JP2001129389A - Method for manufacturing fine particles and method for forming coating film - Google Patents

Method for manufacturing fine particles and method for forming coating film

Info

Publication number
JP2001129389A
JP2001129389A JP31250499A JP31250499A JP2001129389A JP 2001129389 A JP2001129389 A JP 2001129389A JP 31250499 A JP31250499 A JP 31250499A JP 31250499 A JP31250499 A JP 31250499A JP 2001129389 A JP2001129389 A JP 2001129389A
Authority
JP
Japan
Prior art keywords
fine particles
supercritical
metal oxide
oxide fine
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31250499A
Other languages
Japanese (ja)
Inventor
Masaaki Okawara
正明 大川原
Takashi Ito
崇 伊藤
Atsushi Tsutsumi
敦司 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGAWARA KAKOKI KK
OOGAWARA KAKOKI KK
Original Assignee
OGAWARA KAKOKI KK
OOGAWARA KAKOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGAWARA KAKOKI KK, OOGAWARA KAKOKI KK filed Critical OGAWARA KAKOKI KK
Priority to JP31250499A priority Critical patent/JP2001129389A/en
Publication of JP2001129389A publication Critical patent/JP2001129389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing fine particles by which it is possible to control the composition, crystalline structure, shape and size of fine particles of a metallic oxide and also synthesize the monodisperse and dry fine particles of nano size of the metallic oxide well as a method for forming a coating film by which it is possible to synthesize the fine particles, of the metallic oxide, the composition, crystalline structure, shape and size of which are controlled and also perform the process to apply a uniform metallic oxide layer as a coating film on a substrate consecutively following the synthesizing process. SOLUTION: A liquid material which is an aqueous metallic salt solution, a metallic alkoxide alcohol solution or a mixed solution of the former and further, is in a supercritical state, is rapidly heated up until it reaches a hydrothermal reaction temperature and thereby fine particles of a metallic oxide are generated under hydrothermal synthetic reaction. In addition, a supercritical slurrylike liquid containing the fine particles of the metallic oxide with a particle dia. controlled by heating up the fine particles upto the supercritical state, is injected into a powder recovery device 70 from an superheat supercritical nozzle 20. Consequently, the monodisperse and dry fine particles of the metallic oxide are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子の製造方法
及び膜の形成方法に関する。
[0001] The present invention relates to a method for producing fine particles and a method for forming a film.

【0002】[0002]

【従来の技術】金属酸化物微粒子は、従来からセラミッ
ク材料、研磨剤、顔料、塗料、触媒として用いられ、最
近では、磁気材料、磁性流体、化粧品、医薬品、各種セ
ンサー材料、燃料電池材料、二次イオン電池材料等の磁
気的、電気的及び光学的機能性を有する材料及び静電
体、磁性体、絶縁体等の機能素子材料として幅広い分野
で用いられている。また、金属酸化物微粒子は、量子ド
ットに代表されるナノオーダーの構造(ナノ微粒子も含
む)による量子サイズ効果の発現に注目が集まってお
り、その製造方法の開発研究が世界中で盛んに進められ
ている。
2. Description of the Related Art Metal oxide fine particles have conventionally been used as ceramic materials, abrasives, pigments, paints, and catalysts. Recently, magnetic materials, magnetic fluids, cosmetics, pharmaceuticals, various sensor materials, fuel cell materials, It is used in a wide range of fields as materials having magnetic, electrical and optical functions such as secondary ion battery materials and functional element materials such as electrostatics, magnetics and insulators. In metal oxide fine particles, attention has been focused on the development of quantum size effects due to nano-order structures (including nanoparticles) represented by quantum dots. Have been.

【0003】従来、このような酸化物微粒子は、液相法
により、例えば、1〜100μmの比較的大きな結晶粒
子を合成し、それを粉砕、分級操作により合成してき
た。このように、金属酸化物微粒子を、先に挙げたよう
な機能性材料又は基板上に均一な金属酸化物層を被膜さ
せた電子材料等に用いる場合、金属酸化物微粒子の組成
や結晶構造が均質であるだけでなく、金属酸化物微粒子
の形状やサイズを制御する必要があった。
Conventionally, such oxide fine particles have been synthesized by a liquid phase method, for example, by synthesizing relatively large crystal particles of, for example, 1 to 100 μm, and pulverizing and classifying them. As described above, when the metal oxide fine particles are used as a functional material as described above or an electronic material in which a uniform metal oxide layer is coated on a substrate, the composition and the crystal structure of the metal oxide fine particles are In addition to being homogeneous, it was necessary to control the shape and size of the metal oxide fine particles.

【0004】しかしながら、上記のように合成した金属
酸化物微粒子は、サイズ制御が十分でなく、形状の制御
やナノサイズ微粒子の合成が非常に困難であった。
However, the metal oxide fine particles synthesized as described above do not have sufficient size control, and it is very difficult to control the shape and synthesize nano-sized fine particles.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した従来
の課題に鑑みてなされたものであり、その目的とすると
ころは、金属酸化物微粒子の組成、結晶構造、形状及び
サイズを制御することができ、単分散且つ乾燥状態であ
るナノサイズの金属酸化物微粒子を合成することができ
る微粒子の製造方法と、組成、結晶構造、形状及びサイ
ズが制御された金属酸化物微粒子の合成と、基板上に均
一な金属酸化物層を被膜する工程とを連続して行うこと
ができる膜の形成方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to control the composition, crystal structure, shape, and size of metal oxide fine particles. Method of producing fine particles capable of synthesizing nano-sized metal oxide fine particles in a monodispersed and dry state, synthesis of metal oxide fine particles having controlled composition, crystal structure, shape and size, and substrate An object of the present invention is to provide a film forming method capable of continuously performing a step of coating a uniform metal oxide layer thereon.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明によれ
ば、金属塩水溶液、金属アルコキシドアルコール水又は
これらの混合溶液であり、且つ超臨界状態になる液状物
を、水熱反応温度まで急速に昇温し、水熱合成反応によ
り金属酸化物微粒子を発生させ、更に超臨界状態に昇温
して粒子径を制御した金属酸化物微粒子を含有した超臨
界のスラリー状液を、過熱超臨界ノズルから粉体回収装
置内に噴出させることにより、単分散且つ乾燥状態の金
属酸化物微粒子を製造することを特徴とする微粒子の製
造方法が提供される。このとき、本発明では、金属酸化
物微粒子の平均粒子径が、5〜100nmであることが
好ましく、過熱超臨界ノズルの出口温度を、水又は超臨
界液の凝縮点よりも高くすることが好ましい。
That is, according to the present invention, a liquid material which is a metal salt aqueous solution, a metal alkoxide alcohol aqueous solution or a mixed solution thereof and which is in a supercritical state is rapidly cooled to a hydrothermal reaction temperature. The temperature is raised, the metal oxide fine particles are generated by a hydrothermal synthesis reaction, and the supercritical slurry-like liquid containing the metal oxide fine particles whose particle diameter is controlled by further raising the temperature to a supercritical state is supplied to a superheated supercritical nozzle. A monodispersed metal oxide fine particle in a dry state by jetting the fine particles into a powder recovery device. At this time, in the present invention, the average particle diameter of the metal oxide fine particles is preferably 5 to 100 nm, and the outlet temperature of the superheated supercritical nozzle is preferably higher than the condensation point of water or the supercritical liquid. .

【0007】また、本発明によれば、金属塩水溶液、金
属アルコキシドアルコール水又はこれらの混合溶液であ
り、且つ超臨界状態になる液状物を、水熱反応温度まで
急速に昇温し、水熱合成反応により金属酸化物微粒子を
発生させ、更に超臨界状態に昇温して粒子径を制御した
金属酸化物微粒子を含有した超臨界のスラリー状液を、
過熱超臨界ノズルから基板上に噴出させることにより、
基板の表面上に金属酸化物微粒子を堆積させ、該基板上
に均一な金属酸化物層を被膜させることを特徴とする膜
の形成方法が提供される。このとき、本発明では、金属
酸化物層の厚さが、1〜500μmであることが好まし
く、過熱超臨界ノズルの出口温度を、水又は超臨界液の
凝縮点よりも高くすることが好ましい。
Further, according to the present invention, a liquid material which is a metal salt aqueous solution, a metal alkoxide alcohol aqueous solution or a mixed solution thereof and which becomes a supercritical state is rapidly heated to a hydrothermal reaction temperature, A metal oxide fine particle is generated by a synthesis reaction, and further heated to a supercritical state, a supercritical slurry-like liquid containing the metal oxide fine particle whose particle diameter is controlled,
By jetting from the superheated supercritical nozzle onto the substrate,
A method for forming a film is provided, wherein metal oxide fine particles are deposited on a surface of a substrate, and a uniform metal oxide layer is coated on the substrate. At this time, in the present invention, the thickness of the metal oxide layer is preferably 1 to 500 μm, and the outlet temperature of the superheated supercritical nozzle is preferably higher than the condensation point of water or the supercritical liquid.

【0008】[0008]

【発明の実施の形態】本発明の微粒子の製造方法は、金
属塩水溶液、金属アルコキシドアルコール水又はこれら
の混合溶液であり、且つ超臨界状態になる液状物を、水
熱反応温度まで急速に昇温し、水熱合成反応により金属
酸化物微粒子を発生させ、更に超臨界状態に昇温して粒
子径を制御した金属酸化物微粒子を含有した超臨界のス
ラリー状液を、過熱超臨界ノズルから粉体回収装置内に
噴出させることにより、単分散且つ乾燥状態の金属酸化
物微粒子を製造することにある。これにより、金属酸化
物微粒子の組成、結晶構造、形状及びサイズを制御する
ことができ、単分散且つ乾燥状態であるナノサイズの金
属酸化物微粒子を合成することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing fine particles of the present invention, a supercritical liquid, which is an aqueous solution of a metal salt, an aqueous solution of a metal alkoxide or a mixed solution thereof, is rapidly raised to a hydrothermal reaction temperature. The metal oxide fine particles are generated by a hydrothermal synthesis reaction, and the supercritical slurry-like liquid containing the metal oxide fine particles whose particle diameter is controlled by further raising the temperature to a supercritical state is passed through a superheated supercritical nozzle. The object of the present invention is to produce metal oxide fine particles in a monodispersed and dry state by jetting them into a powder recovery device. As a result, the composition, crystal structure, shape and size of the metal oxide fine particles can be controlled, and nano-sized metal oxide fine particles that are monodisperse and dry can be synthesized.

【0009】以上のことから、本発明の微粒子の製造方
法は、特に、触媒(例えば、TiO 2等)、蛍光体(例
えば、YAG:Tb等)、磁気材料(例えば、BaO・
6Fe23等)、電子材料(例えば、チタン酸バリウ
ム、PZT、酸化チタン、インジウム酸化スズ等)等の
ナノサイズ(例えば、5〜100nm)の金属酸化物微
粒子の製造に好適に用いることができる。
From the above, it can be seen that the method for producing the fine particles of the present invention
The method is particularly suitable for catalysts (eg, TiO 2). TwoEtc.), phosphors (examples
For example, YAG: Tb or the like, a magnetic material (for example, BaO.
6FeTwoOThreeEtc.), electronic materials (for example, barium titanate)
, PZT, titanium oxide, indium tin oxide, etc.)
Nano-sized (for example, 5 to 100 nm) metal oxide fine particles
It can be suitably used for the production of particles.

【0010】また、本発明の膜の形成方法は、金属塩水
溶液、金属アルコキシドアルコール水又はこれらの混合
溶液であり、且つ超臨界状態になる液状物を、水熱反応
温度まで急速に昇温し、水熱合成反応により金属酸化物
微粒子を発生させ、更に超臨界状態に昇温して粒子径を
制御した金属酸化物微粒子を含有した超臨界のスラリー
状液を、過熱超臨界ノズルから基板上に噴出させること
により、基板の表面上に金属酸化物微粒子を堆積させ、
基板上に均一な金属酸化物層(厚さ:1〜500μm)
を被膜させることにある。これにより、組成、結晶構
造、形状及びサイズが制御された金属酸化物微粒子の合
成と、基板上に均一な金属酸化物層を被膜する工程とを
連続して行うことができる。
The method for forming a film according to the present invention is characterized in that a liquid material which is a metal salt aqueous solution, a metal alkoxide alcohol aqueous solution or a mixed solution thereof and which is in a supercritical state is rapidly heated to a hydrothermal reaction temperature. Then, a metal oxide fine particle is generated by a hydrothermal synthesis reaction, and a supercritical slurry-like liquid containing the metal oxide fine particle whose particle diameter is controlled by further raising the temperature to a supercritical state is placed on a substrate from a superheated supercritical nozzle. By spraying metal oxide particles on the surface of the substrate,
Uniform metal oxide layer on substrate (thickness: 1-500 μm)
Is to be coated. Accordingly, the synthesis of the metal oxide fine particles having a controlled composition, crystal structure, shape, and size and the step of coating a uniform metal oxide layer on the substrate can be continuously performed.

【0011】以上のことから、本発明の膜の形成方法
は、特に、触媒(例えば、TiO2等)、蛍光体(例え
ば、YAG:Tb等)、磁気材料(例えば、BaO・6
Fe23等)、電子材料(例えば、チタン酸バリウム、
PZT、酸化チタン、インジウム酸化スズ等)等を基板
上に均一に被膜させることができるため、触媒や電子部
品等の製造に好適に用いることができる。
From the above, the method of forming a film of the present invention is particularly suitable for a catalyst (for example, TiO 2 ), a phosphor (for example, YAG: Tb), a magnetic material (for example, BaO.6).
Fe 2 O 3, etc.), electronic materials (eg, barium titanate,
Since PZT, titanium oxide, indium tin oxide, and the like can be uniformly coated on the substrate, it can be suitably used for manufacturing catalysts, electronic components, and the like.

【0012】次に、超臨界流体として水を用いた場合に
おける本発明の微粒子の生成機構の一例について説明す
る。まず、微粒子の生成機構の第1段階は、亜臨界水
(300℃,30MPa)中で、液状物である金属塩水
溶液の水熱合成反応を行うことにより、ナノサイズ前後
の金属酸化物微粒子を合成する。更に、上記金属塩水溶
液を超臨界状態(400℃、30MPa)に昇温して、
粒子径制御を行い、平均粒子径が5〜100nmの金属
酸化物微粒子を含有した超臨界のスラリー状液を得る。
Next, an example of a mechanism for producing fine particles of the present invention when water is used as a supercritical fluid will be described. First, the first step of the fine particle generation mechanism is to perform a hydrothermal synthesis reaction of a liquid metal salt aqueous solution in subcritical water (300 ° C., 30 MPa) to convert metal oxide fine particles of approximately nano-size into fine particles. Combine. Further, the temperature of the aqueous metal salt solution is raised to a supercritical state (400 ° C., 30 MPa),
The particle diameter is controlled to obtain a supercritical slurry-like liquid containing metal oxide fine particles having an average particle diameter of 5 to 100 nm.

【0013】尚、超臨界状態では、水の誘電率が有機溶
媒並に低くなるため、溶解度が大幅に変化する。これ
は、臨界点近傍での水の物性、特に、誘電率の低下に大
きく依存しており、常温で80程度である誘電率が、臨
界点近傍で2〜5程度に極めて小さくなるため、反応場
の化学平衡がイオンから電荷の無い粒子が生成する方向
へシフトしたためであると考えられる。また、超臨界状
態では、金属水酸化物の溶解度が小さいため、水酸化物
の取り込みによる粒子成長を防止することができるた
め、ナノサイズの金属酸化物微粒子を生成させることが
できる。以上のことから、亜臨界水中及び超臨界水中で
の金属塩水溶液の水熱合成反応は、極めて高い過飽和が
瞬時に得られ、高い核発生速度が得られるため、ナノサ
イズ(例えば、5〜100nm)の金属酸化物微粒子を
合成することができる。
In the supercritical state, since the dielectric constant of water is as low as that of an organic solvent, the solubility is greatly changed. This greatly depends on the physical properties of water near the critical point, particularly, on the decrease in the dielectric constant. Since the dielectric constant, which is about 80 at room temperature, becomes extremely small at about 2 to 5 near the critical point, the reaction It is considered that the chemical equilibrium of the field was shifted in a direction in which particles without charge were generated from the ions. In the supercritical state, since the solubility of the metal hydroxide is low, the particle growth due to the incorporation of the hydroxide can be prevented, so that nano-sized metal oxide fine particles can be generated. From the above, in the hydrothermal synthesis reaction of the metal salt aqueous solution in the subcritical water and the supercritical water, an extremely high supersaturation is instantaneously obtained, and a high nucleation rate is obtained. ) Metal oxide fine particles can be synthesized.

【0014】次に、微粒子の生成機構の第2段階は、第
1段階で得られた金属酸化物微粒子を含有した超臨界水
溶液を、過熱超臨界ノズルから粉体回収装置内に噴出さ
せることにより、媒体である水が液滴になることなく、
単分散且つ乾燥状態であるナノサイズの金属酸化物微粒
子を析出させる。
Next, the second stage of the fine particle generation mechanism is to eject the supercritical aqueous solution containing the metal oxide fine particles obtained in the first stage from a superheated supercritical nozzle into a powder recovery device. , Without the medium water becoming droplets,
The nano-sized metal oxide fine particles in a monodispersed and dry state are precipitated.

【0015】以上のことから、本発明の微粒子の生成機
構の一例は、第1段階で得られた金属酸化物微粒子を含
有した超臨界水溶液を冷却・減圧して、金属酸化物微粒
子をスラリーとして回収する必要がないため、乾燥・分
散処理等を行う必要がなく、極めて効率的に単分散且つ
乾燥状態であるナノサイズ(例えば、5〜100nm)
の金属酸化物微粒子を得ることができる。
From the above, one example of the fine particle generation mechanism of the present invention is that the supercritical aqueous solution containing the metal oxide fine particles obtained in the first stage is cooled and depressurized to convert the metal oxide fine particles into a slurry. Since there is no need to collect, there is no need to perform drying / dispersion treatment, etc., and nano-sizes (eg, 5 to 100 nm) that are monodispersed and in a dry state extremely efficiently.
Can be obtained.

【0016】尚、本発明で適用できる液状物は、金属塩
水溶液(例えば、硝酸塩、塩酸塩、硫酸塩の水溶液)、
金属アルコキシドアルコール水又はこれらの混合溶液で
あり、且つ超臨界状態になるものであることが好まし
い。
The liquid substance applicable to the present invention is an aqueous solution of a metal salt (eg, an aqueous solution of a nitrate, a hydrochloride, or a sulfate).
It is preferable that the metal alkoxide alcohol water or a mixed solution thereof be in a supercritical state.

【0017】次に、本発明を図面に基づいて詳細に説明
する。図1は、本発明で用いた微粒子の製造装置の一例
を示す概要図である。図1に示すように、液状物である
金属塩水溶液(例えば、四塩化チタン水溶液)は、液状
物用貯槽3から供給され、ポンプ7で接触混合部9に送
液される。超臨界水は、超臨界液用貯槽1から供給され
た蒸留水を、ポンプ6で臨界圧力以上に加圧した後、ヒ
ータ8で臨界温度以上に加熱することにより得られ、接
触混合部9に送液される。接触混合部9は、金属塩水溶
液と超臨界水とを直接接触させることにより、亜臨界状
態で水熱合成反応を生じさせ、金属酸化物微粒子の合成
を行う。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a device for producing fine particles used in the present invention. As shown in FIG. 1, a liquid metal salt aqueous solution (for example, titanium tetrachloride aqueous solution) is supplied from a liquid storage tank 3 and sent to a contact mixing unit 9 by a pump 7. The supercritical water is obtained by pressurizing the distilled water supplied from the supercritical liquid storage tank 1 to a pressure higher than the critical pressure by the pump 6 and then heating it to a temperature higher than the critical temperature by the heater 8. It is sent. The contact mixing section 9 causes a hydrothermal synthesis reaction in a subcritical state by directly contacting the aqueous metal salt solution and supercritical water, thereby synthesizing metal oxide fine particles.

【0018】次に、接触混合部9から得られた金属酸化
物微粒子を含有した亜臨界水溶液は、更に加熱され、超
臨界状態に維持された反応管10内を所定の時間をかけ
て移動する。これにより、超臨界水溶液中に含有してい
る金属酸化物微粒子の粒子径は、制御され、平均粒子径
1〜100nmサイズの金属酸化物微粒子の収率を向上
させることができる。
Next, the subcritical aqueous solution containing the metal oxide fine particles obtained from the contact mixing section 9 is further heated and moves for a predetermined time in the reaction tube 10 maintained in a supercritical state. . Thereby, the particle diameter of the metal oxide fine particles contained in the supercritical aqueous solution is controlled, and the yield of the metal oxide fine particles having an average particle diameter of 1 to 100 nm can be improved.

【0019】最後に、金属酸化物微粒子を含有した超臨
界水溶液は、反応管10から過熱超臨界ノズル20のフ
ィードライン14に導入され、過熱用ヒータ12で所定
の温度(ノズル出口温度が水の凝縮点よりも高い温度)
に過熱された後、所定の口径の超臨界ノズル16から粉
体回収装置であるチャンバー70の空間部に噴出させる
ことにより、金属酸化物微粒子(例えば、平均粒子径:
8nmの酸化チタン)が得られた。これにより、単分散
且つ乾燥状態であるナノサイズ(例えば、5〜100n
m)の金属酸化物微粒子を析出させることができる。
尚、析出した金属酸化物微粒子は、粉体回収装置の一部
であるバグフィルター等の粉体分離捕集設備72で分離
捕集され、製品として取り出される。
Finally, the supercritical aqueous solution containing the metal oxide fine particles is introduced from the reaction tube 10 to the feed line 14 of the superheated supercritical nozzle 20, and a predetermined temperature (the nozzle outlet temperature is set to water) by the superheater 12. Higher than the condensation point)
After being superheated, the metal oxide fine particles (for example, average particle diameter:
8 nm of titanium oxide) was obtained. Thereby, the nano-size (for example, 5 to 100 n) which is monodispersed and in a dry state
m) The metal oxide fine particles can be precipitated.
The precipitated metal oxide fine particles are separated and collected by a powder separation and collection equipment 72 such as a bag filter which is a part of the powder recovery device, and are taken out as a product.

【0020】次に、本発明で用いた膜の形成装置の一例
を図2に示す。図2に示すように、液状物である金属塩
水溶液(例えば、塩酸化ジルコニウム、硝酸鉛、四塩化
チタンの混合水溶液)は、液状物用貯槽3から供給さ
れ、ポンプ7で接触混合部9に送液される。超臨界水
は、超臨界液用貯槽1から供給された蒸留水を、ポンプ
6で臨界圧力以上に加圧した後、ヒータ8で臨界温度以
上に加熱することにより得られ、接触混合部9に送液さ
れる。接触混合部9は、金属塩水溶液と超臨界水とを直
接接触させることにより、亜臨界状態で水熱合成反応を
生じさせ、金属酸化物微粒子の合成を行う。
Next, FIG. 2 shows an example of a film forming apparatus used in the present invention. As shown in FIG. 2, a liquid metal salt aqueous solution (for example, a mixed aqueous solution of zirconium hydrochloride, lead nitrate, and titanium tetrachloride) is supplied from a liquid storage tank 3, and is supplied to a contact mixing section 9 by a pump 7. It is sent. The supercritical water is obtained by pressurizing the distilled water supplied from the supercritical liquid storage tank 1 to a pressure higher than the critical pressure by the pump 6 and then heating it to a temperature higher than the critical temperature by the heater 8. It is sent. The contact mixing section 9 causes a hydrothermal synthesis reaction in a subcritical state by directly contacting the aqueous metal salt solution and supercritical water to synthesize metal oxide fine particles.

【0021】次に、接触混合部9から得られた金属酸化
物微粒子を含有した亜臨界水溶液は、更に加熱され、超
臨界状態に維持された反応管10内を所定の時間をかけ
て移動する。
Next, the subcritical aqueous solution containing the metal oxide fine particles obtained from the contact mixing section 9 is further heated and moves over a predetermined time in the reaction tube 10 maintained in a supercritical state. .

【0022】最後に、金属酸化物微粒子を含有した超臨
界水溶液は、反応管10から過熱超臨界ノズル20のフ
ィードライン14に導入され、過熱用ヒータ12で所定
の温度(ノズル出口温度が水の凝縮点よりも高い温度)
に過熱された後、所定の口径の超臨界ノズル16からチ
ャンバー70中の基板80上に噴出させる。これによ
り、単分散且つ乾燥状態であるナノサイズの金属酸化物
微粒子を基板80の表面上に均一な金属酸化物層(例え
ば、膜厚:50μmのPZT[チタン酸ジルコン酸
鉛])を被膜させることができる。尚、基板上に形成さ
れた金属酸化物膜の厚さは、1〜500μm程度にする
ことが可能である。このとき、粉体回収装置の一部であ
るチャンバー70内部は、減圧にすることがより好まし
い。
Finally, the supercritical aqueous solution containing the metal oxide fine particles is introduced into the feed line 14 of the superheated supercritical nozzle 20 from the reaction tube 10 and is heated by the superheater 12 at a predetermined temperature (when the nozzle outlet temperature becomes water). Higher than the condensation point)
After being superheated, the supercritical nozzle 16 having a predetermined diameter is ejected onto the substrate 80 in the chamber 70. As a result, the nano-sized metal oxide fine particles in a monodispersed and dry state are coated on the surface of the substrate 80 with a uniform metal oxide layer (for example, PZT [lead zirconate titanate] having a thickness of 50 μm). be able to. Incidentally, the thickness of the metal oxide film formed on the substrate can be about 1 to 500 μm. At this time, it is more preferable to reduce the pressure inside the chamber 70 which is a part of the powder recovery device.

【0023】尚、本発明で用いた過熱超臨界ノズルは、
超臨界ノズルから噴出した媒体である水又は超臨界液が
液滴になることがないため、単分散且つ乾燥状態である
ナノサイズの金属酸化物微粒子とすることができる。こ
れは、ノズル出口温度T1を、水又は超臨界液の凝縮点
よりも高くすることより、液滴や氷塊が発生しても、水
又は超臨界液の微少な核(クラスターと呼ばれる集合
体)となり、より微細な金属酸化物微粒子の生成を妨げ
ることがないからである。尚、ノズル出口温度T1が液
化又は固化温度を下回る場合、液滴や氷塊ができやすく
なり、粒子又は成膜の均一性がなくなる。
The superheated supercritical nozzle used in the present invention is:
Since the water or the supercritical liquid, which is the medium ejected from the supercritical nozzle, does not become droplets, the nanosized metal oxide fine particles can be monodisperse and dry. This is because, by making the nozzle outlet temperature T 1 higher than the condensation point of water or supercritical liquid, even if droplets or ice blocks are generated, minute nuclei of water or supercritical liquid (an aggregate called a cluster) ), And does not hinder the generation of finer metal oxide fine particles. Incidentally, when the nozzle outlet temperature T 1 is below the liquefaction or solidification temperature, easily it can drop and ice blocks, there is no uniformity of particles or film forming.

【0024】また、本発明で用いた過熱超臨界ノズル
は、過熱超臨界ノズル近傍のごく狭い領域で成膜が主に
行われており、具体的には、過熱超臨界ノズルから、多
数の微少な金属酸化物微粒子を、基板の表面上に噴出さ
せて堆積させることにより、基板上に均一な金属酸化物
層を被膜させることができる。
In the superheated supercritical nozzle used in the present invention, film formation is mainly performed in a very small area near the superheated supercritical nozzle. By spraying and depositing such fine metal oxide particles on the surface of the substrate, a uniform metal oxide layer can be coated on the substrate.

【0025】このとき、基板に均質かつ一定の厚さの成
膜を行うためには、超臨界噴出法の原理を考慮して、基
板と過熱超臨界ノズルとの距離をできるだけ短く(例え
ば、5mm)するとともに、十分な成膜時間を取ること
が好ましい。尚、ノズル出口温度T1は、ノズル入口1
6bでの圧力及び温度T2が高いほど上昇する。ノズル
出口温度T1が上昇すると、水又は超臨界液がガス状に
高速で噴出されるため、金属酸化物粒子を乾燥状態で基
板上に均質且つ均一に成膜することができる。
At this time, in order to form a film having a uniform and uniform thickness on the substrate, the distance between the substrate and the superheated supercritical nozzle is made as short as possible (for example, 5 mm) in consideration of the principle of the supercritical ejection method. ) And at the same time, it is preferable to take a sufficient film formation time. Note that the nozzle outlet temperature T 1 is the nozzle inlet 1
It rises higher pressure and temperature T 2 at 6b. When the nozzle outlet temperature T 1 is increased, since the water or supercritical fluid is ejected at a high speed gaseous, it can be homogeneously and uniformly deposited on a substrate of metal oxide particles in the dry state.

【0026】ここで、過熱超臨界ノズルは、超臨界噴出
法に基づいて開発されたものであり、図3に示すよう
に、ノズル出口温度T1を水又は超臨界液の凝縮点より
も高くするため、ノズル入口16b付近のフィードライ
ン14に過熱用ヒータ12を配設したことが最大の特徴
である。これにより、本発明で用いた過熱超臨界ノズル
は、水又は超臨界液が液滴になることがないため、単分
散且つ乾燥状態の微粒子を得ることができ、超臨界液が
ノズル周辺で凝固することもないため、超臨界ノズルの
詰まりや装置の不具合を防止することができる。
Here, the superheated supercritical nozzle has been developed based on the supercritical jet method, and as shown in FIG. 3, the nozzle outlet temperature T 1 is higher than the condensation point of water or the supercritical liquid. Therefore, the greatest feature is that the superheater heater 12 is disposed in the feed line 14 near the nozzle inlet 16b. Accordingly, the superheated supercritical nozzle used in the present invention can obtain monodispersed and dry fine particles because water or supercritical liquid does not become droplets, and the supercritical liquid solidifies around the nozzle. Therefore, clogging of the supercritical nozzle and malfunction of the device can be prevented.

【0027】超臨界噴出法(RESS法:Rapid Expans
ion of Supercritical Fluid Solutions)は、溶媒であ
る超臨界流体に溶質を溶かした溶液を、微細な口径のノ
ズルから大気中に噴出させて、上記溶液を断熱膨脹さ
せ、上記溶液の圧力及び温度が急激に低下させて、上記
溶液中の溶媒の溶解力を激減させることにより、溶質の
みを析出させることができるものである。尚、本発明で
は、溶質でなく、固体粒子を先に析出させ、残りの微量
の溶質を、超臨界噴出法で固体単独又は析出した固体に
付着した形等で回収するものである。
Supercritical injection method (RESS method: Rapid Expans
(Ion of Supercritical Fluid Solutions) is a solution in which a solute is dissolved in a supercritical fluid, which is a solvent, is ejected from a fine-diameter nozzle into the atmosphere, and the solution is adiabatically expanded. To drastically reduce the dissolving power of the solvent in the solution to precipitate only the solute. In the present invention, not solutes but solid particles are precipitated first, and the remaining trace amount of solutes is recovered by a supercritical squirting method alone or in a form attached to the precipitated solids.

【0028】尚、超臨界流体とは、臨界点よりも高い温
度と圧力下にある流体であり、液体のように高密度状態
であるにもかかわらず、気体のように運動することが可
能であるものである。また、超臨界流体は、物質をかな
り溶解又は分散させることができるとともに、臨界点近
傍で少しの温度あるいは圧力を変化させることにより、
超臨界流体の密度を大きく変化させ、物質の溶解度又は
分散度を大きく変えることができることが知られてい
る。
The supercritical fluid is a fluid at a temperature and pressure higher than the critical point, and can move like a gas despite being in a high density state like a liquid. There is something. In addition, supercritical fluids can considerably dissolve or disperse substances, and by slightly changing the temperature or pressure near the critical point,
It is known that the density of a supercritical fluid can be significantly changed to greatly change the solubility or dispersity of a substance.

【0029】[0029]

【発明の効果】本発明の微粒子の製造方法は、金属酸化
物微粒子の組成、結晶構造、形状及びサイズを制御する
ことができ、単分散且つ乾燥状態であるナノサイズの金
属酸化物微粒子を合成することができる。また、本発明
の膜の形成方法は、組成、結晶構造、形状及びサイズが
制御された金属酸化物微粒子の合成と、基板上に均一な
金属酸化物層を被膜する工程を連続して行うことができ
る。
According to the method for producing fine particles of the present invention, the composition, crystal structure, shape and size of fine metal oxide particles can be controlled, and nano-sized fine metal oxide particles that are monodisperse and dry can be synthesized. can do. The method for forming a film according to the present invention includes the steps of continuously synthesizing metal oxide fine particles having a controlled composition, crystal structure, shape and size, and coating a uniform metal oxide layer on a substrate. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明で用いた微粒子の製造装置の一例を示
す断面概要図である。
FIG. 1 is a schematic sectional view showing an example of an apparatus for producing fine particles used in the present invention.

【図2】 本発明で用いた膜の形成方法の一例を示す断
面概要図である。
FIG. 2 is a schematic sectional view showing an example of a film forming method used in the present invention.

【図3】 本発明で用いた過熱超臨界ノズルの一例を示
す概略断面図である。
FIG. 3 is a schematic sectional view showing an example of a superheated supercritical nozzle used in the present invention.

【符号の説明】 1…液状物用貯槽、3…超臨界液用貯槽、6,7…ポン
プ 、8…ヒータ、9…接触混合部、10…反応管、1
1…ヒータ、12…過熱用ヒータ、14…フィードライ
ン、16…超臨界ノズル、16a…ノズル出口、16b
…ノズル入口、20…過熱超臨界ノズル、70…チャン
バー(粉体回収装置)、72…排風機、74…粉体分離
捕集設備、80…基板。
[Description of Signs] 1 ... storage tank for liquid material, 3 ... storage tank for supercritical liquid, 6, 7 ... pump, 8 ... heater, 9 ... contact mixing unit, 10 ... reaction tube, 1
DESCRIPTION OF SYMBOLS 1 ... Heater, 12 ... Heating heater, 14 ... Feed line, 16 ... Supercritical nozzle, 16a ... Nozzle outlet, 16b
... Nozzle inlet, 20 ... Superheated supercritical nozzle, 70 ... Chamber (powder recovery device), 72 ... Air blower, 74 ... Powder separation and collection equipment, 80 ... Substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堤 敦司 東京都文京区本郷7−3−1 東京大学大 学院工学系研究科内 Fターム(参考) 4D075 AA01 EC08 4F033 AA01 HA01 4G075 AA24 AA27 BB02 BB08 BD09 CA02 CA65 CA66 EA06 EB01 EC01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Atsushi Tsutsumi 7-3-1 Hongo, Bunkyo-ku, Tokyo F-term in the Graduate School of Engineering, University of Tokyo 4D075 AA01 EC08 4F033 AA01 HA01 4G075 AA24 AA27 BB02 BB08 BD09 CA02 CA65 CA66 EA06 EB01 EC01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】金属塩水溶液、金属アルコキシドアルコー
ル水又はこれらの混合溶液であり、且つ超臨界状態にな
る液状物を、水熱反応温度まで急速に昇温し、水熱合成
反応により金属酸化物微粒子を発生させ、更に超臨界状
態に昇温して粒子径を制御した金属酸化物微粒子を含有
した超臨界のスラリー状液を、過熱超臨界ノズルから粉
体回収装置内に噴出させることにより、単分散且つ乾燥
状態の金属酸化物微粒子を製造することを特徴とする微
粒子の製造方法。
An aqueous metal salt solution, an aqueous metal alkoxide alcohol solution or a mixed solution thereof, and a liquid material in a supercritical state is rapidly heated to a hydrothermal reaction temperature, and the metal oxide is subjected to a hydrothermal synthesis reaction. By generating fine particles, and further raising the temperature to a supercritical state and discharging a supercritical slurry-like liquid containing metal oxide fine particles having a controlled particle size from a superheated supercritical nozzle into a powder recovery device, A method for producing fine particles, comprising producing metal oxide fine particles in a monodispersed and dry state.
【請求項2】金属酸化物微粒子の平均粒子径が、5〜1
00nmである請求項1に記載の微粒子の製造方法。
2. The metal oxide fine particles having an average particle size of 5 to 1
The method for producing fine particles according to claim 1, which has a thickness of 00 nm.
【請求項3】過熱超臨界ノズルの出口温度を、水又は超
臨界液の凝縮点よりも高くした請求項1又は2に記載の
微粒子の製造方法。
3. The method for producing fine particles according to claim 1, wherein the outlet temperature of the superheated supercritical nozzle is higher than the condensation point of water or the supercritical liquid.
【請求項4】金属塩水溶液、金属アルコキシドアルコー
ル水又はこれらの混合溶液であり、且つ超臨界状態にな
る液状物を、水熱反応温度まで急速に昇温し、水熱合成
反応により金属酸化物微粒子を発生させ、更に超臨界状
態に昇温して粒子径を制御した金属酸化物微粒子を含有
した超臨界のスラリー状液を、過熱超臨界ノズルから基
板上に噴出させることにより、基板の表面上に金属酸化
物微粒子を堆積させ、該基板上に均一な金属酸化物層を
被膜させることを特徴とする膜の形成方法。
4. A metal salt aqueous solution, a metal alkoxide alcohol aqueous solution, or a mixed solution thereof, and a liquid material in a supercritical state is rapidly heated to a hydrothermal reaction temperature, and the metal oxide is subjected to a hydrothermal synthesis reaction. Fine particles are generated, and a supercritical slurry-like liquid containing metal oxide fine particles whose particle diameter is controlled by raising the temperature to a supercritical state is jetted from the superheated supercritical nozzle onto the substrate, thereby forming a surface of the substrate. A method for forming a film, comprising depositing metal oxide fine particles on the substrate and coating a uniform metal oxide layer on the substrate.
【請求項5】金属酸化物層の厚さが、1〜500μmで
ある請求項4に記載の膜の形成方法。
5. The method according to claim 4, wherein the thickness of the metal oxide layer is 1 to 500 μm.
【請求項6】過熱超臨界ノズルの出口温度を、水又は超
臨界液の凝縮点よりも高くした請求項4又は5に記載の
膜の形成方法。
6. The method according to claim 4, wherein the outlet temperature of the superheated supercritical nozzle is higher than the condensation point of water or the supercritical liquid.
JP31250499A 1999-11-02 1999-11-02 Method for manufacturing fine particles and method for forming coating film Pending JP2001129389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31250499A JP2001129389A (en) 1999-11-02 1999-11-02 Method for manufacturing fine particles and method for forming coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31250499A JP2001129389A (en) 1999-11-02 1999-11-02 Method for manufacturing fine particles and method for forming coating film

Publications (1)

Publication Number Publication Date
JP2001129389A true JP2001129389A (en) 2001-05-15

Family

ID=18030026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31250499A Pending JP2001129389A (en) 1999-11-02 1999-11-02 Method for manufacturing fine particles and method for forming coating film

Country Status (1)

Country Link
JP (1) JP2001129389A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021724A (en) * 2003-06-30 2005-01-27 Itec Co Ltd Method and apparatus for manufacturing fine particle by using high-temperature high-pressure water
JP2005262116A (en) * 2004-03-19 2005-09-29 Okawara Mfg Co Ltd Apparatus for manufacturing supercritical fine particle
JP2006181553A (en) * 2004-12-28 2006-07-13 Nara Kikai Seisakusho:Kk Apparatus for making fine particles
JP2006247600A (en) * 2005-03-14 2006-09-21 Okawara Mfg Co Ltd Particulate catching apparatus
JP2007508458A (en) * 2003-10-13 2007-04-05 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
JP2007210092A (en) * 2005-12-30 2007-08-23 General Electric Co <Ge> Method and system of manufacturing nanoparticle
KR100816293B1 (en) 2007-04-02 2008-03-25 주식회사 탑 엔지니어링 Apparatus for dispersing suspension
JP2009221044A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Strontium-doped lanthanum manganate microparticle and its production method
JP2011514242A (en) * 2008-02-11 2011-05-06 ツェントラム・フューア・アンゲヴァンテ・ナノテヒノロギー(ツェーアーエン)ゲーエムベーハー Nanoparticle reactor
JP2012180269A (en) * 2011-03-02 2012-09-20 Samsung Electro-Mechanics Co Ltd Method for producing ceramic powder having perovskite structure, and ceramic powder having perovskite structure, produced by the method
JP2012197195A (en) * 2011-03-18 2012-10-18 Tohoku Univ Method for modification-treating metal oxide surface in supercritical water
CN102949857A (en) * 2012-11-16 2013-03-06 申鸿志 Atomization and evaporation crystallizer
JP2017035689A (en) * 2011-04-26 2017-02-16 エム・テクニック株式会社 Fine particle production method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021724A (en) * 2003-06-30 2005-01-27 Itec Co Ltd Method and apparatus for manufacturing fine particle by using high-temperature high-pressure water
JP4932487B2 (en) * 2003-10-13 2012-05-16 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
JP2007508458A (en) * 2003-10-13 2007-04-05 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
JP2005262116A (en) * 2004-03-19 2005-09-29 Okawara Mfg Co Ltd Apparatus for manufacturing supercritical fine particle
JP2006181553A (en) * 2004-12-28 2006-07-13 Nara Kikai Seisakusho:Kk Apparatus for making fine particles
JP4533196B2 (en) * 2005-03-14 2010-09-01 株式会社大川原製作所 Fine particle collector
JP2006247600A (en) * 2005-03-14 2006-09-21 Okawara Mfg Co Ltd Particulate catching apparatus
JP2007210092A (en) * 2005-12-30 2007-08-23 General Electric Co <Ge> Method and system of manufacturing nanoparticle
KR100816293B1 (en) 2007-04-02 2008-03-25 주식회사 탑 엔지니어링 Apparatus for dispersing suspension
JP2011514242A (en) * 2008-02-11 2011-05-06 ツェントラム・フューア・アンゲヴァンテ・ナノテヒノロギー(ツェーアーエン)ゲーエムベーハー Nanoparticle reactor
US9084979B2 (en) 2008-02-11 2015-07-21 Centrum Fur Angewandte Nanotechnologie (Can) Gmbh Reactor for the manufacture of nanoparticles
JP2009221044A (en) * 2008-03-14 2009-10-01 National Institute Of Advanced Industrial & Technology Strontium-doped lanthanum manganate microparticle and its production method
JP2012180269A (en) * 2011-03-02 2012-09-20 Samsung Electro-Mechanics Co Ltd Method for producing ceramic powder having perovskite structure, and ceramic powder having perovskite structure, produced by the method
JP2012197195A (en) * 2011-03-18 2012-10-18 Tohoku Univ Method for modification-treating metal oxide surface in supercritical water
JP2017035689A (en) * 2011-04-26 2017-02-16 エム・テクニック株式会社 Fine particle production method
CN102949857A (en) * 2012-11-16 2013-03-06 申鸿志 Atomization and evaporation crystallizer

Similar Documents

Publication Publication Date Title
Hakuta et al. Fine particle formation using supercritical fluids
US7238331B2 (en) Process for producing nano-powders and powders of nano-particle loose aggregate
Hachem et al. Methods of chemical synthesis in the synthesis of nanomaterial and nanoparticles by the chemical deposition method: a review
JP2001129389A (en) Method for manufacturing fine particles and method for forming coating film
AU2004298723B2 (en) Systems for preparing fine particles and other substances
Byrappa et al. Nanoparticles synthesis using supercritical fluid technology–towards biomedical applications
US20040026804A1 (en) Generation of nanoparticles and microparticles of controllable size using acoustic and ultrasonic vibration
KR100666728B1 (en) Method for Manufacturing Metal Oxide Hollow Nanoparticles
JPH08500289A (en) Manufacture of nano phase solid materials
Motl et al. Aerosol-assisted synthesis and assembly of nanoscale building blocks
Panatarani et al. Synthesis of single crystalline ZnO nanoparticles by salt-assisted spray pyrolysis
JP2012522720A (en) Method
JP4452792B2 (en) Method for producing oxide fine particles using ultrasonic waves and oxide fine particles
Malwal et al. Recent advances in the synthesis of metal oxide (MO) nanostructures
Voon et al. Synthesis and preparation of metal oxide powders
Sato et al. Hydrothermal synthesis of fine perovskite PbTiO 3 powders with a simple mode of size distribution
JPS63310706A (en) Particles of metal oxide and metal sulfide
JP2003267704A (en) Production method for metal oxide nanoparticle
JP2011045859A (en) Method for synthesizing powder and method for manufacturing electronic component
US6349455B1 (en) Method for forming piezoelectric/electrostrictive film element at low temperature using electrophoretric deposition
Wang et al. Direct synthesis of barium titanate nanoparticles via a low pressure spray pyrolysis method
KR100869547B1 (en) Method of synthesizing ordered FePt nano particles by ultrasonic gas phase process
JP3276330B2 (en) Method for producing spherical powder and spherical powder produced by this method
KR20100036999A (en) Method for synthesizing powder and electronic component manufacturing mehtod
JPH0557166A (en) Production of coated fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060612

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080813

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A02