JP2001127357A5 - - Google Patents

Download PDF

Info

Publication number
JP2001127357A5
JP2001127357A5 JP1999303953A JP30395399A JP2001127357A5 JP 2001127357 A5 JP2001127357 A5 JP 2001127357A5 JP 1999303953 A JP1999303953 A JP 1999303953A JP 30395399 A JP30395399 A JP 30395399A JP 2001127357 A5 JP2001127357 A5 JP 2001127357A5
Authority
JP
Japan
Prior art keywords
phase transformation
layer
layers
strain
strain imparting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1999303953A
Other languages
Japanese (ja)
Other versions
JP2001127357A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP30395399A priority Critical patent/JP2001127357A/en
Priority claimed from JP30395399A external-priority patent/JP2001127357A/en
Publication of JP2001127357A publication Critical patent/JP2001127357A/en
Publication of JP2001127357A5 publication Critical patent/JP2001127357A5/ja
Pending legal-status Critical Current

Links

Claims (10)

絶縁基板(91)の上に、第1ひずみ付与層(61)、第1相変態層(71)、及び、最上層に第2ひずみ付与層(62)を設けた、積層構造を持ち、電極となる第1、第2ひずみ付与層間の第1相変態層の厚さは、磁気媒体等の弱い磁場が存在しないときは、トンネル現象により大きい電気抵抗値をもつが、弱い外部磁場の作用により、絶縁体→金属の相変態が生じ、電気抵抗値の大きな低下が生じる厚さであり、第1及び第2ひずみ付与層は、第1相変態層に、素子の使用温度付近で、適切なひずみを付与できる、金属及び合金であることを特徴とする、トンネル効果及び磁気誘起相変態効果の原理に基づく、トンネル相変態磁気抵抗(TPMR)素子。The insulating substrate (91) has a laminated structure in which a first strain imparting layer (61) , a first phase transformation layer (71) , and a second strain imparting layer (62) are provided on the uppermost layer, and an electrode The thickness of the first phase transformation layer between the first and second strain-imparting layers is such that when there is no weak magnetic field such as a magnetic medium, the tunnel phenomenon has a larger electrical resistance value, but due to the action of a weak external magnetic field. The thickness is such that the phase transformation of the insulator → metal occurs and the electric resistance value is greatly reduced. The first and second strain imparting layers are suitable for the first phase transformation layer in the vicinity of the device operating temperature. A tunnel phase transformation magnetoresistive (TPMR) element based on the principle of tunnel effect and magnetically induced phase transformation effect, characterized in that it is a metal and an alloy capable of imparting strain. 絶縁基板(91)の上に、第2ひずみ付与層(62)、第1相変態層(71)、第1ひずみ付与層(61)、第2相変態層(72)、及び、最上層に第3ひずみ付与層(63)を設けた、積層構造を持ち、電極となる第1及び第2ひずみ付与層間、及び、第1、第3ひずみ付与層間の第1及び第2相変態層の厚さは、磁気媒体等の弱い磁場が存在しないときは、トンネル現象により大きい電気抵抗値をもつが、外部磁場が存在するときは、弱い磁場の作用により、絶縁体→金属の相変態が生じ、電気抵抗値の大きな低下が発現する厚さであり、第1、第2及び第3ひずみ付与層は、第1及び第2相変態層に、素子の使用温度付近で、適切なひずみを付与できる、金属及び合金であることを特徴とする、他は請求項1に記載の、トンネル効果及び磁気誘起相変態効果の原理に基づく、2つのトンネル回路を有する、トンネル相変態磁気抵抗(TPMR)素子。On the insulating substrate (91) , the second strain imparting layer (62) , the first phase transformation layer (71) , the first strain imparting layer (61) , the second phase transformation layer (72) , and the uppermost layer Thickness of the first and second phase transformation layers between the first and third strain imparting layers having the laminated structure and having the laminated structure provided with the third strain imparting layer (63) , and the first and third strain imparting layers. When there is no weak magnetic field such as a magnetic medium, the tunnel phenomenon has a larger electrical resistance value, but when an external magnetic field is present, the weak magnetic field causes an insulator to metal phase transformation, The thickness of the first, second and third strain imparting layers can impart appropriate strain to the first and second phase transformation layers in the vicinity of the operating temperature of the device. The tunnel effect according to claim 1, wherein the tunnel effect And a tunnel phase transformation magnetoresistive (TPMR) element having two tunnel circuits based on the principle of the magnetically induced phase transformation effect. 絶縁基板(91)の上に、第1ひずみ付与層(61)、第1相変態電極層(76)、及び、最上層に第2ひずみ付与層(62)を設けた、積層構造を持ち、第1相変態電極層の厚さは、磁気媒体等の弱い磁場が存在しないときは、第1相変態電極層が、絶縁体であるために、大きい電気抵抗値をもつが、弱い外部磁場が作用すると、絶縁体→金属の相変態が生じ、電気抵抗値が大きく低下する厚さであり、第1及び第2ひずみ付与層は、第1相変態電極層に、素子の使用温度付近で、適切なひずみを付与して、変態温度を調整する、金属及び合金であり、他は請求項1に記載の形態を有することを特徴とする、磁気誘起相変態効果の原理に基づく、第1相変態層電極自身に電気抵抗値変化を生じる、相変態磁気抵抗(PMR)素子。On the insulating substrate (91), the first strain imparting layer (61), the first phase transformation electrode layer (76) , and the second strain imparting layer (62) provided on the uppermost layer have a laminated structure, The thickness of the first phase transformation electrode layer is such that when a weak magnetic field such as a magnetic medium does not exist, the first phase transformation electrode layer is an insulator and thus has a large electric resistance value. When it acts, the thickness of the insulator → metal phase transformation is generated and the electric resistance value is greatly reduced, and the first and second strain imparting layers are formed on the first phase transformation electrode layer in the vicinity of the device operating temperature, A first phase based on the principle of a magnetically induced phase transformation effect, characterized in that it is a metal and alloy that imparts an appropriate strain and adjusts the transformation temperature, the others having the form of claim 1 A phase transformation magnetoresistive (PMR) element that causes a change in electrical resistance value in the transformation layer electrode itself. 絶縁基板(91)の上に、第2ひずみ付与層(62)、第1相変態電極層(76)、第1ひずみ付与層(61)、第2相変態電極層(77)、及び、最上層に第3ひずみ付与層(63)を設けた、積層構造を持ち、第1及び第2相変態電極層(76、77)の厚さは、磁気媒体等の弱い磁場が存在しないときは、第1及び第2相変態電極層が、絶縁体であるために、大きい電気抵抗値をもつが、弱い外部磁場が作用すると、絶縁体→金属の相変態が生じ、電気抵抗値が大きく低下する厚さであり、第1、第2及び第3ひずみ付与層は、第1及び第2相変態電極層に、素子の使用温度付近で、適切なひずみを付与できる、金属及び合金であり、他は請求項2に記載の形態を有することを特徴とする、第1及び第2相変態層電極自身の電気抵抗値が変化する、磁気誘起相変態効果の原理に基づく、2つの回路を有する、相変態磁気抵抗(PMR)素子の形態。On the insulating substrate (91) , the second strain imparting layer (62) , the first phase transformation electrode layer (76) , the first strain imparting layer (61) , the second phase transformation electrode layer (77) , and the outermost When the upper layer is provided with a third strain imparting layer (63) and has a laminated structure, and the thickness of the first and second phase transformation electrode layers (76, 77) is such that a weak magnetic field such as a magnetic medium does not exist, Since the first and second phase transformation electrode layers are insulators, they have a large electric resistance value. However, when a weak external magnetic field acts, a phase transformation of insulator → metal occurs, and the electric resistance value greatly decreases. The first, second, and third strain imparting layers are metals and alloys that can impart an appropriate strain to the first and second phase transformation electrode layers in the vicinity of the device operating temperature. The electrical resistance of the first and second phase change layer electrodes themselves , characterized in that it has the form of claim 2. A form of phase transformation magnetoresistive (PMR) element having two circuits based on the principle of a magnetically induced phase transformation effect with variable values. 第1及び第2ひずみ付与層(61、62)を構成するJ成分として、非磁性体、良導体であるCu、Alその他の金属及び合金、ド−プした半導体、並びに、LAs the J component constituting the first and second strain imparting layers (61, 62), nonmagnetic material, Cu, which is a good conductor, Al and other metals and alloys, doped semiconductors, and L 1-x1-x Q xx MnOMnO 3Three , 00 20225≦20225 ≦ xx 11 、(ここで、Lは、Gd、La、Nd及びPr等の希土類金属、Lサイトを置換するQとして、Ca、Sr及びBa等がある)と表記する、ペロブスカイト構造を持つ、マンガナイト、並びに、半金属であるBi及びその合金、SiO(Wherein L is a rare earth metal such as Gd, La, Nd and Pr, and there is Ca, Sr, Ba, etc. as Q replacing the L site), a manganite having a perovskite structure, and Bi, which is a semimetal, and alloys thereof, SiO 3Three 、PrNiO, PrNiO 3Three 等のニッケル基酸化物を使用し、絶縁基板(91)を構成するB成分として、非磁性特性を持つアルミナ(AlAs a B component constituting the insulating substrate (91), alumina having a nonmagnetic characteristic (Al 22 O 3Three )又はSiO) Or SiO 22 ,, 等をそれぞれ使用し、第1相変態層(71)を構成するH成分として、LAs the H component constituting the first phase transformation layer (71), 1-x1-x Q xx MnOMnO 3Three , 00 xx 11 、(ここで、Lは、Gd、La、Nd又はPr等の希土類金属、Lサイトを置換するQとして、Ca、Sr又はBa等の金属がある)と表記する、ペロブスカイト((Where L is a rare earth metal such as Gd, La, Nd, or Pr, and there is a metal such as Ca, Sr, or Ba as Q for substituting the L site). perovskiteperovskite )構造を持つ、マンガナイト、或いは、半金属であるBi又はその合金を使用することを特徴とし、スピン依存トンネル効果及び磁気誘起相変態効果を原理とする、請求項1に記載のトンネル相変態磁2) The tunnel phase transformation according to claim 1, characterized in that it uses manganite having a structure, Bi, which is a semimetal, or an alloy thereof, and is based on a spin-dependent tunnel effect and a magnetically induced phase transformation effect. Magnetism 気抵抗(TPMR)素子。Air resistance (TPMR) element. 第1、第2及び第3ひずみ付与層(61、62、63)を構成するJ成分として、非磁性体、良導体であるCu、Alその他の金属及び合金、ド−プした半導体、並びに、LAs J component constituting the first, second and third strain imparting layers (61, 62, 63), nonmagnetic material, Cu as a good conductor, Al and other metals and alloys, doped semiconductor, and L 1-x1-x Q xx MnOMnO 3Three , 00 xx 11 、(ここで、Lは、Gd、La、Nd及びPr等の希土類金属、Lサイトを置換するQとして、Ca、Sr及びBa等がある)と表記する、ペロブスカイト構造を持つ、マンガナイト、並びに、半金属であるBi及びその合金、SiO(Wherein L is a rare earth metal such as Gd, La, Nd and Pr, and there is Ca, Sr, Ba, etc. as Q replacing the L site), a manganite having a perovskite structure, and Bi, which is a semimetal, and alloys thereof, SiO 3Three 、PrNiO, PrNiO 3Three 等のニッケル基酸化物を使用し、絶縁基板(91)を構成するB成分として、非磁性特性を持つアルミナ(AlAs a B component constituting the insulating substrate (91), alumina having a nonmagnetic characteristic (Al 22 O 3Three )又はSiO) Or SiO 22 ,, 等をそれぞれ使用し、第1及び第2相変態層(71、72)を構成するH成分として、LEtc. are used as H components constituting the first and second phase change layers (71, 72), respectively. 1-x1-x Q xx MnOMnO 3Three , 00 xx 11 、(ここで、Lは、Gd、La、Nd又はPr等の希土類金属、Lサイトを置換するQとして、Ca、Sr又はBa等の金属がある)と表記する、ペロブスカイト((Where L is a rare earth metal such as Gd, La, Nd, or Pr, and there is a metal such as Ca, Sr, or Ba as Q for substituting the L site). perovskiteperovskite )構造を持つ、マンガナイト、或いは、半金属であるBi又はその合金を使用することを特徴とし、スピン依存トンネル効果及び磁気誘起相変態効果を原理とする、請求項2に記載のトンネル相変態磁気抵抗(TPMR)素子。3) The tunnel phase transformation according to claim 2, characterized by using Bi or its alloy which is a manganite or semimetal having a structure and based on the principle of spin-dependent tunnel effect and magnetically induced phase transformation effect. Magnetoresistive (TPMR) element. 第1及び第2ひずみ付与層(61、62)を構成するJ成分として、非磁性体、良導体であるCu、Alその他の金属及び合金、ド−プした半導体、並びに、LAs the J component constituting the first and second strain imparting layers (61, 62), nonmagnetic material, Cu, which is a good conductor, Al and other metals and alloys, doped semiconductors, and L 1-x1-x Q xx MnOMnO 3Three , 00 xx 11 、(ここで、Lは、Gd、La、Nd及びPr等の希土類金属、Lサイトを置換するQとして、Ca、Sr及びBa等がある)と表記する、ペロブスカイト構造を持つ、マンガナイト、並びに、半金属であるBi及びその合金、SiO(Wherein L is a rare earth metal such as Gd, La, Nd and Pr, and there is Ca, Sr, Ba, etc. as Q replacing the L site), a manganite having a perovskite structure, and Bi, which is a semimetal, and alloys thereof, SiO 3Three 、PrNiO, PrNiO 3Three 等のニッケル基酸化物を使用し、絶縁基板(91)を構成するB成分として、非磁性特性を持つアルミナ(AlAs a B component constituting the insulating substrate (91), alumina having a nonmagnetic characteristic (Al 22 O 3Three )又はSiO) Or SiO 22 ,, 等をそれぞれ使用し、第1相変態電極層(76)を構成するH成分として、LAre used as the H component constituting the first phase transformation electrode layer (76). 1-x1-x Q xx MnOMnO 3Three , 00 xx 11 、(ここで、Lは、Gd、La、Nd又はPr等の希土類金属、Lサイトを置換するQとして、Ca、Sr又はBa等の金属がある)と表記する、ペロブスカイト((Where L is a rare earth metal such as Gd, La, Nd, or Pr, and there is a metal such as Ca, Sr, or Ba as Q for substituting the L site). perovskiteperovskite )構造を持つ、マンガナイト、或いは、半金属であるBi又はその合金を使用することを特徴とし、第1相変態層電極自身の電気抵抗値が変化する、磁気誘起相変態効果を原理とする、請求項3に記載の相変態磁気抵抗(PMR)素子。) Using manganite having a structure, Bi, which is a metalloid, or an alloy thereof, which is based on a magnetically induced phase transformation effect in which the electric resistance value of the first phase transformation layer electrode itself changes. The phase change magnetoresistive (PMR) element according to claim 3. 第1、第2及び第3ひずみ付与層(61、62、63)を構成するJ成分として、非磁性体、良導体であるCu、Alその他の金属及び合金、ド−プした半導体、並びに、LAs J component constituting the first, second and third strain imparting layers (61, 62, 63), nonmagnetic material, Cu as a good conductor, Al and other metals and alloys, doped semiconductor, and L 1-x1-x Q xx MnOMnO 3Three , 00 xx 11 、(ここで、Lは、Gd、La、Nd及びPr等の希土類金属、Lサイトを置換するQとして、Ca、Sr及びBa等がある)と表記する、ペロブスカイト構造を持つ、マンガナイト、並びに、半金属であるBi及びその合金、SiO(Wherein L is a rare earth metal such as Gd, La, Nd and Pr, and there is Ca, Sr, Ba, etc. as Q replacing the L site), a manganite having a perovskite structure, and Bi, which is a semimetal, and alloys thereof, SiO 3Three 、PrNiO, PrNiO 3Three 等のニッケル基酸化物を使用し、絶縁基板(91)を構成するB成分として、非磁性特性を持つアルミナ(AlAs a B component constituting the insulating substrate (91), alumina having a nonmagnetic characteristic (Al 22 O 3Three )又はSiO) Or SiO 22 ,, 等をそれぞれ使用し、第1及び第2相変態電極層(76、77)を構成するH成分として、LAre used as the H component constituting the first and second phase transformation electrode layers (76, 77), respectively. 1-x1-x Q xx MnOMnO 3Three , 00 xx 11 、(ここで、Lは、Gd、La、Nd又はPr等の希土類金属、Lサイトを置換するQとして、Ca、Sr又はBa等の金属がある)と表記する、ペロブスカイト((Where L is a rare earth metal such as Gd, La, Nd, or Pr, and there is a metal such as Ca, Sr, or Ba as Q for substituting the L site). perovskiteperovskite )構造を持つ、マンガナイト、或いは、半金属であるBi又はその合金を使用することを特徴とし、第1及び第2相変態層電極自身の電気抵抗値が変化する、磁気誘起相変態効果を原理とする、請求項4に記載の相変態磁気抵抗(PMR)素子。) Bi- or its alloy, which is a manganite or metalloid having a structure, is used, and a magnetically induced phase transformation effect in which the electrical resistance values of the first and second phase transformation layer electrodes themselves are changed. The phase change magnetoresistive (PMR) element according to claim 4, which is a principle. 遮蔽層101を構成するD成分として、FeSi合金、アモルファス合金(FeNiMoSiB、FeCoSiB、CoMnB、CoHfB、FeCoNbSiB及びFeNiPB等)、立法晶スピネル・フェライト(MeFeAs the D component constituting the shielding layer 101, FeSi alloy, amorphous alloy (FeNiMoSiB, FeCoSiB, CoMnB, CoHfB, FeCoNbSiB, FeNiPB, etc.), cubic spinel ferrite (MeFe) 22 O 4Four ;ここで、Meは、Mn、Fe、Co、Ni、Cu、Zn、Mg及びCd、或いは、これらの金属の組合せである、MnZn、NiZn、LiZn、MgZn、MnMg、MnCu及びLiNi等の合金)、及び、NiCuCoMnAlフェライト、並びに、イットリウム・鉄・ガーネット系混合酸化物を使用することを特徴とする、請求項1及び2に記載のトンネル相変態磁気抵抗(TPMR)素子。Where Me is Mn, Fe, Co, Ni, Cu, Zn, Mg and Cd, or a combination of these metals, such as MnZn, NiZn, LiZn, MgZn, MnMg, MnCu and LiNi alloys) 3. The tunnel phase transformation magnetoresistive (TPMR) element according to claim 1, wherein NiCuCoMnAl ferrite and yttrium / iron / garnet mixed oxide are used. 遮蔽層101を構成するD成分として、FeSi合金、アモルファス合金(FeNiMoSiB、FeCoSiB、CoMnB、CoHfB、FeCoNbSiBAs a D component constituting the shielding layer 101, FeSi alloy, amorphous alloy (FeNiMoSiB, FeCoSiB, CoMnB, CoHfB, FeCoNbSiB) 及びFeNiPB等)、立法晶スピネル・フェライト(MeFeAnd FeNiPB, etc.), cubic spinel ferrite (MeFe) 22 O 4Four ;ここで、Meは、Mn、Fe、Co、Ni、Cu、Zn、Mg及びCd、或いは、これらの金属の組合せである、MnZn、NiZn、LiZn、MgZn、MnMg、MnCu及びLiNi等の合金)、及び、NiCuCoMnAlフェライト、並びに、イットリウム・鉄・ガーネット系混合酸化物を使用することを特徴とする、請求項3及び4に記載の相変態磁気抵抗(PMR)素子。Where Me is Mn, Fe, Co, Ni, Cu, Zn, Mg and Cd, or a combination of these metals, such as MnZn, NiZn, LiZn, MgZn, MnMg, MnCu and LiNi alloys) 5. The phase change magnetoresistive (PMR) element according to claim 3, wherein NiCuCoMnAl ferrite and yttrium / iron / garnet mixed oxide are used.
JP30395399A 1999-10-26 1999-10-26 Structure of magnetic-resistance (mr) element, and its manufacturing method Pending JP2001127357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30395399A JP2001127357A (en) 1999-10-26 1999-10-26 Structure of magnetic-resistance (mr) element, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30395399A JP2001127357A (en) 1999-10-26 1999-10-26 Structure of magnetic-resistance (mr) element, and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005163078A Division JP2005286350A (en) 2005-06-02 2005-06-02 Tunnel magnetoresistive element

Publications (2)

Publication Number Publication Date
JP2001127357A JP2001127357A (en) 2001-05-11
JP2001127357A5 true JP2001127357A5 (en) 2005-10-27

Family

ID=17927281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30395399A Pending JP2001127357A (en) 1999-10-26 1999-10-26 Structure of magnetic-resistance (mr) element, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001127357A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085487B2 (en) 2008-05-07 2012-11-28 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20220231221A1 (en) Spin current magnetization rotational element
JP2004179219A (en) Magnetic device and magnetic memory using the same
JP3603771B2 (en) Magnetic resistance element, magnetic sensor and memory device using the same
CN107919434A (en) Changeable frequency magneto-resistive effect element and oscillator, wave detector and the wave filter using the element
JPH07209337A (en) Magnetoresistance current sensor having high sensitivity
Nagata et al. Magnetic properties of rfe1− xmnxo3 (r= pr, gd, dy)
EP3809413B1 (en) Method of fabricating a spin-orbit torque-based switching device
JP4304688B2 (en) Spin filter effect element and magnetic device using the same
Dhir et al. Sol–gel synthesized BiFeO3 nanoparticles: enhanced magnetoelelctric coupling with reduced particle size
WO2022181069A1 (en) Thin film inductor element and thin film variable inductor element
JP3578721B2 (en) Magnetic control element, magnetic component and memory device using the same
US6590268B2 (en) Magnetic control device, and magnetic component and memory apparatus using the same
US10629801B2 (en) Laminated structure and spin modulation element
Asthana et al. Magneto-transport studies on (Pr1/3Sm2/3) 2/3A1/3MnO3 (A= Ca, Sr and Ba) compounds
JP2001127357A5 (en)
Dho et al. Magnetic and transport properties of lanthanum perovskites with B-site half doping
Ajan et al. Effect of low Fe doping in La 0.8 Sr 0.2 MnO 3
JP2000357828A (en) Ferromagnetic oxide and magnetoresistance element wherein the same is used
JP6930230B2 (en) Metal-Insulation System Nanogranular Thin Film and Thin Film Magnetic Sensor
Min et al. The search for new spintronic materials: half-metallic antiferromagnets and diluted magnetic semiconductors
Ahmed et al. Fascinating properties of multifunctional nanocomposites manganite/magnetite
Nam et al. Low field magnetoresistance in intrinsic granular system La1− xBaxMnO3
JP6740551B2 (en) Method for manufacturing ferromagnetic tunnel junction, ferromagnetic tunnel junction, and magnetoresistive effect element
WO2021029148A1 (en) Magnetoresistance effect device
JP7450353B2 (en) Magnetite thin film and magnetic tunnel junction device