JP2001123844A - Fault detecting device for electrical supercharger - Google Patents

Fault detecting device for electrical supercharger

Info

Publication number
JP2001123844A
JP2001123844A JP30800999A JP30800999A JP2001123844A JP 2001123844 A JP2001123844 A JP 2001123844A JP 30800999 A JP30800999 A JP 30800999A JP 30800999 A JP30800999 A JP 30800999A JP 2001123844 A JP2001123844 A JP 2001123844A
Authority
JP
Japan
Prior art keywords
electric motor
rotation speed
nch
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30800999A
Other languages
Japanese (ja)
Inventor
Yuichi Shimazaki
勇一 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP30800999A priority Critical patent/JP2001123844A/en
Publication of JP2001123844A publication Critical patent/JP2001123844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect faults in an electrical supercharger supercharging an internal combustion engine by an air pump driven by an electric motor. SOLUTION: A rotation number Nch of a current Im of an electric motor is calculated from the current Im and a voltage Vm of the electric motor driving the air pump (step S25), and the rotation speed Nch is compared with a target rotation speed Nobj (step S26). As a result, if an equation Nob-γ<=Nch<=Nobj+γ is not established, at least one of the air pump or the electric motor is deemed to have broken down (step S28). Even of Nobj-γ<=Nch<=Nobj+γ is established, if Pomh-δ<=Pch<=Pobj+δ is not satisfied, as a result of comparing the supercharge pressure Pch with the target supercharge pressure Pobj (step S27), at least one of the air pump or the electric motor is deemed to be broken down.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気モータにより
駆動されるエアーポンプで内燃機関を過給する電動過給
機の故障検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure detection device for an electric supercharger in which an internal combustion engine is supercharged by an air pump driven by an electric motor.

【0002】[0002]

【従来の技術】内燃機関を過給して出力増加を図る手段
として、ターボチャージャーおよびスーパーチャージャ
ーが知られている。ターボチャージャーは内燃機関の排
気ガスで駆動されるタービンによってコンプレッサーを
駆動し、このコンプレッサーで圧縮した空気で過給を行
うようになっており、またスーパーチャージャーは内燃
機関のクランクシャフトの出力でエアーポンプを駆動
し、このエアーポンプで圧縮した空気で過給を行うよう
になっている。
2. Description of the Related Art Turbochargers and superchargers are known as means for increasing the output by supercharging an internal combustion engine. The turbocharger drives the compressor by a turbine driven by the exhaust gas of the internal combustion engine, and supercharges with the air compressed by the compressor.The supercharger uses an air pump with the output of the crankshaft of the internal combustion engine. Is driven, and supercharging is performed with air compressed by the air pump.

【0003】ところで、ターボチャージャーやスーパー
チャージャーの過給能力は基本的に内燃機関の回転数に
応じて変化するため、その過給能力を内燃機関の回転数
によらずに任意に制御するのは困難であった。
Since the supercharging capacity of a turbocharger or a supercharger basically changes according to the rotation speed of an internal combustion engine, it is difficult to control the supercharging capacity arbitrarily irrespective of the rotation speed of the internal combustion engine. It was difficult.

【0004】そこで内燃機関の排気ガスのエネルギーや
クランクシャフトの出力を使用せずに、電気モータでエ
アーポンプを駆動して過給を行う電動過給機が、特開平
10−159577号公報により公知である。
An electric supercharger for supercharging by driving an air pump with an electric motor without using the energy of the exhaust gas of the internal combustion engine or the output of the crankshaft is known from Japanese Patent Application Laid-Open No. H10-159577. It is.

【0005】[0005]

【発明が解決しようとする課題】従来、かかる電動過給
機の故障判定は以下のような手法で行われていた。即
ち、内燃機関の回転数、吸入空気量(あるいは吸気負
圧)、吸気温度等に基づいて目標過給圧Pobjを算出
し、この目標吸気圧Pobjと過給圧検出手段で検出し
た実際の過給圧Pchとの偏差の絶対値が所定の閾値を
越えた場合に電動過給機の故障判定を行っていた。
Conventionally, the failure judgment of such an electric supercharger has been performed by the following method. That is, the target supercharging pressure Pobj is calculated based on the rotation speed of the internal combustion engine, the intake air amount (or the intake negative pressure), the intake air temperature, and the like, and the actual supercharging pressure detected by the target intake pressure Pobj and the supercharging pressure detection means. When the absolute value of the deviation from the supply pressure Pch exceeds a predetermined threshold value, the failure of the electric supercharger is determined.

【0006】しかしながら、上記従来の手法は電動過給
機の過給圧のみに基づいて故障判定を行っているため、
その検出精度が不充分であった。例えば、エアーポンプ
の下流の吸気管が閉塞したような故障の場合、過給圧を
逃がすリリーフバルブが開弁するために過給圧は上昇せ
ず、故障を精度良く検出することができなかった。また
故障検出精度が低いために故障後の保護が難しく、その
ために電気モータ、エアーポンプあるいは内燃機関が損
傷する可能性があった。
However, in the above-described conventional method, the failure is determined based only on the supercharging pressure of the electric turbocharger.
The detection accuracy was insufficient. For example, in the case of a failure in which the intake pipe downstream of the air pump is blocked, the boost pressure does not increase because the relief valve that releases the boost pressure opens, and the failure could not be detected accurately. . In addition, protection after a failure is difficult due to low failure detection accuracy, which may damage an electric motor, an air pump, or an internal combustion engine.

【0007】本発明は前述の事情に鑑みてなされたもの
で、電動過給機の故障検出を精度良く行うことを目的と
する。
The present invention has been made in view of the above circumstances, and has as its object to accurately detect a failure of an electric turbocharger.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載された発明によれば、電気モータに
より駆動されるエアーポンプで内燃機関を過給する電動
過給機の故障検出装置であって、電気モータの電流を検
出する電流検出手段と、電気モータの電圧を検出する電
圧検出手段と、電流検出手段で検出した電流および電圧
検出手段で検出した電圧に基づいて電気モータの回転数
を算出する回転数算出手段と、回転数算出手段で算出し
た回転数が閾値を越えた場合に故障を判定する故障判定
手段とを備えたことを特徴とする電動過給機の故障検出
装置が提案される。
According to the first aspect of the present invention, there is provided an electric supercharger for supercharging an internal combustion engine with an air pump driven by an electric motor. A detection device, comprising: current detection means for detecting a current of an electric motor; voltage detection means for detecting a voltage of the electric motor; and an electric motor based on the current detected by the current detection means and the voltage detected by the voltage detection means. The electric turbocharger comprises: a rotational speed calculating means for calculating the rotational speed of the motor; and a failure determining means for determining a failure when the rotational speed calculated by the rotational speed calculating means exceeds a threshold value. A detection device is proposed.

【0009】また請求項2に記載された発明によれば、
電気モータにより駆動されるエアーポンプで内燃機関を
過給する電動過給機の故障検知装置であって、電気モー
タの電流を検出する電流検出手段と、電気モータの電圧
を検出する電圧検出手段と、電流検出手段で検出した電
流および電圧検出手段で検出した電圧に基づいて電気モ
ータの回転数を算出する回転数算出手段と、内燃機関の
過給圧を検出する過給圧検出手段と、回転数算出手段で
算出した回転数が閾値を越えた場合、ならびに前記回転
数が前記閾値を越えず、かつ過給圧検出手段で検出した
過給圧が閾値を越えた場合に故障を判定する故障判定手
段とを備えたことを特徴とする電動過給機の故障検出装
置が提案される。
According to the invention described in claim 2,
An electric turbocharger failure detection device that supercharges an internal combustion engine with an air pump driven by an electric motor, wherein current detection means detects current of the electric motor, and voltage detection means detects voltage of the electric motor. Rotation speed calculation means for calculating the rotation speed of the electric motor based on the current detected by the current detection means and the voltage detected by the voltage detection means; a supercharging pressure detection means for detecting a supercharging pressure of the internal combustion engine; A failure to determine a failure when the rotation speed calculated by the number calculation means exceeds a threshold value, and when the rotation speed does not exceed the threshold value and the supercharging pressure detected by the supercharging pressure detection means exceeds the threshold value. A failure detection device for an electric supercharger, comprising: a determination unit;

【0010】上記構成によれば、エアーポンプを駆動す
る電気モータの回転数が閾値を越えた場合に故障を判定
するので、電気モータそのものの故障による回転数の増
減や、エアーポンプが故障して負荷が変化したことに伴
う電気モータの回転数の増減を検出して、電動過給機の
故障を正確に判定することができる。特に、請求項2の
発明の構成によれば、電気モータの回転数が閾値を越え
ない場合でも、過給圧が閾値を越えた場合に故障を判定
するので、故障判定の精度を一層高めることができる。
According to the above configuration, the failure is determined when the rotation speed of the electric motor driving the air pump exceeds the threshold value. Therefore, the rotation speed increases or decreases due to the failure of the electric motor itself, or the air pump fails. By detecting an increase or decrease in the number of revolutions of the electric motor due to a change in the load, it is possible to accurately determine a failure of the electric supercharger. In particular, according to the configuration of the second aspect of the present invention, even if the rotation speed of the electric motor does not exceed the threshold value, the failure is determined when the supercharging pressure exceeds the threshold value, so that the accuracy of the failure determination is further improved. Can be.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に示した本発明の実施例に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on embodiments of the present invention shown in the accompanying drawings.

【0012】図1〜図7は本発明の一実施例を示すもの
で、図1は電動過給機の制御系の全体構成図、図2は電
動過給機制御ルーチンのフローチャート、図3は故障判
定ルーチンのフローチャート、図4はエアーポンプの空
気流量Qch、電気モータの電流Imおよび電気モータ
の電圧Vmの関係を示すグラフ、図5はエアーポンプの
空気流量Qch、電気モータの補正電流Im′および電
気モータの電圧Vmの関係を示すグラフ、図6はエアー
ポンプの空気流量Qchおよび電気モータの回転数Nc
hの関係を示すグラフ、図7は電気モータの回転数Nc
hおよび過給圧Pchに応じて変化する各制御領域を説
明する図である。
FIGS. 1 to 7 show an embodiment of the present invention. FIG. 1 is an overall configuration diagram of a control system of an electric supercharger, FIG. 2 is a flowchart of an electric supercharger control routine, and FIG. 4 is a graph showing the relationship between the air flow rate Qch of the air pump, the current Im of the electric motor, and the voltage Vm of the electric motor. FIG. 5 is a flowchart showing the air flow rate Qch of the air pump and the correction current Im 'of the electric motor. FIG. 6 is a graph showing the relationship between the electric motor voltage Vm and the air flow rate Qch of the air pump and the rotational speed Nc of the electric motor.
h is a graph showing the relationship of h, FIG.
FIG. 4 is a diagram illustrating each control region that changes according to h and a supercharging pressure Pch.

【0013】図1に示すように、内燃機関Eの燃焼室1
1に連なる吸気ポート12から吸気通路13が延びてお
り、この吸気通路13にエアーポンプ14およびインタ
ークーラー15が直列に配置される。エアーポンプ14
はルーツポンプやスクリューポンプから構成されるもの
で、電気モータ16に接続されて回転駆動される。イン
タークーラー15の下流位置とエアーポンプ14の上流
位置とがリリーフ通路17で接続されており、このリリ
ーフ通路17に電動リリーフバルブ18が配置される。
As shown in FIG. 1, a combustion chamber 1 of an internal combustion engine E is provided.
An intake passage 13 extends from an intake port 12 connected to the air passage 1, and an air pump 14 and an intercooler 15 are arranged in series in the intake passage 13. Air pump 14
Is composed of a roots pump or a screw pump, and is connected to the electric motor 16 and driven to rotate. The downstream position of the intercooler 15 and the upstream position of the air pump 14 are connected by a relief passage 17, and an electric relief valve 18 is arranged in the relief passage 17.

【0014】電気モータ16と42ボルトのバッテリ1
9との間に、該電気モータ16への通電を制御するモー
タドライバー20が配置される。電気モータ16の電流
Imを検出する電流検出手段Saと、電気モータ16の
電圧Vmを検出する電圧検出手段Sbと、吸気ポート1
2の過給圧Pchを検出する過給圧検出手段Scと、内
燃機関回転数Neを検出する内燃機関回転数検出手段S
dと、吸入空気量Qを検出する吸入空気量検出手段Se
と、大気温Taを検出する大気温検出手段Sfと、大気
圧Paを検出する大気圧検出手段Sgとが電子制御ユニ
ットUに接続される。
Electric motor 16 and 42 volt battery 1
9, a motor driver 20 for controlling the energization of the electric motor 16 is arranged. A current detecting means Sa for detecting a current Im of the electric motor 16; a voltage detecting means Sb for detecting a voltage Vm of the electric motor 16;
Pressure detecting means Sc for detecting the supercharging pressure Pch of the second engine and internal combustion engine speed detecting means S for detecting the internal combustion engine speed Ne
d and an intake air amount detecting means Se for detecting an intake air amount Q.
The atmospheric temperature detecting means Sf for detecting the atmospheric temperature Ta and the atmospheric pressure detecting means Sg for detecting the atmospheric pressure Pa are connected to the electronic control unit U.

【0015】電子制御ユニットUは前記電流Im、電圧
Vm、過給圧Pch、内燃機関回転数Ne、吸入空気量
Q、大気温Taおよび大気圧Paに基づいて、適切な過
給圧を得るべく電気モータ16および電動リリーフバル
ブ18の作動を制御する。また電子制御ユニットUは電
気モータ16の回転数Nch(つまりエアーポンプ14
の回転数)を算出する回転数算出手段M1と、電気モー
タ16の回転数Nchに基づいて電動過給機の故障を判
定する故障判定手段M2とを備えており、電動過給機の
故障が判定される電気モータ16への通電を停止すると
ともに電動リリーフバルブ18を閉弁し、かつ警告灯2
1を点灯する。
The electronic control unit U obtains an appropriate supercharging pressure based on the current Im, the voltage Vm, the supercharging pressure Pch, the internal combustion engine speed Ne, the intake air amount Q, the atmospheric temperature Ta, and the atmospheric pressure Pa. The operation of the electric motor 16 and the electric relief valve 18 is controlled. In addition, the electronic control unit U controls the rotation speed Nch of the electric motor 16 (that is, the air pump 14).
And a failure determination means M2 for determining a failure of the electric supercharger based on the rotation speed Nch of the electric motor 16. The energization of the determined electric motor 16 is stopped, the electric relief valve 18 is closed, and the warning light 2
1 is turned on.

【0016】次に、電子制御ユニットUによる電気モー
タ16および電動リリーフバルブ18の制御を、図2の
フローチャートに基づいて説明する。
Next, control of the electric motor 16 and the electric relief valve 18 by the electronic control unit U will be described with reference to the flowchart of FIG.

【0017】先ず、ステップS1で、内燃機関Eの運転
条件および大気条件を検出する。運転条件は内燃機関回
転数Neおよび吸入空気量Qであって、それぞれ内燃機
関回転数検出手段Sdおよび吸入空気量検出手段Seに
より検出される。大気条件は大気温Taおよび大気圧P
aであって、それぞれ大気温検出手段Sfおよび大気圧
検出手段Sgによって検出される。続くステップS2
で、前記運転条件および大気条件に基づいて目標過給圧
Pobjおよび電気モータ16の目標回転数Nobjを
マップ検索する。続くステップS3で、過給圧検出手段
Scにより実際の過給圧Pchを検出する。続くステッ
プS4で、電流検出手段Saにより電気モータ16の電
流Imを検出するとともに、電圧検出手段Sbにより電
気モータ16の電圧Vmを検出する。そしてステップS
5で、電気モータ16の電流Imおよび電圧Vmに基づ
いて電気モータ16の回転数Nchを算出する。
First, in step S1, the operating condition and the atmospheric condition of the internal combustion engine E are detected. The operating conditions are the internal combustion engine speed Ne and the intake air amount Q, which are detected by the internal combustion engine speed detection means Sd and the intake air amount detection means Se, respectively. Atmospheric conditions are atmospheric temperature Ta and atmospheric pressure P
a, which is detected by the atmospheric temperature detecting means Sf and the atmospheric pressure detecting means Sg, respectively. Subsequent step S2
Then, a map search is performed for the target supercharging pressure Pobj and the target rotation speed Nobj of the electric motor 16 based on the operating conditions and the atmospheric conditions. In the following step S3, the actual boost pressure Pch is detected by the boost pressure detecting means Sc. In the following step S4, the current Im of the electric motor 16 is detected by the current detecting means Sa, and the voltage Vm of the electric motor 16 is detected by the voltage detecting means Sb. And step S
In step 5, the number of rotations Nch of the electric motor 16 is calculated based on the current Im and the voltage Vm of the electric motor 16.

【0018】図4は、エアーポンプ14の空気流量Qc
h、電流検出手段Saで検出した電気モータ16の電流
Imと、電圧検出手段Sbで検出した電気モータ16の
電圧Vmとの関係を示すものである。バッテリ19の電
圧(基準値で42ボルト)の変動等によって電気モータ
16の電圧Vmが増加すると電流Imが増加し、逆に電
圧Vmが減少すると電流Imが減少する。また電流Im
は空気流量Qchの増加に伴ってリニアに減少する。そ
して電圧Vmが変動しても、空気流量Qchの増加に伴
う電流Imの減少率(傾き)は一定であり、縦軸(電流
Im軸)の切片だけが変化する。
FIG. 4 shows the air flow rate Qc of the air pump 14.
h, the relationship between the current Im of the electric motor 16 detected by the current detecting means Sa and the voltage Vm of the electric motor 16 detected by the voltage detecting means Sb. The current Im increases when the voltage Vm of the electric motor 16 increases due to fluctuations in the voltage of the battery 19 (42 volts as a reference value), and conversely, the current Im decreases when the voltage Vm decreases. The current Im
Decreases linearly with an increase in the air flow rate Qch. Even if the voltage Vm fluctuates, the decreasing rate (gradient) of the current Im with the increase in the air flow rate Qch is constant, and only the intercept of the vertical axis (current Im axis) changes.

【0019】従って、電圧Vmが基準値の42ボルトで
あるとき、電気モータ16の電流Imとエアーポンプ1
4の空気流量Qchとの関係を示す特性ラインは、 Im=−a・Qch+b …(1) で表される。ここでa,bは電動過給機の特性に応じて
定まる定数であって、aは特性ラインの傾き、bは特性
ラインの縦軸切片である。エアーポンプ14の空気流量
Qchと電気モータ16の回転数Nchとは、図6に示
すような比例関係にあるため、上記(1)式に電流検出
手段Saで検出した電流Imを代入することにより空気
流量Qchを算出し、この空気流量Qchを図6のマッ
プに適用して電気モータ16の回転数Nchを算出する
ことができる。しかしながら、上記(1)式は電圧Vm
が基準値の42ボルトである場合のみに成立するもの
で、電圧Vmが基準値の42ボルトから変動した場合に
は成立しないものである。
Therefore, when the voltage Vm is the reference value of 42 volts, the current Im of the electric motor 16 and the air pump 1
The characteristic line indicating the relationship with the air flow rate Qch of No. 4 is represented by Im = −a · Qch + b (1). Here, a and b are constants determined according to the characteristics of the electric supercharger, a is the inclination of the characteristic line, and b is the vertical axis intercept of the characteristic line. Since the air flow rate Qch of the air pump 14 and the rotational speed Nch of the electric motor 16 are in a proportional relationship as shown in FIG. 6, by substituting the current Im detected by the current detecting means Sa into the above equation (1). The air flow rate Qch is calculated, and the rotation rate Nch of the electric motor 16 can be calculated by applying the air flow rate Qch to the map of FIG. However, the above equation (1) indicates that the voltage Vm
Is true only when the reference value is 42 volts, and not when the voltage Vm fluctuates from the reference value of 42 volts.

【0020】そこで、図4で説明した関係、つまり電圧
Vmが変化しても特性ラインの傾きaは変化せずに縦軸
切片bだけが変化する関係に着目し、電圧Vmが基準値
の42ボルトから外れたときの電流Imを、電圧Vmが
基準値の42ボルトの場合に相当する補正電流Im′に
変換する。即ち、補正電流Im′は、上記(1)式の縦
軸切片bを(42・b/Vm)に置き換えたもので、 Im′=−a・Qch+(42・b/Vm) …(2) で与えられる。そして上記(1),(2)式から空気流
量Qchを消去すると、補正電流Im′は次式で与えら
れる。
Therefore, focusing on the relationship described with reference to FIG. 4, that is, the relationship in which even if the voltage Vm changes, the slope a of the characteristic line does not change and only the vertical axis intercept b changes, the voltage Vm is set to the reference value of 42. The current Im when deviated from volts is converted into a correction current Im 'corresponding to the case where the voltage Vm is 42 volts, which is the reference value. That is, the correction current Im ′ is obtained by replacing the vertical axis intercept b in the above equation (1) with (42 · b / Vm). Im ′ = − a · Qch + (42 · b / Vm) (2) Given by When the air flow rate Qch is eliminated from the above equations (1) and (2), the correction current Im 'is given by the following equation.

【0021】 Im′=Im+{(42/Vm)−1}・b …(3) 図5に示すように、上述のようにして算出された補正電
流Im′は、電圧Vmの変動に関わらず、図4における
電圧Vm=42ボルトの特性ライン、つまり上記(1)
式で与えられる特性ライン上に良く乗っている。従っ
て、上記(1)式の電流Imに上記(3)式の補正電流
Im′を代入すれば、a,bが電動過給機の特性に応じ
て定まる定数であることから、バッテリ電圧の変動を補
償してエアーポンプ14の空気流量Qchを正確に算出
することができる。そして前記空気流量Qchを図6の
マップに適用することにより、特別の回転数検出手段を
設けることなく電気モータ16の回転数Nchを算出す
ることができる。
Im ′ = Im + {(42 / Vm) −1} · b (3) As shown in FIG. 5, the correction current Im ′ calculated as described above is independent of the fluctuation of the voltage Vm. 4, the characteristic line of the voltage Vm = 42 volts, that is, (1)
It rides well on the characteristic line given by the equation. Therefore, if the correction current Im ′ in the above equation (3) is substituted for the current Im in the above equation (1), a and b are constants determined according to the characteristics of the electric supercharger. And the air flow rate Qch of the air pump 14 can be accurately calculated. Then, by applying the air flow rate Qch to the map shown in FIG. 6, the rotation speed Nch of the electric motor 16 can be calculated without providing a special rotation speed detection means.

【0022】以上のようにして、前記ステップS5で電
気モータ16の回転数Nchが算出されると、ステップ
S6で、電気モータ16の回転数Nchを前記目標回転
数Nobjと比較する。その結果、αを後述するγより
も小さい正の定数として、Nobj−α≦Nch≦No
bj+αが成立し、電気モータ16の回転数Nchおよ
び目標回転数Nobjの偏差の絶対値がα以下であれ
ば、ステップS7に移行する。ステップS7で、過給圧
検出手段Scで検出した過給圧Pchを前記目標過給圧
Pobjと比較する。その結果、βを後述するδよりも
小さい正の定数として、Pobj−β≦Pch≦Pob
j+βが成立し、過給圧Pchおよび目標回転数Pob
jの偏差の絶対値がβ以下であれば、電気モータ16へ
の供給電力および電動リリーフバルブ18の開度をその
まま保持する。
After the rotation speed Nch of the electric motor 16 is calculated in step S5 as described above, the rotation speed Nch of the electric motor 16 is compared with the target rotation speed Nobj in step S6. As a result, when α is a positive constant smaller than γ described later, Nobj−α ≦ Nch ≦ No
If bj + α is satisfied and the absolute value of the deviation between the rotation speed Nch of the electric motor 16 and the target rotation speed Nobj is equal to or less than α, the process proceeds to step S7. In step S7, the supercharging pressure Pch detected by the supercharging pressure detecting means Sc is compared with the target supercharging pressure Pobj. As a result, β is a positive constant smaller than δ described later, and Pobj-β ≦ Pch ≦ Pob
j + β holds, and the supercharging pressure Pch and the target rotational speed Pob
If the absolute value of the deviation of j is equal to or smaller than β, the power supplied to the electric motor 16 and the opening of the electric relief valve 18 are maintained as they are.

【0023】一方、前記ステップS6の答えがNOであ
ってNobj−α≦Nch≦Nobj+αが成立せず、
かつステップS8で、Nch>Nobj+αが成立すれ
ば、つまり電気モータ16の回転数Nchが目標回転数
Nobj+αを越えていれば、ステップS9で、モータ
ドライバー20を介して電気モータ16の供給電力を低
減する。逆に、前記ステップS8で、Nch>Nobj
+αが成立しなければ、つまり電気モータ16の回転数
Nchが目標回転数Nobj−α未満であれば、ステッ
プS10で、モータドライバー20を介して電気モータ
16の供給電力を増加する。このように電気モータ16
の回転数Nchおよび目標回転数Nobjの偏差を減少
させる方向に電気モータ16の供給電力を制御すること
により、電気モータ16の回転数Nchを目標回転数N
objに的確に収束させることができる。
On the other hand, the answer to step S6 is NO, and Nobj-α≤Nch≤Nobj + α is not satisfied,
If Nch> Nobj + α is satisfied in step S8, that is, if the rotation speed Nch of the electric motor 16 exceeds the target rotation speed Nobj + α, the power supplied to the electric motor 16 is reduced via the motor driver 20 in step S9. I do. Conversely, in step S8, Nch> Nobj
If + α is not satisfied, that is, if the rotation speed Nch of the electric motor 16 is less than the target rotation speed Nobj-α, the power supplied to the electric motor 16 is increased via the motor driver 20 in step S10. Thus, the electric motor 16
By controlling the power supplied to the electric motor 16 in a direction to reduce the deviation between the rotation speed Nch of the motor and the target rotation speed Nobj, the rotation speed Nch of the electric motor
obj can be accurately converged.

【0024】また、前記ステップS7の答えがNOであ
ってPobj−β≦Pch≦Pobj+βが成立せず、
かつステップS11で、Pch>Pobj+βが成立す
れば、つまり過給圧Pchが目標過給圧Pobj+βを
越えていれば、ステップS12で、電動リリーフ弁18
を開弁方向に制御する。逆に、前記ステップS11で、
Pch>Pobj+βが成立しなければ、つまり過給圧
Pchが目標過給圧Pobj−β未満であれば、ステッ
プS13で、電動リリーフバルブ18の開度を減少方向
に制御する。このように過給圧Pchおよび目標過給圧
Pobjの偏差を減少させる方向に電動リリーフバルブ
18の開度を制御することにより、過給圧Pchを目標
過給圧Pobjに的確に収束させることができる。
If the answer in step S7 is NO and Pobj-β≤Pch≤Pobj + β is not satisfied,
If Pch> Pobj + β is satisfied in step S11, that is, if the supercharging pressure Pch exceeds the target supercharging pressure Pobj + β, in step S12, the electric relief valve 18
Is controlled in the valve opening direction. Conversely, in step S11,
If Pch> Pobj + β is not satisfied, that is, if the supercharging pressure Pch is less than the target supercharging pressure Pobj−β, the opening of the electric relief valve 18 is controlled to decrease in step S13. By controlling the opening of the electric relief valve 18 in such a manner as to reduce the deviation between the supercharging pressure Pch and the target supercharging pressure Pobj, the supercharging pressure Pch can be accurately converged to the target supercharging pressure Pobj. it can.

【0025】次に、電子制御ユニットUによる電動過給
機の故障判定を、図2のフローチャートに基づいて説明
する。
Next, the failure judgment of the electric supercharger by the electronic control unit U will be described with reference to the flowchart of FIG.

【0026】図3のフローチャートのステップS21〜
S25の内容は、図2のフローチャートのステップS1
〜S5の内容と同一である。ステップS25で、電気モ
ータ16の回転数Nchが算出されると、ステップS2
6で、電気モータ16の回転数Nchを前記目標回転数
Nobjと比較する。その結果、γを前記αよりも大き
いを正の定数(γ>α)として、Nobj−γ≦Nch
≦Nobj+γが成立し、電気モータ16の回転数Nc
hおよび目標回転数Nobjの偏差の絶対値がα以下で
あれば、ステップS27に移行する。ステップS27
で、過給圧検出手段Scで検出した過給圧Pchを前記
目標過給圧Pobjと比較する。その結果、δを前記β
よりも大きい正の定数(δ>β)として、Pobj−δ
≦Pch≦Pobj+δが成立し、過給圧Pchおよび
目標回転数Pobjの偏差の絶対値がβ以下であれば、
エアーポンプ14および電気モータ16が正常であると
判定する。
Steps S21 to S21 in the flowchart of FIG.
The contents of S25 are the same as those in step S1 of the flowchart of FIG.
To S5. When the rotation speed Nch of the electric motor 16 is calculated in step S25, step S2
In step 6, the rotation speed Nch of the electric motor 16 is compared with the target rotation speed Nobj. As a result, assuming that γ is larger than α as a positive constant (γ> α), Nobj−γ ≦ Nch
≦ Nobj + γ holds, and the rotational speed Nc of the electric motor 16
If the absolute value of the deviation between h and the target rotational speed Nobj is equal to or smaller than α, the process proceeds to step S27. Step S27
Then, the supercharging pressure Pch detected by the supercharging pressure detecting means Sc is compared with the target supercharging pressure Pobj. As a result, δ is changed to β
As a positive constant (δ> β) greater than
≦ Pch ≦ Pobj + δ is satisfied, and if the absolute value of the deviation between the supercharging pressure Pch and the target rotational speed Pobj is equal to or smaller than β,
It is determined that the air pump 14 and the electric motor 16 are normal.

【0027】一方、前記ステップS26の答えがNOで
あってNobj−γ≦Nch≦Nobj+γが成立しな
い場合には、つまり電気モータ16の回転数Nchが目
標回転数Nobj+γを上回るか、目標回転数Nobj
−γを下回れば、ステップS28で、エアーポンプ14
および電気モータ16の少なくとも一方が故障したとと
判定して電気モータ16に対する給電を中止するととも
に、電動リリーフバルブ18を閉弁状態に保持する。そ
してステップS29で警告灯21を点灯してドライバー
に故障の発生を報知する。
On the other hand, if the answer to step S26 is NO and Nobj-γ≤Nch≤Nobj + γ is not satisfied, that is, the rotational speed Nch of the electric motor 16 exceeds the target rotational speed Nobj + γ, or the target rotational speed Nobj
If the difference is smaller than −γ, in step S28, the air pump 14
In addition, it is determined that at least one of the electric motors 16 has failed, and the power supply to the electric motors 16 is stopped, and the electric relief valve 18 is kept closed. Then, in step S29, the warning lamp 21 is turned on to notify the driver of the occurrence of the failure.

【0028】また、前記ステップS27の答えがNOで
あってPobj−δ≦Pch≦Pobj+δが成立しな
い場合には、つまり過給圧Pchが目標過給圧Pobj
+γを上回るか、目標過給圧Pobj−γを下回れば、
ステップS28で、エアーポンプ14および電気モータ
16の少なくとも一方が故障したとと判定して電気モー
タ16に対する給電を中止するとともに、電動リリーフ
バルブ18を閉弁状態に保持する。そしてステップS2
9で警告灯21を点灯してドライバーに故障の発生を報
知する。
If the answer in step S27 is NO and Pobj-δ≤Pch≤Pobj + δ does not hold, that is, if the supercharging pressure Pch is equal to the target supercharging pressure Pobj
+ Γ or below the target boost pressure Pobj-γ,
In step S28, it is determined that at least one of the air pump 14 and the electric motor 16 has failed, the power supply to the electric motor 16 is stopped, and the electric relief valve 18 is kept closed. And step S2
In step 9, the warning lamp 21 is turned on to notify the driver of the occurrence of the failure.

【0029】図7(A)には、電気モータ16の回転数
Nchに応じて変化する、電気モータ16の通電電力を
保持する領域、電気モータ16の通電電力を増減する領
域および故障判定領域が示されており、図7(b)に
は、過給圧Nchに応じて変化する、電動リリーフバル
ブ18の開度を保持する領域、電動リリーフバルブ18
の開度を増減する領域および故障判定領域が示されてい
る。
FIG. 7 (A) shows an area for holding the electric power of the electric motor 16, an area for increasing / decreasing the electric power of the electric motor 16, and a failure determination area, which change according to the rotation speed Nch of the electric motor 16. FIG. 7B shows a region where the opening degree of the electric relief valve 18 is maintained, which varies according to the supercharging pressure Nch, and the electric relief valve 18.
3 shows a region in which the opening degree is increased / decreased and a failure determination region.

【0030】以上のように、電気モータ16の回転数N
ch、つまりエアーポンプ14の回転数を目標回転数N
objと比較するので、電気モータ16そのものの故障
による回転数Nchの増減や、エアーポンプ14が故障
して負荷が変化したことに伴う回転数Nchの増減を検
出し、電動過給機の故障を精度良く判定することができ
る。しかも過給圧Pchを目標過給圧Pobjと比較す
ることにより、電動過給機の故障を更に精度良く判定す
ることができ、これによりエアーポンプ14および電気
モータ16を含む電動過給機あるいは内燃機関Eの損傷
を未然に防止することができる。
As described above, the rotational speed N of the electric motor 16
ch, that is, the rotation speed of the air pump 14 is set to the target rotation speed N.
obj, the increase or decrease in the number of revolutions Nch due to the failure of the electric motor 16 itself or the increase or decrease in the number of revolutions Nch due to the load change due to the failure of the air pump 14 are detected. The determination can be made with high accuracy. In addition, by comparing the supercharging pressure Pch with the target supercharging pressure Pobj, it is possible to determine the failure of the electric supercharger with higher accuracy, whereby the electric supercharger including the air pump 14 and the electric motor 16 or the internal combustion engine can be determined. Damage to the engine E can be prevented beforehand.

【0031】以上、本発明の実施例を説明したが、本発
明はその要旨を逸脱しない範囲で種々の設計変更を行う
ことが可能である。
Although the embodiment of the present invention has been described above, various design changes can be made in the present invention without departing from the gist thereof.

【0032】例えば、図3のフローチャートにおいて、
ステップS27を省略し、電気モータ16の回転数Nc
hだけに基づいて故障判定を行っても、充分な精度で故
障判定を行うことができる。
For example, in the flowchart of FIG.
Step S27 is omitted, and the rotation speed Nc of the electric motor 16 is omitted.
Even if the failure determination is performed based only on h, the failure determination can be performed with sufficient accuracy.

【0033】[0033]

【発明の効果】以上のように請求項1に記載された発明
によれば、エアーポンプを駆動する電気モータの回転数
が閾値を越えた場合に故障を判定するので、電気モータ
そのものの故障による回転数の増減や、エアーポンプが
故障して負荷が変化したことに伴う電気モータの回転数
の増減を検出して、電動過給機の故障を正確に判定する
ことができる。特に、請求項2の発明の構成によれば、
電気モータの回転数が閾値を越えない場合でも、過給圧
が閾値を越えた場合に故障を判定するので、故障判定の
精度を一層高めることができる。
As described above, according to the first aspect of the present invention, when the rotation speed of the electric motor driving the air pump exceeds the threshold value, the failure is determined. The failure of the electric turbocharger can be accurately determined by detecting an increase or decrease in the number of revolutions or an increase or decrease in the number of revolutions of the electric motor due to a change in load due to a failure of the air pump. In particular, according to the configuration of the invention of claim 2,
Even if the rotation speed of the electric motor does not exceed the threshold value, the failure is determined when the supercharging pressure exceeds the threshold value, so that the accuracy of the failure determination can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電動過給機の制御系の全体構成図FIG. 1 is an overall configuration diagram of a control system of an electric supercharger.

【図2】電動過給機制御ルーチンのフローチャートFIG. 2 is a flowchart of an electric supercharger control routine.

【図3】故障判定ルーチンのフローチャートFIG. 3 is a flowchart of a failure determination routine.

【図4】エアーポンプの空気流量Qch、電気モータの
電流Imおよび電気モータの電圧Vmの関係を示すグラ
FIG. 4 is a graph showing a relationship between an air flow rate Qch of an air pump, a current Im of an electric motor, and a voltage Vm of the electric motor.

【図5】エアーポンプの空気流量Qch、電気モータの
補正電流Im′および電気モータの電圧Vmの関係を示
すグラフ
FIG. 5 is a graph showing a relationship between an air flow rate Qch of an air pump, a correction current Im ′ of an electric motor, and a voltage Vm of the electric motor.

【図6】エアーポンプの空気流量Qchおよび電気モー
タの回転数Nchの関係を示すグラフ
FIG. 6 is a graph showing the relationship between the air flow rate Qch of the air pump and the rotation speed Nch of the electric motor.

【図7】電気モータの回転数Nchおよび過給圧Pch
に応じて変化する各制御領域を説明する図
FIG. 7 shows the rotational speed Nch and the supercharging pressure Pch of the electric motor.
To explain each control area that changes according to

【符号の説明】[Explanation of symbols]

14 エアーポンプ 16 電気モータ E 内燃機関 Im 電気モータの電流 M1 回転数算出手段 M2 故障判定手段 Nch 電気モータの回転数 Nobj±γ 閾値 Pch 過給圧 Pobj±δ 閾値 Sa 電流検出手段 Sb 電圧検出手段 Sc 過給圧検出手段 Vm 電気モータの電圧 14 Air pump 16 Electric motor E Internal combustion engine Im Electric motor current M1 Revolution speed calculation means M2 Failure determination means Nch Revolution speed of electric motor Nobj ± γ threshold value Pch Supercharging pressure Poj ± δ threshold value Sa Current detection means Sb Voltage detection means Sc Supercharging pressure detection means Vm Electric motor voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気モータ(16)により駆動されるエ
アーポンプ(14)で内燃機関(E)を過給する電動過
給機の故障検出装置であって、 電気モータ(16)の電流(Im)を検出する電流検出
手段(Sa)と、 電気モータ(16)の電圧(Vm)を検出する電圧検出
手段(Sb)と、 電流検出手段(Sa)で検出した電流(Im)および電
圧検出手段(Sb)で検出した電圧(Vm)に基づいて
電気モータ(16)の回転数(Nch)を算出する回転
数算出手段(M1)と、 回転数算出手段(M1)で算出した回転数(Nch)が
閾値(Nobj±γ)を越えた場合に故障を判定する故
障判定手段(M2)と、を備えたことを特徴とする電動
過給機の故障検出装置。
1. A failure detection device for an electric supercharger in which an internal combustion engine (E) is supercharged by an air pump (14) driven by an electric motor (16), wherein a current (Im) of the electric motor (16) is ), Voltage detection means (Sb) for detecting the voltage (Vm) of the electric motor (16), current (Im) and voltage detection means detected by the current detection means (Sa) A rotation speed calculating means (M1) for calculating the rotation speed (Nch) of the electric motor (16) based on the voltage (Vm) detected in (Sb); and a rotation speed (Nch) calculated by the rotation speed calculation means (M1). ) Exceeds a threshold value (Nobj ± γ), and a failure determination means (M2) for determining a failure.
【請求項2】 電気モータ(16)により駆動されるエ
アーポンプ(14)で内燃機関(E)を過給する電動過
給機の故障検知装置であって、 電気モータ(16)の電流(Im)を検出する電流検出
手段(Sa)と、 電気モータ(16)の電圧(Vm)を検出する電圧検出
手段(Sb)と、 電流検出手段(Sa)で検出した電流(Im)および電
圧検出手段(Sb)で検出した電圧(Vm)に基づいて
電気モータ(16)の回転数(Nch)を算出する回転
数算出手段(M1)と、 内燃機関(E)の過給圧(Pch)を検出する過給圧検
出手段(Sc)と、 回転数算出手段(M1)で算出した回転数(Nch)が
閾値(Nobj±γ)を越えた場合、ならびに前記回転
数(Nch)が前記閾値(Nobj±γ)を越えず、か
つ過給圧検出手段(Sc)で検出した過給圧(Pch)
が閾値(Pobj±δ)を越えた場合に故障を判定する
故障判定手段(M2)と、を備えたことを特徴とする電
動過給機の故障検出装置。
2. A failure detecting device for an electric supercharger for supercharging an internal combustion engine (E) by an air pump (14) driven by an electric motor (16), wherein the current (Im) of the electric motor (16) is ), Voltage detection means (Sb) for detecting the voltage (Vm) of the electric motor (16), current (Im) and voltage detection means detected by the current detection means (Sa) A rotational speed calculating means (M1) for calculating a rotational speed (Nch) of the electric motor (16) based on the voltage (Vm) detected in (Sb); and a supercharging pressure (Pch) of the internal combustion engine (E). If the rotation speed (Nch) calculated by the supercharging pressure detection means (Sc) and the rotation speed calculation means (M1) exceeds a threshold value (Nobj ± γ), and if the rotation speed (Nch) is equal to the threshold value (Nobj) ± γ) and boost pressure detection means Boost pressure detected by sc) (Pch)
And a failure determining means (M2) for determining a failure when the value exceeds a threshold value (Pobj ± δ).
JP30800999A 1999-10-29 1999-10-29 Fault detecting device for electrical supercharger Pending JP2001123844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30800999A JP2001123844A (en) 1999-10-29 1999-10-29 Fault detecting device for electrical supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30800999A JP2001123844A (en) 1999-10-29 1999-10-29 Fault detecting device for electrical supercharger

Publications (1)

Publication Number Publication Date
JP2001123844A true JP2001123844A (en) 2001-05-08

Family

ID=17975804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30800999A Pending JP2001123844A (en) 1999-10-29 1999-10-29 Fault detecting device for electrical supercharger

Country Status (1)

Country Link
JP (1) JP2001123844A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342895A2 (en) * 2002-01-21 2003-09-10 Siemens Aktiengesellschaft Method for diagnosing an electrically driven compressor
FR2851610A1 (en) 2003-02-20 2004-08-27 Bosch Gmbh Robert Internal combustion engine managing method, involves comparing measured real pressure ratio on compressors with preset value for detecting fault, and controlling compressors in definite manner for diagnosis of compression
JP2007002687A (en) * 2005-06-21 2007-01-11 Toyota Motor Corp Control device for internal combustion engine having supercharger with motor
JP2008051049A (en) * 2006-08-28 2008-03-06 Mazda Motor Corp Supercharger of engine
JP2011157875A (en) * 2010-02-01 2011-08-18 Mitsubishi Electric Corp Control device for electric supercharger
JP2013072301A (en) * 2011-09-27 2013-04-22 Mitsubishi Electric Corp Device and method for sensing failure in motor-driven supercharger

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342895A3 (en) * 2002-01-21 2005-03-30 Siemens Aktiengesellschaft Method for diagnosing an electrically driven compressor
DE10202111B4 (en) * 2002-01-21 2006-02-02 Siemens Ag Method for diagnosing an electrically driven compressor
EP1342895A2 (en) * 2002-01-21 2003-09-10 Siemens Aktiengesellschaft Method for diagnosing an electrically driven compressor
DE10307132B4 (en) 2003-02-20 2021-09-23 Robert Bosch Gmbh Method for operating an internal combustion engine
FR2851610A1 (en) 2003-02-20 2004-08-27 Bosch Gmbh Robert Internal combustion engine managing method, involves comparing measured real pressure ratio on compressors with preset value for detecting fault, and controlling compressors in definite manner for diagnosis of compression
US7251989B2 (en) 2003-02-20 2007-08-07 Robert Bosch Gmbh Method and device for operating an internal combustion engine
JP2007002687A (en) * 2005-06-21 2007-01-11 Toyota Motor Corp Control device for internal combustion engine having supercharger with motor
US7793500B2 (en) 2005-06-21 2010-09-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine having motor-driven supercharger
JP4595701B2 (en) * 2005-06-21 2010-12-08 トヨタ自動車株式会社 Control device for internal combustion engine having supercharger with electric motor
JP2008051049A (en) * 2006-08-28 2008-03-06 Mazda Motor Corp Supercharger of engine
US8033272B2 (en) 2006-08-28 2011-10-11 Mazda Motor Corporation Method of diagnosing electrically driven supercharger
JP4743045B2 (en) * 2006-08-28 2011-08-10 マツダ株式会社 Engine supercharger
JP2011157875A (en) * 2010-02-01 2011-08-18 Mitsubishi Electric Corp Control device for electric supercharger
JP2013072301A (en) * 2011-09-27 2013-04-22 Mitsubishi Electric Corp Device and method for sensing failure in motor-driven supercharger

Similar Documents

Publication Publication Date Title
EP1391595B1 (en) Supercharger for internal combustion engine
JP4544106B2 (en) Engine supercharger
US7047740B2 (en) Boost pressure estimation apparatus for internal combustion engine with supercharger
US6922995B2 (en) Supercharging device for internal combustion engine
EP1460247B1 (en) Control apparatus and control method for internal combustion engine
US20060248889A1 (en) Apparatus and method of abnormality diagnosis for supercharging pressure control system
JP2004076741A (en) Control device for turbocharger and its method
JP2014047627A (en) Waste gate valve controlling device for internal combustion engine
JP3979294B2 (en) Multistage turbocharger controller
JP4601695B2 (en) Electric supercharger control device for internal combustion engine
JP3912131B2 (en) Supercharging pressure control device
JP2001123844A (en) Fault detecting device for electrical supercharger
US11707989B2 (en) Method for protecting an electric machine of a motor vehicle
JP2007291961A (en) Control device of internal combustion engine with centrifugal compressor
US6314733B1 (en) Control method
JP2004076659A (en) Supercharging device
JP2001132486A (en) Control device for supercharger
JP2004308646A (en) Controlling device of internal combustion engine
JP4518045B2 (en) Control device for an internal combustion engine with a supercharger
JP2005226501A (en) Control device for internal combustion engine having supercharger with electric motor
JP2001107797A (en) Intake air flow detecting device for diesel engine with supercharger
JP3988691B2 (en) Supercharger for internal combustion engine
JP2005042553A (en) Bypass valve controller of motor-operated supercharging mechanism
JPH086604B2 (en) Failure diagnosis method for sequential turbo engine
JP4229038B2 (en) Internal combustion engine supercharging system