任公司 Ultra-deep drawing cold-rolled automobile steel and production method thereof

Also Published As

Publication number Publication date
JP4432165B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP5719545B2 (en) High strength thin steel sheet with excellent elongation and press forming stability
KR20140048348A (en) Thin steel sheet and process for producing same
JP2000199034A (en) High tensile strength hot rolled steel plate excellent in workability and its production
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPH1192859A (en) High tensile strength hot rolled steel plate having ultrafine structure and its production
JP4325223B2 (en) Ultra-high-strength cold-rolled steel sheet having excellent bake hardenability and manufacturing method thereof
JP2022550329A (en) Double phase steel with high hole expandability and method for producing the same
JP4205893B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP2004250774A (en) Cold rolled steel sheet having superfine particle tissue, and production method therefor
JP2001247918A (en) Method for producing high strength thin steel sheet
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP3451703B2 (en) High tensile cold rolled steel sheet for deep drawing with excellent strength-ductility balance and bake hardenability, and method for producing the same
JP2000192191A (en) High tensile strength steel plate excellent in burring property, and its manufacture
JP4432165B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent deep drawability
JP3370443B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JP4396007B2 (en) High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same
JP2001131641A (en) Method for producing high workability and high strength hot rolled steel sheet
JP2003342680A (en) Dual-phase high-tensile cold rolled steel sheet excellent in deep drawability and stretch-flangeability and its production method
JP2001355042A (en) Hot dip galvanized steel sheet excellent in press formability and strain age hardening characteristic and its production method
JP3981573B2 (en) Process-induced transformation-type high-strength steel pipe excellent in hydroformability and manufacturing method thereof
JP3821073B2 (en) Hot-rolled material for hydroform forming steel pipe and method for producing the same
JP3420313B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees