JP2001124762A - Method for quantitatively analyzing oxygen in oxide containing lithium - Google Patents

Method for quantitatively analyzing oxygen in oxide containing lithium

Info

Publication number
JP2001124762A
JP2001124762A JP34372699A JP34372699A JP2001124762A JP 2001124762 A JP2001124762 A JP 2001124762A JP 34372699 A JP34372699 A JP 34372699A JP 34372699 A JP34372699 A JP 34372699A JP 2001124762 A JP2001124762 A JP 2001124762A
Authority
JP
Japan
Prior art keywords
oxygen
lithium
tin
oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34372699A
Other languages
Japanese (ja)
Inventor
Isao Kuribayashi
功 栗林
Yasufumi Hideshima
康文 秀島
Masayuki Yoshio
真幸 芳尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEE KK
Kee KK
Original Assignee
KEE KK
Kee KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEE KK, Kee KK filed Critical KEE KK
Priority to JP34372699A priority Critical patent/JP2001124762A/en
Publication of JP2001124762A publication Critical patent/JP2001124762A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a new dry method for quantitatively analyzing a quantity of oxygen in an oxide containing lithium directly and highly accurately. SOLUTION: A dissociation reaction of oxygen is promoted with the use of a metal tin and/or a tin alloy as a flux for a capsule container in the method for quantitatively analyzing a content of oxygen in the oxide including lithium. The capsule container formed of the tin or tin alloy and containing a sample is brought into a deoxidized graphite crucible kept to a predetermined temperature in a range of 1200-1700 deg.C. Quantities of formed carbon monoxide and carbon dioxide of a minute amount are directly measured by an infrared sensor, or measured by the infrared sensor after converted all to carbon monoxide. The content of oxygen is obtained by a calibration curve obtained by analyzing a metal oxide (e.g. lithium carbonate, yttrium oxide or the like) of a known content of oxygen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】〔産業上の利用範囲〕本発明は、リチウム
含有酸化物中の定量的酸素分析方法に関する。
[0001] The present invention relates to a method for quantitatively analyzing oxygen in a lithium-containing oxide.

【0002】〔発明の属する技術分野〕近年、正極活物
質にコバルト酸リチウム、リチウム含有マンガン系酸化
物等のリチウムと遷移金属との複合酸化物を用いたリチ
ウムイオン二次電池が、種々の電子機器の電源として使
用されている。電子機器の小型化、軽量化を図る上で、
これらの電子機器用の電池としてきわめて有用である。
更なる安全性向上、高容量化、長寿命化が電池として要
望されている。リチウム含有酸化物を原料とする正極の
開発が、今後の要であり、緻密な構造設計の複合酸化物
の研究開発、製造、品質管理において今後益々迅速かつ
簡便で定量精度の高い酸素量の分析方法が求められてき
ている。本発明は、リチウム含有酸化物中の高精度の定
量的酸素分析技術に関するものである。
[0002] In recent years, lithium ion secondary batteries using a composite oxide of lithium and a transition metal, such as lithium cobalt oxide and lithium-containing manganese oxide, as a positive electrode active material have been developed for various electronic devices. Used as a power source for equipment. To reduce the size and weight of electronic devices,
It is extremely useful as a battery for these electronic devices.
Further improvement in safety, higher capacity, and longer life are required for batteries. The development of cathodes made of lithium-containing oxides is a key issue in the future, and the analysis of the amount of oxygen will be increasingly faster, easier and more accurate in R & D, manufacturing, and quality control of complex oxides with precise structural design. There is a need for a method. The present invention relates to a high-precision quantitative oxygen analysis technique in a lithium-containing oxide.

【0003】〔従来の技術〕リチウムを含有しない金属
酸化物中の酸素の含有量を測定するためには、通常、不
活性ガス溶融法が用いられる。分析の対象となる試料の
一定量を秤取り、大気と遮断した試料ホルダーからグラ
ファイトルツボ中に自動的に落とし込み、アルゴンガ
ス、窒素ガス等の不活性ガスをキャリアガスとして流し
ながら2000℃以上の高温に加熱することにより、分
解あるいは、解離してくる酸素を炭素と反応させ、生成
する一酸化炭素あるいは二酸化炭素を赤外線の吸光度か
ら定量し、その測定結果から酸素の含有量を求める方法
である。すなわち、アルミナ、ジルコニア、酸化ケイ
素、酸化鉄、二酸化マンガン等の金属酸化物中の酸素含
有量が定量的に分析される。また真空中で酸素を加熱分
離させ、同様に生成する一酸化炭素あるいは二酸化炭素
を赤外線の吸光度から定量する真空溶融法がある。これ
らの分析方法は、構成金属元素であるアルミニウム、ジ
ルコニウム、ケイ素、鉄、マンガン等が高沸点であるこ
とから酸素が解離あるいは炭素との反応を促進するに必
要な2000℃以上の高温領域に加熱することができて
含有される酸素が炭素と完全に反応し、生成物の一酸化
炭素と二酸化炭素を分析することにより酸素含有量が定
量的に比較的容易に求められる。しかしながら、リチウ
ム含有酸化物を前記の方法で分析しようとすると酸素と
金属リチウムに解離し、酸素は、一酸化炭素と二酸化炭
素に変換する一方、金属リチウムは、沸点1336℃で
あるため2000℃以上の温度では、一部蒸発し、生成
した二酸化炭素と反応したり、高温では化学的に活性で
あり、解離した酸素が一酸化炭素として完全に変換でき
ない。また1400℃以下にすると酸化物からの酸素の
解離が不十分となる。この相反する現象があるためと思
われるが、リチウム含有酸化物の酸素の定量分析では、
含有量測定結果が非常に低い結果となったり、また分析
値の再現性が悪く、数値にバラツキが見られたりしてリ
チウム含有酸化物の酸素の定量分析法がない状況であ
る。またリチウム含有酸化物を水溶液とし、滴定分析に
より金属元素量とその価数とリチウム量から電子的に中
和される酸素量を求めることがなされている。しかしこ
の方法は煩雑な試薬を使用した間接的な酸素量分析法で
あり、限られた系にしか応用できない。たとえば、数種
の異金属を添加したリチウム含有金属酸化物の場合、添
加した金属元素の価数が未知であり、既知の金属元素の
イオン価数を前提にした滴定分析法は、適用できない。
従って現在、新規のリチウム含有酸化物中の酸素含有量
を直接的にしかも精度よく迅速に定量分析できる技術の
確立が、緊急的な解決課題となっている。
[0003] In order to measure the content of oxygen in a metal oxide containing no lithium, an inert gas melting method is usually used. A certain amount of the sample to be analyzed is weighed, automatically dropped into a graphite crucible from a sample holder that is shut off from the atmosphere, and heated to a high temperature of 2000 ° C or higher while flowing an inert gas such as an argon gas or a nitrogen gas as a carrier gas. In this method, oxygen that is decomposed or dissociated reacts with carbon by heating the carbon monoxide, carbon monoxide or carbon dioxide generated is quantified from the absorbance of infrared rays, and the oxygen content is determined from the measurement results. That is, the oxygen content in a metal oxide such as alumina, zirconia, silicon oxide, iron oxide, and manganese dioxide is quantitatively analyzed. In addition, there is a vacuum melting method in which oxygen is heated and separated in a vacuum, and carbon monoxide or carbon dioxide generated in the same manner is quantified from infrared absorbance. In these analysis methods, since the constituent metal elements such as aluminum, zirconium, silicon, iron, and manganese have a high boiling point, they are heated to a high-temperature region of 2000 ° C. or more necessary for dissociation of oxygen or promotion of reaction with carbon. Oxygen content can be relatively easily determined quantitatively by analyzing the product carbon monoxide and carbon dioxide, as the oxygen contained can react completely with the carbon. However, when the lithium-containing oxide is analyzed by the above-described method, it is dissociated into oxygen and metallic lithium, and while oxygen is converted into carbon monoxide and carbon dioxide, metallic lithium has a boiling point of 1336 ° C. and thus has a boiling point of 2000 ° C. or more. At a temperature of, it partially evaporates and reacts with the produced carbon dioxide, and at high temperatures it is chemically active and dissociated oxygen cannot be completely converted as carbon monoxide. When the temperature is 1400 ° C. or lower, the dissociation of oxygen from the oxide becomes insufficient. Presumably because of this contradictory phenomenon, quantitative analysis of oxygen in lithium-containing oxides
There are no methods for quantitative analysis of oxygen in lithium-containing oxides because the results of content measurement are extremely low, and the reproducibility of analysis values is poor, and the values are varied. In addition, a lithium-containing oxide is used as an aqueous solution, and the amount of oxygen that is electronically neutralized is determined from the amount of the metal element, its valence, and the amount of lithium by titration analysis. However, this method is an indirect method for analyzing the amount of oxygen using a complicated reagent, and is applicable only to a limited system. For example, in the case of a lithium-containing metal oxide to which several kinds of foreign metals are added, the valence of the added metal element is unknown, and a titration analysis method based on the ionic valence of a known metal element cannot be applied.
Therefore, at present, the establishment of a technology capable of directly and accurately and quickly analyzing the oxygen content in a novel lithium-containing oxide is an urgent problem to be solved.

【0004】〔発明が解決しようとする課題〕本発明
は、従来の金属酸化物の酸素分析法である不活性ガス溶
融法や真空溶融法や水溶液にして構成元素を滴定分析す
る間接的酸素含有量分析法に代わる直接的、かつ高精度
なリチウム含有酸化物中の酸素の定量分析法を確立する
ことにある。
[0004] The present invention relates to a conventional method for analyzing oxygen in metal oxides, such as an inert gas melting method or a vacuum melting method, or an indirect oxygen-containing method for titrating and analyzing constituent elements in an aqueous solution. An object of the present invention is to establish a direct and high-precision quantitative analysis method of oxygen in lithium-containing oxides, which is an alternative to the quantitative analysis method.

【0005】〔課題を解決するための手段〕本発明者ら
は、上記課題について種々検討した結果、低融点を有
し、かつ金属リチウムと合金を形成能力のある、錫及び
その合金(ハンダ、バビットメタル、ブリタニアメタ
ル、ウッドメタル等)を添加することにより再現性良く
リチウム含有酸化物中の酸素が解離し、しかも選択性良
く一酸化炭素に変換され、還元されて生成する金属リチ
ウムが存在しても定量的に高い精度で分析出来る方法を
見い出し、本発明を完成させるに至った。
As a result of various studies on the above problems, the present inventors have found that tin and its alloys (solder, solder, etc.) having a low melting point and an ability to form an alloy with metallic lithium. Oxygen in the lithium-containing oxide is dissociated with good reproducibility by the addition of babbitt metal, britannia metal, wood metal, etc., and is converted to carbon monoxide with good selectivity, and there is metallic lithium generated by reduction. However, the present inventors have found a method capable of quantitatively analyzing with high precision, and have completed the present invention.

【0006】〔発明の実施の形態〕以下、本発明を具体
的に説明する。すなわち、本発明は:分析装置自体は、
従来の金属酸化物の酸素分析用の不活性ガス溶融法、真
空溶融法等の装置を利用し、まず、アルゴン気流中、ま
たは真空下、グラファイトルツボを電極にセットして電
流を流して2800〜3000℃でグラファイトルツボ
に含まれる酸素を除去する。ルツボは、一重底でも使用
可能であるが、アウタールツボとインナールツボとを重
ねて二重ルツボにする方が加熱温度のバラツキを小さく
できることと酸素の反応を均一にする上で好ましい。次
に、試料の適正加熱温度である1200〜1700℃の
温度範囲に下げ、所望の温度に保つ。1200℃未満で
は、フラックス金属を錫あるいは及び錫の合金にして
も、含有酸素を完全に一酸化炭素または二酸化炭素への
変換が困難となる。1700℃を越えるとリチウムの飛
散、リチウムと酸素の副反応等が要因と考えられるが、
適正温度範囲と比較すると低い酸素含有量となる。好ま
しくは、1300〜1600℃の温度範囲である。測定
試料のリチウム含有酸化物を数十mgを、g小数以下5
桁まで正確に秤り取り、フラックスとして作用する金属
カプセル(錫または錫の合金製)中に必要あらば、金属
触媒(ニッケル粉末、錫粉末、錫合金粉末等)とともに
入れる。カプセルから試料が飛散しないように加圧成形
機あるいはペンチ、ニッパー等を用いて潰しておく。こ
れを自動供給装置から脱酸素されたグラファイトルツボ
中に投入する。フラックスとしてニッケル、鉛、鉄、ア
ルミニウム、イットリウム単独では、本発明の目的の再
現性のある一酸化炭素並びに二酸化炭素の生成をリチウ
ム金属の蒸発の影響のほとんどない温度範囲では、為し
得ない。錫及び錫の合金にのみにある特異的作用を用い
る。グラファイトと酸素と反応して生成した一酸化炭素
並びに微量の二酸化炭素を赤外線センサーで発生量を測
定し、既知の含有酸素量の金属酸化物(例えば炭酸リチ
ウム、酸化イットリウム等)を分析して得た較正曲線で
含有酸素量を求める。試料は、真空下、加熱し、絶乾状
態にしておき更に秤量は、0.2%RH以下に管理され
たグローブボックス、ないしドライルームで行い、試料
の入ったカプセルを真空処理し、空気中の酸素、試料カ
プセルに付着しやすい水分を除去することにより、リチ
ウム含有酸化物中の酸素量の定量分析が可能となる。
[Embodiment of the Invention] The present invention will be specifically described below. That is, the present invention provides:
First, a graphite crucible is set on an electrode in an argon stream or under vacuum, and a current is applied to the electrode by using a conventional apparatus such as an inert gas melting method or a vacuum melting method for oxygen analysis of metal oxides. At 3000 ° C., oxygen contained in the graphite crucible is removed. Although a crucible can be used even with a single bottom, it is preferable to form a double crucible by stacking an outer crucible and an inner crucible in order to reduce the variation in heating temperature and to make the oxygen reaction uniform. Next, the temperature is lowered to a temperature range of 1200 to 1700 ° C., which is an appropriate heating temperature of the sample, and maintained at a desired temperature. Below 1200 ° C., it becomes difficult to completely convert the contained oxygen to carbon monoxide or carbon dioxide even if the flux metal is tin or an alloy of tin. If the temperature exceeds 1700 ° C., scattering of lithium and a side reaction between lithium and oxygen are considered to be factors.
The oxygen content is low as compared to the appropriate temperature range. Preferably, it is a temperature range of 1300 to 1600 ° C. Dozens of mg of the lithium-containing oxide of the measurement sample, 5
It is accurately weighed to the order of magnitude and placed in a metal capsule (made of tin or tin alloy) acting as a flux, if necessary, together with a metal catalyst (nickel powder, tin powder, tin alloy powder, etc.). The sample is crushed using a pressure molding machine, pliers, nippers or the like so that the sample does not scatter from the capsule. This is put into the deoxygenated graphite crucible from the automatic supply device. Nickel, lead, iron, aluminum, and yttrium alone as fluxes cannot produce reproducible carbon monoxide and carbon dioxide for the purpose of the present invention in a temperature range where there is almost no effect of lithium metal evaporation. The specific action that is only in tin and alloys of tin is used. Measure the amount of carbon monoxide and a trace amount of carbon dioxide generated by the reaction of graphite and oxygen with an infrared sensor, and analyze the metal oxides with known oxygen content (eg lithium carbonate, yttrium oxide, etc.) to obtain The oxygen content is determined using the calibration curve obtained. The sample is heated under vacuum to make it completely dry, and the weighing is performed in a glove box or a dry room controlled to 0.2% RH or less. By removing the oxygen and water that easily adheres to the sample capsule, quantitative analysis of the oxygen amount in the lithium-containing oxide becomes possible.

【0007】本発明のリチウム含有酸化物としては、特
に限定されるものではないが、好ましいものとして、L
ixCoO(但しxは、1.0≦x≦1.03の数を
表す。)、LixCoyMzO(但しMはNi、M
n、Cr、Fe、Al、In、Sn、Zr、Ga等から
選ばれた一種以上で、x、y、zは、それぞれ1.00
≦x≦1.10、y+z=1の数を表す。)、Li
(但しMはCo、Cr、Ni、Al,Fe
等から選ばれた一種以上で、x、y、zは、それぞれ
1.00≦x≦1.12、y+z=2の数を表す。)、
LixNiyMzO(但しMはCo、Mn、Cr、F
e、Al、Ga,Zr等から選ばれた一種以上で、x、
y、zは、それぞれ0.98≦x≦1.10、y+z=
1の数を表す。)、Li(但し、xは1.0
0≦x≦3.00の数を表す。)、Li
13(但し、xは1.00≦x≦1.2の数を表
す。)、LiTi(但しx、y、zは、整数を
表し、例えばx=4、y=5、z=12の数を表す。)
から選ばれた少なくとも一種である。
[0007] The lithium-containing oxide of the present invention is not particularly limited.
ixCoO 2 (where x represents a number satisfying 1.0 ≦ x ≦ 1.03), LixCoyMzO 2 (where M is Ni, M
n, Cr, Fe, Al, In, Sn, Zr, Ga or the like, and x, y, and z are each 1.00 or more.
≦ x ≦ 1.10, y + z = 1. ), Li x M
n y M z O 4 (where M is Co, Cr, Ni, Al, Fe
X, y, and z each represent a number of 1.00 ≦ x ≦ 1.12 and y + z = 2. ),
LixNiyMzO 2 (where M is Co, Mn, Cr, F
one or more selected from e, Al, Ga, Zr, etc .;
y and z are respectively 0.98 ≦ x ≦ 1.10 and y + z =
Represents the number of 1. ), Li x V 2 O 5 (where x is 1.0
Represents the number 0 ≦ x ≦ 3.00. ), Li X V 3 O
13 (where x represents a number satisfying 1.00 ≦ x ≦ 1.2), Li x Ti y O z (where x, y, and z represent integers, for example, x = 4, y = 5, represents the number of z = 12.)
At least one selected from

【0008】〔実施例〕以下実施例、比較例により本発
明を詳しく説明するが、本発明の範囲は、これに限定さ
れるものではない。
The present invention will be described in detail below with reference to examples and comparative examples, but the scope of the present invention is not limited to these examples.

【0009】なお、分析精度の尺度としての変動係数と
は、0.7%以下である。ここで標準偏差とは、偏差
(測定値と平均値との差)を自乗し、それを算術平均し
たものを開平する。すなわちnヶの測定値を、X,X
,X,……,Xn とすると平均値(Xa)はXa
=(X+X+X+……+Xn)/nとなる。各測
定値(Xi)と平均値(Xa)との差(Xi−Xa)の
自乗の和(S)と、その値を自由度(n−1)で割っ
た分散(V)との関係は、V=S/(n−1)から、 V=[(X−X+(X−Xa)+(X
Xa)+‥+(Xn−Xa)]/(n−1) となる。この分散(V)の平方根が標準偏差(s)であ
る。 従って s=√V 変動係数は次式で定義される。
The coefficient of variation as a measure of analysis accuracy is 0.7% or less. Here, the standard deviation is obtained by squaring the deviation (difference between the measured value and the average value) and arithmetically averaging the squared values. That is, n measurement values are calculated as X 1 , X
2, X 3, ......, average value and Xn (Xa) is Xa
= (X 1 + X 2 + X 3 +... + Xn) / n. Relationship between the sum (S T ) of the square of the difference (Xi−Xa) between each measured value (Xi) and the average value (Xa), and the variance (V) obtained by dividing the value by the degree of freedom (n−1) is, V = S T / from (n-1), V = [(X 1 -X a) 2 + (X 2 -Xa) 2 + (X 3 -
Xa) 2 + ‥ + (Xn−Xa) 2 ] / (n−1). The square root of this variance (V) is the standard deviation (s). Therefore, s = √V The variation coefficient is defined by the following equation.

【0010】〔実施例1〕LECO(米国)社製のモデ
ル416DR を用いて、ニッケル、マンガンおよびリ
チウム元素を原子発光法(ICP)で測定し、ニッケル
イオンを2価と仮定して電荷計算から求められたLiN
0.1Mn1.9(酸素量21.76ミリモル/
g)の試料を、150℃で真空下6時間乾燥し、乾燥デ
シケーター中で冷却後、乾燥アルゴンガス気流のグロー
ブボックス内で0.01000〜0.05000グラム
を精秤する。これをフラックス金属を錫とする錫製のカ
プセル容器に入れペンチで封口する。まず、アルゴン気
流中、または真空下、グラファイト二重ルツボを電極に
セットして電流を流して3000℃でグラファイトルツ
ボに含まれる酸素を除去する。試料の適正加熱温度であ
る1500℃の温度に保つ。上記の試料の入った錫カプ
セルを自動供給装置から脱酸素されたグラファイトルツ
ボ中に投入する。発生する一酸化炭素並びに微量の二酸
化炭素を赤外線センサーで発生量を測定し、既知の含有
酸素量の炭酸リチウムを分析して得た較正曲線で含有酸
素量を求める。得られた結果は、21.74ミリ/gで
あった。測定を10回繰り返し、変動係数を求めると
0.5%であった。
[Example 1] Using a model 416 DR manufactured by LECO (USA), nickel, manganese and lithium elements were measured by atomic emission spectroscopy (ICP), and charge was calculated assuming that nickel ions were divalent. From LiN
i 0.1 Mn 1.9 O 4 (oxygen amount 21.76 mmol /
The sample of g) is dried under vacuum at 150 ° C. for 6 hours, cooled in a desiccator, and then precisely weighed in a glove box with a stream of dry argon gas in an amount of 0.01000 to 0.05000 g. This is placed in a tin capsule container using tin as a flux metal and sealed with pliers. First, a graphite double crucible is set on an electrode in an argon stream or under vacuum, and an electric current is applied to remove oxygen contained in the graphite crucible at 3000 ° C. The temperature is kept at 1500 ° C., which is the appropriate heating temperature of the sample. The tin capsule containing the above sample is put into the deoxygenated graphite crucible from the automatic supply device. The amount of generated carbon monoxide and a small amount of carbon dioxide are measured by an infrared sensor, and the oxygen content is determined by a calibration curve obtained by analyzing lithium carbonate having a known oxygen content. The obtained result was 21.74 mm / g. The measurement was repeated 10 times, and the coefficient of variation was found to be 0.5%.

【0011】〔実施例2〕堀場製作所EMGA−650
分析計にガスカラムに二酸化炭素を一酸化炭素に転換す
る触媒カラムユニットを追加装備する。組成既知のマン
ガンスピネルLi1.07Mn2.004.03(酸
素量21.90ミリモル/g)を120℃で真空下6時
間乾燥し、乾燥デシケーター中で冷却後、乾燥アルゴン
ガス気流のグローブボックス内で0.01036グラム
を精秤する。これをフラックス金属を錫とする錫製のカ
プセル容器に入れペンチで封口する。まず、アルゴン気
流中、または真空下、グラファイト二重ルツボを電極に
セットして電流を流して3000℃でグラファイトルツ
ボに含まれる酸素を除去する。試料の適正加熱温度であ
る1450℃の温度に保つ。上記の試料の入った錫カプ
セルを自動供給装置から脱酸素されたグラファイトルツ
ボ中に投入する。発生する一酸化炭素を赤外線センサー
で発生量を測定し、既知の含有酸素量の炭酸リチウムを
分析して得た較正曲線で含有酸素量を求める。得られた
結果は、21.86ミリモル/gであった。測定を10
回繰り返し、変動係数を求めると0.3%であった。
Embodiment 2 EMGA-650 Horiba, Ltd.
The analyzer is additionally equipped with a gas column equipped with a catalytic column unit that converts carbon dioxide to carbon monoxide. A manganese spinel of known composition, Li 1.07 Mn 2.00 O 4.03 (oxygen amount: 21.90 mmol / g) was dried at 120 ° C. under vacuum for 6 hours, cooled in a dry desiccator, and dried in a dry argon gas stream. Weigh accurately 0.01036 grams in glove box. This is placed in a tin capsule container using tin as a flux metal and sealed with pliers. First, a graphite double crucible is set on an electrode in an argon stream or under vacuum, and an electric current is applied to remove oxygen contained in the graphite crucible at 3000 ° C. The temperature is kept at 1450 ° C., which is the proper heating temperature of the sample. The tin capsule containing the above sample is put into the deoxygenated graphite crucible from the automatic supply device. The amount of carbon monoxide generated is measured by an infrared sensor, and the oxygen content is determined by a calibration curve obtained by analyzing lithium carbonate having a known oxygen content. The result obtained was 21.86 mmol / g. 10 measurements
The coefficient of variation was determined to be 0.3%.

【0012】〔比較例1〕実施例1で使用した酸素分析
装置を用いて、電荷計算から求めた濃度既知のLiMn
の試料を、150℃で6時間乾燥し、乾燥デシケ
ータ中で冷却後、乾燥アルゴンガス気流のグローブボッ
クス内で0.01000gから0.03900gの範囲
内で精秤する。これをフラックス金属として使用するニ
ッケルカプセルに入れ、ペンチで封口する。グラファイ
ト二重ルツボを加熱炉の電極にセットし、電流を流し
て、3000℃でグラファイトルツボに含まれる酸素を
除去する。その後グラファイトルツボを1700℃に加
熱し、一定温度に保持する。その後秤取った試料を入れ
たニッケルカプセルを大気と完全に遮断された自動供給
装置からグラファイトルツボに供給する。以下酸素含有
量は実施例1と同様な方法で求めた。この比較例では、
10回繰り返し測定を行った結果、分析値の平均値は2
9.00%、標準偏差0.676、変動係数2.33%
であった。ここで用いた試料の酸素含有量の分析結果
は、電荷計算から求めた値の35.39%に比較する
と、かなり低い値であった。また分析のバラツキの指標
である変動係数も大きく、スピネル中の酸素含有量を高
精度で、再現性よく分析することは不可能であった。
[Comparative Example 1] Using the oxygen analyzer used in Example 1, a LiMn having a known concentration determined by charge calculation was used.
A sample of 2 O 4 is dried at 150 ° C. for 6 hours, cooled in a desiccator, and then precisely weighed in a dry argon gas stream glove box in a range of 0.01000 g to 0.03900 g. This is put in a nickel capsule used as a flux metal and sealed with pliers. The graphite double crucible is set on the electrode of the heating furnace, and a current is applied to remove the oxygen contained in the graphite crucible at 3000 ° C. Thereafter, the graphite crucible is heated to 1700 ° C. and maintained at a constant temperature. Thereafter, the nickel capsule containing the weighed sample is supplied to the graphite crucible from an automatic supply device completely shut off from the atmosphere. Hereinafter, the oxygen content was determined in the same manner as in Example 1. In this comparative example,
As a result of repeating the measurement 10 times, the average value of the analysis values was 2
9.00%, standard deviation 0.676, coefficient of variation 2.33%
Met. The analysis result of the oxygen content of the sample used here was a considerably low value as compared with 35.39% of the value obtained from the charge calculation. Further, the coefficient of variation, which is an index of the variation in the analysis, is large, and it was impossible to analyze the oxygen content in the spinel with high accuracy and high reproducibility.

【0013】〔比較例2〕実施例1で使用した酸素分析
装置を用いて、電荷計算から求めた濃度既知のLiMn
の試料を、150℃で6時間乾燥し、乾燥デシケ
ータ中で冷却後、乾燥アルゴンガス気流のグローブボッ
クス内で0.01000gから0.03900gの範囲
内で精秤する。これをフラックス金属を錫として、錫カ
プセルに入れ、ペンチで封口する。グラファイト二重ル
ツボを加熱炉の電極にセットし、電流を流して、300
0℃でグラファイトルツボに含まれる酸素を除去する。
その後グラファイトルツボを1800℃に加熱し、一定
温度に保持する。その後秤取った試料を入れたカプセル
を大気と完全に遮断された自動供給装置からグラファイ
トルツボに供給する。以下酸素含有量は実施例1と同様
な方法で求めた。この分析条件下での5回の測定結果
は、それぞれ34.17%、34.03%、33.35
%、34.61%及び33.84%であった。すなわち
平均値が33.98%、標準偏差が0.429、変動係
数が1.26%となった。この比較例のように分析温度
が適正温度範囲をはずれると、酸素の分析値が低値とな
ることが確認された。
[Comparative Example 2] Using the oxygen analyzer used in Example 1, the LiMn with a known concentration determined from the charge calculation was used.
A sample of 2 O 4 is dried at 150 ° C. for 6 hours, cooled in a desiccator, and then precisely weighed in a dry argon gas stream glove box in a range of 0.01000 g to 0.03900 g. This is put in a tin capsule using the flux metal as tin and sealed with pliers. A graphite double crucible was set on the electrode of the heating furnace, and an electric current was applied.
At 0 ° C., oxygen contained in the graphite crucible is removed.
Thereafter, the graphite crucible is heated to 1800 ° C. and maintained at a constant temperature. Thereafter, the capsule containing the weighed sample is supplied to the graphite crucible from an automatic supply device completely shut off from the atmosphere. Hereinafter, the oxygen content was determined in the same manner as in Example 1. The results of five measurements under these analysis conditions were 34.17%, 34.03%, and 33.35, respectively.
%, 34.61% and 33.84%. That is, the average value was 33.98%, the standard deviation was 0.429, and the variation coefficient was 1.26%. It was confirmed that when the analysis temperature was out of the appropriate temperature range as in the comparative example, the analysis value of oxygen became low.

【0014】〔発明の効果〕本発明により、リチウム含
有酸化物中の酸素含有量を相対変動係数0.3%〜0.
5%と小さくすることが出来るとともに、所要分析時間
も2分〜3分程度になり、きわめて迅速な高精度の直接
的酸素量分析法が得られ、リチウムイオン二次電池の新
規活物質の研究開発、正極活物質の製造、品質管理技術
の向上に貢献するものと期待される。
[Effects of the Invention] According to the present invention, the oxygen content in the lithium-containing oxide is adjusted to a relative coefficient of variation of 0.3% to 0.1%.
The analysis time can be reduced to 5% and the required analysis time is about 2 to 3 minutes. A very quick and accurate direct oxygen content analysis method can be obtained. Research on new active materials for lithium ion secondary batteries It is expected to contribute to development, production of positive electrode active materials, and improvement of quality control technology.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウム含有酸化物及び当該リチウム含有
酸化物を収納するグラファイトルツボから真空下で吸着
あるいは付着している酸素、二酸化炭素、水分等の酸素
含有揮発分を除去する前処理を付し、フラックスとして
金属錫及び又は錫との合金を用いて酸素の解離反応を促
進させることを特徴とするリチウム含有酸化物中の酸素
含有量を定量的に分析する方法。
1. A pretreatment for removing oxygen-containing volatile components such as oxygen, carbon dioxide, and moisture adsorbed or adhered under vacuum from a lithium-containing oxide and a graphite crucible containing the lithium-containing oxide. A method for quantitatively analyzing the oxygen content in a lithium-containing oxide, wherein a dissociation reaction of oxygen is promoted by using metal tin and / or an alloy with tin as a flux.
【請求項2】リチウム含有酸化物としてLixCoO
(但しxは、1.0≦x≦1.10の数を表す。)、L
ixCoyMzO(但しMはNi、Mn、Cr、F
e、Al、In、Sn、Zr、Ga等から選ばれた一種
以上で、x、y、zは、それぞれ1.00≦x≦1.1
0、y+z=1の数を表す。)、LiMn
(但しMはCo、Cr、Ni、Al,Fe等から選ばれ
た一種以上で、x、y、zは、それぞれ1.00≦x≦
1.12、y+z=2の数を表す。)、LiNiyM
(但しMはCo、Mn、Cr、Fe、Al、G
a,Zr等から選ばれた一種以上で、x、y、zは、そ
れぞれ0.98≦x≦1.10、y+z=1の数を表
す。)から選ばれた少なくとも一種を用いることを特徴
とする請求項1記載のリチウム含有酸化物中の酸素含有
量を定量的に分析する方法。
2. LixCoO 2 as a lithium-containing oxide
(Where x represents a number satisfying 1.0 ≦ x ≦ 1.10.), L
ixCoyMzO 2 (where M is Ni, Mn, Cr, F
e, Al, In, Sn, Zr, Ga or the like, and x, y, and z are each 1.00 ≦ x ≦ 1.1.
0, y + z = 1. ), Li x Mn y M z O 4
(Where M is at least one selected from Co, Cr, Ni, Al, Fe, etc., and x, y, and z are each 1.00 ≦ x ≦
1.12, represents the number y + z = 2. ), Li X NiyM
Z O 2 (where M is Co, Mn, Cr, Fe, Al, G
x, y, and z are numbers of 0.98 ≦ x ≦ 1.10 and y + z = 1, respectively, in at least one kind selected from a, Zr, and the like. 2. The method for quantitatively analyzing the oxygen content in a lithium-containing oxide according to claim 1, wherein at least one selected from the above) is used.
JP34372699A 1999-10-28 1999-10-28 Method for quantitatively analyzing oxygen in oxide containing lithium Pending JP2001124762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34372699A JP2001124762A (en) 1999-10-28 1999-10-28 Method for quantitatively analyzing oxygen in oxide containing lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34372699A JP2001124762A (en) 1999-10-28 1999-10-28 Method for quantitatively analyzing oxygen in oxide containing lithium

Publications (1)

Publication Number Publication Date
JP2001124762A true JP2001124762A (en) 2001-05-11

Family

ID=18363783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34372699A Pending JP2001124762A (en) 1999-10-28 1999-10-28 Method for quantitatively analyzing oxygen in oxide containing lithium

Country Status (1)

Country Link
JP (1) JP2001124762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447631A (en) * 2021-06-21 2021-09-28 西安交通大学 Stainless steel oxidation experimental device and method under trace oxygen partial pressure
CN114414728A (en) * 2021-12-09 2022-04-29 山东省科学院能源研究所 Method for measuring lithium residue on surface of high-nickel layered oxide positive electrode material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447631A (en) * 2021-06-21 2021-09-28 西安交通大学 Stainless steel oxidation experimental device and method under trace oxygen partial pressure
CN114414728A (en) * 2021-12-09 2022-04-29 山东省科学院能源研究所 Method for measuring lithium residue on surface of high-nickel layered oxide positive electrode material

Similar Documents

Publication Publication Date Title
JP2721746B2 (en) Adjustment method of oxygen content in tantalum material
CN105051951B (en) Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
Cochran et al. Oxidation of high‐purity aluminum and 5052 aluminum‐magnesium alloy at elevated temperatures
US20140306152A1 (en) Cathode Active Material For Lithium Ion Battery, Cathode For Lithium Ion Battery, And Lithium Ion Battery
Kozawa et al. Cathodic polarization of the manganese dioxide electrode in alkaline electrolytes
CN103149074A (en) Molten sample preparation method of molybdenum, manganese, vanadium or chromium iron alloy sample for X-ray fluorescence spectroscopy
Dunlap et al. Application of in situ Mössbauer effect methods for the study of electrochemical reactions in lithium-ion battery electrode materials
CN101424608A (en) Co3O4 and CoO content analytical method in lithium cobalt oxide
Alcantara et al. Tin oxalate as a precursor of tin dioxide and electrode materials for lithium-ion batteries
Hightower et al. A 119Sn Mössbauer Spectrometry Study of Li‐SnO Anode Materials for Li‐Ion Cells
JP2001124762A (en) Method for quantitatively analyzing oxygen in oxide containing lithium
Parkhurst et al. Thermogravimetry‐evolved gas analysis of silver oxide cathode material
Uxa et al. Lithium tracer diffusion in LiNi 0.33 Mn 0.33 Co 0.33 O 2 cathode material for lithium-ion batteries
Reichmann et al. Investigation of the Li solubility in the intermediate phase Li17Sn4 relevant to understanding lithiation mechanisms in Sn-based anode materials
CN111175168A (en) Method for detecting content of silicon dioxide in silicon-based negative electrode material
Kubaschewski et al. Recent progress in metallurgical thermochemistry
Belhomme et al. Synthesis by a soft chemistry route and characterization of LixNi1− xO (0< x< 0.5) compounds: Behavior in molten carbonates
US5628044A (en) Pure iron-zinc intermetallic galvanneal calibration standards
Yao et al. Determination of the lithium content of molten aluminum using a solid electrolyte
JP2000074858A (en) Method for quantitating palladium palladium catalyst
JP3550666B2 (en) Analysis method of iridium alloy
Gomez-Moreno et al. A simple methodology for the quantification of graphite in end-of-life lithium-ion batteries using thermogravimetric analysis
Berger et al. Quantitative studies on the zirconium-potassium perchlorate-nitrocellulose pyrotechnic system using differential scanning calorimetry and chemical analysis
US5451310A (en) Solid state electrochemical cell oxygen sensor
Uxa et al. Lithium Tracer Diffusion in Sub-Stoichiometric Layered Lithium-Metal-Oxide Compounds