JP2001122141A - Vehicular steering gear - Google Patents

Vehicular steering gear

Info

Publication number
JP2001122141A
JP2001122141A JP30424799A JP30424799A JP2001122141A JP 2001122141 A JP2001122141 A JP 2001122141A JP 30424799 A JP30424799 A JP 30424799A JP 30424799 A JP30424799 A JP 30424799A JP 2001122141 A JP2001122141 A JP 2001122141A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
steering
friction
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30424799A
Other languages
Japanese (ja)
Other versions
JP3884199B2 (en
Inventor
Masaya Segawa
雅也 瀬川
Katsutoshi Nishizaki
勝利 西崎
Shiro Nakano
史郎 中野
Takanobu Takamatsu
孝修 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP30424799A priority Critical patent/JP3884199B2/en
Publication of JP2001122141A publication Critical patent/JP2001122141A/en
Application granted granted Critical
Publication of JP3884199B2 publication Critical patent/JP3884199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicular steering gear capable of sufficiently stabilizing vehicular behavior even when a coefficient of friction between wheels and a road surface changes. SOLUTION: A movement of a steering actuator 2 controlled in accordance with an operation of an operation member 1 is transmitted to the wheels 4 so that a steering angle changes in accordance with this movement. In a stat where a coefficient of friction between only a front inner wheel 4 and the road surface is the same or more as a preset reference value, shifted from a state where a coefficient of friction between all the wheels 4 and the road surface is below the preset reference value by an operation of the operation member 1 to right or left, a steering angle variation is increased, compared to the stave where the coefficient of friction between all the wheels 4 and the road surface is below a preset reference value, by control of the steering actuator 2 in accordance with an operation of the operation member 1 to an opposite direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ステアリングホイ
ール等の操作部材の操作に応じて駆動される操舵用アク
チュエータの動きを、その動きに応じて舵角が変化する
ように車輪に伝達可能な車両用操舵装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle capable of transmitting a movement of a steering actuator driven in accordance with an operation of an operation member such as a steering wheel to wheels so that a steering angle changes in accordance with the movement. The present invention relates to a steering device.

【0002】[0002]

【従来の技術】車線変更等の進路変更時における速度超
過やドライバーの運転ミス等により車両がスピンを起こ
した場合、ドライバーの意図に沿って車両を操舵するこ
とができなくなる。そのようなスピンを防ぐため、制動
力や駆動力を制御することで車両の姿勢制御を行うシス
テムが開発されている。
2. Description of the Related Art When a vehicle spins due to excessive speed at the time of a course change such as a lane change or a driver's driving error, the vehicle cannot be steered according to the driver's intention. In order to prevent such a spin, a system for controlling the posture of a vehicle by controlling a braking force or a driving force has been developed.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の車両の
姿勢制御システムは、車輪と路面との間の摩擦係数が変
化する場合に対応しておらず、十分に車両挙動を安定化
できない場合がある。
However, the conventional vehicle attitude control system does not cope with the case where the friction coefficient between the wheels and the road surface changes, and sometimes the vehicle behavior cannot be sufficiently stabilized. is there.

【0004】本発明は、上記問題を解決することのでき
る車両用操舵装置を提供することを目的とする。
[0004] It is an object of the present invention to provide a vehicle steering system that can solve the above-mentioned problems.

【0005】[0005]

【課題を解決するための手段】本発明の第1の特徴とす
るところは、操作部材と、操舵用アクチュエータと、そ
の操作部材の操作に応じて前記操舵用アクチュエータを
制御可能な制御手段と、その操舵用アクチュエータの動
きを、その動きに応じて舵角が変化するように車両の操
舵用前方車輪に伝達する手段と、車両の全車輪それぞれ
と路面との間の摩擦係数を求める手段と、その操作部材
の左右一方への操作により、全ての車輪と路面との間の
摩擦係数が予め設定した基準値未満の状態から、前方内
輪のみと路面との間の摩擦係数が前記基準値以上の状態
に移行したか否かを判断する手段と、前記操作部材を左
右他方へ操作したか否かを判断する手段とを備え、全て
の車輪と路面との間の摩擦係数が前記基準値未満の状態
から、前方内輪のみと路面との間の摩擦係数が前記基準
値以上の状態に移行した状態では、全ての車輪と路面と
の間の摩擦係数が前記基準値未満の状態に比べ、その左
右他方への操作部材の操作に応じた前記操舵用アクチュ
エータの制御による舵角変化量が増大される点にある。
走行車両の全ての車輪が摩擦係数の小さい路面上にある
状態で操作部材を左右一方へ操作すると、進行方向が変
化すると共に車両姿勢が変化する。この姿勢変化後の進
行方向に摩擦係数の大きい路面が存在する場合、全ての
車輪が摩擦係数の小さい路面上にある状態から、前方内
輪のみが摩擦係数の大きい路面にある状態に移行する。
この移行により車両をスピンさせようとするモーメント
が増大して車両姿勢が変化した場合、運転者は車両がス
ピン状態になるのを防止するために、その姿勢変化を打
ち消す方向へ舵角が変化するように操作部材を左右他方
へ切返し操作する。本発明の第1の特徴によれば、車両
がスピン状態になるのを防止するための操作部材の左右
他方への操作に応じた操舵用アクチュエータの制御によ
る舵角変化量を、走行車両の全ての車輪が摩擦係数の小
さい路面上にある状態で操作部材を操作した場合に比べ
て増大することができる。これにより、左右一方への操
作部材の操作により摩擦係数の小さい路面から大きい路
面に車両が移行する場合に、運転者が操作部材を左右他
方へ切返し操作することで、迅速に車両をスピンさせよ
うとするモーメントを打ち消す方向に舵角を変化させ、
車両がスピン状態になるのを確実に防止できる。
According to a first feature of the present invention, there is provided an operating member, a steering actuator, and control means capable of controlling the steering actuator in accordance with the operation of the operating member. Means for transmitting the movement of the steering actuator to the front wheels for steering of the vehicle such that the steering angle changes in accordance with the movement; means for determining the coefficient of friction between each wheel of the vehicle and the road surface; By operating the operation member to one of the left and right, from the state where the friction coefficient between all the wheels and the road surface is less than a predetermined reference value, the friction coefficient between only the front inner wheel and the road surface is equal to or more than the reference value. Means for judging whether or not the state has shifted to the state, and means for judging whether or not the operation member has been operated to the other side, the friction coefficient between all wheels and the road surface is less than the reference value From the state, In the state where the friction coefficient between the road surface and the friction coefficient has shifted to the state equal to or more than the reference value, the operation members of the left and right sides of the operating member are different from the state where the friction coefficients between all wheels and the road surface are less than the reference value. The point is that the steering angle change amount by the control of the steering actuator according to the operation is increased.
When the operating member is operated to the left or right while all the wheels of the traveling vehicle are on a road surface having a small friction coefficient, the traveling direction changes and the vehicle attitude changes. When there is a road surface having a large friction coefficient in the traveling direction after this posture change, the state shifts from a state in which all wheels are on a road surface with a small friction coefficient to a state in which only the front inner wheel is on a road surface with a large friction coefficient.
When the vehicle attitude changes due to an increase in the moment to spin the vehicle due to this transition, the driver changes the steering angle in a direction to cancel the attitude change in order to prevent the vehicle from spinning. Operation member is turned back to the left and right sides as described above. According to the first aspect of the present invention, the steering angle change amount by controlling the steering actuator in accordance with the operation of the operation member on the left or right side for preventing the vehicle from being in the spin state is determined for all the traveling vehicles. Can be increased as compared to a case where the operating member is operated in a state where the wheel of the vehicle is on a road surface having a small friction coefficient. Thus, when the vehicle shifts from a road surface having a small coefficient of friction to a road surface having a large friction coefficient due to operation of the operation member to one of the right and left sides, the driver may turn the operation member to the other side to quickly spin the vehicle. Change the steering angle in the direction to cancel the moment
The vehicle can be reliably prevented from being in a spin state.

【0006】本発明の第2の特徴とするところは、操作
部材と、操舵用アクチュエータと、その操作部材の操作
に応じて前記操舵用アクチュエータを制御可能な制御手
段と、その操舵用アクチュエータの動きを、その動きに
応じて舵角が変化するように車両の操舵用前方車輪に伝
達する手段と、車両の全車輪それぞれと路面との間の摩
擦係数を検出する手段と、全ての車輪と路面との間の摩
擦係数が、予め設定した基準値未満か否かを判断する手
段と、その車両の進行方向の変化による姿勢変化に相関
する変量を検出する手段と、その変量と、その姿勢変化
を打ち消す方向への舵角変化量との予め定めた関係を記
憶する手段と、全ての車輪と路面との間の摩擦係数が前
記基準値未満で、且つ、前記変量の絶対値が予め定めた
設定値を超える時は、前記操作部材の操作に関わりな
く、その変量と前記記憶した関係とから求められる舵角
変化を生じるように前記操舵用アクチュエータを制御す
る手段とを備える点にある。走行車両の全ての車輪が摩
擦係数の小さい路面上にある状態で左右一方へ操舵を行
うと、進行方向が変化すると共に車両姿勢が変化する。
この姿勢変化後の進行方向に摩擦係数の大きい路面が存
在する場合、全ての車輪が摩擦係数の小さい路面上にあ
る状態から、前方内輪のみが摩擦係数の大きい路面にあ
る状態に移行する。この移行により車両をスピンさせよ
うとするモーメントが増大して車両姿勢が変化した場
合、通常の運転者であれば車両がスピン状態になるのを
防止するために、その姿勢変化を打ち消す方向へ舵角が
変化するように操作部材を左右他方へ切返し操作する。
しかし、未熟な運転者等は、その姿勢変化を打ち消すた
めの操作部材の操作を適正に行うことができない。これ
に対して本発明の第2の特徴によれば、全ての車輪が摩
擦係数の小さい路面上にあって、且つ、車両姿勢の変化
に相関する変量の絶対値が設定値を超えると、運転者に
よる操作部材の操作に関わりなく、その車両姿勢の変化
を打ち消す方向の舵角変化を生じるように操舵用アクチ
ュエータが制御される。これにより、全ての車輪が摩擦
係数の小さい路面上にある状態において、その状態から
前方内輪のみが摩擦係数の大きい路面にある状態に移行
する前に、車両姿勢の変化を予め抑制できる。これによ
り、前方内輪のみが摩擦係数の大きい路面にある状態に
移行する時に車両がスピンするのを予防できる。その車
両の姿勢変化に相関する変量として車両のヨーレートを
検出するのが好ましい。車両は進行方向が変化するとヨ
ー運動により姿勢が変化することから、その車両にはヨ
ーモーメントが作用する。よって、車両のヨーレートに
応じて車両の姿勢変化を打ち消す方向への舵角変化量を
定めることで、車両姿勢の変化を確実に抑制できる。
A second feature of the present invention is that an operating member, a steering actuator, control means capable of controlling the steering actuator in accordance with an operation of the operating member, and a movement of the steering actuator To the front wheels for steering of the vehicle such that the steering angle changes in accordance with the movement of the vehicle, means for detecting the coefficient of friction between each wheel of the vehicle and the road surface, all the wheels and the road surface Means for determining whether the coefficient of friction between the vehicle and the vehicle is less than a predetermined reference value, means for detecting a variable correlated with a change in posture due to a change in the traveling direction of the vehicle, Means for storing a predetermined relationship with the steering angle change amount in the direction of canceling, the coefficient of friction between all the wheels and the road surface is less than the reference value, and the absolute value of the variable amount is predetermined. When exceeding the set value , Regardless of the operation of the operation member, in that it comprises a means for controlling the steering actuator to produce a change in the steering angle determined from said stored relationship and its variables. When steering is performed to the left or right while all wheels of the traveling vehicle are on a road surface having a small friction coefficient, the traveling direction changes and the vehicle attitude changes.
When there is a road surface having a large friction coefficient in the traveling direction after this posture change, the state shifts from a state in which all wheels are on a road surface with a small friction coefficient to a state in which only the front inner wheel is on a road surface with a large friction coefficient. When the vehicle attitude changes due to an increase in the moment of spinning the vehicle due to this shift, the normal driver steers the vehicle in a direction to cancel the attitude change in order to prevent the vehicle from spinning. The operation member is turned back to the other side so that the angle changes.
However, an inexperienced driver or the like cannot properly operate the operation member to cancel the change in the posture. On the other hand, according to the second feature of the present invention, when all wheels are on a road surface having a small coefficient of friction and the absolute value of a variable correlating to a change in the vehicle attitude exceeds a set value, driving is performed. The steering actuator is controlled so as to generate a change in the steering angle in a direction to cancel the change in the vehicle attitude regardless of the operation of the operation member by the user. Thus, in a state where all the wheels are on a road surface having a small friction coefficient, a change in the vehicle attitude can be suppressed in advance before shifting from that state to a state where only the front inner wheel is on a road surface having a large friction coefficient. This prevents the vehicle from spinning when shifting to a state where only the front inner wheel is on a road surface having a large friction coefficient. It is preferable to detect the yaw rate of the vehicle as a variable correlated with the change in the attitude of the vehicle. Since the attitude of the vehicle changes due to the yaw motion when the traveling direction changes, a yaw moment acts on the vehicle. Therefore, by determining the amount of change in the steering angle in a direction to cancel the change in the attitude of the vehicle according to the yaw rate of the vehicle, the change in the attitude of the vehicle can be reliably suppressed.

【0007】本発明において、前記摩擦係数と車速と各
車輪の回転速度との予め定めた関係を記憶する手段と、
車速を検出する手段と、各車輪の回転速度それぞれを検
出する手段と、その記憶された関係と検出された車速と
車輪回転速度とから前記摩擦係数を求める手段とを備え
るのが好ましい。各車輪の回転速度は、各車輪と路面と
の間の摩擦係数が小さくなる程に、また、車速が大きく
なる程に大きくなるので、その摩擦係数と車速と各車輪
の回転速度との関係を予め定めて記憶しておくことで、
車速と車輪回転速度とを検出して摩擦係数を求めること
ができる。これにより、全ての車輪と路面との間の摩擦
係数が前記基準値未満か否かの判断と、前方内輪と路面
との間の摩擦係数のみが前記基準値以上か否かの判断を
正確に行うことができる。
In the present invention, means for storing a predetermined relationship among the friction coefficient, the vehicle speed, and the rotation speed of each wheel,
It is preferable to include means for detecting the vehicle speed, means for detecting the rotational speed of each wheel, and means for calculating the friction coefficient from the stored relationship, the detected vehicle speed and the wheel rotational speed. Since the rotational speed of each wheel increases as the friction coefficient between each wheel and the road surface decreases and as the vehicle speed increases, the relationship between the friction coefficient, the vehicle speed, and the rotational speed of each wheel increases. By pre-determining and storing,
The friction coefficient can be obtained by detecting the vehicle speed and the wheel rotation speed. Accordingly, the determination whether the friction coefficient between all the wheels and the road surface is less than the reference value and the determination whether only the friction coefficient between the front inner wheel and the road surface are equal to or more than the reference value are accurately performed. It can be carried out.

【0008】[0008]

【発明の実施の形態】図1〜図4を参照して本発明の第
1実施形態を説明する。図1に示す車両用操舵装置は、
ステアリングホイールを模した操作部材1の回転操作に
応じて駆動される操舵用アクチュエータ2の動きを、そ
の操作部材1を車輪4に機械的に連結することなく、そ
の動きに応じて舵角が変化するようにステアリングギヤ
3により操舵用前方左右車輪4に伝達する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. The vehicle steering system shown in FIG.
The movement of the steering actuator 2 driven in response to the rotation operation of the operation member 1 simulating a steering wheel changes the steering angle according to the movement without mechanically connecting the operation member 1 to the wheels 4. To the front left and right wheels 4 for steering.

【0009】その操舵用アクチュエータ2は、例えば公
知のブラシレスモータ等の電動モータにより構成でき
る。そのステアリングギヤ3は、その操舵用アクチュエ
ータ2の出力シャフトの回転運動をステアリングロッド
7の直線運動に変換する運動変換機構を有する。そのス
テアリングロッド7の動きがタイロッド8とナックルア
ーム9を介して車輪4に伝達され、その車輪4のトー角
が変化する。そのステアリングギヤ3は、公知のものを
用いることができ、操舵用アクチュエータ2の動きを舵
角が変化するように車輪4に伝達できれば構成は限定さ
れない。なお、操舵用アクチュエータ2が駆動されてい
ない状態では、車輪4がセルフアライニングトルクによ
り直進操舵位置に復帰できるようにホイールアラインメ
ントが設定されている。なお、後方左右車輪も操舵用と
して操舵用アクチュエータの動きを伝達してもよい。
The steering actuator 2 can be constituted by an electric motor such as a known brushless motor. The steering gear 3 has a motion conversion mechanism that converts the rotational motion of the output shaft of the steering actuator 2 into a linear motion of the steering rod 7. The movement of the steering rod 7 is transmitted to the wheel 4 via the tie rod 8 and the knuckle arm 9, and the toe angle of the wheel 4 changes. As the steering gear 3, a known gear can be used, and the configuration is not limited as long as the movement of the steering actuator 2 can be transmitted to the wheels 4 so that the steering angle changes. In a state where the steering actuator 2 is not driven, the wheel alignment is set so that the wheels 4 can return to the straight steering position by the self-aligning torque. The rear left and right wheels may also transmit the movement of the steering actuator for steering.

【0010】その操作部材1は、車体側により回転可能
に支持される回転シャフト10に連結されている。その
操作部材1を操舵するのに要する操舵反力を作用させる
ため、その回転シャフト10にトルクを付加する反力ア
クチュエータ19が設けられている。その反力アクチュ
エータ19は、その回転シャフト10と一体の出力シャ
フトを有するブラシレスモータ等の電動モータにより構
成できる。
The operating member 1 is connected to a rotating shaft 10 rotatably supported by the vehicle body. A reaction force actuator 19 for applying a torque to the rotating shaft 10 is provided to apply a steering reaction force required for steering the operation member 1. The reaction force actuator 19 can be constituted by an electric motor such as a brushless motor having an output shaft integrated with the rotating shaft 10.

【0011】操作部材1を直進操舵位置に復帰させる方
向の弾力を付与する弾性部材30が設けられている。こ
の弾性部材30は、例えば、回転シャフト10に弾力を
付与するバネにより構成できる。上記反力アクチュエー
タ19が回転シャフト10にトルクを付加していない
時、その弾力により操作部材1は直進操舵位置に復帰す
る。
An elastic member 30 is provided for giving elasticity in a direction for returning the operating member 1 to the straight steering position. The elastic member 30 can be constituted by, for example, a spring that gives elasticity to the rotating shaft 10. When the reaction force actuator 19 does not apply torque to the rotating shaft 10, the operating member 1 returns to the straight steering position due to its elasticity.

【0012】操作部材1の操作入力値として、その回転
シャフト10の回転角に対応する操作角δhを検出する
角度センサ11が設けられている。その操作部材1の操
作トルクTとして、その回転シャフト10により伝達さ
れるトルクを検出するトルクセンサ12が設けられてい
る。その車輪4の舵角δを検出する舵角センサ13が設
けられ、本実施形態では、その舵角δに対応するステア
リングロッド7の作動量を検出するポテンショメータに
より構成されている。車速vを検出する速度センサ14
が設けられている。各車輪4の回転速度それぞれを検出
する車輪速センサ15が設けられている。
An angle sensor 11 for detecting an operation angle δh corresponding to the rotation angle of the rotary shaft 10 as an operation input value of the operation member 1 is provided. A torque sensor 12 for detecting a torque transmitted by the rotary shaft 10 as an operation torque T of the operation member 1 is provided. A steering angle sensor 13 for detecting the steering angle δ of the wheel 4 is provided. In the present embodiment, the steering angle sensor 13 is constituted by a potentiometer for detecting the operation amount of the steering rod 7 corresponding to the steering angle δ. Speed sensor 14 for detecting vehicle speed v
Is provided. A wheel speed sensor 15 for detecting each rotation speed of each wheel 4 is provided.

【0013】上記操舵用アクチュエータ2、角度センサ
11、トルクセンサ12、舵角センサ13、速度センサ
14、車輪速センサ15は、コンピュータにより構成さ
れる制御装置20に接続される。
The steering actuator 2, the angle sensor 11, the torque sensor 12, the steering angle sensor 13, the speed sensor 14, and the wheel speed sensor 15 are connected to a control device 20 constituted by a computer.

【0014】図2のフローチャートを参照して上記制御
装置20による制御手順を説明する。まず、各センサに
よる車速v、舵角δ、操作角δh、操作トルクT、車輪
回転速度の検出データが読み込まれる(ステップ10
1)。
The control procedure by the control device 20 will be described with reference to the flowchart of FIG. First, detection data of the vehicle speed v, the steering angle δ, the operation angle δh, the operation torque T, and the wheel rotation speed by each sensor are read (step 10).
1).

【0015】次に、操作反力として目標操舵トルクT*
を付与できるように反力アクチュエータ19を制御する
(ステップ102)。本実施形態では、その目標操舵ト
ルクT * は操作角δhの関数K1とされ、その関数K1
は予め定められて制御装置20に記憶される。この関数
K1に基づき検出操作角δhに応じて定まる目標操舵ト
ルクT* から検出操作トルクTを差し引いた偏差が零に
なるように、反力アクチュエータ19が制御される。例
えば操作角δhが大きくなる程に目標操舵トルクT*
小さくなるように関数K1が定められる。
Next, as the operation reaction force, the target steering torque T* 
The reaction force actuator 19 is controlled so that
(Step 102). In the present embodiment, the target steering
Luc T * Is a function K1 of the operation angle δh, and the function K1
Are predetermined and stored in the control device 20. This function
Target steering angle determined according to the detected operation angle δh based on K1
Luc T* The deviation obtained by subtracting the detected operating torque T from
Thus, the reaction force actuator 19 is controlled. An example
For example, as the operation angle δh increases, the target steering torque T* But
The function K1 is determined to be smaller.

【0016】次に、全ての車輪4と路面との間の摩擦係
数が、予め設定した基準値未満か否かが判断される(ス
テップ103)。制御装置20は、車両の全車輪4それ
ぞれと路面との間の摩擦係数と、車速と、各車輪の回転
速度との予め定めた関係を記憶し、その記憶された関係
と、上記速度センサ14により検出された車速vと、上
記車輪速センサ15により検出された車輪回転速度とか
ら、その摩擦係数を求める。その基準値は、その摩擦係
数が基準値以上であれば、全ての車輪4が摩擦係数の小
さい低μ路面上にある状態から、前方内輪のみが摩擦係
数の大きい高μ路面にある状態に移行する際に、車両が
スピン状態になるおそれがないように定めればよい。な
お、その基準値は、車速vや舵角δ等の車両走行状態を
表す変数の関数としてもよく、例えば車速vや舵角δが
大きい程に基準値を小さくしてもよい。
Next, it is determined whether or not the coefficient of friction between all the wheels 4 and the road surface is less than a preset reference value (step 103). The control device 20 stores a predetermined relationship between the friction coefficient between each of the wheels 4 of the vehicle and the road surface, the vehicle speed, and the rotation speed of each wheel, and stores the stored relationship and the speed sensor 14. From the vehicle speed v detected by the above and the wheel rotation speed detected by the wheel speed sensor 15, the friction coefficient is obtained. When the friction coefficient is equal to or more than the reference value, the state where all the wheels 4 are on the low μ road surface having a small friction coefficient is shifted to the state where only the front inner wheel is on the high μ road surface having a large friction coefficient. In doing so, it may be determined so that the vehicle is not likely to be in a spin state. Note that the reference value may be a function of a variable representing a vehicle running state such as the vehicle speed v and the steering angle δ. For example, the reference value may be reduced as the vehicle speed v and the steering angle δ increase.

【0017】ステップ103において全ての車輪4と路
面との間の摩擦係数が基準値未満であれば、低μフラグ
がオンされ(ステップ104)、次いで舵角を目標値δ
* にすることができるように操舵用アクチュエータ2が
制御される(ステップ105)。本実施形態では、その
目標舵角δ* は操作入力値である操作角δhの関数K2
とされ、その関数K2は予め定められて制御装置20に
記憶される。この関数K2に基づき検出操作角δhに応
じて定まる目標舵角δ* から検出舵角δを差し引いた偏
差が零になるように、操舵用アクチュエータ2が制御さ
れる。なお、その操舵用アクチュエータ2は操作角δh
にのみ応じて制御されるものに限定されず、操作部材1
の操作に応じて制御可能であればよい。例えば、検出操
作角δhに代えて検出操作トルクTを操作入力値とし、
目標舵角δ* を操作トルクTの関数とし、検出操作トル
クTから目標舵角δ* を定めるようにしてもよい。ま
た、その目標舵角δ* を操作角δhだけでなく例えば車
速vの関数とし、目標舵角δ* が操作角δhだけでなく
車速vによっても変化するようにしてもよい。また、操
作部材1の操作に応じて操舵用アクチュエータ2を制御
して舵角δを変化させる際に車両挙動が不安定になるの
を防止するため、例えば、車両挙動が不安定になるおそ
れがある場合に制動力や駆動力を制御することで車両の
姿勢制御を行うような車両挙動安定化システムを併用し
てもよい。
If the coefficient of friction between all the wheels 4 and the road surface is less than the reference value in step 103, the low μ flag is turned on (step 104), and then the steering angle is set to the target value δ.
The steering actuator 2 is controlled so that it can be set to * (step 105). In the present embodiment, the target steering angle δ * is a function K2 of the operation angle δh that is the operation input value.
The function K2 is predetermined and stored in the control device 20. The steering actuator 2 is controlled such that a deviation obtained by subtracting the detected steering angle δ from the target steering angle δ * determined according to the detected operation angle δh based on this function K2 becomes zero. The steering actuator 2 has an operation angle δh
The operation member 1 is not limited to being controlled only according to
What is necessary is just to be able to control according to the operation of. For example, the detected operation torque T is used as the operation input value instead of the detected operation angle δh,
The target steering angle δ * may be determined as a function of the operating torque T, and the target steering angle δ * may be determined from the detected operating torque T. Further, the target steering angle δ * may be a function of, for example, the vehicle speed v as well as the operation angle δh, and the target steering angle δ * may be changed not only by the operation angle δh but also by the vehicle speed v. Further, in order to prevent the vehicle behavior from becoming unstable when controlling the steering actuator 2 in accordance with the operation of the operation member 1 to change the steering angle δ, for example, the vehicle behavior may become unstable. In some cases, a vehicle behavior stabilizing system that controls the attitude of the vehicle by controlling the braking force or the driving force may be used together.

【0018】次に、制御を終了するか否かが、例えば車
両のエンジン始動用キースイッチのオン・オフに基づき
判断され(ステップ106)、終了しない場合はステッ
プ101に戻る。
Next, it is determined whether or not to end the control, for example, based on the on / off of a key switch for starting the engine of the vehicle (step 106). If not, the process returns to step 101.

【0019】ステップ103において全ての車輪4と路
面との間の摩擦係数が基準値未満でない場合、低μフラ
グがオンか否かが判断され(ステップ107)、低μフ
ラグがオンでなければステップ105において操舵用ア
クチュエータ2が制御される。
If the friction coefficients between all the wheels 4 and the road surface are not less than the reference value in step 103, it is determined whether or not the low μ flag is on (step 107). At 105, the steering actuator 2 is controlled.

【0020】ステップ107において低μフラグがオン
であれば、スピンフラグがオンか否かが判断される(ス
テップ108)。スピンフラグがオンでなければ、前方
内輪と路面との間の摩擦係数が上記基準値以上で、且
つ、残りの車輪と路面との間の摩擦係数が上記基準値未
満か否かが判断される(ステップ109)。すなわち、
図4において実線で示すように走行車両100の全ての
車輪4が摩擦係数の小さい路面U1上にある状態で操作
部材1を左右一方へ操作すると、一点鎖線で示すように
進行方向が変化すると共に車両姿勢が変化する。その変
化後の進行方向に摩擦係数の大きい路面U2が存在する
場合、全ての車輪4が摩擦係数の小さい路面上にある状
態から、前方内輪4のみが摩擦係数の大きい路面U2上
にある状態に移行する。よって、操作部材1の左右一方
への操作により、全ての車輪4と路面との間の摩擦係数
が予め設定した基準値未満の状態から、前方内輪4のみ
と路面との間の摩擦係数が前記基準値以上の状態に移行
したか否かが判断されることになる。なお、本実施形態
では操作部材1の操作方向は上記トルクセンサ12によ
り検出するが、その検出手段は特に限定されない。
If the low μ flag is on in step 107, it is determined whether or not the spin flag is on (step 108). If the spin flag is not on, it is determined whether the friction coefficient between the front inner wheel and the road surface is equal to or greater than the reference value and the friction coefficient between the remaining wheels and the road surface is less than the reference value. (Step 109). That is,
When all the wheels 4 of the traveling vehicle 100 are on the road surface U1 having a small coefficient of friction as shown by the solid line in FIG. 4 and the operating member 1 is operated to the left or right, the traveling direction changes as shown by the dashed line and The vehicle attitude changes. When there is a road surface U2 having a large friction coefficient in the traveling direction after the change, from a state where all the wheels 4 are on a road surface having a small friction coefficient, to a state where only the front inner wheel 4 is on a road surface U2 having a large friction coefficient. Transition. Therefore, by operating the operation member 1 to the left or right, the friction coefficient between all the wheels 4 and the road surface is changed from a state where the friction coefficient is less than a predetermined reference value to the friction coefficient between only the front inner wheel 4 and the road surface. It is determined whether the state has shifted to the reference value or more. In the present embodiment, the operation direction of the operation member 1 is detected by the torque sensor 12, but the detection means is not particularly limited.

【0021】ステップ109において、前方内輪4のみ
が摩擦係数の大きい路面U2上にある場合、車両をスピ
ンさせようとするモーメントが増大し、この場合にスピ
ンフラグがオンされ(ステップ110)、次いでステッ
プ105において操舵用アクチュエータ2が制御され
る。
In step 109, when only the front inner wheel 4 is on the road surface U2 having a large friction coefficient, the moment for spinning the vehicle increases. In this case, the spin flag is turned on (step 110), and then step At 105, the steering actuator 2 is controlled.

【0022】ステップ108においてスピンフラグがオ
ンであれば、操作部材1を左右他方へ操作したか否かが
判断される(ステップ111)。すなわち、操作部材1
を左右一方へ操作することにより、全ての車輪4が摩擦
係数の小さい路面U1上にある状態から、前方内輪4の
みが摩擦係数の大きい路面U2にある状態に移行し、車
両をスピンさせようとするモーメントが増大した場合
に、図4において二点鎖線で示すように、車両のスピン
を防止するために運転者が操作部材1を左右他方へ切返
し操作を行ったか否かが判断される。
If the spin flag is on in step 108, it is determined whether the operating member 1 has been operated to the left or right (step 111). That is, the operation member 1
Is operated on one of the left and right sides to shift from a state in which all the wheels 4 are on the road surface U1 with a small friction coefficient to a state in which only the front inner wheel 4 is on a road surface U2 with a large friction coefficient, and try to spin the vehicle. When the moment to be increased increases, as shown by a two-dot chain line in FIG. 4, it is determined whether or not the driver has turned the operating member 1 to the left or right to prevent the vehicle from spinning.

【0023】ステップ111において切返し操作が行わ
れていない場合、ステップ105において操舵用アクチ
ュエータ2が制御される。
If the turning operation has not been performed in step 111, the steering actuator 2 is controlled in step 105.

【0024】ステップ111において切返し操作が行わ
れている場合、舵角を目標値δ* にすることができるよ
うに操舵用アクチュエータ2が制御される(ステップ1
12)。このステップ112では、その目標舵角δ*
ステップ105における目標舵角δ* のN倍とされ(N
>1)、操作部材1の操作量に対する舵角の比がステッ
プ105におけるよりも大きくなる。すなわち、全ての
車輪4と路面との間の摩擦係数が上記基準値未満の状態
から、前方内輪4のみと路面との間の摩擦係数が上記基
準値以上の状態に移行した状態では、全ての車輪4と路
面との間の摩擦係数が上記基準値未満の状態に比べ、そ
の左右他方への操作部材1の切返し操作に応じた操舵用
アクチュエータ2の制御による舵角変化量が増大され
る。しかる後にステップ106において制御を終了する
か否かが判断される。
When the turning operation is performed in step 111, the steering actuator 2 is controlled so that the steering angle can be set to the target value δ * (step 1).
12). In step 112, * the target steering angle [delta] is N times the target steering angle [delta] * in step 105 (N
> 1), the ratio of the steering angle to the operation amount of the operation member 1 becomes larger than in step 105. That is, in the state where the friction coefficient between all the wheels 4 and the road surface is less than the reference value, and the friction coefficient between only the front inner wheel 4 and the road surface is greater than the reference value, Compared with the state where the friction coefficient between the wheel 4 and the road surface is less than the reference value, the steering angle change amount by the control of the steering actuator 2 in accordance with the turning operation of the operating member 1 to the other side is increased. Thereafter, at step 106, it is determined whether or not to end the control.

【0025】ステップ109において、前方内輪4のみ
が摩擦係数の大きい路面U2上にない場合は、他の車輪
4も摩擦係数の大きい路面U2上にある。この場合は低
μフラグとスピンフラグとが解除され(ステップ11
3)、次いでステップ105において操舵用アクチュエ
ータ2が制御される。
In step 109, when only the front inner wheel 4 is not on the road surface U2 having a large friction coefficient, the other wheels 4 are also on the road surface U2 having a large friction coefficient. In this case, the low μ flag and the spin flag are released (step 11).
3) Then, in step 105, the steering actuator 2 is controlled.

【0026】上記第1実施形態によれば、操作部材1を
左右一方へ操作することで全ての車輪4が摩擦係数の小
さい路面U1上にある状態から、前方内輪4のみが摩擦
係数の大きい路面U2にある状態に移行することで、車
両をスピンさせようとするモーメントが増大した場合
に、車両がスピン状態になるのを防止するための操作部
材1の左右他方への切返し操作に応じた操舵用アクチュ
エータ2の制御による舵角変化量を、走行車両の全ての
車輪4が摩擦係数の小さい路面U1上にある状態で操作
部材1を切返し操作した場合に比べて増大することがで
きる。これにより、操作部材1の左右一方への操作によ
り摩擦係数の小さい路面U1から大きい路面U2に車両
が移行する場合に、運転者が操作部材1を左右他方へ切
返し操作することで、迅速に車両をスピンさせようとす
るモーメントを打ち消す方向に舵角を変化させ、車両が
スピン状態になるのを確実に防止できる。
According to the first embodiment, by operating the operating member 1 to the left or right, from a state where all the wheels 4 are on the road surface U1 having a small friction coefficient, only the front inner wheel 4 is changed to a road surface having a large friction coefficient. By shifting to the state at U2, when the moment for spinning the vehicle increases, the steering according to the turning operation of the operation member 1 to the other side to the left or right for preventing the vehicle from spinning. The change amount of the steering angle by the control of the actuator 2 can be increased as compared with the case where the operation member 1 is turned back while all the wheels 4 of the traveling vehicle are on the road surface U1 having a small friction coefficient. Thereby, when the vehicle shifts from the road surface U1 having a small coefficient of friction to the road surface U2 having a large friction coefficient by the operation of the operation member 1 to one of the right and left sides, the driver quickly switches the operation member 1 to the other side, so that the vehicle is quickly operated. By changing the steering angle in a direction to cancel the moment for spinning the vehicle, it is possible to reliably prevent the vehicle from spinning.

【0027】図5〜図7を参照して本発明の第2実施形
態を説明する。上記第1実施形態と同一部分は同一符号
で示し、相違点を説明する。図5に示す第2実施形態の
車両用操舵装置においては、車両の進行方向の変化によ
る姿勢変化に相関する変量として車両のヨーレートγを
検出するヨーレートセンサ16が制御装置20に接続さ
れ、また、そのヨーレートγと、その姿勢変化を打ち消
す方向への舵角変化量との予め定めた関係が制御装置2
0に記憶される。なお、そのヨーレートγは車両の進行
方向が左右一方に変化する時と左右他方に変化する時と
で正負の符号が逆とされる。
A second embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and differences will be described. In the vehicle steering system according to the second embodiment shown in FIG. 5, a yaw rate sensor 16 that detects a yaw rate γ of the vehicle as a variable correlated with a posture change due to a change in the traveling direction of the vehicle is connected to the control device 20. The predetermined relationship between the yaw rate γ and the amount of change in the steering angle in the direction to cancel the change in attitude is determined by the control device 2.
0 is stored. The sign of the yaw rate γ is reversed when the traveling direction of the vehicle changes to one of the left and right sides and when it changes to the other side.

【0028】図6のフローチャートを参照して第2実施
形態における制御装置20による制御手順を説明する。
まず、各センサによる車速v、ヨーレートγ、舵角δ、
操作角δh、操作トルクT、車輪回転速度の検出データ
が読み込まれる(ステップ201)。
The control procedure of the control device 20 according to the second embodiment will be described with reference to the flowchart of FIG.
First, the vehicle speed v, yaw rate γ, steering angle δ,
The detection data of the operation angle δh, the operation torque T, and the wheel rotation speed are read (step 201).

【0029】次に、操作反力として目標操舵トルクT*
を付与できるように反力アクチュエータ19を制御する
(ステップ202)。その目標操舵トルクT* の設定や
反力アクチュエータ19の制御は第1実施形態と同様と
される。
Next, the target steering torque T * is used as the operation reaction force .
The reaction force actuator 19 is controlled so that the force can be applied (step 202). The setting of the target steering torque T * and the control of the reaction force actuator 19 are the same as in the first embodiment.

【0030】次に、全ての車輪4と路面との間の摩擦係
数が、予め設定した基準値未満か否かが判断される(ス
テップ203)。その摩擦係数の検出や基準値の設定や
判断は第1実施形態と同様とされる。
Next, it is determined whether or not the coefficient of friction between all the wheels 4 and the road surface is smaller than a preset reference value (step 203). The detection of the friction coefficient and the setting and determination of the reference value are the same as in the first embodiment.

【0031】ステップ203において全ての車輪4と路
面との間の摩擦係数が基準値未満でない場合、舵角を目
標値δ* にすることができるように操舵用アクチュエー
タ2が制御される(ステップ204)。その目標舵角δ
* の設定や操舵用アクチュエータ2の制御は第1実施形
態と同様とされる。
If the coefficient of friction between all the wheels 4 and the road surface is not less than the reference value in step 203, the steering actuator 2 is controlled so that the steering angle can be set to the target value δ * (step 204). ). The target steering angle δ
The setting of * and the control of the steering actuator 2 are the same as in the first embodiment.

【0032】次に、制御を終了するか否かが、例えば車
両のエンジン始動用キースイッチのオン・オフに基づき
判断され(ステップ205)、終了しない場合はステッ
プ201に戻る。
Next, it is determined whether or not to end the control, for example, based on the on / off of a key switch for starting the engine of the vehicle (step 205). If not, the process returns to step 201.

【0033】ステップ203において全ての車輪4と路
面との間の摩擦係数が基準値未満である場合、検出した
ヨーレートγの絶対値が予め定めた設定値αを超えるか
否かが判断される(ステップ206)。その設定値α
は、全ての車輪4と路面との間の摩擦係数が上記基準値
未満の状態から、前方内輪4のみと路面との間の摩擦係
数がその基準値以上の状態に移行しても、車両のヨーレ
ートγの絶対値が設定値α以下であれば車両挙動が不安
定になることがないように設定され、零であってもよ
い。
If the coefficient of friction between all the wheels 4 and the road surface is smaller than the reference value in step 203, it is determined whether or not the absolute value of the detected yaw rate γ exceeds a predetermined set value α (step 203). Step 206). The set value α
Even if the coefficient of friction between all the wheels 4 and the road surface is less than the reference value, and the friction coefficient between only the front inner wheel 4 and the road surface is higher than the reference value, the vehicle If the absolute value of the yaw rate γ is equal to or smaller than the set value α, the vehicle behavior is set so as not to be unstable, and may be zero.

【0034】ステップ206において検出ヨーレートγ
の絶対値が設定値α以下である場合、ステップ204に
おいて操舵用アクチュエータ2が制御される。
In step 206, the detected yaw rate γ
Is smaller than or equal to the set value α, the steering actuator 2 is controlled in step 204.

【0035】ステップ206において検出ヨーレートγ
の絶対値が設定値αを超える場合、操作部材1の操作に
関わりなく、そのヨーレートγと上記記憶した関係とか
ら求められる舵角変化を生じるように前記操舵用アクチ
ュエータ2が制御される。すなわち、目標舵角δ* は車
両のヨーレートγの関数K4とされ、その関数に基づき
検出ヨーレートγに応じて定まる目標舵角δ* から検出
舵角δを差し引いた偏差が零になるように、操舵用アク
チュエータ2が制御される(ステップ207)。これに
より、全ての車輪4と路面との間の摩擦係数が上記基準
値未満で、且つ、そのヨーレートγの絶対値が上記設定
値αを超える時は、操作部材1の操作に関わりなく、そ
のヨーレートγと上記記憶した関係とから求められる舵
角変化を生じるように、すなわち車両の姿勢変化を打ち
消す方向に舵角が変化するように操舵用アクチュエータ
2が制御される。しかる後にステップ205において制
御を終了するか否かが判断される。他は上記第1実施形
態と同様とされている。
In step 206, the detected yaw rate γ
Is greater than the set value α, the steering actuator 2 is controlled so as to generate a change in the steering angle obtained from the yaw rate γ and the stored relationship, regardless of the operation of the operating member 1. That is, the target steering angle δ * is a function K4 of the yaw rate γ of the vehicle, and the deviation obtained by subtracting the detected steering angle δ from the target steering angle δ * determined based on the detected yaw rate γ based on the function becomes zero. The steering actuator 2 is controlled (step 207). Thereby, when the coefficient of friction between all the wheels 4 and the road surface is less than the reference value and the absolute value of the yaw rate γ exceeds the set value α, regardless of the operation of the operation member 1, The steering actuator 2 is controlled so as to generate a change in the steering angle determined from the yaw rate γ and the stored relationship, that is, to change the steering angle in a direction to cancel the change in the attitude of the vehicle. Thereafter, in step 205, it is determined whether or not to end the control. Others are the same as the first embodiment.

【0036】図7において実線で示すように走行車両1
00の全ての車輪4が摩擦係数の小さい路面U1上にあ
る状態で左右一方へ操舵を行うと、1点鎖線で示すよう
に進行方向が変化すると共に車両姿勢が変化する。この
姿勢変化後の進行方向に摩擦係数の大きい路面U2が存
在する場合、全ての車輪4が摩擦係数の小さい路面U1
上にある状態から、前方内輪4のみが摩擦係数の大きい
路面U2にある状態に移行する。この移行により車両1
00をスピンさせようとするモーメントが増大して車両
姿勢が変化した場合、通常の運転者であれば車両100
がスピン状態になるのを防止するために、その姿勢変化
を打ち消す方向へ舵角が変化するように操作部材1を左
右他方へ切返し操作する。しかし、未熟な運転者等は、
その姿勢変化を打ち消すための操作部材1の操作を適正
に行うことができない。これに対して上記第2実施形態
によれば、全ての車輪4が摩擦係数の小さい路面上にあ
って、且つ、車両姿勢の変化に相関するヨーレートγの
絶対値が設定値αを超えると、運転者による操作部材1
の操作に関わりなく、その車両姿勢の変化を打ち消す方
向の舵角変化を生じるように操舵用アクチュエータ2が
制御される。これにより、図7において2点鎖線で示す
ように、全ての車輪4が摩擦係数の小さい路面U1上に
ある状態において、その状態から前方内輪4のみが摩擦
係数の大きい路面U2にある状態に移行する前に、車両
姿勢の変化を予め抑制できる。これにより、前方内輪4
のみが摩擦係数の大きい路面U2にある状態に移行する
時に車両100がスピンするのを予防できる。また、上
記第2実施形態によれば、その姿勢変化に相関する変量
として車両100のヨーレートγを検出する。車両10
0は進行方向が変化するとヨー運動により姿勢が変化す
ることから、その車両100にはヨーモーメントが作用
する。よって、車両100のヨーレートγに応じて車両
100の姿勢変化を打ち消す方向への舵角変化量を定め
ることで、車両姿勢の変化を確実に抑制できる。
As shown by the solid line in FIG.
When all the wheels 4 of 00 are steered to the left or right in a state where the wheels 4 are on the road surface U1 having a small friction coefficient, the traveling direction changes and the vehicle attitude changes as shown by the dashed line. When there is a road surface U2 having a large friction coefficient in the traveling direction after this posture change, all the wheels 4 are on the road surface U1 having a small friction coefficient.
From the upper state, the state shifts to the state where only the front inner wheel 4 is on the road surface U2 having a large friction coefficient. With this transition, vehicle 1
If the vehicle attitude changes due to an increase in the moment for spinning 00, the vehicle 100 may be a normal driver.
The operation member 1 is turned back to the left or right so that the steering angle changes in a direction to cancel the change in the posture in order to prevent the spinning state. However, immature drivers, etc.
The operation of the operation member 1 for canceling the posture change cannot be performed properly. On the other hand, according to the second embodiment, when all the wheels 4 are on a road surface having a small friction coefficient and the absolute value of the yaw rate γ correlated with the change in the vehicle attitude exceeds the set value α. Operation member 1 by driver
The steering actuator 2 is controlled so as to generate a change in the steering angle in a direction to cancel the change in the vehicle attitude, regardless of the operation of the vehicle. Thereby, as shown by the two-dot chain line in FIG. 7, when all the wheels 4 are on the road surface U1 having a small friction coefficient, the state shifts from that state to the state where only the front inner wheel 4 is on the road surface U2 having a large friction coefficient. Before changing the vehicle, the change in the vehicle attitude can be suppressed in advance. Thereby, the front inner ring 4
The vehicle 100 can be prevented from spinning when shifting to a state where only the friction coefficient is on the road surface U2. Further, according to the second embodiment, the yaw rate γ of the vehicle 100 is detected as a variable correlated with the posture change. Vehicle 10
In the case of 0, since the posture changes due to the yaw motion when the traveling direction changes, the yaw moment acts on the vehicle 100. Therefore, by determining the amount of change in the steering angle in the direction to cancel the change in the attitude of the vehicle 100 according to the yaw rate γ of the vehicle 100, the change in the attitude of the vehicle 100 can be reliably suppressed.

【0037】上記第1、第2実施形態では各車輪4の回
転速度は、各車輪4と路面との間の摩擦係数が小さくな
る程に、また、車速vが大きくなる程に大きくなるの
で、その摩擦係数と車速vと各車輪4の回転速度との関
係を予め定めて記憶し、車速vと車輪回転速度とを検出
して摩擦係数を求めている。これにより、全ての車輪4
と路面との間の摩擦係数が上記基準値未満か否かの判断
と、前方内輪と路面との間の摩擦係数のみが上記基準値
以上か否かの判断を正確に行うことができる。
In the first and second embodiments, the rotational speed of each wheel 4 increases as the friction coefficient between each wheel 4 and the road surface decreases and as the vehicle speed v increases. The relationship between the friction coefficient, the vehicle speed v, and the rotation speed of each wheel 4 is predetermined and stored, and the friction coefficient is determined by detecting the vehicle speed v and the wheel rotation speed. Thereby, all the wheels 4
It is possible to accurately determine whether or not the friction coefficient between the vehicle and the road surface is less than the reference value and whether or not only the friction coefficient between the front inner wheel and the road surface is equal to or more than the reference value.

【0038】本発明は上記各実施形態に限定されない。
例えば、操作部材と車輪を機械的に連結した車両に本発
明を適用してもよい。また、第2実施形態において、車
両の進行方向の変化による姿勢変化に相関する変量とし
てヨーレート以外、例えば横加速度を検出してもよい。
The present invention is not limited to the above embodiments.
For example, the present invention may be applied to a vehicle in which an operation member and wheels are mechanically connected. Further, in the second embodiment, a lateral acceleration other than the yaw rate, for example, a lateral acceleration may be detected as a variable correlated with a posture change due to a change in the traveling direction of the vehicle.

【0039】[0039]

【発明の効果】本発明によれば、車輪と路面との間の摩
擦係数が変化する場合でも十分に車両挙動の安定化を図
ることができる車両用操舵装置を提供できる。
According to the present invention, it is possible to provide a vehicle steering system capable of sufficiently stabilizing the vehicle behavior even when the friction coefficient between the wheels and the road surface changes.

【0040】[0040]

【他の技術の開示】上記本発明の各実施形態において
は、各車輪4それぞれと路面との間の摩擦係数を検出し
たが、各車輪4個々に路面との間の摩擦係数を求める必
要がない場合は、操舵用アクチュエータ2の負荷に対応
する値、例えば負荷電流の時間積分値を求め、舵角δに
対応する値、例えばステアリングロッド7の作動量を求
め、また、図8に示すように、その積分値と舵角対応値
の規範となるデータを予め定めて制御装置20に記憶
し、その求めた値と規範データとを比較することで、摩
擦係数を推定してもよい。すなわち、その記憶した規範
データに比べて、その積分値が大きく舵角対応値が小さ
い場合は摩擦係数が大きく、その積分値が小さく舵角対
応値が大きい場合は摩擦係数が小さく、その規範データ
に対する求めた値の比率から摩擦係数を求めることがで
きる。
Disclosure of Other Techniques In each of the above embodiments of the present invention, the friction coefficient between each wheel 4 and the road surface is detected. However, it is necessary to determine the friction coefficient between each wheel 4 and the road surface. If not, a value corresponding to the load of the steering actuator 2, for example, a time integrated value of the load current is obtained, and a value corresponding to the steering angle δ, for example, the operation amount of the steering rod 7, is obtained. Alternatively, the reference value of the integrated value and the steering angle corresponding value may be determined in advance and stored in the control device 20, and the obtained value may be compared with the reference data to estimate the friction coefficient. That is, when the integral value is large and the steering angle corresponding value is small, the friction coefficient is large, and when the integral value is small and the steering angle corresponding value is large, the friction coefficient is small as compared with the stored reference data. The coefficient of friction can be determined from the ratio of the determined value to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の操舵装置の構成説明図FIG. 1 is a configuration explanatory view of a steering device according to a first embodiment of the present invention;

【図2】本発明の第1実施形態の操舵装置の制御手順を
示すフローチャート
FIG. 2 is a flowchart showing a control procedure of the steering device according to the first embodiment of the present invention.

【図3】本発明の第1実施形態の操舵装置の制御手順を
示すフローチャート
FIG. 3 is a flowchart showing a control procedure of the steering device according to the first embodiment of the present invention.

【図4】本発明の第1実施形態の操舵装置の作用説明図FIG. 4 is an explanatory diagram of an operation of the steering device according to the first embodiment of the present invention;

【図5】本発明の第2実施形態の操舵装置の構成説明図FIG. 5 is a configuration explanatory view of a steering device according to a second embodiment of the present invention.

【図6】本発明の第2実施形態の操舵装置の制御手順を
示すフローチャート
FIG. 6 is a flowchart showing a control procedure of a steering device according to a second embodiment of the present invention.

【図7】本発明の第2実施形態の操舵装置の作用説明図FIG. 7 is a diagram illustrating the operation of a steering device according to a second embodiment of the present invention.

【図8】車輪と路面との間の摩擦係数を求める技術の説
明図
FIG. 8 is an explanatory diagram of a technique for obtaining a friction coefficient between a wheel and a road surface.

【符号の説明】[Explanation of symbols]

1 操作部材 2 操舵用アクチュエータ 4 車輪 11 角度センサ 13 舵角センサ 14 速度センサ 15 車輪速センサ 16 ヨーレートセンサ 20 制御装置 DESCRIPTION OF SYMBOLS 1 Operating member 2 Steering actuator 4 Wheel 11 Angle sensor 13 Steering angle sensor 14 Speed sensor 15 Wheel speed sensor 16 Yaw rate sensor 20 Control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 史郎 大阪府大阪市中央区南船場三丁目5番8号 光洋精工株式会社内 (72)発明者 高松 孝修 大阪府大阪市中央区南船場三丁目5番8号 光洋精工株式会社内 Fターム(参考) 3D032 CC05 DA03 DA04 DA15 DA23 DA24 DA33 DA82 DB13 DC34 DD02 EA01 EB04 EB12  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shiro Nakano 3-5-8 Minamisenba, Chuo-ku, Osaka-shi, Osaka Inside Koyo Seiko Co., Ltd. No. 8 F-term in Koyo Seiko Co., Ltd. (reference) 3D032 CC05 DA03 DA04 DA15 DA23 DA24 DA33 DA82 DB13 DC34 DD02 EA01 EB04 EB12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】操作部材と、操舵用アクチュエータと、そ
の操作部材の操作に応じて前記操舵用アクチュエータを
制御可能な制御手段と、その操舵用アクチュエータの動
きを、その動きに応じて舵角が変化するように車両の操
舵用前方車輪に伝達する手段と、車両の全車輪それぞれ
と路面との間の摩擦係数を求める手段と、その操作部材
の左右一方への操作により、全ての車輪と路面との間の
摩擦係数が予め設定した基準値未満の状態から、前方内
輪のみと路面との間の摩擦係数が前記基準値以上の状態
に移行したか否かを判断する手段と、前記操作部材を左
右他方へ操作したか否かを判断する手段とを備え、全て
の車輪と路面との間の摩擦係数が前記基準値未満の状態
から、前方内輪のみと路面との間の摩擦係数が前記基準
値以上の状態に移行した状態では、全ての車輪と路面と
の間の摩擦係数が前記基準値未満の状態に比べ、その左
右他方への操作部材の操作に応じた前記操舵用アクチュ
エータの制御による舵角変化量が増大されることを特徴
とする車両用操舵装置。
An operating member, a steering actuator, control means capable of controlling the steering actuator in accordance with an operation of the operating member, and a movement of the steering actuator. Means for transmitting to the front steering wheel of the vehicle so as to change, means for determining the coefficient of friction between each wheel of the vehicle and the road surface, and all the wheels and the road surface Means for judging whether or not the friction coefficient between the front inner wheel and the road surface has shifted from the state in which the coefficient of friction is less than a predetermined reference value to the state in which the coefficient of friction between the front inner wheel and the road surface is equal to or more than the reference value. Means for determining whether or not the left and right sides have been operated, from the state where the friction coefficient between all wheels and the road surface is less than the reference value, the friction coefficient between only the front inner wheel and the road surface is Move to a state above the reference value In this state, the amount of change in the steering angle due to the control of the steering actuator in accordance with the operation of the operating member to the left or right is increased compared to the state in which the friction coefficients between all the wheels and the road surface are less than the reference value. A vehicle steering system characterized by being performed.
【請求項2】操作部材と、操舵用アクチュエータと、そ
の操作部材の操作に応じて前記操舵用アクチュエータを
制御可能な制御手段と、その操舵用アクチュエータの動
きを、その動きに応じて舵角が変化するように車両の操
舵用前方車輪に伝達する手段と、車両の全車輪それぞれ
と路面との間の摩擦係数を検出する手段と、全ての車輪
と路面との間の摩擦係数が、予め設定した基準値未満か
否かを判断する手段と、その車両の進行方向の変化によ
る姿勢変化に相関する変量を検出する手段と、その変量
と、その姿勢変化を打ち消す方向への舵角変化量との予
め定めた関係を記憶する手段と、全ての車輪と路面との
間の摩擦係数が前記基準値未満で、且つ、前記変量の絶
対値が予め定めた設定値を超える時は、前記操作部材の
操作に関わりなく、その変量と前記記憶した関係とから
求められる舵角変化を生じるように前記操舵用アクチュ
エータを制御する手段とを備えることを特徴とする車両
用操舵装置。
2. An operation member, a steering actuator, control means capable of controlling the steering actuator in accordance with an operation of the operation member, and a steering angle in accordance with the movement of the steering actuator. The means for transmitting to the steering front wheel of the vehicle so as to change, the means for detecting the coefficient of friction between each wheel of the vehicle and the road surface, and the coefficient of friction between all the wheels and the road surface are preset. Means for judging whether or not the reference value is less than the reference value, means for detecting a variable correlated with a posture change due to a change in the traveling direction of the vehicle, the variable, and a steering angle change amount in a direction to cancel the posture change. Means for storing a predetermined relationship between the operating member and the friction member between all the wheels and the road surface is less than the reference value, and when the absolute value of the variable exceeds a predetermined value. Regardless of the operation of Vehicle steering apparatus characterized by comprising a means for controlling the steering actuator to produce a change in the steering angle determined from said stored relationship and its variables.
【請求項3】その車両の姿勢変化に相関する前記変量と
して車両のヨーレートを検出する請求項2に記載の車両
用操舵装置。
3. The vehicle steering system according to claim 2, wherein a yaw rate of the vehicle is detected as the variable correlated with a change in the attitude of the vehicle.
【請求項4】前記摩擦係数と車速と各車輪の回転速度と
の予め定めた関係を記憶する手段と、車速を検出する手
段と、各車輪の回転速度それぞれを検出する手段と、そ
の記憶された関係と検出された車速と車輪回転速度とか
ら前記摩擦係数を求める手段とを備える請求項1〜3の
中の何れかに記載の車両用操舵装置。
4. A means for storing a predetermined relationship between the coefficient of friction, the vehicle speed, and the rotational speed of each wheel, a means for detecting the vehicle speed, a means for detecting each rotational speed of each wheel, and the stored memory. The vehicle steering apparatus according to any one of claims 1 to 3, further comprising: means for calculating the friction coefficient from the detected relationship and the detected vehicle speed and wheel rotation speed.
JP30424799A 1999-10-26 1999-10-26 Vehicle steering system Expired - Fee Related JP3884199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30424799A JP3884199B2 (en) 1999-10-26 1999-10-26 Vehicle steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30424799A JP3884199B2 (en) 1999-10-26 1999-10-26 Vehicle steering system

Publications (2)

Publication Number Publication Date
JP2001122141A true JP2001122141A (en) 2001-05-08
JP3884199B2 JP3884199B2 (en) 2007-02-21

Family

ID=17930770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30424799A Expired - Fee Related JP3884199B2 (en) 1999-10-26 1999-10-26 Vehicle steering system

Country Status (1)

Country Link
JP (1) JP3884199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182752A (en) * 2014-03-26 2015-10-22 マツダ株式会社 vehicle behavior control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182752A (en) * 2014-03-26 2015-10-22 マツダ株式会社 vehicle behavior control device

Also Published As

Publication number Publication date
JP3884199B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
US6213248B1 (en) Steering control apparatus
JP3853943B2 (en) Vehicle steering device
JP2001334947A (en) Steering device for vehicle
CN109591883A (en) Electric power steering
JP2001213340A (en) Steering device for vehicle
US8706355B2 (en) Steering control system
JP2002002474A (en) Braking device for vehicle
WO2006114977A1 (en) Control device, ground speed measurement device, and vehicle
JP4019758B2 (en) Vehicle steering system
JP2003002223A (en) Steering device for vehicle
JP3806555B2 (en) Vehicle steering system
JP4506386B2 (en) Vehicle steering system
JP2001122141A (en) Vehicular steering gear
JP7386351B2 (en) vehicle steering system
JP2001030931A (en) Vehicular steering gear
JP2002046639A (en) Steering device for vehicle
EP1088739B1 (en) Motor vehicle steering system
JP3665487B2 (en) Vehicle steering device
JP2001130431A (en) Steering device for vehicle
JP3641373B2 (en) Vehicle steering device
JP2001334950A (en) Steering device for vehicle and attitude control device for vehicle
JP2006224804A (en) Vehicular steering system
JP2000128002A (en) Steering control device
JP2002370658A (en) Steering reaction force control device
JP4026642B2 (en) Vehicle steering system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061116

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees