JP2001122622A - Method of manufacturing zinc oxide super fine particle - Google Patents

Method of manufacturing zinc oxide super fine particle

Info

Publication number
JP2001122622A
JP2001122622A JP30567299A JP30567299A JP2001122622A JP 2001122622 A JP2001122622 A JP 2001122622A JP 30567299 A JP30567299 A JP 30567299A JP 30567299 A JP30567299 A JP 30567299A JP 2001122622 A JP2001122622 A JP 2001122622A
Authority
JP
Japan
Prior art keywords
cathode
zinc
anode
zinc oxide
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30567299A
Other languages
Japanese (ja)
Inventor
Akifumi Yamada
昌文 山田
Kazuo Hirota
一雄 広田
Chikafumi Tanaka
爾文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP30567299A priority Critical patent/JP2001122622A/en
Publication of JP2001122622A publication Critical patent/JP2001122622A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently manufacturing zinc oxide super fine particle with high purity. SOLUTION: The zinc oxide super fine particle is manufactured by separating an electrolytic cell with an ion exchange membrane to form an anode chamber and a cathode chamber, using the electrolytic cell formed by mounting metal zinc as an anode and a conductive body as a cathode, passing current between the anode and the cathode to elute metal zinc of the anode, moving zinc ion from the anodes side to the cathode side through the ion exchange membrane to deposit a zinc compound in the cathode chamber, cleaning the deposited zinc compound with alkali water and drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平均粒径100n
m以下の酸化亜鉛超微粒子を製造する方法に関するもの
である。
[0001] The present invention relates to a method for producing a resin having an average particle diameter of 100 n.
The present invention relates to a method for producing ultrafine zinc oxide particles of m or less.

【0002】[0002]

【従来の技術】従来、酸化亜鉛超微粒子の製造方法とし
ては、金属亜鉛を蒸気化しガスとを混合して接触酸化反
応させる方法(特開平1−286919号公報参照)や
噴霧熱分解法(特開平6−199502号公報参照)等
が知られている。
2. Description of the Related Art Conventionally, as a method for producing ultrafine zinc oxide particles, a method of vaporizing metallic zinc and mixing it with a gas to cause a catalytic oxidation reaction (see Japanese Patent Application Laid-Open No. 1-286919) and a spray pyrolysis method (see Japanese Patent Application Laid-Open No. 6-199502) is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
方法で酸化亜鉛超微粒子を製造した場合、操作性や生産
性に問題があった。すなわち、接触酸化反応させる方法
では、操作条件の自由度が低く蒸気と空気との接触酸化
反応における反応速度・反応率・生成粒子の大きさ及び
結晶性を制御するのが難しい。特に、超微粒子化するに
は、蒸気の濃度を極度に低く設定する必要があるため生
産性が低くなる。また、噴霧熱分解法では超微粒子を作
るには亜鉛の塩を含む噴霧液の濃度を低くする必要があ
るため、生成量が少なくなりエネルギー効率も良くな
い。さらに、化学反応を応用した方法では、出発物質が
不純物として生成物中に混入するという問題があった。
However, when ultrafine zinc oxide particles are produced by the above method, there are problems in operability and productivity. That is, in the method of the catalytic oxidation reaction, the degree of freedom of the operating conditions is low, and it is difficult to control the reaction rate, the reaction rate, the size and the crystallinity of the produced particles in the catalytic oxidation reaction between steam and air. In particular, in order to form ultrafine particles, it is necessary to set the vapor concentration extremely low, so that the productivity is reduced. Further, in the spray pyrolysis method, it is necessary to lower the concentration of a spray liquid containing a salt of zinc in order to produce ultrafine particles, so that the amount of generation is small and the energy efficiency is not good. Furthermore, the method using a chemical reaction has a problem that a starting material is mixed into a product as an impurity.

【0004】本発明は、酸化亜鉛超微粒子を効率良く、
かつ高純度で製造する方法を提供することを目的とする
ものである。
According to the present invention, ultrafine zinc oxide particles are efficiently produced,
It is another object of the present invention to provide a method for producing a high-purity product.

【0005】[0005]

【課題を解決するための手段】本発明者らは、このよう
な課題を解決するために鋭意検討の結果、イオン交換膜
を用いた電解法において、陽極には酸化亜鉛超微粒子の
原料となる金属亜鉛を用い、陰極に薄膜で保護した導電
体を用いるとともに、生成物をアルカリ性水溶液で洗浄
することにより、高純度の酸化亜鉛超微粒子を製造でき
ることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve such problems, and as a result, in an electrolysis method using an ion exchange membrane, the anode is used as a raw material of ultrafine zinc oxide particles. The inventors have found that ultrafine particles of high-purity zinc oxide can be produced by using metal zinc, using a conductor protected by a thin film for the cathode, and washing the product with an alkaline aqueous solution.

【0006】すなわち、本発明は、電解槽をイオン交換
膜で仕切り、陽極室と陰極室を設け、陽極として金属亜
鉛を、陰極として導電体を設置した電解槽用い、陽極と
陰極間に電気を流して陽極の金属亜鉛を溶出させ、イオ
ン交換膜を通して亜鉛イオンを陽極側から陰極側に移動
させて陰極室中で亜鉛化合物を析出させ、析出した亜鉛
化合物をアルカリ水溶液で洗浄し、次いで乾燥すること
を特徴とする酸化亜鉛超微粒子の製造法を要旨とするも
のである。
That is, the present invention uses an electrolytic cell in which an electrolytic cell is partitioned by an ion exchange membrane, an anode chamber and a cathode chamber are provided, metal zinc is used as an anode, and a conductor is provided as a cathode, and electricity is supplied between the anode and the cathode. To elute the zinc metal on the anode, move zinc ions from the anode side to the cathode side through the ion exchange membrane to precipitate zinc compounds in the cathode chamber, wash the precipitated zinc compounds with an aqueous alkali solution, and then dry A gist of the present invention is a method for producing ultrafine zinc oxide particles.

【0007】[0007]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の製造法により得られる酸化亜鉛超微粒子
とは、酸化亜鉛またはその水和物の超微粒子であって、
その平均粒径は100nm以下であり、好ましくは20
〜60nmのものであり、シャープな粒径分布を持つも
のである。ここでの平均粒径は、透過電子顕微鏡で観察
された200個以上の粒子の体積平均粒径である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. Ultrafine zinc oxide particles obtained by the production method of the present invention are ultrafine particles of zinc oxide or a hydrate thereof,
The average particle size is 100 nm or less, preferably 20 nm.
6060 nm and has a sharp particle size distribution. The average particle size here is the volume average particle size of 200 or more particles observed with a transmission electron microscope.

【0008】本発明においては、電解槽をイオン交換膜
で仕切り、陽極室と陰極室を設ける。ここで用いるイオ
ン交換膜とは、イオン透過性を有する膜のことで、適度
な亜鉛イオンの輸率を有するものが好ましい。具体的に
は陽イオン交換膜が用いられる。イオン交換膜は、1枚
により電解槽を陽極室と陰極室に仕切ればよい。
In the present invention, the electrolytic cell is partitioned by an ion exchange membrane, and an anode chamber and a cathode chamber are provided. The ion exchange membrane used here is a membrane having ion permeability, and preferably has an appropriate zinc ion transport number. Specifically, a cation exchange membrane is used. The ion exchange membrane may be divided into an anode chamber and a cathode chamber by one sheet.

【0009】本発明において、陽極には酸化亜鉛超微粒
子の原料となる金属亜鉛が用いられる。金属亜鉛の純度
としては、好ましくは99.9%以上、さらに好ましく
は99.99%以上が求められ、純度が高いほど生成物
の純度も高くなるので好ましい。形状としては特に限定
されないが、平板、丸棒またはメッシュの形状のものが
用いられる。
In the present invention, metallic zinc which is a raw material of ultrafine zinc oxide particles is used for the anode. The purity of the metallic zinc is preferably at least 99.9%, more preferably at least 99.99%. The higher the purity, the higher the purity of the product, which is preferable. The shape is not particularly limited, but a flat plate, a round bar, or a mesh shape is used.

【0010】陰極として用いられる導電体としては、チ
タン、ニッケル、鉛などが挙げられる。陰極は、耐アル
カリ性を有するものが好ましい。形状としては特に限定
されないが、平板、丸棒またはメッシュの形状のものが
用いられる。
The conductor used as the cathode includes titanium, nickel, lead and the like. The cathode preferably has alkali resistance. The shape is not particularly limited, but a flat plate, a round bar, or a mesh shape is used.

【0011】本発明においては、陰極電極と生成した亜
鉛化合物を直接接触させないことが生成効率向上に有効
である。その手段としては陰極を膜で保護するのが有効
である。この場合使用する膜としては、透析膜、陰イオ
ン交換膜、導電性フィルム、耐アルカリ性繊維からなる
布、耐アルカリ性紙等が挙げられる。この膜は、生成物
と陰極との接触を避け陰極上での金属析出および目的物
の汚染を防止するためのものであり、陰極に近接してい
ることが好ましく、さらに好ましくは陰極に密着させて
用いられ、密着しているほど水酸化物イオンと金属イオ
ンとの反応が進み易く好ましい。
In the present invention, it is effective to improve the production efficiency if the produced zinc compound is not brought into direct contact with the cathode electrode. As a means for protecting the cathode, it is effective to protect the cathode with a film. Examples of the membrane used in this case include a dialysis membrane, an anion exchange membrane, a conductive film, a cloth made of alkali-resistant fibers, and an alkali-resistant paper. This film is intended to avoid contact between the product and the cathode and to prevent metal deposition on the cathode and contamination of the target substance, and is preferably close to the cathode, more preferably, in close contact with the cathode. It is preferable that the more closely adhered, the more easily the reaction between hydroxide ion and metal ion proceeds.

【0012】そのほか陰極を直接亜鉛化合物と接触させ
ない方法としては、陰極槽を陰イオン交換膜により仕切
って3槽とし、中間槽に生成物を析出させる方法などが
挙げられる。また、陰極にラッカー、シリコーン等を塗
る方法も直接亜鉛化合物を接触させない方法として有効
である。
In addition, as a method of not bringing the cathode into direct contact with the zinc compound, there is a method in which the cathode cell is partitioned by an anion exchange membrane into three cells, and a product is deposited in an intermediate cell. Also, a method of applying a lacquer, silicone, or the like to the cathode is effective as a method of preventing direct contact with a zinc compound.

【0013】陽極室および陰極室に入れる電解液として
は、Li+、Na+、K+、NH4 +などの陽イオン、ある
いはSO4 2-、OH-、Cl-、Br-、I-、CH3CO
-、HCOO-などの陰イオンなど電気伝導性を有する
イオンを含有していればよい。上記の電解液の他に陽極
側の電解液としては、酸化亜鉛超微粒子の原料となる硫
酸亜鉛、酢酸亜鉛、蟻酸亜鉛、硝酸亜鉛、亜鉛ハロゲン
化物等の溶液を用いることが出来る。陰極側の電解液
は、撹拌子や撹拌羽、気泡等により撹拌することが好ま
しく、ここで用いられるガスとしては窒素やアルゴンな
どの不活性ガスの外に酸素なども挙げられる。陰極側の
電解液のpHは、特にコントロールする必要はない。
[0013] As the anode chamber and an electrolyte placed in the cathode compartment, Li +, Na +, K +, cations such as NH 4 + or SO 4 2-, OH, -, Cl -, Br -, I -, CH 3 CO
It suffices if it contains ions having electrical conductivity such as anions such as O and HCOO . In addition to the above-described electrolyte, a solution of zinc sulfate, zinc acetate, zinc formate, zinc nitrate, zinc halide, or the like, which is a raw material of the zinc oxide ultrafine particles, can be used as the electrolyte on the anode side. The cathode-side electrolyte is preferably stirred by a stirrer, stirring blades, bubbles, or the like. Examples of the gas used here include oxygen and the like in addition to inert gases such as nitrogen and argon. It is not necessary to control the pH of the electrolyte on the cathode side.

【0014】本発明では、上記したような構成の電解槽
を用いて電気分解を行えばよい。電解時に流す電気は、
陽極と陰極の間の電流である。電流値は得られる超微粒
子の組成、平均粒径、粒度分布、生成速度に影響を与え
るものであり、特に生産効率を高めるためには好ましく
は0.02〜0.05A/Cm2、さらに好ましくは
0.03〜0.04A/Cm2の電流値がよい。
In the present invention, the electrolysis may be performed using the electrolytic cell having the above-described configuration. The electricity that flows during electrolysis is
Current between anode and cathode. The current value affects the composition, average particle size, particle size distribution, and generation rate of the obtained ultrafine particles, and is particularly preferably 0.02 to 0.05 A / Cm 2 , and more preferably, for increasing production efficiency. Preferably has a current value of 0.03 to 0.04 A / Cm 2 .

【0015】電解時における電解液の温度は、得られる
超微粒子の組成、平均粒径、粒度分布に影響を与えるも
のであり、微細な粒子を得るためには好ましくは50℃
以下、さらに好ましくは30℃以下がよい。
The temperature of the electrolytic solution at the time of electrolysis affects the composition, average particle size and particle size distribution of the obtained ultrafine particles, and is preferably 50 ° C. in order to obtain fine particles.
The temperature is more preferably 30 ° C or lower.

【0016】本反応における電解反応は、バッチ式と連
続式のいずれの方法も用いることができ、連続式の場
合、生成物は遠心分離器などにより抽出する。
The electrolytic reaction in the present reaction can be carried out by any of a batch system and a continuous system. In the case of the continuous system, the product is extracted by a centrifuge or the like.

【0017】本発明における反応時間は、得られる超微
粒子の平均粒径、粒度分布に影響を与えるものであり、
特に微細な粒子を得るためには好ましくは2時間以内、
さらに好ましくは0.5時間以内に生成物を抽出するの
がよい。
The reaction time in the present invention affects the average particle size and particle size distribution of the obtained ultrafine particles.
To obtain particularly fine particles, preferably within 2 hours,
More preferably, the product is extracted within 0.5 hours.

【0018】上記の電解によって、陽極の金属亜鉛が溶
出し、イオン交換膜を通して陰極室に移動し、そこで亜
鉛化合物が析出する。本発明では、陰極室に析出した亜
鉛化合物を固液分離により回収し、次いで洗浄を行うこ
とが必要である。この洗浄は、アルカリ性水溶液を用い
て行うことが必要であり、具体的には回収した亜鉛化合
物をアルカリ性水溶液中で撹拌することによって行うこ
とができる。アルカリ性水溶液による洗浄は1回以上で
ある。
By the above-described electrolysis, the metallic zinc at the anode is eluted and moved to the cathode chamber through the ion exchange membrane, where the zinc compound is deposited. In the present invention, it is necessary to collect the zinc compound deposited in the cathode chamber by solid-liquid separation, and then perform washing. This washing needs to be performed using an alkaline aqueous solution, and more specifically, can be performed by stirring the recovered zinc compound in an alkaline aqueous solution. Washing with an alkaline aqueous solution is performed at least once.

【0019】洗浄用のアルカリ性水溶液としては、水酸
化リチウム、水酸化ナトリウム、水酸化カリウム等の強
アルカリ化合物の水溶液を用いることができ、これらの
濃度としては、1mmol/L〜0.5mol/Lが好
ましく、さらに好ましくは0.01〜0.1mol/L
である。酸化亜鉛重量当たり(1g)のアルカリ性水溶
液の添加量については、好ましくは0.05L/g−酸
化亜鉛以上であり、さらに好ましくは0.1〜1.0L
/g−酸化亜鉛が最も好ましい。
As the alkaline aqueous solution for washing, an aqueous solution of a strong alkaline compound such as lithium hydroxide, sodium hydroxide, potassium hydroxide or the like can be used, and the concentration thereof is 1 mmol / L to 0.5 mol / L. Is more preferable, and more preferably 0.01 to 0.1 mol / L.
It is. The addition amount of the alkaline aqueous solution (1 g) per zinc oxide weight is preferably 0.05 L / g-zinc oxide or more, and more preferably 0.1 to 1.0 L.
/ G-zinc oxide is most preferred.

【0020】アルカリ性水溶液の洗浄後、通常、純水に
よる洗浄を行うことが好ましい。アルカリ性水溶液によ
る洗浄後、固液分離し、固形分を純水中で撹拌すること
によって行うことができる。酸化亜鉛重量当たり(1
g)の純粋の添加量については、好ましくは0.05L
/g−酸化亜鉛以上であり、さらに好ましくは0.1〜
1.0L/g−酸化亜鉛が最も好ましい。各洗浄は、洗
浄液との撹拌により行い、撹拌時間は好ましくは3分以
上であり、さらに好ましくは5分以上である。
After the washing of the alkaline aqueous solution, it is usually preferable to carry out washing with pure water. After washing with an alkaline aqueous solution, solid-liquid separation can be performed, and the solid content can be stirred in pure water. Per zinc oxide weight (1
g), preferably 0.05 L
/ G-zinc oxide or more, more preferably 0.1 to
1.0 L / g-zinc oxide is most preferred. Each washing is performed by stirring with a washing solution, and the stirring time is preferably 3 minutes or more, more preferably 5 minutes or more.

【0021】最後に、本発明の方法においては、洗浄し
て得られた酸化亜鉛は固液分離し乾燥処理する。
Finally, in the method of the present invention, the zinc oxide obtained by washing is subjected to solid-liquid separation and drying treatment.

【0022】本発明により得られる酸化亜鉛超微粒子は
顔料の他、様々な分野での用途が期待できるものであ
る。
The ultrafine zinc oxide particles obtained by the present invention can be expected to be used in various fields in addition to pigments.

【0023】[0023]

【実施例】以下、実施例により本発明を具体的に説明す
る。図1のような装置を用いて、酸化亜鉛超微粒子を製
造した。陽極1として、金属亜鉛板を用い、陰極2とし
て透析膜(Spectra/Por Membrans、型式132675、分画分
子量6-8000)で覆ったニッケル電極を用いた。また、電
解槽(容量1800ml)は、陽イオン交換膜6であるナフィ
オン(デュポン製)1枚により陽極側:陰極側=1:1
になるように2槽に区分し、陽極室3、陰極室4とし
た。陰極室は窒素ガスにより常時撹拌した。
The present invention will be described below in detail with reference to examples. Ultrafine zinc oxide particles were produced using an apparatus as shown in FIG. As the anode 1, a metal zinc plate was used, and as the cathode 2, a nickel electrode covered with a dialysis membrane (Spectra / Por Membrans, model 132675, molecular weight cutoff 6-8000) was used. The electrolytic cell (capacity: 1800 ml) is composed of one piece of Nafion (manufactured by DuPont), which is a cation exchange membrane 6, and has an anode side: a cathode side = 1: 1.
The anode chamber 3 and the cathode chamber 4 were divided into two tanks. The cathode chamber was constantly stirred with nitrogen gas.

【0024】実施例1 陽極室3には0.1M硫酸亜鉛の水溶液700mlを、陰極室に
は0.1M酢酸カリウム水溶液700mlを注入し、反応温度40
°Cの条件下、陰極室4を撹拌しながら直流電源で電極
間に0.04A/Cm2の電流を流し、電解反応を10分間行っ
た。その結果、陰極室4には白色の酸化亜鉛超微粒子が
2g生成した。得られたスラリーを脱水した後、0.1N水酸
化ナトリウム水溶液1000mlで洗浄し、脱水後これをさら
に純水1000mlで1回水洗した後、固体成分を単離し、常
圧100°Cで加熱乾燥することで目的とする酸化亜鉛を得
た。図2にはこの酸化亜鉛超微粒子のX線回折結果を示
した。図3にはこの酸化亜鉛超微粒子の透過型電子顕微
鏡(0.38AJEM-200CX、JEOL社製)写真を示した。図3よ
り、1次粒子径80nmの超微粒子が確認できた。
Example 1 700 ml of a 0.1M aqueous solution of zinc sulfate was injected into the anode chamber 3 and 700 ml of a 0.1M aqueous potassium acetate solution were injected into the cathode chamber.
While stirring the cathode chamber 4 at a temperature of ° C, a current of 0.04 A / Cm 2 was passed between the electrodes with a DC power supply to carry out an electrolytic reaction for 10 minutes. As a result, white zinc oxide ultrafine particles are contained in the cathode chamber 4.
2g was produced. The obtained slurry is dehydrated, washed with 1000 ml of 0.1N sodium hydroxide aqueous solution, and after dehydration, further washed once with 1000 ml of pure water, and then the solid component is isolated and dried by heating at normal pressure of 100 ° C. Thus, the desired zinc oxide was obtained. FIG. 2 shows the result of X-ray diffraction of the ultrafine zinc oxide particles. FIG. 3 shows a transmission electron microscope (0.38A JEM-200CX, manufactured by JEOL) photograph of the ultrafine zinc oxide particles. From FIG. 3, ultrafine particles having a primary particle diameter of 80 nm were confirmed.

【0025】比較例1 陽極室3には0.1M硫酸亜鉛の水溶液700mlを、陰極室に
は0.1M酢酸カリウム水溶液700mlを注入し、反応温度40
°Cの条件下、陰極室4を撹拌しながら直流電源で電極
間に0.04A/Cm2の電流を流し、電解反応を10分間行っ
た。その結果、陰極室4には白色の酸化亜鉛超微粒子が
2g生成した。得られたスラリーを脱水した後、純水1000
mlで4回水洗した後、固体成分を単離し、常圧100°Cで
加熱乾燥することで目的とする酸化亜鉛を得た。
Comparative Example 1 700 ml of a 0.1 M aqueous solution of zinc sulfate was injected into the anode chamber 3, and 700 ml of a 0.1 M aqueous potassium acetate solution was injected into the cathode chamber.
While stirring the cathode chamber 4 at a temperature of ° C, a current of 0.04 A / Cm 2 was passed between the electrodes with a DC power supply to carry out an electrolytic reaction for 10 minutes. As a result, white zinc oxide ultrafine particles are contained in the cathode chamber 4.
2g was produced. After dehydrating the obtained slurry, pure water 1000
After washing with water four times with ml, the solid component was isolated and dried by heating at normal pressure of 100 ° C. to obtain the desired zinc oxide.

【0026】実施例と比較例で得られた各々のサンプル
につき、一般的な化学分析法にて不純物含有量を分析
し、その結果を第1表に示した。アルカリ性水溶液によ
る洗浄が不純物の除去、特に酢酸イオンの除去に有効で
あることが示された。
The samples obtained in the examples and comparative examples were analyzed for impurity content by a general chemical analysis method, and the results are shown in Table 1. It was shown that washing with an alkaline aqueous solution was effective for removing impurities, particularly for removing acetate ions.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、陽極に金属亜鉛を用い
ることで、陽極上でのプロトンの発生を防ぐことがで
き、それにより金属イオンの輸率低下を抑制し、効率的
に酸化亜鉛超微粒子を製造することができる。さらに、
電解反応時の陰極保護と生成物のアルカリ性水溶液によ
る洗浄により、酸化亜鉛の品位を向上させることができ
る。また、アルカリ性水溶液による洗浄工程を加えたこ
とで、洗浄回数そのものを減らすこともできる。さらに
本発明によれば、反応温度、電流量及び反応時間をコン
トロールすることによりシャープな粒度分布を持つ超微
粒子を製造することができる。
According to the present invention, by using metallic zinc for the anode, the generation of protons on the anode can be prevented, thereby suppressing the decrease in the transport number of metal ions and efficiently using zinc oxide. Ultra fine particles can be produced. further,
The quality of zinc oxide can be improved by protecting the cathode during the electrolytic reaction and washing the product with an alkaline aqueous solution. In addition, the number of times of cleaning itself can be reduced by adding a cleaning step using an alkaline aqueous solution. Further, according to the present invention, ultrafine particles having a sharp particle size distribution can be produced by controlling the reaction temperature, the amount of current and the reaction time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた電解装置を示す概略図である。FIG. 1 is a schematic view showing an electrolysis apparatus used in Examples.

【図2】実施例で得られた酸化亜鉛のX線回折結果を示
した図である。
FIG. 2 is a diagram showing an X-ray diffraction result of zinc oxide obtained in an example.

【図3】実施例で得られた酸化亜鉛の透過電子顕微鏡写
真を示した図である。
FIG. 3 is a view showing a transmission electron micrograph of zinc oxide obtained in an example.

【符号の説明】[Explanation of symbols]

1 陽極 2 陰極 3 陽極室 4 陰極室 5 直流電源 6 陽イオン交換膜 7 陰極保護膜 8 ガス送風管 DESCRIPTION OF SYMBOLS 1 Anode 2 Cathode 3 Anode room 4 Cathode room 5 DC power supply 6 Cation exchange membrane 7 Cathode protection membrane 8 Gas blower tube

フロントページの続き Fターム(参考) 4G047 AA02 AB02 AD03 4K021 AB17 BA04 DB05 DB10 DB31 DC15 Continued on the front page F term (reference) 4G047 AA02 AB02 AD03 4K021 AB17 BA04 DB05 DB10 DB31 DC15

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解槽をイオン交換膜で仕切り、陽極室
と陰極室を設け、陽極として金属亜鉛を、陰極として導
電体を設置した電解槽用い、陽極と陰極間に電気を流し
て陽極の金属亜鉛を溶出させ、イオン交換膜を通して亜
鉛イオンを陽極側から陰極側に移動させて陰極室中で亜
鉛化合物を析出させ、析出した亜鉛化合物をアルカリ水
溶液で洗浄し、次いで乾燥することを特徴とする酸化亜
鉛超微粒子の製造法。
1. An electrolytic cell in which an electrolytic cell is partitioned by an ion-exchange membrane, an anode chamber and a cathode chamber are provided, metal zinc is used as an anode, and an electrolytic cell is used in which a conductor is installed as a cathode. The metal zinc is eluted, zinc ions are moved from the anode side to the cathode side through the ion exchange membrane to precipitate a zinc compound in the cathode chamber, and the precipitated zinc compound is washed with an aqueous alkali solution and then dried. For producing ultrafine zinc oxide particles.
JP30567299A 1999-10-27 1999-10-27 Method of manufacturing zinc oxide super fine particle Pending JP2001122622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30567299A JP2001122622A (en) 1999-10-27 1999-10-27 Method of manufacturing zinc oxide super fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30567299A JP2001122622A (en) 1999-10-27 1999-10-27 Method of manufacturing zinc oxide super fine particle

Publications (1)

Publication Number Publication Date
JP2001122622A true JP2001122622A (en) 2001-05-08

Family

ID=17947973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30567299A Pending JP2001122622A (en) 1999-10-27 1999-10-27 Method of manufacturing zinc oxide super fine particle

Country Status (1)

Country Link
JP (1) JP2001122622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044544A1 (en) * 2006-10-04 2008-04-17 Nisshinbo Industries, Inc. Fine particle of hydroxide and/or oxide and process for producing the same
CN103723800A (en) * 2013-12-23 2014-04-16 北京京润新技术发展有限责任公司 Method for protecting electric filter and removing electronegative colloids and particles in brine wastewater by electrodialysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044544A1 (en) * 2006-10-04 2008-04-17 Nisshinbo Industries, Inc. Fine particle of hydroxide and/or oxide and process for producing the same
CN103723800A (en) * 2013-12-23 2014-04-16 北京京润新技术发展有限责任公司 Method for protecting electric filter and removing electronegative colloids and particles in brine wastewater by electrodialysis

Similar Documents

Publication Publication Date Title
WO2017117410A1 (en) Non-noble metal electrocatalysts for oxygen depolarized cathodes and their application in chlor-alkali electrolysis cells
JP7022135B2 (en) Method for Producing Sodium Iron (II) -Hexacyanoferric (II) Salt Material
CN110616438B (en) Device and method for electrochemically preparing high-purity battery-grade lithium hydroxide
KR102048134B1 (en) Anhydrous nickel chloride and method for producing same
JP4801312B2 (en) Method for producing metal hydroxide or metal basic carbonate
CN111715245B (en) Based on high catalytic activity and crystalline RuTe 2 The electrolytic water catalyst and the preparation method thereof
JP2022504864A (en) Battery recycling by electrolysis of leachate to remove copper impurities
CN108840327A (en) A kind of electrochemical method preparing nitrogen-doped graphene material
CN110644013B (en) Indium oxide and preparation method of precursor thereof
CN112981433A (en) Method for recycling waste lithium iron phosphate anode material by electrolyzing cation membrane pulp and recycled lithium hydroxide
RU2153538C2 (en) Method of preparing metal hydroxides or hydroxooxides by diaphragm analysis
JPH0137327B2 (en)
RU2143997C1 (en) Method of preparing difficultly soluble metal hydroxides
JP2002544382A (en) Nickel hydroxide manufacturing method
CN111378979B (en) Arsenic nano-particles, preparation method thereof, system and method for preparing arsine through electrolysis
KR100425662B1 (en) Basic Cobaltous Carbonates, Process for Preparing the Same and Their Use
CN108928851A (en) A method of ammonium vanadate sodium is prepared by sodium vanadate solution
US5116468A (en) Method for the preparation of finely divided, electrically conductive tin(iv) oxide
CN111733426A (en) Method and device for electrochemically preparing ferrate based on gas diffusion electrode
JP2001122622A (en) Method of manufacturing zinc oxide super fine particle
US4265718A (en) Method for producing hydroxylated nickel compounds
JP2001019429A (en) Production of metal-base hyperfine particles
CN115505951B (en) Porous iridium oxide nano material, preparation method and application thereof
US20230203678A1 (en) Salt-splitting electrolysis system comprising flow electrodes and methods of operating such systems
JP2001262206A (en) Method for producing silver oxide and method for producing silver powder