JP2001130978A - Method for producing porous sintered compact - Google Patents

Method for producing porous sintered compact

Info

Publication number
JP2001130978A
JP2001130978A JP31071499A JP31071499A JP2001130978A JP 2001130978 A JP2001130978 A JP 2001130978A JP 31071499 A JP31071499 A JP 31071499A JP 31071499 A JP31071499 A JP 31071499A JP 2001130978 A JP2001130978 A JP 2001130978A
Authority
JP
Japan
Prior art keywords
slurry
porous sintered
foamy
sintered body
crosslinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31071499A
Other languages
Japanese (ja)
Inventor
Koichi Imura
浩一 井村
Hideo Uemoto
英雄 上本
Sumie Sakaguchi
澄恵 坂口
Takuji Umezawa
卓史 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP31071499A priority Critical patent/JP2001130978A/en
Publication of JP2001130978A publication Critical patent/JP2001130978A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Abstract

PROBLEM TO BE SOLVED: To obtain a porous sintered compact having a fixed pore diameter without changing the kind of a blowing agent to be added to a slurry, the concentration of the blowing agent, viscoelasticity of the slurry, particle diameter and particle shape of raw material powder contained in the slurry, a time that the foamy slurry loses fluidity by crosslinking polymerization. SOLUTION: In this method for producing the porous sintered compact comprising a process for preparing the slurry of raw material powder and an organic substance to be cured by crosslinking polymerization, a process for foaming the slurry to give a foamy slurry, a process for adding a crosslinking agent to the foamy slurry and feeding the slurry into a mold, a process for curing the foamy slurry by crosslinking polymerization to give a molding product and a process for sintering the molding product, in the process for introducing the slurry to the mold, foams are expanded or compressed by decompression or compression and the molding product is cured while maintaining the state control the pope diameter of the porous sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フィルター、断熱
材、触媒担体、ヒーター、吸音材などに使用される、気
孔径の制御された、多孔質焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous sintered body having a controlled pore diameter and used for a filter, a heat insulating material, a catalyst carrier, a heater, a sound absorbing material and the like.

【0002】[0002]

【従来の技術】従来、多孔質焼結体は、下記の方法によ
り製造されていた。すなわち、原料粉末およびバイン
ダ、分散剤、溶媒などを含むスラリ−を調整し、このス
ラリーに起泡剤を添加して、攪拌及び又は気体導入によ
り所定の容積まで起泡して泡沫状のスラリーとし、型内
に鋳込んで乾燥して成形体とし、さらに十分乾燥した後
焼結することにより多孔質焼結体を製造する方法であ
る。
2. Description of the Related Art Conventionally, a porous sintered body has been manufactured by the following method. That is, a slurry containing a raw material powder and a binder, a dispersant, a solvent, and the like is adjusted, a foaming agent is added to the slurry, and foaming is performed to a predetermined volume by stirring and / or gas introduction to form a foamy slurry. This is a method of producing a porous sintered body by casting into a mold and drying to obtain a molded body, and further sufficiently drying and then sintering.

【0003】この方法では、泡沫状のスラリ−を乾燥し
て成形体となすために、その形状の表面部分から乾燥す
る必要があり、表面部分と内部とでは、乾燥によって泡
沫状スラリーの泡構造が固定される時期が異なってお
り、このために泡同士の合体によって成形体の内部では
気孔径が大きくなり、均質な気孔径を有する多孔質焼結
体を製造することが困難である。さらに、泡沫状のスラ
リーを型内で乾燥する工程において、脱溶媒に伴って成
形体は収縮を起こすが、初期において、乾燥が起きる面
がはじめに固定されてしまい、末乾燥の部分に引張りの
力が掛かるために、内部での気孔径が大きくなり、さら
に空洞(巣)が生じることもある。
[0003] In this method, in order to dry the foamy slurry into a molded article, it is necessary to dry the foamed slurry from the surface portion thereof. Are fixed at different times, so that the pores become large inside the molded body due to the coalescence of bubbles, and it is difficult to produce a porous sintered body having a uniform pore diameter. Furthermore, in the step of drying the foamy slurry in the mold, the molded body shrinks with the removal of the solvent, but at the initial stage, the surface on which the drying occurs is fixed first, and the tensile force is applied to the part to be finally dried. , The pore diameter inside becomes large, and a cavity (nest) may be formed.

【0004】以上の問題を解決するために、スラリー中
に架橋重合により硬化しうる有機物質を配合し、泡沫状
スラリーとし、架橋剤を混合して、型内に鋳込んで硬化
させ成形体を得る方法がある(特許番号第250650
2号参照)。この方法によれば、成形体中の気孔径分布
が均一となり、成形体内部に空洞(巣)を生じることな
く、ひいては、気孔径が均一であり、内部に空洞(巣)
を持つことのない、これまでの技術に比べはるかに良好
な多孔質焼結体を得ることができる。
[0004] In order to solve the above problems, an organic substance which can be cured by cross-linking polymerization is blended into a slurry to form a foamy slurry, a cross-linking agent is mixed, and the mixture is cast into a mold and cured to form a molded body. There is a method of obtaining (Patent No. 250650)
No. 2). According to this method, the pore size distribution in the molded article becomes uniform, and no voids (nests) are formed inside the molded article. Consequently, the pore diameters are uniform, and the voids (nests) are formed inside.
It is possible to obtain a much better porous sintered body without the conventional technology.

【0005】しかしながら、上記多孔質焼結体の製造方
法には、さらに改善すべき次の問題があった。すなわ
ち、気孔径の制御は、スラリーに添加される起泡剤の種
類、起泡剤の濃度、スラリーの粘弾性、気体導入量、ス
ラリー中に含まれる原料粉末の粒子径や粒子形状、架橋
重合により泡沫状のスラリーが流動性を失うまでの時間
等の泡沫状態スラリー中に起泡径に影響する条件を合わ
せて考慮しなされている。例えば、前述した条件のうち
起泡剤の種類、起泡剤の濃度を除く条件を固定し、起泡
剤の種類、起泡剤の濃度を変更して表面張力や気泡の液
膜強度が変わることを利用し、安定して存在できる気泡
径を変更し、焼結体における気孔径を制御する方法があ
る。
[0005] However, the above-mentioned method for producing a porous sintered body has the following problems to be further improved. In other words, the pore size is controlled by the type of foaming agent added to the slurry, the concentration of the foaming agent, the viscoelasticity of the slurry, the amount of gas introduced, the particle size and particle shape of the raw material powder contained in the slurry, and the crosslinking polymerization. Therefore, conditions that affect the foaming diameter in the foamed slurry, such as the time until the foamy slurry loses fluidity, are taken into consideration. For example, among the conditions described above, the conditions except the type of the foaming agent and the concentration of the foaming agent are fixed, and the type of the foaming agent and the concentration of the foaming agent are changed to change the surface tension and the liquid film strength of the bubbles. Taking advantage of this, there is a method of controlling the pore diameter in the sintered body by changing the bubble diameter that can exist stably.

【0006】しかしながら、この方法において、起泡剤
がスラリ−中の原料粉末の分散状態や架橋重合により硬
化しうる有機物質との反応性を考慮する必要があり、選
択できる起泡剤の種類が少ないこと、良好な気泡性を有
する起泡剤の界面活性能力には、大きな相違がなく泡沫
状のスラリー中に安定して存在できる気泡径はあまり変
わらないことより、多孔質焼結体中の気孔径の制御でき
る幅は小さいという問題点があった。
However, in this method, it is necessary to consider the dispersion state of the raw material powder in the slurry and the reactivity with the organic substance which can be cured by cross-linking polymerization. There is little difference in the surfactant activity of the foaming agent having a good foaming property, and there is no significant difference in the bubble diameter that can be stably present in the foamy slurry. There is a problem that the width in which the pore diameter can be controlled is small.

【0007】また、例えば、架橋重合により泡沫状のス
ラリーが流動性を失うまでの時間以外の条件を固定し、
泡沫状のスラリーが流動性を失うまでの間に気泡同士が
合体して気泡径が大きくなることを利用し気泡径を変更
し、焼結体における気孔径を制御する方法がある。しか
しながら、この方法において、架橋重合しうる有機物質
の種類や濃度、架橋剤の種類や濃度、架橋開始剤の種類
や濃度、温度などの条件によって架橋重合により泡沫状
のスラリーが流動性を失うまでの時間を長くすると、泡
沫状のスラリー中に存在する気泡の径は気泡の合体に伴
い大きくなるものの、この間にスラリーは密度が高いた
めに下方に移動する。このために、多孔質焼結体の鋳込
み時の位置による密度傾斜や気孔径の傾斜が起こり、均
一性が失われるという問題点があった。
Further, for example, conditions other than the time until the foamy slurry loses fluidity by cross-linking polymerization are fixed,
There is a method of controlling the pore diameter in the sintered body by changing the bubble diameter by utilizing the fact that the bubbles are united to increase the bubble diameter until the foamy slurry loses the fluidity. However, in this method, the type and concentration of the organic substance capable of cross-linking polymerization, the type and concentration of the cross-linking agent, the type and concentration of the cross-linking initiator, the conditions such as the temperature until the foamy slurry loses fluidity due to cross-linking polymerization. When the time is longer, the diameter of the bubbles present in the foamy slurry increases with the coalescence of the bubbles, but during this time the slurry moves downward due to its high density. For this reason, there is a problem that a density gradient or a pore diameter gradient occurs depending on a position at the time of pouring the porous sintered body, and uniformity is lost.

【0008】[0008]

【発明が解決しようとする課題】本発明は、前述した問
題点を解決すべくなされたものであり、スラリーに添加
される起泡剤の種類、起泡剤の濃度、スラリーの粘弾
性、スラリー中に含まれる原料粉末の粒子径や粒子形
状、架橋重合により泡沫状のスラリーが流動性を失うま
での時間を変更することなく、所望する気孔径を有する
多孔質焼結体を製造しうる方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and includes a kind of a foaming agent added to a slurry, a concentration of a foaming agent, a viscoelasticity of the slurry, and a slurry. A method for producing a porous sintered body having a desired pore diameter without changing the particle size and shape of the raw material powder contained therein, and the time until the foamy slurry loses fluidity due to cross-linking polymerization. Is provided.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、下記の方法を提供するものである。 1)原料粉末と架橋重合により硬化する有機物質を溶媒
中に分散又は溶解させたスラリーを調整する工程と、こ
のスラリーに起泡剤を添加し攪拌及び又は気体導入によ
り起泡し泡沫状のスラリーとする工程と、泡沫状のスラ
リーに架橋剤及び又は架橋開始剤を添加混合して型内に
導入する工程と、泡沫状のスラリーを架橋重合により硬
化させて成形体とする工程と、この成形体を乾燥し焼結
する工程からなる多孔質焼結体の製造方法において、前
記型内に導入する工程において、減圧により気泡を膨張
させ、該減圧状態を維持したまま泡沫状のスラリ−を架
橋重合により硬化させて多孔質焼結体の気孔径を制御す
ることを特徴とする多孔質焼結体の製造方法。 2)原料粉末と架橋重合により硬化する有機物質を溶媒
中に分散又は溶解させたスラリーを調整する工程と、こ
のスラリーに起泡剤を添加し攪拌及び又は気体導入によ
り起泡し泡沫状のスラリーとする工程と、泡沫状のスラ
リ−に架橋剤及び又は架橋開始剤を添加混合して型内に
導入する工程と、泡沫状のスラリーを架橋重合により硬
化させて成形体とする工程と、この成形体を乾燥し焼結
する工程からなる多孔質焼結体の製造方法において、前
記型内に導入する工程において、加圧により気泡を圧縮
し、該加圧状態を維持したまま泡沫状のスラリーを架橋
重合により硬化させて多孔質焼結体の気孔径を制御する
ことを特徴とする多孔質焼結体の製造方法。
The present invention provides the following method for solving the above-mentioned problems. 1) a step of preparing a slurry in which a raw material powder and an organic substance which is cured by cross-linking polymerization are dispersed or dissolved in a solvent, and adding a foaming agent to the slurry and foaming the foam by stirring and / or introducing gas; A step of adding a crosslinking agent and / or a crosslinking initiator to the foamy slurry and introducing the mixture into a mold; a step of curing the foamy slurry by crosslinking polymerization to form a molded body; In the method for producing a porous sintered body, which comprises a step of drying and sintering the body, in the step of introducing into the mold, bubbles are expanded by decompression, and a foamy slurry is cross-linked while maintaining the depressurized state. A method for producing a porous sintered body, comprising controlling the pore diameter of the porous sintered body by curing by polymerization. 2) a step of preparing a slurry in which a raw material powder and an organic substance which is cured by cross-linking polymerization are dispersed or dissolved in a solvent, and adding a foaming agent to the slurry and foaming the foam by stirring and / or introducing gas. A step of adding a crosslinking agent and / or a crosslinking initiator to a foamy slurry and introducing the mixture into a mold; and a step of curing the foamy slurry by crosslinking polymerization to form a molded article. In the method for producing a porous sintered body, which comprises a step of drying and sintering the molded body, in the step of introducing the molded body into the mold, bubbles are compressed by pressurization, and the foamed slurry is maintained while maintaining the pressurized state. A porous sintered body which is cured by crosslinking polymerization to control the pore diameter of the porous sintered body.

【0010】[0010]

【発明の実施の形態】以下に、本発明の多孔質焼結体の
製造方法を具体的に示す。原料粉末および分散媒、分散
剤、架橋重合により硬化しうる有機物質から成るスラリ
ーに、起泡剤を添加し、攪拌により起泡し泡沫状のスラ
リーとする。ここで、原料粉末としては、アルミナ、ジ
ルコニア、ムライト、シリカ、コーディエライト、炭化
珪素、窒化珪素、窒化アルミニウムなどやこれらの複合
体等、一般的に焼結により製造されるセラミックスの原
料粉末を用いることができ、またステンレス、タングス
テン、モリブデンなどの一般的に粉末治金により製造さ
れる金属の原料粉末を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a porous sintered body of the present invention will be specifically described. A foaming agent is added to a slurry composed of the raw material powder, a dispersion medium, a dispersant, and an organic substance curable by cross-linking polymerization, and foamed by stirring to form a foamy slurry. Here, as the raw material powder, a ceramic raw material powder generally produced by sintering, such as alumina, zirconia, mullite, silica, cordierite, silicon carbide, silicon nitride, aluminum nitride, or a composite thereof is used. Metal powders such as stainless steel, tungsten, and molybdenum, which are generally produced by powder metallurgy, can be used.

【0011】分散媒は、原料粉末に影響を与えることの
ない液体を用いることができる。例えば、水、エタノ−
ル、メタノール、プロパノール、アセトン、トルエン、
ベンゼン、キシレンなどが挙げられる。分散剤は必ずし
も必要ではないが、原料粉末および分散媒により適宜選
択して用いる。架橋重合により硬化しうる有機物質は、
硬化剤及び/又は反応開始剤により架橋重合を生じうる
物質を用いることができる。起泡剤には、一般的な界面
活性剤を用いることができるが、原料粉末の分散状態や
架橋重合により硬化しうる有機物質との相互作用を考慮
して選択する。
As the dispersion medium, a liquid which does not affect the raw material powder can be used. For example, water, ethanol
, Methanol, propanol, acetone, toluene,
Examples include benzene and xylene. The dispersant is not necessarily required, but is appropriately selected and used depending on the raw material powder and the dispersion medium. Organic substances that can be cured by cross-linking polymerization are:
A substance capable of causing cross-linking polymerization by a curing agent and / or a reaction initiator can be used. Although a general surfactant can be used as the foaming agent, it is selected in consideration of the dispersion state of the raw material powder and the interaction with an organic substance which can be cured by cross-linking polymerization.

【0012】攪拌による起泡は、単に攪拌により巻き込
まれる気体により起泡する方法や、攪拌と共に気体をス
ラリー中に導入する方法を採ることができる。起泡は空
気中で実施することもできるが、窒素、アルゴン、水
素、ヘリウムなどの雰囲気中で実施することもできる。
攪拌起泡時に、気泡の導入量を制御し、多孔質焼結体の
気孔率を調節する。なお、気泡の導入完了後、泡沫状に
なったスラリーを、気泡が導入されない条件下でさらに
攪拌し、泡沫状スラリー中の気孔径を均質化させること
が望ましい。
[0012] Foaming by stirring can be carried out by a method of foaming simply by a gas entrained by stirring or a method of introducing gas into the slurry together with stirring. Foaming can be performed in air, but also in an atmosphere of nitrogen, argon, hydrogen, helium, or the like.
At the time of stirring and foaming, the amount of bubbles introduced is controlled to adjust the porosity of the porous sintered body. After the introduction of the bubbles is completed, it is preferable that the foamed slurry is further stirred under the condition that the bubbles are not introduced to homogenize the pore diameter in the foamed slurry.

【0013】この泡沫状スラリーに硬化剤を添加し混合
した後、減圧容器又は加圧容器中に配置した型内に導入
し、減圧又は加圧により気泡を膨張又は圧縮させる。泡
沫状スラリーを所定の体積まで膨張又は圧縮させた後、
減圧又は加圧を止め、減圧状態又は加圧状態を維持した
ままスラリーを架橋重合によりゲル化して流動性を失わ
せ硬化し、大気圧に戻して脱型し成形体とする。
After adding and mixing a curing agent to the foamy slurry, the mixture is introduced into a mold placed in a reduced-pressure container or a pressurized container, and bubbles are expanded or compressed under reduced pressure or pressure. After expanding or compressing the foamy slurry to a predetermined volume,
The depressurization or pressurization is stopped, and the slurry is gelled by cross-linking polymerization while maintaining the depressurized or pressurized state, loses fluidity and hardens, is returned to atmospheric pressure, and is demolded to obtain a molded article.

【0014】この成形体を乾燥後焼結して、多孔質焼結
体とする。ここで添加する硬化剤は、スラリー中に添加
されている、架橋重合により硬化しうる有機物質と架橋
重合を生じて、ゲル化しうる機能を有する物であれば良
い。これには多官能基の架橋剤や反応開始剤、触媒など
も含まれる。ここで、減圧又は加圧により泡沫状態のス
ラリーは、その体積が増加又は減少するが、この体積お
よび、先に述べた気泡の導入量および、スラリー中に含
まれる原料粉末の重量、乾燥・焼結時の収縮率によって
最終的な多孔質焼結体の気孔率が決定される。
The compact is dried and sintered to form a porous sintered body. The curing agent added here may be any substance that has a function of causing gelation by causing cross-linking polymerization with an organic substance that is added to the slurry and curable by cross-linking polymerization. This includes a polyfunctional crosslinking agent, a reaction initiator, a catalyst, and the like. Here, the volume of the foamed slurry increases or decreases due to the reduced pressure or the increased pressure. This volume, the amount of the introduced bubbles described above, the weight of the raw material powder contained in the slurry, The final porosity of the porous sintered body is determined by the shrinkage ratio at the time of sintering.

【0015】また、減圧又は加圧により、泡沫状スラリ
ー中に含まれる気泡径は増加又は減少する。ひいては、
この手法により、スラリーの成分や特性を変更すること
なく、多孔質焼結体の気孔径を任意に変更して、制御す
ることが可能になる。なお、気孔径の変化は、単にボイ
ルの法則に従うものではなく、気泡の合体の効果も考慮
する。つまり、事前に予備試験を実施し、スラリーの特
性などによる気孔径へ及ぼす影響を調査して、その結果
をもとに気孔径の制御を実施する。このように、本発明
の多孔質焼結体の製造方法により、容易に気孔径を制御
した多孔質焼結体を製造することが可能になる。
[0015] The diameter of the bubbles contained in the foamed slurry increases or decreases due to the reduced pressure or the increased pressure. In turn,
According to this method, the pore diameter of the porous sintered body can be arbitrarily changed and controlled without changing the components and characteristics of the slurry. Note that the change in the pore diameter does not simply follow Boyle's law, but also considers the effect of coalescence of bubbles. That is, a preliminary test is performed in advance, the effect of the characteristics of the slurry on the pore diameter is investigated, and the pore diameter is controlled based on the result. As described above, according to the method for manufacturing a porous sintered body of the present invention, it is possible to easily manufacture a porous sintered body having a controlled pore diameter.

【0016】[0016]

【実施例】本発明の多孔質焼結体の製造方法による気孔
径の制御例を以下に示す。なお、実施例に示す材質・材
料・起泡量・多孔質焼結体の気孔径・多孔質焼結体の気
孔率などの具体例又は数値・条件等は、単に好適な一例
を示すためのものであり、本発明を限定するものではな
い。原料粉末として平均結晶粒子径0.2μmのα-ア
ルミナ粉末100重量部、異常粒成長抑制剤として炭酸
マグネシウム0.5重量部、分散媒としてイオン交換水
25重量部、分散剤としてポリアクリル酸アンモニウム
0.75重量部を混合し、ボールミルで一昼夜混合し
た。ここに、架橋重合により硬化しうる有機物質とし
て、ソルビトールポリグリシジルエーテル5重量部添加
し、十分に混合して原料スラリーとした。
An example of controlling the pore diameter by the method for producing a porous sintered body of the present invention will be described below. Note that specific examples or numerical values and conditions such as materials, materials, foaming amounts, pore diameters of porous sintered bodies, porosity of porous sintered bodies, and the like shown in the examples are merely for showing a preferred example. It is not intended to limit the invention. 100 parts by weight of α-alumina powder having an average crystal particle diameter of 0.2 μm as a raw material powder, 0.5 parts by weight of magnesium carbonate as an abnormal grain growth inhibitor, 25 parts by weight of ion exchange water as a dispersion medium, and ammonium polyacrylate as a dispersant 0.75 parts by weight were mixed and mixed for one day with a ball mill. Here, 5 parts by weight of sorbitol polyglycidyl ether was added as an organic substance curable by cross-linking polymerization, and the mixture was sufficiently mixed to obtain a raw material slurry.

【0017】原料スラリーに起泡剤として、ラウリル硫
酸トリエタノールアミン0.25重量部添加した。この
スラリー630gを取り出し、攪拌機により起泡して泡
沫状スラリーとした。ここで、表1に示すように、気泡
による気泡導入量を調節し、泡沫状スラリーの体積を変
化させた。このスラリーをさらに気泡導入が起こらない
条件で攪拌し気泡径の均質化をはかった。さらに、硬化
剤としてイミノビルプロピルアミン1.3重量部添加し
混合した。得られた、泡沫状スラリーを減圧容器または
加圧容器内に配置した、型内に流し込み、減圧または加
圧によりその体積を1000cmとした。次に、減圧
もしくは加圧状態を保持したまま1時間放置し、架橋重
合により硬化した後に、大気圧に戻し脱型し、乾燥した
後に、1650℃で2時間焼結して、気孔率75%のア
ルミナ多孔質焼結体を得た。
To the raw material slurry, 0.25 parts by weight of triethanolamine lauryl sulfate was added as a foaming agent. 630 g of this slurry was taken out and foamed with a stirrer to obtain a foamy slurry. Here, as shown in Table 1, the amount of bubbles introduced by the bubbles was adjusted to change the volume of the foamy slurry. The slurry was further stirred under the condition that no bubbles were introduced to homogenize the bubble diameter. Further, 1.3 parts by weight of iminovirpropylamine as a curing agent was added and mixed. The obtained foamy slurry was poured into a mold placed in a reduced-pressure container or a pressurized container, and the volume was reduced to 1000 cm 2 by depressurization or pressurization. Next, it was left for 1 hour while maintaining a reduced pressure or a pressurized state, and after being cured by cross-linking polymerization, returned to the atmospheric pressure, demolded, dried, and sintered at 1650 ° C. for 2 hours to have a porosity of 75%. Was obtained.

【0018】この多孔質焼結体の平均気孔径を下記に述
べる方法で求めた。多孔質焼結体を樹脂中に包埋し、こ
れを研磨して顕微鏡等で観察し、画像解析により気孔面
積を求める。ここで測定する気孔数は精度上多いほど良
いが、一般に300個以上の気孔について測定を行えば
良い。ここで求められる気孔面積はほぼ球状の気孔の一
部を通過する平面での断面であり、気孔の直径ではない
ために、三次元的な補正を行う。補正の方法として、Jo
hnson-Saltykov法を用いる。Johnson-Saltykov法では、
観測される気孔の面積から、直接気孔の直径分布が得ら
れるが、平均気孔径としては、気孔体積の累積分布にお
いて総気孔体積の50%を占める気孔径を算出する。求
められた、平均気孔径を表1に示す。表1に示すよう
に、減圧または加圧によりその体積を一定とすることに
より、同一の原料スラリーを用いて多孔質焼結体の平均
気孔径を容易に制御することができる。
The average pore diameter of the porous sintered body was determined by the method described below. The porous sintered body is embedded in a resin, polished and observed with a microscope or the like, and the pore area is determined by image analysis. The number of pores to be measured here is preferably as high as possible in accuracy, but generally it is sufficient to measure 300 or more pores. The pore area obtained here is a cross-section on a plane passing through a part of a substantially spherical pore, and is not the diameter of the pore. Therefore, three-dimensional correction is performed. As a correction method, Jo
The hnson-Saltykov method is used. In the Johnson-Saltykov method,
The pore diameter distribution can be obtained directly from the observed pore area, and the average pore diameter is calculated as the pore diameter that accounts for 50% of the total pore volume in the cumulative pore volume distribution. Table 1 shows the obtained average pore diameters. As shown in Table 1, by making the volume constant by reducing or increasing the pressure, the average pore diameter of the porous sintered body can be easily controlled using the same raw material slurry.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】実施例からも明らかなように、本発明の
多孔質焼結体の製造方法によれば、同一の原料スラリー
を用いて、攪拌起泡、ゲル化、乾燥、焼結の工程を経
て、気孔径の制御された、多孔質焼結体を容易に得るこ
とができる優れた効果を有する。
As is clear from the examples, according to the method for producing a porous sintered body of the present invention, the same raw material slurry is used, and the steps of stirring and foaming, gelling, drying and sintering are performed. Thus, the present invention has an excellent effect that a porous sintered body having a controlled pore diameter can be easily obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂口 澄恵 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 梅沢 卓史 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Sumie Sakaguchi 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. Inside

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料粉末と架橋重合により硬化する有機
物質を溶媒中に分散又は溶解させたスラリーを調整する
工程と、このスラリーに起泡剤を添加し攪拌及び又は気
体導入により起泡し泡沫状のスラリーとする工程と、泡
沫状のスラリーに架橋剤及び又は架橋開始剤を添加混合
して型内に導入する工程と、泡沫状のスラリーを架橋重
合により硬化させて成形体とする工程と、この成形体を
乾燥し焼結する工程からなる多孔質焼結体の製造方法に
おいて、前記型内に導入する工程において、減圧により
気泡を膨張させ、該減圧状態を維持したまま泡沫状のス
ラリ−を架橋重合により硬化させて多孔質焼結体の気孔
径を制御することを特徴とする多孔質焼結体の製造方
法。
1. A step of preparing a slurry in which a raw material powder and an organic substance which is cured by cross-linking polymerization are dispersed or dissolved in a solvent, adding a foaming agent to the slurry, and foaming by stirring and / or introducing gas. A step of adding a crosslinking agent and / or a crosslinking initiator to the foamy slurry and introducing the mixture into a mold; and a step of curing the foamy slurry by crosslinking polymerization to form a molded article. In the method for producing a porous sintered body, which comprises a step of drying and sintering the molded body, in the step of introducing the molded body into the mold, bubbles are expanded under reduced pressure, and a foamy slurry is maintained while maintaining the reduced pressure state. A method for producing a porous sintered body, characterized in that the pore diameter of the porous sintered body is controlled by curing the porous sintered body through crosslinking polymerization.
【請求項2】 原料粉末と架橋重合により硬化する有機
物質を溶媒中に分散又は溶解させたスラリーを調整する
工程と、このスラリーに起泡剤を添加し攪拌及び又は気
体導入により起泡し泡沫状のスラリーとする工程と、泡
沫状のスラリ−に架橋剤及び又は架橋開始剤を添加混合
して型内に導入する工程と、泡沫状のスラリーを架橋重
合により硬化させて成形体とする工程と、この成形体を
乾燥し焼結する工程からなる多孔質焼結体の製造方法に
おいて、前記型内に導入する工程において、加圧により
気泡を圧縮し、該加圧状態を維持したまま泡沫状のスラ
リーを架橋重合により硬化させて多孔質焼結体の気孔径
を制御することを特徴とする多孔質焼結体の製造方法。
2. A step of preparing a slurry in which a raw material powder and an organic substance which is cured by cross-linking polymerization are dispersed or dissolved in a solvent, adding a foaming agent to the slurry, and foaming by stirring and / or gas introduction. A foaming slurry, a step of adding a crosslinking agent and / or a crosslinking initiator to a foamy slurry and introducing the mixture into a mold, and a step of curing the foamy slurry by crosslinking polymerization to form a molded article. And a step of drying and sintering the molded body, wherein in the step of introducing into the mold, bubbles are compressed by pressurization, and the foam is maintained while the pressurized state is maintained. A method for producing a porous sintered body, characterized in that a porous slurry is cured by crosslinking polymerization to control the pore diameter of the porous sintered body.
JP31071499A 1999-11-01 1999-11-01 Method for producing porous sintered compact Pending JP2001130978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31071499A JP2001130978A (en) 1999-11-01 1999-11-01 Method for producing porous sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31071499A JP2001130978A (en) 1999-11-01 1999-11-01 Method for producing porous sintered compact

Publications (1)

Publication Number Publication Date
JP2001130978A true JP2001130978A (en) 2001-05-15

Family

ID=18008602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31071499A Pending JP2001130978A (en) 1999-11-01 1999-11-01 Method for producing porous sintered compact

Country Status (1)

Country Link
JP (1) JP2001130978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287582A (en) * 2008-05-27 2009-12-10 Covalent Materials Corp Pressure reducing exhaust valve, and pressure reducing device using pressure reducing exhaust mechanism including the same
JP2010112392A (en) * 2008-11-04 2010-05-20 Covalent Materials Corp Pressure reducing exhaust valve, and pressure reducing device using pressure reducing exhaust mechanism including the same
JP2010229432A (en) * 2009-03-25 2010-10-14 Mitsubishi Materials Corp Method for producing porous sintered compact
JP2010228932A (en) * 2009-03-25 2010-10-14 Mitsubishi Materials Corp Method of manufacturing porous sintered compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287582A (en) * 2008-05-27 2009-12-10 Covalent Materials Corp Pressure reducing exhaust valve, and pressure reducing device using pressure reducing exhaust mechanism including the same
JP2010112392A (en) * 2008-11-04 2010-05-20 Covalent Materials Corp Pressure reducing exhaust valve, and pressure reducing device using pressure reducing exhaust mechanism including the same
JP2010229432A (en) * 2009-03-25 2010-10-14 Mitsubishi Materials Corp Method for producing porous sintered compact
JP2010228932A (en) * 2009-03-25 2010-10-14 Mitsubishi Materials Corp Method of manufacturing porous sintered compact

Similar Documents

Publication Publication Date Title
US6087024A (en) Method for forming porous sintered bodies with controlled pore structure
US5021213A (en) Method of casting powder
US5520861A (en) Method of making a reinforcement preform and a reinforced composite therefrom
US6171532B1 (en) Method of stabilizing sintered foam and of producing open-cell sintered foam parts
WO2018038031A1 (en) Method for molding ceramic material, method for producing ceramic article, and ceramic article
US20060118984A1 (en) Method for producing porous sintered bodies
JP2001130978A (en) Method for producing porous sintered compact
JPH0613435B2 (en) Method for manufacturing porous silicon nitride mold for die casting
JP4445286B2 (en) Ceramic porous body
US20100320629A1 (en) Ceramic molded product and manufacturing method thereof
JP2000264753A (en) Porous sintered compact and production of the porous sintered compact
US20030030163A1 (en) Method for manufacturing homogeneous green bodies from the powders of multimodal particle size distribution using centrifugal casting
CN108863435B (en) Method for preparing alumina foamed ceramic by alumina sol self-gel forming
JP3463885B2 (en) Ceramic porous body and method of manufacturing the same
JP2002121087A (en) Ceramics porous sintered compact and method for producing the same
JPH05186280A (en) Production of ceramic porous body
JP5076793B2 (en) Method for producing ceramic porous body and ceramic porous body and structure produced using the same
JPH11322467A (en) Production of porous ceramics
JP4952484B2 (en) Method for producing ceramic porous body and ceramic porous body and structure produced using the same
JP2506502B2 (en) Method for manufacturing ceramic porous body
JP2001163682A (en) Porous sintered body and method of producing the same
JP4952509B2 (en) Method for producing ceramic porous body and ceramic porous body and structure produced using the same
JPS59156954A (en) Manufacture of porous ceramics
JP2010132488A (en) Method for producing ceramic porous body
JPH06227873A (en) Production of ceramics porous material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104