WO2006114977A1 - Control device, ground speed measurement device, and vehicle - Google Patents

Control device, ground speed measurement device, and vehicle Download PDF

Info

Publication number
WO2006114977A1
WO2006114977A1 PCT/JP2006/306580 JP2006306580W WO2006114977A1 WO 2006114977 A1 WO2006114977 A1 WO 2006114977A1 JP 2006306580 W JP2006306580 W JP 2006306580W WO 2006114977 A1 WO2006114977 A1 WO 2006114977A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
speed
vehicle
steering
wheels
Prior art date
Application number
PCT/JP2006/306580
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuaki Miki
Munehisa Horiguchi
Takafumi Miyake
Susumu Okawa
Sadayuki Tsugawa
Kihachi Hayashida
Kazuaki Sawada
Seiichi Takeda
Original Assignee
Equos Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005122879A external-priority patent/JP2006298168A/en
Priority claimed from JP2005149538A external-priority patent/JP2006333548A/en
Priority claimed from JP2005149539A external-priority patent/JP4345711B2/en
Priority claimed from JP2005251763A external-priority patent/JP4951901B2/en
Application filed by Equos Research Co., Ltd. filed Critical Equos Research Co., Ltd.
Publication of WO2006114977A1 publication Critical patent/WO2006114977A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for

Definitions

  • the present invention relates to a control device that controls a steering operation of a wheel by operating the actuator device with respect to a vehicle having a wheel configured to be steerable and an actuator device that steering-drives the wheel.
  • a control device that controls the steering state of a plurality of wheels by operating the actuator device for a vehicle having a plurality of wheels configured and an actuator device that steering-drives the plurality of wheels.
  • the present invention relates to a control device that controls the rotational speed of the wheel by operating the wheel drive device for a vehicle having a wheel to be driven and a wheel drive device that rotationally drives the wheel.
  • a control device that can improve the braking power or driving force a control device that can measure the ground speed using the existing configuration of the vehicle, and control the steering state of the wheels
  • the control device that can generate resistance to the external force in the vehicle, the friction coefficient between the wheels and the road surface can be increased, and the vehicle start, braking or turning performance can be improved. And the vehicle.
  • anti-lock control and traction control control exist as technologies for controlling wheels and increasing their braking force and driving force (that is, improving vehicle starting performance and braking performance).
  • the slip ratio of the wheel is controlled to prevent the wheel from being locked, so that the wheel is caused by an excessive braking force (for example, brake pressure).
  • a reduction in braking force is prevented (for example, Patent Document 1).
  • the fifth wheel is installed in the rear of the vehicle.
  • the technology to determine the vehicle ground speed from the rotation speed and outer diameter of the fifth wheel by measuring the rotation speed of the fifth wheel when the vehicle is running, Known! / Speak for example, Patent Document 3.
  • an automobile is generally provided with two types of a main brake used for lowering the traveling speed of the vehicle and a parking brake for preventing the stopped vehicle from moving.
  • a main brake used for lowering the traveling speed of the vehicle
  • a parking brake for preventing the stopped vehicle from moving.
  • Patent Document 1 JP-A-5-155325
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-123084
  • Patent Document 3 Japanese Patent Laid-Open No. 5-52710
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-315630
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-231460
  • Patent Document 6 Japanese Patent Laid-Open No. 999819
  • the conventional parking brake is configured to maintain the state of the brake lever or the pedal operation force transmitted to the brake device by a wire so that the stopped vehicle does not move.
  • the conventional parking brake described above has a problem that if the vehicle is driven without returning the brake lever or pedal, so-called brake dragging occurs, and the brake device is damaged by frictional heat. For this reason, there is a notification mechanism that turns on the warning light when the brake lever or pedal is not returned. There was a problem of inviting ascension.
  • the above-described conventional parking brake is configured such that a braking force can be generated by operating the brake lever or the pedal even when the vehicle is traveling, so that the driver or the like does not use the brake lever or the pedal. If it was operated in advance, the behavior of the vehicle became unstable, causing a problem of reduced safety.
  • the above-described conventional parking brake has a problem that it is difficult to provide a fail-safe function for maintaining safety in the event of a failure and is unreliable. For example, when a vehicle is stopped on a slope and a parking brake is applied, if the wire reaches the end of its life and breaks, the vehicle will start to move under its own weight.
  • the above-described conventional technique controls braking by controlling the slip ratio of the wheel so that the wheel is not locked or excessively slipped.
  • This is a technique for securing a force or driving force.
  • the conventional technology increases the slip ratio within the non-slip region, thereby bringing the friction coefficient closer to the peak value and ensuring the braking force or driving force of the wheel.
  • the present inventor has developed a new method for increasing the coefficient of friction between the wheel and the road surface.
  • the slip ratio of the wheel in other words, the slip speed of the wheel with respect to the road surface
  • Value is based on the knowledge that a friction coefficient more than twice that obtained by the conventional technology described above can be obtained (not known at the time of this application).
  • the present invention provides a new method for wheel control technology or parking brake or a new method for increasing the coefficient of friction between the wheel and the road surface against the background described above.
  • control device that can improve the braking force or driving force of the wheel and the existing configuration of the vehicle.
  • Control device control device that can increase the coefficient of friction between the wheel and the road surface, and improve the start, braking or turning performance of the vehicle, control the steering state of the wheel, the resistance force against the external force It is an object to provide a control device and a vehicle that can be generated in a vehicle.
  • a control device for a vehicle having a wheel configured to be steerable and an actuator device for steering and driving the wheel.
  • a first steering operation for controlling the steering operation of the wheel by operating the actuator device and steering the wheel by a first angle in a first steering direction;
  • an actuator actuating means for performing a second steering operation for steering by a second angle in a second steering direction opposite to the first steering direction after the steering operation.
  • the control device is the control device according to claim 1, further comprising a braking determination means for determining whether or not the wheel is in a braking state, and the actuator operating means is the braking determination means. When it is determined that the wheel is in a braking state, the actuator device is operated.
  • the control device is the control device according to claim 1 or 2, wherein ground speed detection means for detecting a ground speed of the vehicle, and a rotational speed for detecting a rotational speed of the wheel. Detecting means; slip ratio calculating means for calculating the slip ratio of the wheel based on the ground speed and the rotational speed detected by the ground speed detecting means and the rotational speed detecting means; and a slip corresponding to the slip region of the wheel Slip area storage means for storing the rate, whether or not the wheel is in the slip area based on the slip ratio stored in the slip area storage means and the slip ratio calculated by the slip ratio calculation means.
  • State judging means for judging, and the actuator actuating means comprises the state judging means. The actuator device is activated when it is determined by the disconnecting means that the wheel is in the slip region.
  • the control device is the control device according to claim 3, further comprising angle determination means for determining the first and second angles, respectively, and the angle determination means includes the slip ratio. The first and second angles are determined based on the wheel slip ratio value calculated by the calculation means.
  • the control device is the control device according to claim 3, further comprising time determining means for determining times required for the first and second steering operations, respectively.
  • the means is based on at least one of the value of the ground speed of the vehicle detected by the ground speed detection means or the value of the slip ratio of the wheel calculated by the slip ratio calculation means. The time required for the steering operation is determined.
  • the control device is the control device according to any one of claims 1 to 5, wherein the vehicle includes a plurality of the wheels, and the actuator device independently provides the plurality of wheels.
  • the actuator is configured to be steerable, and the actuator operating means operates the actuator device so that the first and second steering operations are performed independently for each of the plurality of wheels.
  • the control device operates the actuator device on a vehicle having a wheel configured to be steerable and an actuator device that steering-drives the wheel to perform a steering operation of the wheel.
  • State determining means for determining whether or not the wheel is in a slip region, and steering the wheel when the state determining means determines that the wheel is in the slip region. Therefore, regardless of the operation state of the operation unit operated by the driver, the actuator device is operated and the wheel is steered.
  • the first actuator operating means for steering the wheel and the state determining means determine that the wheel is not in the slip region. In this case, the wheel steered by the first actuator actuating means is steered to the steering position corresponding to the operation state of the operation unit.
  • a second Akuchiyueta actuating means for actuating the Akuchu eta device.
  • the control device is the control device according to claim 3, wherein the ground speed detection means calculates a peripheral speed when the wheel freely rolls. And so Based on the peripheral speed of the free-rolling wheel calculated by the peripheral speed calculation means RU
  • the control device is the control device according to claim 8, wherein the rotational driving force is applied to the wheel to the wheel driving device that imparts the rotational driving force to the wheel. And a rotational driving force releasing means for freely rolling the wheel, the rotational driving force releasing means gradually decreasing the value of the rotational driving force applied to the wheel from the wheel driving device. .
  • the control device is the control device according to claim 9, wherein when a plurality of the wheels are provided in the vehicle, the rotation driving force is applied from the wheel driving device.
  • Release wheel selection means for selecting a wheel to be released by the driving force release means from among the plurality of wheels, and the release wheel selection means selects a left-right symmetric or diagonal wheel among the plurality of wheels. To do.
  • the control device is the control device according to any one of claims 8 to 10, wherein the peripheral speed calculation means calculates a peripheral speed of at least two free-rolling wheels. Then, the ground speed calculation means calculates the ground speed of the vehicle based on the peripheral speed of at least two wheels calculated by the peripheral speed calculation means.
  • a vehicle according to claim 12 includes the control device according to any one of claims 1 to 11.
  • the control device is for a vehicle having a plurality of wheels configured to be steerable and an actuator device for steering and driving at least one of the plurality of wheels. And controlling the steering state of the plurality of wheels.
  • the actuator device is operated so that at least one of the plurality of wheels has resistance against the rotation direction of the other wheels.
  • An actuator actuating means for steering and driving the parking brake arrangement that can occur is provided.
  • the control device is the control device according to claim 13, wherein the actuator determination unit determines whether or not the actuator device is to be operated by the actuator operation unit, and the operation determination unit.
  • the actuator device determines whether or not the actuator device is to be operated by the actuator operation unit, and the operation determination unit.
  • the steering state of the wheel before the operation is determined. From the state where the operation of the actuator device by the actuator operating means is executed, and the steering state of the wheel is restored to the stop-time arrangement stored by the arrangement storing means.
  • the actuator device is operated to Return means for returning the steering state of the wheel to the arrangement.
  • a control device is the control device according to claim 13, wherein a speed storage means for storing a reference speed value of the vehicle, a ground speed detection means for detecting a ground speed of the vehicle, and Speed judgment means for judging whether or not the value of the ground speed detected by the ground speed detection means is smaller than the reference speed value, and the actuator actuating means is configured to detect the ground speed by the speed judgment means.
  • the actuator device is operated to steer the steering state of the wheel to the parking brake arrangement.
  • the control device according to claim 16 is the control device according to claim 15, wherein the actuator operating means changes the steering state of the plurality of wheels as the parking brake as the value of the ground speed decreases. On the other hand, as the value of the ground speed increases, the steering state of the plurality of wheels is made closer to the steering position according to the operation state of the operation unit that the driver operates to steer the wheels as the value of the ground speed increases. The actuator device is operated.
  • a control device is the control device according to claim 15 or 16, wherein an angle storage means for storing a reference angle value, an inclination angle detection means for detecting an inclination angle of the road surface, Angle determination means for determining whether or not the value of the inclination angle detected by the inclination angle detection means is larger than the reference angle value, and the actuator operating means is configured to detect the inclination angle by the angle determination means. Is determined to be larger than the reference angle value, and when the speed determination means determines that the ground speed value is smaller than the reference speed value, the actuator device is operated to steer the wheel. Steering is driven to the parking brake arrangement.
  • the control device is the control device according to claim 13, wherein the reference angle value is An angle storage means for storing the inclination angle, an inclination angle detection means for detecting the inclination angle of the road surface, and an angle for determining whether or not the value of the inclination angle detected by the inclination angle detection means is larger than the reference angle value.
  • the actuator actuating means includes at least a case where the angle determination means determines that the value of the inclination angle is larger than the reference angle value and a case where the angle is determined to be small! The wheels are steered to different parking brake arrangements.
  • a vehicle according to claim 19 includes the control device according to any of claims 13 to 18.
  • the control device operates the wheel drive device on a vehicle having a wheel configured to be able to roll and a wheel drive device that rotationally drives the wheel, and the wheel.
  • a slip speed calculating means for calculating the slip speed of the wheel with respect to the road surface, and a slip speed for maximizing the friction coefficient between the road surface and the wheel.
  • a storage means for storing as a slip speed, and a wheel slip speed calculated by the slip speed calculating means by controlling the rotational speed of the wheel, and a value of a target slip speed stored in the storage means
  • a wheel drive device operating means for operating the wheel drive device.
  • the control device is the control device according to claim 20, wherein the vehicle includes a plurality of wheels that are rotationally driven by the wheel driving device, and the wheel driving device is configured by an electric motor.
  • the electric motor is provided for each of the plurality of wheels, and the wheel driving device operating means respectively operates the plurality of electric motors so that the rotation speeds of the plurality of wheels can be independently controlled. It is configured.
  • a control device is the control device according to claim 20 or 21, wherein a peripheral speed calculation means for calculating a peripheral speed of the wheel and a ground speed for calculating the ground speed of the vehicle. And a slip speed calculating means based on the peripheral speed of the wheel calculated by the peripheral speed calculating means and the ground speed of the vehicle calculated by the ground speed calculating means. The slip speed of the wheel is calculated.
  • the control device is the control device according to any one of claims 20 to 22, wherein the wheel drive device operating means is instructed to accelerate the vehicle, The wheel rotational speed is controlled so that the value of the peripheral speed of the wheel is larger than the value of the ground speed of the vehicle, and the slip speed of the wheel becomes the target slip speed.
  • the rotational speed of the wheel is controlled so that the value of the peripheral speed of the wheel becomes smaller than the value of the ground speed of the vehicle, And the said wheel drive device is operated so that the sliding speed of the said wheel may turn into the said target sliding speed.
  • a vehicle according to claim 24 includes the control device according to any one of claims 20 to 23.
  • the actuator operating means is provided, and the wheel can be steered by operating the actuator device by the actuator operating means.
  • the wheel can be steered by operating the actuator device by the actuator operating means.
  • an object on the road surface that hinders braking or driving can be pushed outside from between the road surface and the ground contact surface of the wheel.
  • the degree of adhesion between the road surface and the ground contact surface of the wheel can be increased (the ground contact state can be improved), and the braking force or driving force can be improved.
  • the surface of the road surface can be destroyed to expose a new road surface, and the ground contact surface of the wheel can be brought into contact with a fresh road surface.
  • the degree of adhesion between the road surface and the ground contact surface of the wheel can be increased (improve the ground contact state), and the braking force or driving force can be improved.
  • the ground contact surface of the wheel can be deformed in the steering direction, and the contact area with the road surface can be increased (improvement of the ground contact state). Therefore, the braking power or driving force can be improved accordingly.
  • the brake determination means for determining whether or not the wheel is in a braking state is provided.
  • the actuator actuating means activates the actuator device, that is, when the wheel enters the braking state, the wheel is steered in the first direction and the second direction. Since the ground contact state between the road surface and the ground contact surface of the wheel is improved, there is an effect that the braking force of the wheel can be efficiently improved.
  • the slip rate calculation means for calculating the slip ratio of the wheel, and the slip region of the wheel Based on the slip ratio stored in the slip area storage means and the slip ratio calculated by the slip ratio calculation means.
  • State determining means for determining whether or not the actuator device is operated by the actuator operating means when the state determining means determines that the motion characteristic of the wheel is in the slip region.
  • the fact that the motion characteristics of the wheels are in a non-slip state means that the braking force or driving force acting on the ground contact surface of the wheels increases as the slip ratio increases.
  • the braking force or driving force of the wheel at the time of speed can be maximized.
  • the fact that the wheel motion characteristics are in the slip state means that the braking force or driving force acting on the ground contact surface of the wheel from the road surface decreases as the slip ratio increases. If acceleration / deceleration is performed in the state, the slip ratio further increases, leading to a decrease in braking force or driving force acting on the ground contact surface of the wheel from the road surface.
  • the actuator device when it is determined that the wheel motion characteristic force S is in the slip state, the ground contact state between the road surface and the wheel ground contact surface To improve the braking force or driving force efficiently by improving the wheel and restoring the grip of the wheel (the slip state force also transitions to the non-slip state)
  • control device of claim 4 in addition to the effect produced by the control device of claim 3, the control device further includes angle determination means for determining the first and second angles, respectively. Since the first and second angles are determined based on the value of the wheel slip ratio calculated by the slip ratio calculating means, there is an effect that the braking force or the driving force can be appropriately improved.
  • the first and second angles are increased as the value of the slip ratio of the wheel is larger based on the knowledge that the wheel grip needs to be largely recovered.
  • the grip recovery effect can be exerted more greatly.
  • the braking force or driving force can be further improved.
  • a time determining means for determining the time required for each of the first and second steering operations.
  • the time determining means is determined by a ground speed value of the vehicle detected by the ground speed detecting means or a slip ratio calculating means. Since the time required for the first and second steering operations is determined based on at least one of the calculated wheel slip ratio values, the braking force or driving force can be appropriately improved.
  • the vehicle in addition to the effect of the control device according to any one of claims 1 to 5, the vehicle includes a plurality of wheels, and the actuator device independently includes the plurality of wheels.
  • the actuator actuating means can actuate the actuator device so that the first and second steering operations are performed independently for each of the plurality of wheels.
  • the ground contact state between the road surface and the ground contact surface of each wheel is different for each wheel.
  • there is an effect that the ground contact state can be appropriately improved for each wheel, and the braking force or driving force of the vehicle as a whole can be efficiently improved.
  • the first actuator actuating means is provided, and the wheel can be steered by actuating the actuator device by the first actuator actuating means.
  • the same effects as the described control device are obtained. That is, by steering the wheel, there is an effect that the ground contact state between the road surface and the ground contact surface of the wheel can be improved, and the braking force or driving force of the wheel can be improved.
  • the first actuator operating means operates the actuator apparatus when the state determining means determines that the wheel is in the slip region.
  • the same effect as the control apparatus according to claim 4 is achieved. . That is, there is an effect that it is possible to efficiently improve the braking force or driving force of the wheels.
  • the first actuator actuating means steers the wheel regardless of the operation state of the operation unit operated by the driver to steer the wheel, so that the vehicle running state (straight or turning) It is possible to improve the ground contact state between the road surface and the ground contact surface of the wheel and to restore the grip of the wheel.
  • the wheel steered by the first actuator operating means indicates that the operating state of the operating unit by the driver is Since the actuator device is operated so that the vehicle is steered (returned) to the steering position corresponding to the vehicle position, there is an effect that the behavior of the vehicle can be stabilized.
  • the steering of the wheel by the first actuator actuating means is a period until the wheel steering by the second actuator actuating means is started, that is, the wheel slips by the state judging means. This means an operation that is repeatedly executed while it is determined that the vehicle is in a state.
  • the steering of the wheel by the second actuator actuating means is the steering when the state determining means determines that the wheel is not slipping.
  • the position force also means the operation to return to the steering position according to the operation state of the operation unit.
  • the peripheral speed of the freely rolling wheel is calculated by the peripheral speed calculation means, and the peripheral speed Since the ground speed detection means is configured to calculate the ground speed of the vehicle based on the peripheral speed of the free-rolling wheel calculated by the calculation means, the ground speed is calculated using the existing configuration. There is an effect that measurement can be performed stably at low cost.
  • the ground speed can be measured using existing wheels in the vehicle, and there is no need to separately provide a device such as a fifth wheel or an optical sensor as in the conventional product. Therefore, there is an effect that the ground speed can be measured at a low cost by reducing the parts cost and the preparation cost.
  • the present invention it is not necessary to separately provide a device such as a fifth wheel or an optical sensor. Therefore, the fuel efficiency due to the increase in the vehicle weight, the poor driving performance, and the complicated structure. There is an effect that it is possible to avoid a decrease in reliability and to prevent the appearance of the vehicle from being damaged.
  • the ground speed of the vehicle is measured (calculated) based on the peripheral speed of the free-rolling wheel, so the peripheral speed force of the drive wheel to which the rotational driving force is applied is Compared to measuring ground speed, the effect of slipping between the wheel and the road surface can be minimized, and as a result, the ground speed of the vehicle can be measured with high accuracy. is there.
  • the application of the rotational driving force from the wheel driving device to the wheel can be canceled by the rotational driving force releasing means.
  • at least one wheel is always free-rolled while the vehicle is running in order to measure the ground speed.
  • the rotational driving force applied to the wheel when the rotational driving force applied to the wheel is released, the rotational driving force applied to the wheel is gradually reduced rather than released all at once.
  • This has the effect of reducing the influence of the inertial force acting on the road surface and improving the following characteristics with respect to the road surface.
  • the rotational speed of the wheel can be synchronized with the road surface at an early stage, and as a result, the ground speed of the vehicle can be measured with high efficiency and high accuracy.
  • the wheel to which the rotation driving force is applied by the rotation driving force releasing means is released. Since there is provided a release wheel selection means for selecting from among a plurality of wheels, and the release wheel selection means is configured to select a symmetrical wheel or a diagonal wheel among the plurality of wheels, the vehicle There is an effect that the wheel can freely roll while keeping the behavior stable.
  • the driving force acting on the vehicle is made more uniform and the balance is secured (vehicle The occurrence of a rotational moment that attempts to rotate the vehicle can be suppressed), so that the movement of the vehicle can be kept stable.
  • the left-right symmetric wheels described above are the two front wheels. Either a wheel, two middle wheels, or two rear wheels may be used.
  • the diagonal wheels described above include, for example, two wheels, a left front wheel and a right intermediate wheel or a rear wheel, and a left intermediate wheel and a right front wheel. It may be either two wheels with a wheel or a rear wheel, or two wheels with a left rear wheel and a right front wheel or an intermediate wheel. Any of these can provide the above-described effects.
  • the peripheral speed calculation means has at least two peripheral wheels of the free-rolling wheel.
  • the ground speed calculator is configured to calculate the ground speed of the vehicle based on the peripheral speed of at least two wheels calculated by the peripheral speed calculator.
  • the ground speed of the vehicle can be calculated based on more information, and as a result, the ground speed of the vehicle can be calculated with higher accuracy.
  • control device According to the vehicle of the twelfth aspect, the control device according to any one of the first to eleventh aspects is provided, and the same effect as that of the vehicle is obtained.
  • the parking brake arrangement capable of operating the actuator device and generating at least one of the plurality of wheels in the direction of rotation of the other wheels. Since the actuator actuating means for steering is provided, the vehicle can be fixed at the stop position by using a resistance force generated by setting a plurality of wheels as a stop brake arrangement as a so-called parking brake. There is.
  • the actuator device can be configured as a mechanical type, there is an effect that the state of the parking brake arrangement, that is, the state where the parking brake is applied can be stably maintained for a long time.
  • the conventional parking brake has a problem that it is difficult to provide a fail-safe function for maintaining safety in the event of a failure, such as when a wire is cut in parking on a slope, and lacks reliability.
  • the resistance generated by the wheel steering state (parking braking arrangement) is used as a parking brake.
  • a brake device can be further provided on the wheel, so that the fail-safe function can be secured and the reliability can be improved.
  • At least one of the plurality of wheels has a resistance force with respect to the rotation direction of any of the plurality of wheels.
  • the arrangement is preferably such that it can occur.
  • the return means can return the steering state of the plurality of wheels to the parking braking arrangement force stop arrangement. Yes, that is, the steering state of multiple wheels can be restored to the state before the transition to the parking braking arrangement, so that the driver's steering wheel operation etc. can be simplified and the vehicle can smoothly restart after parking. There is an effect that can be.
  • the actuator actuating means determines that the value of the ground speed is smaller than the reference speed by the speed determination means. In this case, the actuator device is operated and the wheels are steered to the parking brake arrangement, so that the burden on the driver can be reduced and safety can be ensured.
  • the actuator actuating means performs parking braking on the steering state of the wheel as the value of the ground speed of the vehicle decreases.
  • the operation of the operating unit that allows the driver to steer the wheel to steer the wheel as the ground speed value of the vehicle increases while approaching the arrangement It is possible to approach the steering position according to the state.
  • the steering state of the wheels is gradually brought closer to the parking brake arrangement according to the ground speed of the vehicle, so that the vehicle can be stopped smoothly. There is an effect that can be.
  • the wheels are placed in the stop braking arrangement, resistance can be generated in all directions on the stop plane, so there is an effect that the vehicle can be safely stopped at the stop position.
  • the driver stops the vehicle and applies the parking brake only by performing a deceleration operation (for example, returning the accelerator pedal or depressing the brake pedal as the main brake).
  • You can do two actions at once. As a result, there is no need to pull up the brake lever separately when parking, which is required for conventional products, and it is possible to reduce the burden on the driver.
  • the conventional product has a problem in that if the driver or the like carelessly operates the brake lever or pedal while traveling, the behavior of the vehicle becomes unstable and the safety is lowered.
  • the present invention as the vehicle ground speed value decreases, the steering state of the wheel is brought closer to the parking brake arrangement, thereby avoiding a decrease in safety due to careless operation by the driver or the like. There is an effect that can be.
  • the conventional product if the vehicle is driven without the brake lever, etc., the so-called brake bow I scratches occur and the brake device is damaged by frictional heat, there is a problem.
  • the parking brake is released simply by depressing the accelerator pedal and starting the vehicle travel (the wheel approaches the steering position corresponding to the operation state of the operation unit from the parking brake arrangement). This reduces the burden on the driver and at the same time prevents the brake device from being damaged.
  • the angle storage means for storing the reference angle value, and the inclination for detecting the inclination angle of the road surface
  • An angle detection means, and an angle determination means for determining whether or not the value of the inclination angle detected by the inclination angle detection means is larger than a reference angle value.
  • the actuator actuating means is an inclination angle with respect to the road surface of the vehicle.
  • the parking brake arrangement When parked and parked on a slope where the transition to the parking braking arrangement is effective, the parking brake arrangement is shifted, while the parking and parking is parked on a flat road where the transition to the parking braking arrangement is relatively unnecessary. Parking braking There is an effect that it is possible to limit the shift to the position and to suppress the wear of the wheel.
  • the angle storage means for storing the reference angle value of the vehicle and the inclination angle of the vehicle with respect to the road surface are detected.
  • the wheel drive device is operated by the wheel drive device actuating means, so that the wheel rotation speed is controlled so that the wheel slip speed becomes the target slip speed.
  • the target slip speed stored in the storage means of the present invention is a friction coefficient obtained at other slip speeds, that is, a friction coefficient more than twice that obtained by the above-described conventional technology. Since the resulting sliding speed is higher than that of the conventional technology, the coefficient of friction between the wheel and the road surface can be increased to greatly improve the start, braking or turning performance of the vehicle. There is an effect that can be done.
  • the wheel drive device is constituted by an electric motor.
  • the wheel slip speed is controlled to be the target slip speed.
  • the coefficient of friction between the wheel and the road surface can be increased, and as a result, the vehicle start, braking or turning performance can be greatly improved.
  • the target slip speed of the present invention is an extremely small value (for example, about lOcmZs), and thus it is impossible for a conventional internal combustion engine to control the wheel to such a slip speed.
  • the wheel drive device can be controlled for the first time by configuring it with an electric motor as in the present invention. As a result, it is possible to control so that the slipping speed of the wheel becomes the target slipping speed. As a result, the friction coefficient between the wheel and the road surface is increased, and the start, braking or turning performance of the vehicle is greatly increased. Improvements can be made.
  • the electric motor is provided for each of the plurality of wheels, there is an effect that the rotational speeds of the plurality of wheels can be independently controlled. Normally, when the vehicle is running, the ground contact state between the road surface and each wheel is different for each wheel, so if the same rotational driving force is applied to each wheel, the sliding speed of each wheel will vary. .
  • each wheel can be controlled independently as in the present invention, each wheel can be controlled with high accuracy so that the sliding speed of each wheel becomes the target sliding speed. There is an effect that the friction coefficient of each wheel can be improved efficiently. As a result, the starting, braking or turning performance of the entire vehicle can be further improved.
  • the peripheral speed calculation means and the ground speed calculation means are provided, and these peripheral speed calculation means
  • the wheel slip speed is calculated by the slip speed calculation means on the basis of the wheel peripheral speed and the vehicle ground speed calculated by the ground speed calculation means. Therefore, the slip speed of the wheel is calculated with high accuracy. There is an effect that can be.
  • the wheel drive device actuating means is capable of, for example, accelerating the vehicle.
  • the wheel's peripheral speed value will be greater than the vehicle's ground speed value, and the wheel slip speed will be the target slip speed.
  • the vehicle is instructed to accelerate the vehicle In spite of this, it is possible to increase the friction coefficient between the road surface and the wheel while avoiding the vehicle being decelerated.
  • the wheel drive device operating means has a wheel peripheral speed value of the vehicle. Since the wheel drive system is operated so that the wheel speed becomes smaller than the ground speed value and the wheel slip speed becomes the target slip speed, the vehicle accelerates even though the vehicle is instructed to decelerate. It is possible to increase the coefficient of friction between the road surface and the wheel while avoiding this!
  • FIG. 1 is a schematic diagram schematically showing a vehicle on which a control device according to a first embodiment of the present invention is mounted.
  • FIG. 2 is a block diagram showing an electrical configuration of a control device.
  • FIG. 3 is a flowchart showing a steering control process.
  • FIG. 4 is a schematic diagram schematically showing the contents of a friction force table.
  • FIG. 5 is a schematic diagram schematically showing the contents of an amplitude angle and operation cycle table.
  • FIG. 6 (a) is a schematic diagram schematically showing the relationship between the amplitude angle and the grip recovery effect, and (b) is a schematic diagram showing the relationship between the operation period and the grip recovery effect.
  • FIG. 7 (a) is a top view of the wheel, and (b) and (c) are side views of the wheel.
  • FIG. 8 (a) is a schematic diagram schematically illustrating the contents of an amplitude angle table in the second embodiment, and (b) is a schematic diagram illustrating the contents of an operation cycle table in the second embodiment.
  • FIG. 9 is a schematic diagram schematically showing a vehicle on which a control device according to a third embodiment of the present invention is mounted.
  • FIG. 10 is a block diagram showing an electrical configuration of a control device.
  • FIG. 11 is a graph showing the relationship between the sliding speed and the friction coefficient.
  • FIG. 12 (a) and (b) are schematic views schematically showing the contents of a drive release table and a drive return table.
  • FIG. 13 is a flowchart showing rotation control processing.
  • FIG. 14 is a flowchart showing ground speed calculation processing.
  • FIG. 15 is a flowchart showing drive release and return processing.
  • FIG. 16 is a schematic diagram schematically showing a vehicle equipped with a control device in a fourth embodiment of the present invention.
  • FIG. 17 is a block diagram showing an electrical configuration of the control device.
  • FIG. 18 is a flowchart showing parking control processing.
  • FIG. 19 is a flowchart showing a parking control process in the fifth embodiment.
  • FIG. 20 (a) to (c) are schematic views for explaining parking braking arrangements in sixth to eighth embodiments.
  • FIG. 21 is a block diagram showing an electrical configuration of a control device according to a ninth embodiment.
  • FIG. 22 is a flowchart showing parking control processing.
  • FIG. 23 (a) is a top view of the vehicle, and (b) is a side view of the vehicle.
  • FIG. 24 (a) is a top view of the vehicle, and (b) is a side view of the vehicle.
  • FIG. 25 is a block diagram showing an electrical configuration of a control device in a tenth embodiment.
  • FIG. 26 is a flowchart showing parking control processing.
  • FIG. 27 is a schematic diagram schematically showing a vehicle equipped with a control device in an eleventh embodiment of the present invention.
  • FIG. 28 is a block diagram showing an electrical configuration of a control device.
  • FIG. 29 is a diagram showing a relationship between a sliding speed and a friction coefficient.
  • FIGS. 30 (a) and 30 (b) are schematic views schematically showing the contents of a drive release table and a drive return table.
  • FIG. 31 is a flowchart showing rotation control processing.
  • FIG. 32 is a flowchart showing ground speed calculation processing.
  • FIG. 33 is a flowchart showing drive release and return processing.
  • T1 time operation time required for the first or second steering operation
  • FIG. 1 is a schematic diagram schematically showing a vehicle 1 on which a control device 100 according to the first embodiment of the present invention is mounted.
  • the arrow FWD in FIG. 1 indicates the forward direction of the vehicle 1.
  • FIG. 1 shows a state where a predetermined rudder angle is given to all the wheels 2.
  • the vehicle 1 includes a vehicle body frame BF, a plurality of (in this embodiment, four) wheels 2 supported by the vehicle body frame BF, and each of these wheels 2 is driven to rotate independently.
  • the vehicle is mainly provided with a wheel drive device 3 for driving and an actuator device 4 for steering and driving each wheel 2 independently.
  • the control device 100 described later monitors the motion characteristics of the wheels 2, and the wheels 2 in a predetermined state (slip region in the present embodiment) are detected. By steering left and right, the ground contact state between the road surface and the ground contact surface of the wheel 2 is improved, and an improvement in braking force or driving force can be achieved.
  • the wheel 2 has four wheels, left and right front wheels 2FL and 2FR located on the front side in the traveling direction of the vehicle 1, and left and right rear wheels 2RL and 2RR located on the rear side in the traveling direction. These front and rear wheels 2FL to 2RR are configured to be steerable by steering devices 20, 30.
  • Steering devices 20, 30 are steering devices for steering each wheel 2. As shown in Fig. 1, the king pin 21 that supports each wheel 2 so as to be swingable and the knuckle of each wheel 2 are provided. A tie rod 22 connected to an arm (not shown) and a transmission mechanism 23 for transmitting the driving force of the actuator device 4 to the tie rod 22 are mainly provided.
  • the actuator device 4 is a steering drive device for independently driving the wheels 2 and, as shown in FIG. ).
  • a part of the actuator device 4 for example, only the front wheels 2FL, 2FR
  • a steering angle corresponding to the amount of operation of the handle 51 is given.
  • the actuator device corresponding to the wheel 2 is used. 4 (FL to RR Actuator 4FL to 4RR) is driven to steer the wheel 2 left and right. As a result, the ground contact state between the road surface and the ground contact surface of the wheel 2 is improved, and the braking force or driving force is improved.
  • the steering drive of the wheel 2 by the actuator device 4 is caused by the operation of the handle 51, and is controlled for the purpose of turning and whether or not the handle 51 is operated.
  • the former is referred to as turning control and the latter is referred to as steering control. Details of the steering control will be described later (see Fig. 3).
  • FL to RR actuators 4FL to 4RR are constituted by electric motors, and transmission mechanism portion 23 is constituted by a screw mechanism.
  • the electric motor is rotated, the rotational motion is converted to a linear motion by the transmission mechanism 23 and transmitted to the tie rod 22.
  • each wheel 2 is driven to swing around the king pin 21 as a swing center, and a predetermined steering angle is given to each wheel 2.
  • the wheel driving device 3 is a rotation driving device for independently rotating and driving each wheel 2. As shown in Fig. 1, four electric motors (FL to RR motors 3FL to 3RR) are connected to each wheel. It is configured to be arranged every two (that is, as an in-wheel motor). When the driver operates the accelerator pedal 53, a rotational driving force is applied to each wheel 2 from each wheel drive device 3, and each wheel 2 is rotated at a rotational speed corresponding to the operation amount of the accelerator pedal 53.
  • the control device 100 is a control device for controlling each part of the vehicle 1 configured as described above. For example, when the accelerator pedal 53 is operated, the wheel drive device 3 is driven. On the other hand, when the handle 51 and the pedals 52 and 53 are operated, the actuator device 4 is driven (turning control, steering control).
  • control device 100 monitors the slip rate of each wheel 2 so that if there is a wheel 2 that has transitioned to the slip region, the wheel 2 is steered left and right. Then, drive control (steering control) of the actuator device 4 is performed.
  • drive control steering control
  • the detailed configuration of the control device 100 will be described with reference to FIG.
  • FIG. 2 is a block diagram showing an electrical configuration of control device 100.
  • the control device 100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74.
  • the input / output port 75 is connected to a plurality of devices such as the wheel drive device 3.
  • the CPU 71 is an arithmetic device that controls each unit connected by the bus line 74.
  • the ROM 72 stores a control program executed by the CPU 71 (for example, a flowchart of the steering control process shown in FIG. 3), a non-rewritable nonvolatile memory storing fixed value data, and the like.
  • the RAM 73 is a memory for storing various data in a rewritable manner when the control program is executed.
  • the ROM 72 is provided with a frictional force table 72a and an amplitude angle working period table 72b.
  • the frictional force table 72a is a table that stores the relationship between the slip rate s of the wheel 2 and the vehicle traveling direction frictional force T (see FIG. 4).
  • the CPU 71 determines that the wheel 2 is based on the content of the frictional force table 72a. Determine whether the force is in the slip region.
  • the amplitude angle / operation cycle table 72b is a table that stores the relationship between the slip ratio s of the wheel 2, the amplitude angle ⁇ , and the operation cycle T (see FIG. 5).
  • the CPU 71 controls the steering control described later. In the processing (see FIG. 3), the steering angle and the operation cycle for steering the wheel 2 to the left and right are determined based on the contents of the amplitude angle / operation cycle table 72b.
  • the wheel drive device 3 is a device for rotationally driving each wheel 2 (see Fig. 1), and four FLs ⁇ : RR that apply rotational drive force to each wheel 2 are provided.
  • Motors 3FL to 3RR and a drive circuit (not shown) for driving and controlling the motors 3FL to 3RR based on a command from the CPU 71 are provided.
  • the actuator device 4 is a device for steering and driving each wheel 2, and the four FL to RR actuators 4FL to 4 RR for applying a steering driving force to each wheel 2 are provided. And a drive circuit (not shown) for controlling the drive of each of these actuators 4FL to 4RR based on a command from the CPU 71 !.
  • the rudder angle sensor device 31 is a device for detecting the rudder angle of each wheel 2 and outputting the detection result to the CPU 71.
  • each steering angle sensor 31FL to 31RR is provided in each transmission mechanism 23, and the rotational speed when the rotational motion is converted into linear motion in the transmission mechanism 23. It is comprised as a non-contact-type rotation angle sensor which detects this. Since this rotational speed is proportional to the amount of displacement of the tie rod 22, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result (rotational speed) input from the steering angle sensor device 31.
  • the rudder angle detected by the rudder angle sensor device 31 is an angle formed by the center line of each wheel 2 and the reference line (both lines not shown) of the vehicle 1 (body frame BF). The angle is determined independently of the traveling direction of vehicle 1.
  • the vehicle speed sensor device 32 is a device for detecting the ground speed (absolute value and traveling direction) of the vehicle 1 with respect to the road surface and outputting the detection result to the CPU 71. 32a, 32b and a processing circuit (not shown) for processing the detection results of the respective acceleration sensors 32a, 32b and outputting them to the CPU 71.
  • the longitudinal acceleration sensor 32a is a sensor that detects acceleration in the longitudinal direction (upward and downward in Fig. 1) of the vehicle 1 (body frame BF), and the lateral acceleration sensor 32b is the vehicle 1 (body frame BF). This sensor detects the acceleration in the left-right direction (left-right direction in FIG. 1).
  • each of these acceleration sensors 32a and 32b is configured as a piezoelectric sensor using a piezoelectric element! RU
  • the CPU 71 time-integrates the detection results (acceleration values) of the respective acceleration sensors 32a and 32b input from the vehicle speed sensor device 32, and calculates speeds in two directions (front and rear and left and right directions), respectively. At the same time, the ground speed (absolute value and traveling direction) of the vehicle 1 can be obtained by combining these two direction components.
  • the wheel rotation speed sensor device 33 is a device for detecting the rotation speed of each wheel 2 and outputting the detection result to the CPU 71.
  • the four FLs for detecting the rotation speed of each wheel 2 respectively.
  • each rotation sensor 33FL to 33RR is provided on each wheel 2, and the angular velocity of each wheel 2 is detected as the rotation velocity. That is, each rotation sensor 33FL to 33RR is an electromagnetic pickup provided with a rotating body that rotates in conjunction with each wheel 2 and a pickup that electromagnetically detects the presence or absence of teeth formed in the circumferential direction of the rotating body. It is configured as a sensor of the type.
  • the CPU 71 calculates the actual peripheral speed of each wheel 2 from the rotational speed of each wheel 2 input from the wheel rotational speed sensor device 33 and the outer diameter of each wheel 2 stored in the ROM 72 in advance. Each can be obtained.
  • the ground load sensor device 34 is a device for detecting the ground load generated between each wheel 2 and the road surface and outputting the detection result to the CPU 71. It includes FL to RR load sensors 34FL to 34RR to be detected, and a processing circuit (not shown) that processes the detection results of the load sensors 34FL to 34RR and outputs them to the CPU 71.
  • each of the load sensors 34FL to 34RR is configured as a piezoresistive triaxial load sensor.
  • Each of these load sensors 34FL to 34RR is disposed on a suspension shaft (not shown) of each wheel 2 and detects the above-described ground load in the front-rear direction, left-right direction, and vertical direction of the vehicle 1.
  • the CPU 71 can obtain the friction coefficient z of the road surface on the ground contact surface of each wheel 2 from the detection result (ground load) of each load sensor 34FL to 34RR input from the ground load sensor device 34. .
  • Other input / output devices 35 shown in Fig. 2 include, for example, operating states of the handle 51, the brake pedal 52, and the accelerator pedal 53 (all of which are shown in Fig. 1) (rotation angle, stepping amount, operating speed, etc.)
  • An operation state detection sensor device (not shown) for detecting the above is exemplified.
  • the steering control is a control for steering and driving the wheel 2 to the left and right for the purpose of improving the braking force or the driving force, and is described above for the purpose of turning the vehicle 1. Distinct from turning control.
  • FIG. 3 is a flowchart showing the steering control process.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.5 seconds) while the control device 100 is powered on.
  • the CPU 71 first detects the current ground speed of the vehicle 1 and the rotational speed of each wheel 2 (SI, S2), and determines the detected ground speed and rotational speed. Based on this, the slip ratio s of each wheel 2 is calculated (S3).
  • the ground speed of the vehicle 1 is adjusted by the vehicle speed sensor device 32 to each wheel.
  • the rotation speed of 2 is detected by the wheel rotation speed sensor device 33 (see FIG. 2 for both), and input to the CPU 71 from each of the devices 32 and 33.
  • Vrf (Vr ⁇ Vrf) ZVr.
  • Vc is the ground speed of the vehicle 1
  • is the slip angle of the wheel 2 (the angle formed by the center line of the wheel 2 and the traveling direction of the vehicle 1).
  • Vr is the actual peripheral speed of the wheel 2, and as described above, the rotational speed of the wheel 2 detected by the wheel rotational speed sensor device 33 (see Fig. 2) and the ROM 72 are stored in advance. It is calculated from the outer diameter of the wheel 2 that is on.
  • FIG. 4 is a schematic diagram schematically showing the contents of the friction force table 72a.
  • the frictional force table 72a stores the relationship between the slip rate s of the wheel 2 and the frictional force F in the vehicle traveling direction.
  • the vehicle traveling direction frictional force F is a frictional force in the vehicle traveling direction that acts on the ground contact surface of the wheel 2 from the road surface.
  • the slip ratio s when the slip ratio s is in the range from 0 to sb, the force in which the vehicle traveling direction friction force F increases as the slip ratio s increases.
  • the range in which the slip ratio s is greater than or equal to sb.
  • the frictional force F in the vehicle traveling direction decreases as the slip ratio s increases, and the wheel 2 transitions to the slip region. Therefore, the CPU 71 monitors the slip rate s of each wheel 2 and checks whether or not each wheel 2 is in the slip region by checking whether the slip rate s is greater than or equal to sb. Can be judged.
  • the wheel 2 in the slip region has a slip ratio s.
  • the vehicle frictional force F braking force or driving force
  • the slip ratio s further increases, The braking force or driving force acting on the ground contact surface of wheel 2 from the road surface is reduced.
  • the steering control is performed after the first steering operation for steering the wheel 2 by the first angle ⁇ 1 in the first steering direction, and after the first steering operation, At least a second steering operation is performed in which the wheel 2 is steered by a second angle ⁇ 2 in a second steering direction opposite to the first steering direction (see FIG. 7 (a)). .
  • the ground contact state between the wheel 2 and the road surface can be improved, and the grip of the wheel 2 can be recovered (the slip state force also transitions to the non-slip state).
  • the driving force can be improved.
  • the first and second steering operations are executed independently for each of a plurality of wheels (four in this embodiment). Normally, when the vehicle 1 is running, the ground contact state between the road surface and the ground contact surface of each wheel 2 is a different ground contact state for each wheel 2. If the ground condition can be improved for each wheel 2, it is possible to efficiently improve the braking force or driving force of the vehicle 1 as a whole.
  • FIG. 5 is a schematic diagram schematically showing the contents of the amplitude angle / operation cycle table 72b.
  • the amplitude angle / operation cycle table 72b the amplitude angle ⁇ and the operation cycle T are stored in association with the slip ratio s of the wheel 2 and the ground speed of the vehicle 1, respectively.
  • FIG. 5 shows a case where the amplitude angle / operation cycle table 72b is divided into 3 rows and 3 columns and 9 sections with equal vertical and horizontal intervals.
  • the lower row of FIG. The range of 0.25 or more and less than 0.5
  • the middle row in Fig. 5 has a slip ratio s of 0.5 or more and less than 0.75
  • the upper row of Fig. 5 has a slip ratio s of 0.
  • Each range is 75 or more and 1 or less.
  • the left column in Fig. 5 indicates the range where the ground speed is Okm / h and less than 34km / h.
  • the center column shows the range where the ground speed is 34 km / h or more and less than 67 km / h, and the right column in Fig. 5 shows the range where the ground speed is 67 km / h or more and 100 or less h / h.
  • “90 °, 45 °, 10 °” is applied to “large, medium, small” of the amplitude angle ⁇ , and “0. “20 seconds, 0.15 seconds, and 0.10 seconds” correspond respectively.
  • the operation period T is the steering It is defined as the total value of the times Tl and T2 required for the first and second steering operations in the control.
  • the absolute values of the first and second angles ⁇ 1 and ⁇ 2 are the same, and the times Tl and T2 required for the first and second steering operations are also the same.
  • the amplitude angle is ⁇ force ⁇ large (or medium, small)
  • the CPU 71 determines the amplitude angle ⁇ and the operation cycle T in the processing of S5 and S6. That is, the current slip rate s of the wheel 2 has already been calculated in the above-described processing of S3, and the ground speed of the vehicle 1 is detected by the vehicle speed sensor device 32 (see FIG. 2) and is transmitted to the CP U71. Have been entered.
  • the CPU 71 determines the amplitude angle ⁇ and the operation cycle T corresponding to the current slip ratio s calculated in the process of S3 and the ground speed detected by the vehicle speed sensor device 32 as the amplitude angle ⁇ the operation cycle.
  • the amplitude angle ⁇ and the operation period T of each wheel 2 can be determined (S5, S6).
  • the slip rate s calculated in the process of S3 is a negative value
  • the absolute value of the slip rate s is evaluated.
  • a different table amplitude angle, operation cycle table
  • the slip ratio s is positive (ie, during driving) and negative (ie, during braking).
  • the grip recovery effect increases as the amplitude angle ⁇ (that is, the first and second angles ⁇ 1, ⁇ 2) becomes larger. This is based on the knowledge that the price increases.
  • the slip ratio s of the wheel 2 is a large value (the slip ratio is high), the slip of the wheel 2 with respect to the road surface is more remarkable, and it is difficult to recover the grip of the wheel 2. It can be said that it is in a state. Therefore, in this case, since the grip needs to be greatly recovered, the amplitude angle ⁇ is set to a large angle so that a greater grip recovery effect can be obtained (see FIGS. 5 and 6 (a)).
  • the operation period T (time Tl, T2) is determined to be shorter as the ground speed of the vehicle 1 is larger. This is shown in Figure 6 (b).
  • the fact that the ground speed of the vehicle 1 is a large value means that the amount of obstacles on the road surface through which the wheel 2 passes per unit time is large. Therefore, in this case, it is necessary to push away more obstacles than the force between the road surface and the ground contact surface of the wheel 2. Therefore, the operation cycle T should be shortened so that more steering operations can be performed per unit time. (See Fig. 5 and Fig. 6 (b)).
  • FIG. 7 (a) is a top view of the wheel 2
  • FIG. 7 (b) and FIG. 7 (c) are side views of the wheel 2.
  • FIG. 7 (a) is a top view of the wheel 2
  • FIG. 7 (b) and FIG. 7 (c) are side views of the wheel 2.
  • FIG. 7 (a) is a top view of the wheel 2
  • FIG. 7 (b) and FIG. 7 (c) are side views of the wheel 2.
  • FIG. 7 (b) and FIG. 7 (c) are side views of the wheel 2.
  • FIG. 7 (a) is a top view of the wheel 2
  • FIG. 7 (b) and FIG. 7 (c) are side views of the wheel 2.
  • FIG. 7 (c) are side views of the wheel 2.
  • the wheel 2 is steered from the initial position PO by the first angle ⁇ 1 in the first steering direction (right direction in the present embodiment).
  • Steering operation 1 is performed at time T1
  • wheel 2 is steered by a second angle ⁇ 2 in a second steering direction (leftward in this embodiment) that is opposite to the first steering direction.
  • the second steering operation is performed at time T2.
  • the initial position PO corresponds to the direction of the center line of the wheel 2 at a predetermined timing during the processing of S7 (in this embodiment, the timing of starting the processing of S7). That is, the driver operates the handle 51 for the purpose of turning the vehicle 1. Therefore, when a predetermined rudder angle is given to the wheel 2, the center line of the wheel 2 in the state where the rudder angle is given becomes the initial position PO.
  • the wheel 2 is steered in the first steering direction and then steered by the second angle ⁇ 2 in the second steering direction.
  • the steering of the wheel 2 in the second steering direction is not necessarily performed by the second angle ⁇ 2, and is performed by an angle larger than the second angle ⁇ 2 (for example, ⁇ 2 + ⁇ ). It can be done, or it can be done only by an angle smaller than the second angle ⁇ 2 (for example, 0 2 ⁇ ⁇ ).
  • the steering wheel 51 is further operated by the driver, and at least before the second steering operation is completed, the direction of the center line of the wheel 2 is moved by an angle from the initial position ⁇ .
  • the wheel 2 is steered by the first steering operation in the first steering direction by the first angle 0 1
  • the steering position corresponding to the operating state of the handle 51 by the driver ie, the initial position
  • the angle ⁇ ie, ⁇ 2+ ⁇ or the angle ⁇ 2 ⁇ ⁇ .
  • You may comprise so that it may perform.
  • the steering control can be performed according to the operating state of the handle 51 by the driver, so that the behavior of the vehicle 1 can be stabilized.
  • the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result input from the steering angle sensor device 31 (see FIG. 2), so that at least the second By calculating the angle ⁇ (that is, the amount of movement from the initial position ⁇ ) before the steering operation is completed, the wheel 2 is moved to the steering position corresponding to the operation state of the handle 51 by the driver. Return operation).
  • first actuator operating means means for repeatedly executing the steering drive of the wheel 2
  • second actuator operating means means for operating the actuator device 4
  • the contact state between the road surface and the contact surface of the wheel 2 is improved.
  • the braking force or driving force of the wheel 2 can be improved. Specifically, for example, when traveling on a snowy road, steering the wheel 2 can push the water film generated between the road surface and the ground contact surface of the wheel 2 to the outside. The contact between the wheel and the ground contact surface of the wheel 2 can be increased, and the braking force or driving force can be improved accordingly.
  • the ground contact surface of the wheel 2 can be deformed in the left-right direction (steering direction), and the ground contact area with the road surface can be increased.
  • the braking force or driving force can be improved.
  • the number of left and right steering driving of the wheel 2 in the processing of S7 is not limited to the two operations of the first steering operation and the second steering operation, and is less than this. Or may be a large number of times.
  • two operations of the first steering operation and the second steering operation are the minimum unit operations, and the minimum unit operations are executed an integer number of times.
  • the integers are 1, 2, 3, ....
  • the left and right turning force generated in the vehicle 1 by steering and driving the wheels 2 is canceled as a whole, and the behavior of the vehicle 1 during braking or driving can be stabilized.
  • the first and second steering directions may be changed in opposite directions each time the processing of S7 is executed. Specifically, for example, in the first processing of S7, when the first steering direction (second steering direction) is set to the right (left), the second processing of S7 Contrary to the first processing, the first steering direction (second steering direction) is set to the left (right), and in the third processing of S7, the second processing is Conversely, the first steering direction (second steering direction) is set to the right (left). As a result, the stability of the behavior of the vehicle 1 during braking or driving can be further improved.
  • the amplitude angle ⁇ and the operation period T are associated with the slip ratio s of the wheel 2 and the ground speed of the vehicle 1, but in the second embodiment, the amplitude angle ⁇ and the operation period T Is associated only with the slip ratio s.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
  • Figs. 8 (a) and 8 (b) are diagrams schematically showing the contents of the amplitude angle table and the operation cycle table in the second embodiment, and these amplitude angle table and operation cycle table.
  • the bull corresponds to the amplitude angle / operation cycle table in the first embodiment described above, and is provided in the ROM 72.
  • the amplitude angle ⁇ of the wheel 2 is determined based on the contents of the amplitude angle table shown in FIG. 8 (a) (S5). In this amplitude angle table, the amplitude angle ⁇ is stored in association with the slip ratio s of the wheel 2.
  • the value SO of the amplitude angle ⁇ is defined, while the slip rate s is greater than or equal to sb ( In the slip region), the amplitude angle ⁇ is linearly decreased from the maximum angle 0 b (eg, 90 °) to the minimum angle ⁇ a (eg, 10 °) as the slip ratio s increases.
  • the CPU 71 determines the current slip ratio s calculated in the process of S3 and the contents of the amplitude angle table. Based on the above, the value of the amplitude angle ⁇ of the wheel 2 (that is, the first and second angles ⁇ 1, ⁇ 2) is determined. When the slip ratio s calculated in the process of S3 is a negative value, the absolute value of the slip ratio s is evaluated.
  • the larger the slip ratio s of the wheel 2 the larger the amplitude angle ⁇ (the first and second angles ⁇ 1, ⁇ 2) is determined as a small angle. That is, in the slip region, as the slip ratio s increases and the behavior of the vehicle 1 becomes unstable, the steering drive of the wheels 2 to the left and right can be performed at a smaller angle.
  • the operation period T of the wheel 2 is the operation period table shown in FIG. Determined based on the contents of In this operation cycle table, the operation cycle T is stored in association with the slip rate s of the wheel 2.
  • the value of the operating cycle is defined as 0, while the range in which the slip rate s is equal to or greater than sb (In the slip region), the operating cycle T is linearly decreased from the maximum cycle Tb (for example, 0.2 seconds) to the minimum cycle Ta (for example, 0.10 seconds) by increasing the slip ratio s.
  • the CPU 71 determines the value of the operation cycle T of the wheel 2 (i.e., the first cycle) based on the current slip rate s calculated in the process of S3 and the content of the operation cycle table. And the time Tl, T2) required for the second steering operation can be determined (S6).
  • the slip rate s calculated in the process of S3 is a negative value
  • the absolute value of the slip rate s is evaluated.
  • the greater the slip ratio of the wheel 2 the shorter the operation cycle T (time Tl, T2) is determined. That is, in the slip region, the wheel 2 can be steered in a shorter time as the slip ratio s increases and the behavior of the vehicle 1 becomes unstable.
  • the amplitude angle ⁇ and the operation cycle T of the wheel 2 are determined based on both or one of the slip ratio s of the wheel 2 and the ground speed of the vehicle 1.
  • the case has been described (see FIG. 5 and FIG. 8)
  • state quantities for example, the operating state of the brake pedal 52 and the accelerator pedal 53 (operating speed, the amount of depression, etc.), the friction coefficient ⁇ of the road surface, and the like are exemplified.
  • the steering control (the processing from S5 to S7) is executed only when the friction coefficient of the road surface; z is equal to or smaller than a predetermined reference value. It is also possible to control so as to omit the process.
  • Each of these state quantities may be used alone or in combination as a reference value for determining the amplitude angle ⁇ and the operation cycle T. As a result, the operation state of the driver is accurately reflected in the steering control, so that the operational feeling can be improved and the steering control can be performed in a state where the behavior of the vehicle 1 is further stabilized.
  • a braking judgment means for judging whether or not the wheel 2 is in a braking state is provided, and the steering control is started when the braking judgment means judges that the wheel 2 is in a braking state. .
  • whether or not the wheel 2 is in a braking state may be determined based on the acceleration of the vehicle 1 detected by the vehicle speed sensor device 32 (see Fig. 2) or the brake pedal 52 You may judge based on an operation state. Moreover, you may combine the said reference
  • the force described in the case where the steering control of each wheel 2 is performed independently is not necessarily limited to this.
  • the left and right wheels 2 have the same amplitude angle.
  • the steering control may be performed simultaneously with ⁇ and the operation cycle T, or all the wheels 2 may be simultaneously controlled with the same amplitude angle ⁇ and the operation cycle T. As a result, the control burden on the control device 100 can be reduced.
  • the left and right wheels 2 are toe-in and toe-out.
  • the left wheel 2 is steered in the left direction and then steered in the right direction
  • the right wheel 2 is steered in the right direction and then steered in the left direction.
  • the turning force generated in the vehicle 1 can be canceled as a whole, and the behavior of the vehicle 1 during steering control can be made more stable.
  • the present invention is not necessarily limited to this. It may be configured so that the steering control is performed only when both 1 are traveling straight ahead. Thereby, it is possible to suppress the behavior of the vehicle 1 from becoming unstable.
  • the frictional force table 72a is configured to have a relationship between the slip ratio s and the vehicle traveling direction frictional force F in order to facilitate understanding. Although the case has been described, it is sufficient that at least only the value sb described above is stored in the frictional force table 72a (ROM 72).
  • the relationship between the slip ratio s and the frictional force F in the vehicle traveling direction in the friction force table 72a depends on the friction coefficient ⁇ of the portion of the road surface on which the wheel 2 travels that corresponds to the ground contact surface of the wheel 2. Change. Therefore, a plurality of friction force tables 72a corresponding to the friction coefficient of the road surface are provided in the ROM 72, and according to the friction coefficient of the portion corresponding to the ground contact surface of the wheel 2. The frictional force table 72a to be used may be changed. The friction coefficient of the road surface on the ground contact surface of each wheel 2 can be obtained for each wheel 2 from the detection result of the ground load sensor device 34 as described above.
  • the actuator device 4 is configured by an electric motor and the transmission mechanism unit 23 is configured by a screw mechanism has been described.
  • the present invention is not necessarily limited thereto.
  • the actuator device 4 may be composed of a hydraulic / pneumatic cylinder.
  • the transmission mechanism part 23 can be omitted, the structure can be simplified, and the weight can be reduced and the parts cost can be reduced.
  • FIG. 9 is a schematic diagram schematically showing a vehicle 3001 on which a control device 3100 according to the third embodiment of the present invention is mounted.
  • the arrow FWD in FIG. 9 indicates the forward direction of the vehicle 3001.
  • FIG. 9 shows a state in which a predetermined rudder angle is given to all wheels 2! Speak.
  • a vehicle 3001 includes a vehicle body frame BF, a plurality of (four wheels in this embodiment) wheels 2 supported by the vehicle body frame BF, and wheels that rotate and drive these wheels 2 independently. It is mainly provided with a drive device 3 and an actuator device 4 that independently drives each wheel 2 to control the slip speed of the wheel 2 with respect to the road surface by a control device 3100 to be described later. It is configured to increase the coefficient of friction with the road surface and improve the starting performance, braking performance, and turning performance! RU
  • the wheel 2 has four wheels, left and right front wheels 2FL, 2FR located on the front side in the traveling direction of the vehicle 3011, and left and right rear wheels 2RL, 2RR located on the rear side in the traveling direction. These front and rear wheels 2FL to 2RR are configured to be steerable by the steering devices 20, 30.
  • the wheel 2 includes a tire mainly composed of a rubber material, and a wheel that holds the tire and also includes a metal material force such as steel, aluminum alloy, or magnesium alloy.
  • the wheel is connected to the drive shaft of the wheel drive device 3, and the rotational drive force is transmitted from the wheel drive device 3 to the wheel (wheel 2) via the drive shaft.
  • Steering devices 20 and 30 are steering devices for steering each wheel 2. As shown in FIG. 9, a king pin 21 that supports each wheel 2 in a swingable manner and a knuckle of each wheel 2 are provided. A tie rod 22 connected to an arm (not shown) and a transmission mechanism 23 for transmitting the driving force of the actuator device 4 to the tie rod 22 are mainly provided.
  • the actuator device 4 is a steering drive device for independently steering driving each wheel 2, and as shown in FIG. ).
  • a part of the actuator device 4 for example, only the front wheels 2FL, 2FR
  • a steering angle corresponding to the amount of operation of the handle 51 is given.
  • FL to RR actuators 4FL to 4RR are configured by electric motors
  • transmission mechanism portion 23 is configured by a screw mechanism.
  • the electric motor is rotated, the rotational motion is converted to a linear motion by the transmission mechanism 23 and transmitted to the tie rod 22.
  • each wheel 2 is driven to swing around the king pin 21 as a swing center, and a predetermined steering angle is given to each wheel 2.
  • the wheel drive device 3 is a rotation drive device for independently rotating and driving each wheel 2. As shown in Fig. 9, four electric motors (FL to RR motors 3FL to 3RR) are connected to each wheel. It is configured to be arranged every two (that is, as an in-wheel motor). As a result, the rotational speed of each wheel 2 can be controlled independently.
  • the control device 3100 is a control device for controlling each part of the vehicle 3001 configured as described above.
  • the wheel drive device 3 and the actuator device 4 are operated to rotate the rotation speed of the wheel 2.
  • Rotation control of wheel 2 is performed by controlling.
  • a detailed configuration of the control device 3100 will be described with reference to FIG.
  • FIG. 10 is a block diagram showing an electrical configuration of control device 3100.
  • the control device 3100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74.
  • the input / output port 75 is connected to a plurality of devices such as a wheel drive motor 3.
  • the CPU 71 is an arithmetic device that controls each unit connected by the bus line 74.
  • the ROM 72 is a non-rewritable nonvolatile memory storing a control program executed by the CPU 71 (for example, flowcharts of each process shown in FIGS. 13 to 15) and fixed value data
  • the RAM 73 is a control memory. This memory is used to store various work data and flags in a rewritable manner during program execution.
  • the ROM 72 is provided with a sliding speed table 72a.
  • the sliding speed table 72a is a table that stores values of target sliding speeds.
  • the target slip speed is a target value when the rotation control of the wheel 2 is performed.
  • the CPU 71 keeps the slip speed on the road surface of each wheel 2 close to the target slip speed while the vehicle 301 is traveling. In addition, the rotational speed of each wheel 2 is controlled.
  • FIG. 11 is a diagram showing the relationship between the sliding speed and the friction coefficient, and illustrates the result of measurement using the physical properties of the wheel 2 (tire) in the present embodiment.
  • the horizontal axis indicates the sliding speed of the wheel 2 with respect to the road surface
  • the vertical axis indicates the friction coefficient between the wheel 2 and the road surface.
  • the coefficient of friction between the wheel 2 and the road surface changes according to the value of the sliding speed, and is the maximum value at a predetermined sliding speed (in this embodiment, lcmZs).
  • the slip speed at which the friction coefficient is maximized is measured in advance, and this measured value is stored in the ROM 72 (slip speed table 72a) as the target slip speed, and the road surface of the wheel 2 is stored.
  • the rotation speed of wheel 2 is controlled so that the slip speed with respect to approaches the target slip speed value.
  • the friction coefficient between the wheel 2 and the road surface can be increased, so that the braking / acceleration performance and the turning performance can be improved.
  • the target slip speed in the rotation control of the present invention is equivalent to a value that is 1 to 2 digits smaller than the conventional target slip ratio in terms of the slip ratio.
  • the ROM 72 is provided with a drive release table 72b and a drive return table 72c.
  • the drive release table 72b a release speed for releasing the rotational driving force applied to the wheel 2 from the Veg wheel drive device 3 that measures the ground speed of the vehicle 3001 is defined.
  • the drive return table 72c defines the applied speed when the measurement of the ground speed of the vehicle 3001 is completed and the application of the rotational driving force from the wheel drive device 3 to the wheel 2 is resumed.
  • FIG. 12 (a) is a schematic diagram schematically illustrating the contents of the drive release table 72b
  • FIG. 12 (b) is a schematic diagram schematically illustrating the contents of the drive return table 72c.
  • the horizontal axis indicates the elapsed time from the start of the release or application of the rotational driving force
  • the vertical axis indicates from the wheel driving device 3. The magnitude of the rotational driving force applied to wheel 2 is shown.
  • the CPU 71 determines the release speed (that is, the rate of change of the rotational driving force with respect to the elapsed time) from the drive release table 72b shown in FIG. ), And the wheel driving device 3 is controlled based on the read release speed, thereby gradually reducing the rotational driving force applied to the wheel 2.
  • the CPU 71 determines the applied speed (ie, the rate of change of the rotational driving force with respect to the elapsed time) from the drive return table 72c shown in Fig. 12 (b). ) And the wheel driving device 3 is controlled based on the read application speed, thereby gradually increasing the rotational driving force applied to the wheel 2.
  • the wheel driving device 3 is a device for rotationally driving each wheel 2 (see FIG. 9), and includes four FL to RR motors 3FL to 3RR for applying a rotational driving force to each wheel 2. And a drive circuit (not shown) for driving and controlling each of the motors 3FL to 3RR based on a command from the CPU 71.
  • the actuator device 4 is a device for steering and driving each wheel 2, and the four FL to RR actuators 4FL to 4 RR for applying a steering driving force to each wheel 2 are provided. And a drive circuit (not shown) for controlling the drive of each of these actuators 4FL to 4RR based on a command from the CPU 71 !.
  • the rudder angle sensor device 31 is a device for detecting the rudder angle of each wheel 2 and outputting the detection result to the CPU 71.
  • each steering angle sensor 31FL to 31RR is provided in each transmission mechanism 23, and the rotational speed when the rotational motion is converted into linear motion in the transmission mechanism 23. It is comprised as a non-contact-type rotation angle sensor which detects this. Since this rotational speed is proportional to the amount of displacement of the tie rod 22, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result (rotational speed) input from the steering angle sensor device 31.
  • the rudder angle detected by the rudder angle sensor device 31 is an angle formed by the center line of each wheel 2 and the reference line of the vehicle 30 01 (body frame BF), and the traveling direction of the vehicle 3001 Is an unrelated angle.
  • the wheel rotation speed sensor device 33 is a device for detecting the rotation speed of each wheel 2 and outputting the detection result to the CPU 71.
  • the four FLs for detecting the rotation speed of each wheel 2 respectively.
  • each rotation sensor 33FL to 33RR is provided in each wheel 2, and the angular velocity of each wheel 2 is detected as the rotation velocity.
  • each rotation sensor 33FL to 33RR is an electromagnetic pickup provided with a rotating body that rotates in conjunction with each wheel 2 and a pickup that electromagnetically detects the presence or absence of teeth formed in the circumferential direction of the rotating body. It is configured as a sensor of the type.
  • the CPU 71 can obtain the peripheral speed of each wheel 2 from the rotational speed of each wheel 2 input from the wheel rotational speed sensor device 33 and the outer diameter of each wheel 2.
  • the ground speed of the vehicle 3001 is calculated based on the peripheral speed of the wheel 2 as described later. A method for calculating the ground speed of the vehicle 3001 will be described later.
  • the steering wheel 51, the brake pedal 52, and the accelerator pedal 53 (V, see also FIG. 9 for the operating state) (rotation angle, stepping amount, operating speed).
  • an operation state detection sensor device (not shown).
  • the operation state amount is detected by the operation state detection sensor device and output to the CPU 71.
  • the CPU 71 drives the wheel drive device 3 to control the rotation speed of each wheel 2.
  • FIG. 13 is a flowchart showing the rotation control process. This process is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 ms) while the power of the control device 3100 is turned on, and the slip speed of the wheel 2 with respect to the road surface is brought close to the target slip speed. As a result, the coefficient of friction between the wheel 2 and the road surface is increased to improve the starting / braking performance and turning performance.
  • the CPU 71 first executes a ground speed calculation process for calculating the ground speed of the vehicle 3001 (S3001).
  • the ground speed calculation processing will be described with reference to FIG.
  • FIG. 14 is a flowchart showing the ground speed calculation process.
  • the CPU 71 first determines whether or not the vehicle 3001 is in power (S3011). As a result, when it is determined that the vehicle 3001 is not traveling (S3011: No), the vehicle 3001 is stopped (the ground speed is 0), and it is not necessary to calculate the ground speed. This ground speed calculation process is terminated.
  • step S3011 determines whether or not there is a moving wheel, that is, a force with the wheel 2 to which no rotational driving force is applied from the wheel driving device 3 (S3012).
  • the ground speed of the vehicle 3001 is calculated from the peripheral speed of the wheel 2 by freely rolling any of the wheels 2 while the vehicle 3001 is traveling. . Therefore, if it is determined in S3012 that there is a free-rolling wheel 2 (for example, only the left and right rear wheels 2RL and 2RR are driven as drive wheels, and the left and right front wheels 2FL and 2FR are free) When rolling! / Speaking) Soko (S3012: Yes), using the wheel 2 that has already been rolling freely (ie, the left and right front wheels 2FL, 2FR), the ground speed of the vehicle 3001 Can be calculated.
  • the S 3013 force which is a process for freely rolling the wheel 2, also skips the process of S3015 and proceeds to the process of S3016.
  • each wheel 2 has a slip angle (sliding with respect to the road surface), so in this embodiment, the influence of the slip angle of the wheel 2 is minimized.
  • the wheel 2 is determined as a wheel that freely rolls (S3014).
  • the absolute value of the assigned steering angle is The small wheel 2 is determined as a wheel that freely rolls (S3014).
  • the wheel 2 determined as the wheel to be freely rolled is assumed to be two wheels, and these two wheels are the left and right wheels 2 (the left and right front wheels 2FL, 2FR, or the left and right rear wheels). Wheels 2RL, 2RR) are preferable. When all the wheels 2 are provided with steering angles, it is preferable that the left and right wheels include the wheels 2 having the smallest absolute value of the steering angle.
  • FIG. 15 is a flowchart showing drive release and return processing.
  • this drive release and return processing (S3015) release of the rotational drive force applied to the wheel 2 and restart of application of the rotational drive force to the wheel 2 are performed.
  • the CPU 71 first determines whether or not the drive release force is present (S3021). That is, it is determined whether to release the rotational driving force applied to the wheel 2 or to restart the application of the rotational driving force to the wheel 2.
  • the application of the rotational driving force to the wheel 2 is released, and the wheel 2 rolls (free rolling) without sliding on the road surface.
  • the follow-up characteristics of the free-wheeling wheel 2 with respect to the road surface are improved, so that the synchronization between the wheel 2 and the road surface is stabilized.
  • the ground speed of the vehicle 3001 can be measured with high efficiency and high accuracy.
  • the rotational speed of the wheel 2 is detected by the wheel rotational speed sensor device 33 (S301).
  • the ground speed of the vehicle 3001 based on the peripheral speed (for example, an average value) of the two wheels. If the freely rolling wheel 2 has a steering angle, the slip angle is estimated and the peripheral speed of the wheel 2 is corrected based on the slip angle to calculate the ground speed of the vehicle 3001. It is preferable.
  • the CPU 71 first determines whether or not the drive release force is present (S 3021). This time, it is a process executed after the process of S3017, and for the wheel 2 for which the free rotational driving force for free rolling is released, Since this is a process for restarting the application of the rotational driving force, it is determined that the driving is not released (S3 021: No).
  • the peripheral speed of the wheel 2 can be obtained from the rotational speed of the wheel 2 detected by the wheel rotational speed sensor device 33 and the outer diameter of the wheel 2 stored in the ROM 72 in advance. Therefore, by calculating the difference between the peripheral speed and the ground speed of the vehicle 3001, the sliding speed of the wheel 2 can be calculated.
  • the coefficient of friction between the wheel 2 and the road surface can be increased, and the start performance, braking performance, or turning performance of the vehicle 3001 can be improved.
  • the processing speed of S3016 is used as the circumferential speed calculation means according to claim 8.
  • the processing power of S3017 is canceled as the ground speed calculation means.
  • the processing power of S3014 In the flow chart (drive release and return processing) shown in FIG. 15, the rotational driving force release means according to claim 9 corresponds to the processing power of S3022, respectively.
  • the slip of the wheel 2 occurs regardless of the traveling state of the vehicle 3001, that is, whether the vehicle 3001 is traveling at a constant speed or accelerating / decelerating.
  • the rotation control may be executed only when a predetermined condition that is not necessarily limited to this is satisfied. good. Examples of the case where the predetermined condition is satisfied include a case where the acceleration or deceleration of the vehicle 3001 exceeds a predetermined value or a case where the vehicle 3001 is turning.
  • the ground speed of the vehicle 3001 is calculated regardless of the traveling state of the vehicle 3001, that is, whether the vehicle 3001 is traveling straight or turning.
  • the present invention is not limited to this. For example, it is naturally possible to calculate the ground speed only when the vehicle 3001 is traveling straight ahead. Whether the vehicle 3001 is traveling straight may be determined based on the steering angle of the wheel 2 as described above, or an acceleration sensor device (for example, a piezoelectric sensor using a piezoelectric element). ) May be used.
  • the wheels 2 are freely rolled.
  • the number of wheels 2 is not necessarily limited to this. For example, it is naturally possible to freely roll only one wheel or three or more wheels.
  • the wheels 2 to be freely rolled are not necessarily left and right wheels.
  • the front and rear wheels may be two.
  • the fixed value data such as EEPROM
  • EEPROM electrically erasable programmable read-only memory
  • correction means for correcting the value of the fixed value data that is, reducing the outer diameter by the amount of wear
  • the cumulative number of rotations of the wheel 2 that is, the degree of wear
  • the present invention is not necessarily limited to this. It is possible to store the slip speed and control the slip speed of the wheel 2 so that the target slip speed read in the processing of S 3003 is appropriately changed. As a result, the coefficient of friction between the wheel 2 and the road surface can be increased more efficiently, and the starting performance and the like can be further improved.
  • a plurality of types of target slip speeds are stored in the slip speed table 72a according to the temperature of the road surface or wheels (tires) 2, and the surface temperature of the road surface or wheels 2 is measured while the vehicle 3001 is traveling. While reading the target slip speed corresponding to the surface temperature, The sliding speed may be controlled.
  • the surface temperature may be estimated from the outside air temperature, or may be measured by a non-contact temperature sensor (such as an infrared sensor).
  • multiple types of target slip speeds are stored in the slip speed table 72a according to the presence / absence of rainfall and the amount of rainfall, while measuring the amount of rainfall while the vehicle 3001 is traveling,
  • a configuration may be adopted in which the target slip speed corresponding to the rainfall is read and the slip speed of the wheel 2 is controlled.
  • the rainfall amount can be measured by a known rainfall sensor.
  • a plurality of types of target slip speeds are stored in the slip speed table 72a for each type of road surface (for example, asphalt physical properties), and the type of road surface is monitored while the vehicle 3001 is traveling. It is also possible to read the target slip speed corresponding to the type of road surface and control the slip speed of wheel 2.
  • the road surface type may be estimated using a non-contact optical sensor device, or the road surface type information is stored in advance in the navigation system in association with the position information. It is also possible to obtain the position information of the vehicle 3001 to be obtained, and obtain the road surface type information corresponding to the position information as well as the navigation system power.
  • a plurality of types of target slip speeds are stored in the slip speed table 72a for each type of wheel (tire) 2 (for example, for each physical property of the rubber material constituting the tread of the tire).
  • the target slip speed corresponding to the wheel 2 mounted on the vehicle 3001 may be read and the slip speed of the wheel 2 may be controlled.
  • the type of wheel 2 is preferably configured to be input by the driver.
  • the release speed and the return speed (that is, the slope of the straight line shown in Fig. 12) stored in the drive release table 72b and the drive return table 72c are set to constant values. Although described above, it is naturally possible to change the release speed and the return speed, which are not necessarily limited to this.
  • Examples include a case where the vehicle 3001 is changed according to the acceleration / deceleration and a case where the vehicle 3001 is changed according to the road surface condition.
  • the greater the acceleration / deceleration of the vehicle 3001 the greater the influence of the inertial force acting on the wheel 2 when the rotational driving force is released.
  • the release speed or the like slower the influence of inertial force is reduced.
  • the greater the frictional resistance of the road surface the greater the influence of the inertial force that acts on the wheel 2 when the rotational driving force is released, etc. Reduce.
  • the vehicle 3001 is configured to include four front and rear wheels 2FL to 2RR has been described.
  • the number of wheels 2 is not necessarily limited to this. For example, it may be 3 wheels or 5 wheels or more.
  • the actuator device 4 is configured by an electric motor and the transmission mechanism unit 23 is configured by a screw mechanism has been described.
  • the actuator device 4 may be composed of a hydraulic 'pneumatic cylinder.
  • the transmission mechanism portion 23 can be omitted, so that the structure can be simplified, and the weight reduction and the part cost can be reduced.
  • the brake device that applies force is described in the case where the vehicle 3001 is not provided with a brake device (for example, a drum brake or a disc brake that uses frictional force). Of course, it is possible to provide it.
  • a brake device for example, a drum brake or a disc brake that uses frictional force.
  • the wheel drive device 3 (FL to RR motors 3FL to 3RR) may be configured as a so-called regenerative brake.
  • the electric power generated by operating the regenerative brake may be configured to be charged in a battery device (not shown) for driving the wheel drive device 3.
  • FIG. 16 is a schematic diagram schematically showing a vehicle 4001 equipped with a control device 4100 according to the fourth embodiment of the present invention. Note that arrow FWD in FIG. 16 indicates the forward direction of vehicle 4001. FIG. 16 shows a state in which a predetermined rudder angle is given to all wheels 2!
  • the vehicle 4001 includes a vehicle body frame BF, a plurality of (four wheels in this embodiment) wheels 2 supported by the vehicle body frame BF, and wheels that rotate and drive these wheels 2 independently.
  • a drive device 3 and an actuator device 4 for steering and driving each wheel 2 independently are mainly provided.
  • the vehicle 4001 according to the fourth embodiment is configured so that a parking brake can be applied by setting the steering state of the plurality of wheels 2 to the parking braking arrangement shown in FIG.
  • the actuator device 4 is The wheels 2 are steered to shift the steering state of the plurality of wheels 2 to the parking brake arrangement.
  • a resistance force is generated in all directions on the plane including the ground contact surface of each wheel 2. Therefore, the vehicle 4001 is not moved from the stop position by using the generated resistance force as a parking brake. Can be fixed, and so on.
  • the wheel 2 includes four wheels, left and right front wheels 2FL and 2FR positioned on the front side in the traveling direction of the vehicle 4001, and left and right rear wheels 2RL and 2RR positioned on the rear side in the traveling direction. These front and rear wheels 2FL to 2RR are configured to be steerable by steering devices 20 and 30.
  • Steering devices 20, 30 are steering devices for steering each wheel 2. As shown in Fig. 16, the king pin 21 that supports each wheel 2 so as to be swingable and the knuckle of each wheel 2 are provided. A tie rod 22 connected to an arm (not shown) and a transmission mechanism 23 for transmitting the driving force of the actuator device 4 to the tie rod 22 are mainly provided.
  • the actuator device 4 is a steering drive device for steering and driving each wheel 2 independently. As shown in Fig. 16, the four actuators (FL to RR actuator unit 4FL) are provided. ⁇ 4RR). When the driver operates the handle 51, a part of the actuator device 4 (for example, only the front wheels 2FL, 2FR) or the whole is driven, and a steering angle corresponding to the amount of operation of the handle 51 is given.
  • the steering drive of the wheel 2 by the actuator device 4 is caused by the operation of the handle 51, and the steering of the wheel 2 is performed regardless of whether the handle 51 is operated or not.
  • the former is referred to as turning control and the latter is referred to as parking control. Call it. Details of parking control will be described later (see FIG. 18).
  • FL to RR actuators 4FL to 4RR are constituted by electric motors, and transmission mechanism portion 23 is constituted by a screw mechanism.
  • transmission mechanism portion 23 is constituted by a screw mechanism.
  • the wheel drive device 3 is a rotation drive device for independently rotating and driving each wheel 2. As shown in Fig. 16, four electric motors (FL to RR motors 3FL to 3RR) are connected to each wheel. Every two (ie, as in-wheel motors) are arranged.
  • a rotational driving force is applied to each wheel 2 from each wheel drive device 3, and each wheel 2 is rotated at a rotational speed corresponding to the operation amount of the accelerator pedal 53.
  • the control device 4100 is a control device for controlling each part of the vehicle 4001 configured as described above. For example, when the accelerator pedal 53 or the brake pedal 53 is operated, a wheel is used. While driving control of the driving device 3 is performed, driving control (turning control, parking control) of the actuator device 4 is performed when the handle 51 or the parking brake switch 4033 is operated.
  • FIG. 17 is a block diagram showing an electrical configuration of control device 4100.
  • the control device 4100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to the input / output port 75 via the bus line 74.
  • a plurality of devices such as the wheel drive device 3 are connected to the input / output port 75.
  • the CPU 71 is an arithmetic device that controls each unit connected by the bus line 74.
  • the ROM 72 is a non-rewritable nonvolatile memory storing a control program executed by the CPU 71 (for example, the flowchart of the parking control process illustrated in FIG. 18) and fixed value data
  • the RAM 73 is a control memory. This memory is used to store rewritable work data and flags when the program is executed.
  • the ROM 72 is provided with a parking brake arrangement table 72a as shown in FIG.
  • the parking braking arrangement table 72a is a table that stores the steering state (steering angle) of each wheel 2 at the time of parking braking arrangement.
  • the CPU 71 shifts the steering state of each wheel 2 to the parking brake arrangement based on the contents of the parking brake arrangement table 72a.
  • the RAM 73 is provided with a stop-time placement memory 73a and a brake flag 73b.
  • the stop-time arrangement memory 73a is a memory for storing the steering state (steering angle) of each wheel 2 before the shift to the parking brake arrangement (that is, before the parking brake is applied) as the stop-time arrangement.
  • the CPU 71 reads out the stop-time arrangement from the stop-time arrangement memory 73a, and returns the steering state of each wheel 2 to the parking brake arrangement force stop-time arrangement.
  • the brake flag 73b is a flag for indicating whether or not the steering state of each wheel 2 is in the parking braking arrangement (that is, whether or not the parking brake is applied). It is set to “1” when the steering state is shifted to the parking brake arrangement (see FIG. 18S4008), and “0” when the parking brake arrangement is released (that is, when the movement is stopped). (Refer to Figure 18S4012).
  • the wheel drive device 3 is a device for rotationally driving each wheel 2 (see Fig. 16), and the four FL ⁇ : RR for applying rotational drive force to each wheel 2 are provided.
  • Motors 3FL to 3RR and a drive circuit (not shown) for driving and controlling the motors 3FL to 3RR based on a command from the CPU 71 are provided.
  • the actuator device 4 is a device for steering and driving each wheel 2, and the four FL to RR actuators 4FL to 4 RR for applying a steering driving force to each wheel 2 are provided. And a drive circuit (not shown) for controlling the drive of each of these actuators 4FL to 4RR based on a command from the CPU 71 !.
  • the rudder angle sensor device 31 is a device for detecting the rudder angle of each wheel 2 and outputting the detection result to the CPU 71.
  • each steering angle sensor 31FL to 31RR is provided in each transmission mechanism 23, and the rotational speed when the rotational motion is converted into linear motion in the transmission mechanism 23. It is comprised as a non-contact-type rotation angle sensor which detects this. Since this rotational speed is proportional to the amount of displacement of the tie rod 22, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result (rotational speed) input from the steering angle sensor device 31.
  • the rudder angle detected by the rudder angle sensor device 31 is an angle formed by the center line of each wheel 2 and the reference line (both lines not shown) of the vehicle 40 01 (body frame BF). Yes, the angle is determined independently of the traveling direction of the vehicle 401.
  • the vehicle speed sensor device 32 is a device for detecting the ground speed (absolute value and traveling direction) of the vehicle 4001 with respect to the road surface, and outputting the detection result to the CPU 71. 32a, 32b and a processing circuit (not shown) for processing the detection results of the respective acceleration sensors 32a, 32b and outputting them to the CPU 71! /.
  • the longitudinal acceleration sensor 32a is a sensor that detects the acceleration in the longitudinal direction (upward and downward in Fig. 16) of the vehicle 4001 (body frame BF), and the lateral acceleration sensor 32b is the vehicle 40 01 (body frame BF). ) In the left-right direction (Fig. 16 left-right direction).
  • each of the acceleration sensors 32a and 32b is configured as a piezoelectric sensor using a piezoelectric element.
  • the CPU 71 time-integrates the detection results (acceleration values) of the acceleration sensors 32a and 32b input from the vehicle speed sensor device 32, and calculates speeds in two directions (front and rear and left and right directions), respectively.
  • the ground speed (absolute value and traveling direction) of the vehicle 4001 can be obtained by synthesizing these two direction components.
  • the parking brake switch 4033 is a switch for instructing the transition to the parking brake arrangement and the release thereof, and the CPU 71 switches to the parking brake arrangement when the parking brake switch 4033 is turned on by the driver. While it is determined that the shift (braking by the parking brake) has been instructed, it is determined that the release of the parking brake arrangement has been instructed when the switch is turned off (see FIG. 18S402).
  • Parking brake switch 4033 is configured by a lock-type switch that can maintain the on and off states. For example, when the driver switches from the off state to the on state, the on state is maintained until the next switching to the off state, and the input / output port 75 maintains the on state.
  • Other input / output devices 35 shown in FIG. 17 include, for example, the operating state (rotation angle, stepping amount, operating speed) of the handle 51, the brake pedal 52, and the accelerator pedal 53 (see FIG. 16 for V and displacement).
  • the operating state rotation angle, stepping amount, operating speed
  • an operation state detection sensor device not shown.
  • parking control according to the present invention will be described with reference to FIG.
  • the parking control means that the vehicle 2 is placed in the parking braking arrangement (that is, the parking brake is applied) so that the vehicle 4001 does not move even when the vehicle is stopped.
  • This control is for steering driving, and is distinguished from the turning control described above for the purpose of turning the vehicle 4001.
  • FIG. 18 is a flowchart showing the parking control process. This process is a process repeatedly executed by the CPU 71 (for example, at intervals of 0.5 seconds) while the control device 4100 is powered on.
  • the CPU 71 first determines whether or not the vehicle 4001 is stopped (S4001). As a result, if it is determined that the vehicle is not stopped (S4001: No), the vehicle 4001 is in a running state and the steering state of each wheel 2 is shifted to the parking brake arrangement (ie, the parking brake is applied). Since this is not possible, the parking control process is terminated.
  • Whether the vehicle 4001 is stationary or not can be determined based on the detection result (ground speed) of the vehicle speed sensor device 32 (see Fig. 17) described above.
  • the parking brake switch 4033 is turned on when the driver instructs to shift to the parking brake arrangement (that is, to apply the parking brake).
  • the driver gives an instruction to release the parking brake arrangement (that is, release the parking brake)! /, And! /.
  • the current steering angle of each wheel 2 is first detected (S4004) before the transition to the parking braking arrangement.
  • the current steering angle (steering state) of each wheel 2 is stored in the stop-time placement memory 73a as the stop-time placement (S4005).
  • the parking brake arrangement is changed based on the contents of the stop-time arrangement memory 73a.
  • the steering state of each wheel 2 can be returned to the state before shifting (arranged when the vehicle is stopped) (see S4010 and S4011).
  • the parking brake arrangement (that is, the steering state of each wheel 2) is read from the parking brake arrangement table 72a in the next !, and each wheel 2 is read based on the read contents.
  • the steering state (steering angle) is determined (S4006).
  • the actuator device 4 controlling the actuator device 4 using the rudder angle determined in the processing of S4006 as a target value, the steering state of each wheel 2 is shifted to the parking brake arrangement (S4007).
  • the parking braking arrangement in the present embodiment is set so that the front wheels 2FL, 2 FR tend to toe out, while the rear wheels 2RL, 2RR tend to toe in. Yes.
  • the absolute values of the steering angles of the wheels 2 are all the same angle (for example, 45 degrees).
  • the vehicle 4001 has a front-rear direction or a left-right direction (FIG.
  • the left and right front wheels 2FL and 2FR tend to toe out, and the left and right rear wheels 2RL and 2RR have a toe-in tendency.
  • a resistance force against the external force can be generated.
  • the resistance force can be used as a so-called parking brake to securely fix the vehicle 4001 at the stop position (do not start moving).
  • the braking force applied to the wheels cannot be maintained for a long time due to the internal leak of the brake hydraulic pressure.
  • the actuator device 4 is configured as a mechanical type, the state of the parking brake arrangement, that is, the state where the parking brake is applied can be stably maintained for a long time.
  • the conventional parking brake has a problem that it is difficult to provide a fail-safe function to maintain safety at the time of failure, such as when the wire is cut in parking on a slope, and it is not reliable.
  • a brake device for example, one that uses frictional force such as a disc brake or a drum brake
  • the brake device functions as a parking brake. If the brake device is damaged, the parking brake arrangement functions as a parking brake. Reliability can be improved.
  • the above-described communication is performed by setting the steering state of each wheel 2 to the parking brake arrangement. Since resistance can be generated in any direction (all directions) on the plane,
  • the parking braking arrangement is canceled by first setting the stopping arrangement (the steering angle of each wheel 2) memorized in the processing of S4004 and S4005.
  • the data is read from the memory 73a (S4010), and the actuator device 4 is controlled using the read steering angle as a target value to return the steering state of each wheel 2 to the stop-time arrangement (S40l).
  • the brake flag 73b is used to indicate that the release of the parking brake arrangement has already been completed (ie, the parking brake is released). Is set to “0” (S4012), and the parking control process is terminated.
  • FIG. 19 is a flowchart showing a parking control process in the fifth embodiment.
  • the transition to the parking brake arrangement is started after the vehicle 4001 stops.
  • the fifth embodiment even if the vehicle 4001 is running, If the speed is equal to or lower than the reference speed value, for example, the steering state of each wheel 2 is gradually changed as the ground speed is reduced, and the vehicle 4001 is completely shifted to the parking brake arrangement when the vehicle 4001 stops.
  • the same parts as those in the above-described fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the CPU 71 first determines whether or not the parking brake mode is on (S5021).
  • on / off of the parking brake mode indicates whether or not to perform the parking control for shifting the steering state of each wheel 2 to the parking brake arrangement. If it is on (off), the parking control is performed. Means to do (don't do! / ⁇ ).
  • on / off of the parking brake mode can be arbitrarily selected by the driver.
  • the vehicle 4001 is provided with a lock type switch (not shown) for setting the parking brake mode on / off.
  • a lock type switch (not shown) for setting the parking brake mode on / off.
  • step S5021 determines whether the parking brake mode is on (S5021: Yes). If it is determined in step S5021 that the parking brake mode is on (S5021: Yes), it means that the driver has selected the mode for parking control.
  • the parking control is performed.
  • the processing after S5022 is executed.
  • the ground speed of the vehicle 4001 is detected (S5022), and it is determined whether or not the detected ground speed is below a reference speed (5 km / h in this embodiment) (S5023). As a result, if the detected ground speed is larger than the reference speed value (S5023: No), vehicle 4001 has not been decelerated to a speed at which parking control can be performed, or vehicle 4001 has Since this means that the vehicle has already been accelerated to a speed exceeding the value and it is not necessary to perform parking control, this parking control process is terminated.
  • a reference speed 5 km / h in this embodiment
  • ground speed of the vehicle 4001 can be detected by the vehicle speed sensor device 32 (see FIG. 17) as described above.
  • the reference speed value is stored in advance in ROM 72 as fixed value data.
  • each wheel is based on the detected ground speed.
  • the steering state (steering angle) of each wheel 2 is parked from the current steering state as the value of the ground speed of the vehicle 4001 decreases.
  • the steering angle of each wheel 2 is determined so that the steering state of each wheel 2 coincides with the parking braking arrangement when the ground speed becomes 0 (that is, when the vehicle 4001 stops) while approaching the vehicle braking arrangement. Is done.
  • the steering state of each wheel 2 is brought closer to the steering position corresponding to the operation state of the handle 51 from the current steering state, and the steering state of each wheel 2 is changed to the steering position of the handle 51 when the ground speed reaches the reference speed value.
  • the steering angle of each wheel 2 is determined so as to coincide with the steering position according to the operation state.
  • each wheel 2 when the vehicle 4001 stops on a downhill, the steering state of each wheel 2 can be gradually brought closer to the parking brake arrangement according to the ground speed of the vehicle 4001. The vehicle 4001 can be stopped smoothly. At the same time, since each wheel 2 is in a stop braking arrangement (see Fig. 16), resistance force can be generated in all directions on the stop plane, so that the vehicle 4001 can be safely stopped at the stop position. .
  • the driver simply stops the vehicle 4001 and applies the parking brake only by performing a deceleration operation (for example, an operation of returning the accelerator pedal 53 or an operation of depressing the brake pedal 52).
  • a deceleration operation for example, an operation of returning the accelerator pedal 53 or an operation of depressing the brake pedal 52.
  • the steering state of each wheel is determined according to the ground speed of the vehicle 4001 and the steering position according to the operation state of the handle 51. (For example, if the steering wheel 51 is in an operation state instructing straight travel, each wheel 2 can be moved straight), so that the hill can be started smoothly.
  • the conventional product has a problem in that if the vehicle is driven without the brake lever or the like being returned, a so-called brake bow I is generated and the brake device is damaged by frictional heat.
  • the parking brake is released by simply depressing the accelerator pedal 53 and starting the vehicle 4001 (that is, the parking brake disposition force of the wheel 2 is also increased). The steering position according to the operating state of the dollar 51).
  • FIGS. 20 (a) to 20 (c) are schematic diagrams for explaining the parking brake arrangements in the sixth to eighth embodiments, respectively, and correspond to FIG. 16 described above.
  • the parking brake arrangements in the sixth and seventh embodiments are based on the same technical idea as the parking brake arrangement in the fourth embodiment described above.
  • the center line directions of the wheels 2 adjacent to each other in the vertical direction and the horizontal direction of the vehicle 4001 are set so as to be orthogonal to each other.
  • the center line direction is perpendicular to the left rear wheel 2RL adjacent in the vertical direction of the vehicle 4001 and the right front wheel 2FR adjacent in the horizontal direction of the vehicle 4001. Yes.
  • the parking brake arrangement in the eighth embodiment is set so that the center line directions of the wheels 2 adjacent to each other in the diagonal direction of the vehicle 4001 are orthogonal to each other, as shown in FIG. 20 (c). ing.
  • the center line direction is perpendicular to the right rear wheel 2RR adjacent to the vehicle 4001 in the oblique direction.
  • Each of these parking braking arrangements is an example of the most preferable form in the case of a few power wheels of wheels 2 arranged in vehicle 4001. Therefore, it is naturally possible to adopt different arrangements depending on the number of wheels 2 arranged in the vehicle 4001. Further, even if the number of wheels 2 arranged on the vehicle 4001 is four, it is naturally possible to adopt an arrangement different from these. That is, even when an external force is applied to the vehicle 4001 in any direction on the plane including the ground contact surface of each wheel 2, at least one of the wheels 2 is in a non-free rolling state. That is, any arrangement that can generate a resistance force to the external force is sufficient.
  • the parking brake arrangement does not matter the steering angle of each wheel 2, but the front wheels 2FL, 2FR tend to toe in like the parking brake arrangement in the sixth and seventh embodiments, and It is preferable that the rear wheels 2R L and 2RR have a toe-out tendency, or the front wheels 2FL and 2FR have a toe-out tendency and the rear wheels 2RL and 2RR have a toe-in tendency. This is because the resistance force against the external force can be generated more reliably.
  • the parking braking arrangement does not matter the steering angle of each wheel 2, but the front wheels 2FL, 2FR tend to toe-in and the rear braking arrangement is similar to the parking braking arrangement in the eighth embodiment. It is preferable that the wheels 2RL and 2RR have a toe-in tendency, or the front wheels 2FL and 2FR have a toe-out tendency, and the rear wheels 2RL and 2RR also have a toe-out tendency.
  • FIG. 21 is a block diagram showing an electrical configuration of a control device 9600 according to the ninth embodiment.
  • the transition to the parking brake arrangement is executed regardless of the slope state of the road surface.
  • symbol is attached
  • the control device 9600 in the ninth embodiment includes a CPU 71, a ROM 72, and a RAM 73, which are connected to the input / output port 75 via the bus line 74. Yes.
  • a plurality of devices such as the wheel drive device 3 are connected to the input / output port 75.
  • the ROM 72 is provided with a parking brake arrangement table 172a as shown in FIG.
  • the parking brake arrangement table 172a is a table that stores the steering state (steering angle) of each wheel 2 at the time of parking brake arrangement, as in the case of the fourth embodiment.
  • the parking braking arrangement table 172a of the present embodiment stores a plurality of steering states (steering angles) of each wheel 2 using the road surface inclination state as a parameter.
  • the CPU 71 determines the inclination of the road surface as well as the detection result force of the vehicle inclination sensor device 134 described later.
  • the steering state of each wheel 2 is determined based on the inclination state of the road surface and the contents of the parking brake arrangement table 172a (see FIGS. 23 and 24).
  • the vehicle inclination sensor device 134 is a sensor device for detecting the inclination state of the road surface and outputting the detection result to the CPU 71.
  • the vehicle inclination sensor 134a detects the inclination of the road surface in the longitudinal direction of the vehicle 4001.
  • a left and right direction inclination sensor 134b that detects the inclination of the road surface in the left and right direction of the vehicle 4001, and a processing circuit (not shown) that processes the detection results of the respective inclination sensors 134a and 134b and outputs the result to the CPU 71. /!
  • each of the tilt sensors 134a and 134b is configured by a liquid-filled capacitance-type tilt angle sensor that detects a change in electrostatic capacitance accompanying a tilt of the sealed liquid as an angle change.
  • Each inclination sensor 134a, 134b is set to the initial level when the vehicle 4001 is arranged on a flat road surface without inclination, and the CPU 71 is set from the initial level of each inclination sensor 134a, 134b.
  • the increase / decrease value is estimated as the slope of the road surface.
  • the vehicle 4001 front-rear direction inclination described above refers to an inclination in a direction in which the front of the vehicle 4001 is lifted with respect to the rear (or vice versa) (see FIG. 23).
  • the left-right inclination of the vehicle 4001 means an inclination in a direction in which the left side of the vehicle 4001 is lifted with respect to the right side (or vice versa).
  • FIG. 22 is a flowchart showing the parking control process.
  • FIG. 23 (a) is a top view of the vehicle 4001
  • FIG. 23 (b) is a side view of the vehicle 4001.
  • FIG. 24 (a) is a top view of the vehicle 4001
  • FIG. 24 (b) is a rear view of the vehicle 4001.
  • a process to be executed (for example, at intervals of 0.5 seconds).
  • the CPU 71 first detects the ground speed of the vehicle 4001 (S5022), and the detected ground speed is the reference speed (in this embodiment, 5 km / h). It is determined whether or not the force is the following (S5023). As a result, if the detected ground speed is larger than the reference speed value (S5023: No), the vehicle 4001 has not been decelerated to a speed at which parking control can be performed, or the vehicle 4001 has This means that the vehicle has already been accelerated to a speed exceeding the value and there is no need to perform parking control. The vehicle control process is terminated.
  • the current inclination state of the vehicle 4001 that is, the inclination state (inclination direction and inclination angle) of the road surface is further detected by the vehicle inclination sensor device 134 (see FIG. 21). It is detected (S9063), and it is determined whether or not the detected inclination angle is greater than or equal to a reference angle value (3 degrees in the present embodiment) (S9064).
  • the reference angle value is stored in advance in the ROM 72 (see FIG. 21).
  • the steering device of each wheel 2 is currently controlled by controlling the actuator device 4 using the steering angle according to the operating state of the node 51 (see Fig. 16) as a target value.
  • the steering position is returned to the steering position corresponding to the operating state of the handle 51.
  • the transition to the parking brake arrangement is performed only when the road surface has a predetermined inclination angle, that is, when the transition to the parking brake arrangement is particularly effective. Therefore, when the road surface has a small inclination angle (when the reference angle value is not reached), that is, on a flat road surface where the transition to the parking brake arrangement is relatively unnecessary.
  • the transition to parking brake arrangement can be restricted (prohibited). Therefore, it is possible to suppress the unnecessary steering operation of the wheel 2 and to suppress the progress of wear of the wheel 2 correspondingly. it can.
  • the steering state (steering angle) of each wheel 2 is parked from the current steering state as the value of the ground speed of the vehicle 4001 decreases.
  • the steering angle of each wheel 2 is determined so that the steering state of each wheel 2 coincides with the parking braking arrangement when the ground speed becomes 0 (that is, when the vehicle 4001 stops) while approaching the vehicle braking arrangement. Is done.
  • the ground speed value of the vehicle 4001 increases, so that the steering state of each wheel 2 is changed from the current steering state to the steering position corresponding to the operation state of the handle 51.
  • the steering angle of each wheel 2 is determined so that the steering state of each wheel 2 coincides with the steering position corresponding to the operation state of the handle 51 when the ground speed reaches the reference speed value.
  • a plurality of patterns are stored in the parking braking arrangement table 172a, and in the processing of S9065, the parking braking arrangement corresponding to the inclination state of the road surface is selected. .
  • the difference between the steering angle of wheel 2 on the downward slope side (for example, rear wheels 2RL and 2RR in Fig. 23) and the steering angle of wheel 2 on the upward slope side (front wheels 2FL and 2FR in Fig. 23) Is proportional to the value of the road surface inclination angle.
  • the state of zero is schematically shown by a two-dot chain line).
  • the wheel 2 when parking on a sloped road surface, the wheel 2 is steered to a parking brake arrangement of a different form from the parking brake arrangement when parking on a flat road surface. Since the state can be shifted, the vehicle 4001 can be reliably fixed at the parking / stopping position, and wear of the wheels 2 can be suppressed.
  • the steering angle of the wheel 2 on the downward inclination side is increased (the center line of the wheel 2 on the downward inclination side and the downward inclination direction (FIG. 23 (a ) And Fig. 24 (a) (left and right direction)), and the vehicle 4001 tries to move in the downward inclination direction due to gravity, the wheel on the downward inclination side 2 can be made more difficult to roll in the downward inclination direction (that is, the resistance force as a parking brake is exerted more), and accordingly, the vehicle 4001 can be securely fixed at the parking / stopping position.
  • FIG. 25 is a block diagram showing an electrical configuration of control apparatus 10700 in the tenth embodiment.
  • the transition to the parking braking arrangement is performed.
  • the transition to the parking brake arrangement is executed.
  • symbol is attached
  • the control device 10700 in the tenth embodiment includes a CPU 71, a ROM 72, and a RAM 73, which are connected to the input / output port 75 via the bus line 74. Yes.
  • a plurality of devices such as the wheel drive device 3 are connected to the input / output port 75.
  • the operation mode selection means 133 is a device for selecting the connection state between the wheel drive device 3 and the wheel 2 (both see Fig. 16), an operation lever operated by the driver, and its operation lever. Mainly includes a position sensor for detecting the operation position and a processing circuit (not shown) for processing the detection result of the position sensor and outputting the result to the CPU 71.
  • the CPU 71 controls the connection state between the wheel driving device 3 and the wheel 2 in accordance with the operation position of the operation lever.
  • the drive range is a range for selecting a state in which the wheel driving device 3 and the wheel 2 are connected. In this range, the rotational driving force is transmitted from the wheel driving device 3 to the wheel 2. It is possible. Therefore, when the vehicle 4001 is driven, the driver can drive the vehicle 4001 by depressing the accelerator pedal 53 (see FIG. 16) after placing the operation lever in the drive range. it can.
  • the parking range is a range for selecting a state in which the connection between the wheel driving device 3 and the wheel 2 is released. In this range, the rotational driving force is transmitted from the wheel driving device 3 to the wheel 2. Is prohibited.
  • the present embodiment is configured such that the main key for starting and stopping the wheel drive device 3 can be inserted and removed only in the parking range. Therefore, when the driver is away from the vehicle 4001, the operation lever is positioned in the parking range. The main key can be removed and the vehicle 4001 can be removed.
  • FIG. 26 is a flowchart showing the parking control process. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.5 seconds) while the control device 10700 is powered on.
  • symbol is attached
  • the current inclination state of the vehicle 4001 that is, the inclination state (inclination direction and inclination angle) of the road surface is detected by the vehicle inclination sensor device 134 (see FIG. 25).
  • the parking braking arrangement corresponding to the detected inclination state is read from the parking braking arrangement table 172a (see FIG. 25), and the steering state (steering angle) of each wheel 2 is determined based on the read contents. (S 10073).
  • the steering state of each wheel 2 is shifted to the parking brake arrangement (S4007). Since the parking brake arrangement in the present embodiment is the same as that in the ninth embodiment described above, description thereof is omitted. [0453] As described above, in the present embodiment, by operating the operation mode selection device 133 to the parking range, the transition to the parking brake arrangement can be automatically performed. In other words, by performing the necessary operations when removing the main key, it is possible to simultaneously shift to the parking brake arrangement. As a result, it is possible to avoid problems such as leaving the vehicle force without the driver inadvertently applying the parking brake and reducing the burden on the driver.
  • the actuator operating means according to claim 13 has the processing power of S4006 and S4007.
  • the operation determining means according to claim 14 has the operating power of S4002 and S4003.
  • the processing power arrangement storage means corresponds to the processing power return of S4004 and S4005.
  • the processing power recovery judgment means of S4002 and S4009 corresponds to the processing of S4010 and S4011, respectively.
  • the processing speed of S5022 is the ground speed detection means according to claim 15.
  • the processing of S5023 is the speed judgment means, and S5024 and S5025 are the actuator operation means.
  • the processing power of S5024 and S5025 corresponds to the actuator actuating means described in claim 16, respectively.
  • the return determination means determines that the wheel is returned to the stop position. Can be configured. As a result, the driver's operability can be improved when the return operation is not required.
  • the force described when the driver selects on / off of the parking brake mode is turned on. It is also possible to provide a mode change means that automatically changes OFF!
  • an inclination detection sensor device (vehicle inclination sensor device 134) for detecting the inclination state of the vehicle 4001 is provided, and the vehicle 4001
  • the parking brake mode is turned on only when the vehicle stops on a slope having an inclination greater than the reference value.
  • the actuator device 4 is constituted by an electric motor and the transmission mechanism portion 23 is constituted by a screw mechanism has been described.
  • the invention is not necessarily limited thereto.
  • the actuator device 4 may be composed of a hydraulic / pneumatic cylinder.
  • the transmission mechanism portion 23 can be omitted, so that the structure can be simplified, and the weight can be reduced and the parts cost can be reduced.
  • a brake device for example, a drum brake or a disk brake using frictional force
  • the drive device 3 may be configured as a regenerative brake and used as a brake device.
  • the vehicle inclination sensor device (tilt sensor) 134 is provided as the sensor device for detecting the inclination state of the vehicle 4001 .
  • the vehicle speed sensor device (acceleration sensor) 32 is not limited to the above, and is composed of a sensor device that can detect static acceleration in addition to dynamic acceleration, so that the vehicle speed sensor device 32 also functions as a tilt sensor. It may be configured. This By reducing the number of parts, the cost of parts can be reduced.
  • FIG. 27 is a schematic diagram schematically showing a vehicle 11001 on which a control device 11100 according to an eleventh embodiment of the present invention is mounted. Note that an arrow FWD in FIG. 27 indicates the forward direction of the vehicle 11001. FIG. 27 shows a state where a predetermined rudder angle is given to all the wheels 2.
  • the vehicle 11001 includes a body frame BF, a plurality of (four wheels in this embodiment) wheels 2 supported by the body frame BF, and wheels that rotate and drive these wheels 2 independently. It is mainly equipped with a drive device 3 and an actuator device 4 for steering and driving each wheel 2 independently. During traveling, the sliding speed of the wheel 2 with respect to the road surface is controlled by a control device 11100, which will be described later. It is configured to increase the coefficient of friction with the surface and improve starting performance, braking performance, or turning performance! RU
  • the wheel 2 has four wheels: left and right front wheels 2FL and 2FR located on the front side in the traveling direction of the vehicle 1 1001, and left and right rear wheels 2RL and 2RR located on the rear side in the traveling direction. These front and rear wheels 2FL to 2RR are configured to be steerable by steering devices 20, 30.
  • the wheel 2 includes a tire mainly composed of a rubber material, and a wheel that holds the tire and also has a metal material force such as steel, aluminum alloy, or magnesium alloy.
  • the wheel is connected to the drive shaft of the wheel drive device 3, and the rotational drive force is transmitted from the wheel drive device 3 to the wheel (wheel 2) via the drive shaft.
  • Steering devices 20 and 30 are steering devices for steering each wheel 2. As shown in Fig. 27, king pins 21 that support each wheel 2 in a swingable manner and knuckle of each wheel 2 are provided. A tie rod 22 connected to an arm (not shown), and the actuator device 4 is connected to the tie rod 22. A transmission mechanism 23 for transmitting a driving force is mainly provided.
  • the actuator device 4 is a steering drive device for independently steering driving each wheel 2. As shown in Fig. 27, the four actuators (FL to RR actuator unit 4FL) are provided. ⁇ 4RR). When the driver operates the handle 51, a part of the actuator device 4 (for example, only the front wheels 2FL, 2FR) or the whole is driven, and a steering angle corresponding to the amount of operation of the handle 51 is given.
  • FL to RR actuators 4FL to 4RR are constituted by electric motors, and transmission mechanism portion 23 is constituted by a screw mechanism.
  • the electric motor is rotated, the rotational motion is converted to a linear motion by the transmission mechanism 23 and transmitted to the tie rod 22.
  • each wheel 2 is driven to swing around the king pin 21 as a swing center, and a predetermined steering angle is given to each wheel 2.
  • the wheel drive device 3 is a rotation drive device for driving each wheel 2 to rotate independently. As shown in Fig. 27, four electric motors (FL ⁇ : RR motors 3FL ⁇ 3RR) are provided. Each wheel 2 is arranged (ie as an in-wheel motor). Thereby, the rotational speed of each wheel 2 can be controlled independently.
  • the control device 11100 is a control device for controlling each part of the vehicle 11001 configured as described above.
  • the wheel drive device 3 and the actuator device 4 are operated to control the rotation speed of the wheel 2.
  • the rotation control of the wheel 2 is performed.
  • FIG. 28 a detailed configuration of control device 11100 will be described.
  • FIG. 28 is a block diagram showing an electrical configuration of control apparatus 11100.
  • the control device 11100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74.
  • the input / output port 75 is connected to a plurality of devices such as the wheel drive motor 3.
  • the CPU 71 is an arithmetic device that controls each unit connected by the bus line 74.
  • the ROM 72 is a non-rewritable nonvolatile memory storing a control program executed by the CPU 71 (for example, flowcharts of processes shown in FIGS. 31 to 33) and fixed value data
  • the RAM 73 is a control memory. This memory is used to store various work data and flags in a rewritable manner during program execution.
  • the ROM 72 is provided with a sliding speed table 72a.
  • the sliding speed table 72a is a table that stores the value of the target sliding speed.
  • the target slip speed is a target value when the rotation control of the wheel 2 is performed, and the CPU 71 determines that the slip speed with respect to the road surface of each wheel 2 becomes the target slip speed while the vehicle 11 001 is traveling. In addition, the rotational speed of each wheel 2 is controlled.
  • FIG. 29 is a diagram showing the relationship between the sliding speed and the friction coefficient, and illustrates the result of measurement using the physical properties of the wheel 2 (tire) in the present embodiment.
  • the horizontal axis represents the sliding speed of the wheel 2 with respect to the road surface
  • the vertical axis represents the friction coefficient between the wheel 2 and the road surface.
  • the coefficient of friction between the wheel 2 and the road surface varies depending on the value of the sliding speed, and is the maximum value at a predetermined sliding speed (lcmZs in the present embodiment).
  • the sliding speed at which the friction coefficient is maximized is measured in advance, and this measured value is stored in the ROM 72 (sliding speed table 72a) as the target sliding speed.
  • the rotation speed of wheel 2 is controlled so that the slip speed with respect to becomes the value of the target slip speed.
  • the friction coefficient between the wheel 2 and the road surface can be increased, so that the braking / acceleration performance and the turning performance can be improved.
  • the target slip speed in the rotation control of the present invention is equivalent to a value that is 1 to 2 digits smaller than the conventional target slip ratio in terms of the slip ratio.
  • any wheel 2 is freely rolled while the vehicle 11001 is traveling, and the ground speed of the vehicle 11001 is also calculated for the peripheral speed force of the wheel 2. Therefore, it is necessary to release the rotational driving force applied from the wheel drive device 3 that freely rolls the wheel 2.
  • the drive release table 72b a release speed for releasing the rotational driving force applied to the wheel 2 from the wheel drive device 3 that measures the ground speed of the vehicle 11001 is specified. Yes.
  • the drive return table 72c defines the applied speed when the measurement of the ground speed of the vehicle 11001 is completed and the application of the rotational driving force from the wheel drive device 3 to the wheel 2 is resumed.
  • FIG. 30 (a) is a schematic diagram schematically illustrating the contents of the drive release table 72b
  • FIG. 30 (b) is a schematic diagram schematically illustrating the contents of the drive return table 72c.
  • Fig. 30 (a) and Fig. 30 (b) the horizontal axis indicates the elapsed time from the start of the release or application of the rotational driving force, and the vertical axis indicates from the wheel driving device 3. The magnitude of the rotational driving force applied to wheel 2 is shown.
  • the CPU 71 determines the release speed (ie, the rate of change of the rotational driving force with respect to the elapsed time) from the drive release table 72b shown in FIG. ), And the wheel driving device 3 is controlled based on the read release speed, thereby gradually reducing the rotational driving force applied to the wheel 2.
  • the release speed ie, the rate of change of the rotational driving force with respect to the elapsed time
  • the CPU 71 causes Is applied to the wheel 2 by controlling the wheel drive device 3 based on the read application speed (i.e., the rate of change of the rotational driving force with respect to the elapsed time). Gradually increase the rotational driving force.
  • the wheel drive device 3 is a device for rotationally driving each wheel 2 (see FIG. 27), and includes four FL to RR motors 3FL to 3RR that apply rotational driving force to each wheel 2. And a drive circuit (not shown) for driving and controlling each of the motors 3FL to 3RR based on a command from the CPU 71.
  • the actuator device 4 is a device for steering and driving each wheel 2, and the four FL to RR actuators 4FL to 4 RR for applying a steering driving force to each wheel 2 are provided. And a drive circuit (not shown) for controlling the drive of each of these actuators 4FL to 4RR based on a command from the CPU 71 !.
  • the rudder angle sensor device 31 is a device for detecting the rudder angle of each wheel 2 and outputting the detection result to the CPU 71.
  • each steering angle sensor 31FL to 31RR is provided in each transmission mechanism 23, and the rotational speed when the rotational motion is converted into linear motion in the transmission mechanism 23. It is comprised as a non-contact-type rotation angle sensor which detects this. Since this rotational speed is proportional to the amount of displacement of the tie rod 22, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result (rotational speed) input from the steering angle sensor device 31.
  • the rudder angle detected by the rudder angle sensor device 31 refers to the center line of each wheel 2 and the vehicle 11. This is the angle formed by the reference line of 001 (body frame BF) and is determined independently of the traveling direction of the vehicle 11001.
  • the wheel rotation speed sensor device 33 is a device for detecting the rotation speed of each wheel 2 and outputting the detection result to the CPU 71.
  • the four FLs for detecting the rotation speed of each wheel 2 respectively.
  • each rotation sensor 33FL to 33RR is provided in each wheel 2, and the angular speed of each wheel 2 is detected as the rotation speed. That is, each rotation sensor 33FL to 33RR is an electromagnetic pickup provided with a rotating body that rotates in conjunction with each wheel 2 and a pickup that electromagnetically detects the presence or absence of teeth formed in the circumferential direction of the rotating body. It is configured as a sensor of the type.
  • the CPU 71 can obtain the peripheral speed of each wheel 2 from the rotational speed of each wheel 2 input from the wheel rotational speed sensor device 33 and the outer diameter of each wheel 2.
  • the ground speed of the vehicle 11001 is calculated based on the peripheral speed of the wheel 2 as described later. A method for calculating the ground speed of the vehicle 11001 will be described later.
  • the operating state (rotation angle, stepping amount, operating speed) of the handle 51, the brake pedal 52, and the accelerator pedal 53 (see FIG. 27 for V and displacement).
  • an operation state detection sensor device (not shown).
  • the operation state amount is detected by the operation state detection sensor device and output to the CPU 71.
  • the CPU 71 drives the wheel drive device 3 to control the rotation speed of each wheel 2.
  • FIG. 31 is a flowchart showing the rotation control process. This process is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 ms) while the power of the control device 1110 0 is turned on.
  • the slip speed of the wheel 2 with respect to the road surface is the target slip speed.
  • the friction coefficient between the wheel 2 and the road surface is increased to improve the starting and braking performance and turning performance.
  • the CPU 71 first executes a ground speed calculation process for calculating the ground speed of the vehicle 11001 (S11001).
  • the ground speed calculation processing will be described with reference to FIG.
  • FIG. 32 is a flowchart showing the ground speed calculation process.
  • the CPU 71 first determines whether or not the vehicle 11001 is driving (S11011). As a result, when it is determined that the vehicle 11001 is not traveling (S1101 l: No), the vehicle 11001 is stopped (the ground speed is 0), and it is not necessary to calculate the ground speed. The speed calculation process ends.
  • the ground speed of the vehicle 11001 is calculated from the peripheral speed of the wheel 2 by freely rolling any of the wheels 2 while the vehicle 11001 is traveling. Therefore, if it is determined in the processing of S11012 that there is a free-rolling wheel 2 (e.g., only the left and right rear wheels 2RL and 2RR are driven as drive wheels and the left and right front wheels 2FL and 2FR are free-rolling). (S 11012: Yes), the ground speed of the vehicle 11001 can be calculated using the already free-rolling wheel 2 (ie, the left and right front wheels 2FL, 2FR). I'll do it.
  • a free-rolling wheel 2 e.g., only the left and right rear wheels 2RL and 2RR are driven as drive wheels and the left and right front wheels 2FL and 2FR are free-rolling.
  • the S11013 force which is a process for freely rolling the wheel 2, also skips the process of S11015 and proceeds to the process of S11016.
  • each wheel 2 has a slip angle (sliding with respect to the road surface), so in this embodiment, the influence of the slip angle of the wheel 2 is minimized.
  • Wheel 2 is determined as a wheel that freely rolls (S11014).
  • the absolute value of the assigned steering angle is The small wheel 2 is determined as the wheel that freely rolls (S11014).
  • the turning mode force of the vehicle 11001 If the driver turns the steering wheel 51 to give a steering angle to all of the front and rear wheels 2FL to 2RR, the front and rear wheels 2FL to 2RR The absolute value of the rudder angle is small, and the wheel is determined as a wheel that freely rolls (S 110 14). Thereby, the ground speed of the vehicle 11001 can be calculated with higher accuracy.
  • the wheel 2 determined as the wheel to be freely rolled is assumed to be two wheels, and these two wheels are the left and right wheels 2 (the left and right front wheels 2FL, 2FR or the left and right rear wheels). Wheels 2RL, 2RR) are preferable. When all the wheels 2 are provided with steering angles, it is preferable that the left and right wheels include the wheels 2 having the smallest absolute value of the steering angle.
  • FIG. 33 is a flowchart showing drive release and return processing. This drive release In the return processing (S11015), the rotational driving force applied to the wheel 2 is released and the rotational driving force applied to the wheel 2 is restarted.
  • the CPU 71 first determines whether or not the drive is released (S11021). That is, it is determined whether to release the rotational driving force applied to the wheel 2 or to resume the application of the rotational driving force to the wheel 2.
  • the rotational speed of the wheel 2 is detected by the wheel rotational speed sensor device 33 (S110 16), and the detected rotational speed of the wheel 2 and the outer diameter of the wheel 2 stored in the ROM 72 in advance. From the above, the peripheral speed of the wheel 2, that is, the ground speed of the vehicle 11001 is calculated (S11017).
  • the ground speed of the vehicle 11001 is calculated based on the peripheral speed (for example, the average value) of the two wheels.
  • the freely rolling wheel 2 has a rudder angle
  • the slip angle is estimated and based on the slip angle. It is preferable to calculate the ground speed of the vehicle 11001 by correcting the peripheral speed of the wheel 2.
  • the CPU 71 first determines whether or not the drive release force is present (S11021). This time, the process is executed after the process of S11017, and the process of restarting the application of the rotational drive force to the wheel 2 for which the rotational drive force to be freely rolled has been released is resumed. (S11021: No).
  • the peripheral speed of the wheel 2 is obtained from the rotational speed of the wheel 2 detected by the wheel rotational speed sensor device 33 and the outer diameter of the wheel 2 stored in advance in the ROM 72.
  • the difference between the circumferential speed and the ground speed of the vehicle 11001 The sliding speed can be calculated.
  • the target slip speed is read from the slip speed table 72a (S11003), and after detecting the operation state of the accelerator pedal 53 (S11004), the slip speed of the wheel 2, which is the drive wheel, is determined.
  • the wheel drive device 3 is controlled so as to achieve the target slip speed (S 11005), and this rotation control process is terminated.
  • the coefficient of friction between the wheel 2 and the road surface can be increased, and the start performance, braking performance, or turning performance of the vehicle 11001 can be improved.
  • the processing speed of S11002 is used as the slip speed calculation means according to claim 20, and the processing of S11005 is executed as the wheel drive device operating means in FIG.
  • the peripheral speed calculation means according to claim 21 corresponds to the process of S11016
  • the ground speed calculation means corresponds to the process of S1 1017.
  • the rotation control may be executed only when a predetermined condition that is not limited is satisfied. Examples of the case where the predetermined condition is satisfied include a case where the acceleration or deceleration of the vehicle 11 001 exceeds a predetermined value or a case where the vehicle 11001 is turning.
  • the ground speed of the vehicle 11001 is calculated regardless of the traveling state of the vehicle 11001, that is, whether the vehicle 11001 is traveling straight or turning.
  • the configured force is not necessarily limited to this. For example, it is naturally possible to configure to calculate the ground speed only when the vehicle 11001 is traveling straight ahead. Whether the vehicle 1 1001 is traveling straight or not can be determined based on the steering angle of the wheel 2 as described above, or an acceleration sensor device (for example, a piezoelectric sensor using a piezoelectric element) can be used. May be used.
  • the left and right wheels 2 are preferably used as the wheels 2 to be freely rolled in order to calculate the ground speed of the vehicle 11001.
  • the number of 2 is not necessarily limited to this. For example, it is naturally possible to freely roll only one wheel or three or more wheels. Similarly, it is not always necessary that the wheels 2 to be freely rolled are the left and right wheels.
  • the front and rear wheels may be two.
  • the eleventh embodiment it is possible to rewrite the fixed value data, such as EEPROM, which is hard to explain the case where the outer diameter of each wheel 2 is stored in advance in the ROM 72 as fixed value data. It is possible to store the data in a non-volatile memory and to change the value of the fixed value data arbitrarily by the driver.
  • the fixed value data such as EEPROM
  • correction means for correcting the value of the fixed value data according to the cumulative number of rotations of the wheel 2 ie, the degree of wear
  • the peripheral speed of the wheel 2 that is, the ground speed of the vehicle 11001
  • one type of target slip is included in the slip speed table 72a.
  • the case where only the speed is memorized has been explained, but it is not necessarily limited to this, and multiple types of target slip speeds are stored, and when controlling the slip speed of the wheel 2, S11003
  • the target slip speed read in the processing may be changed as appropriate.
  • the coefficient of friction between the wheel 2 and the road surface can be increased more efficiently, and the starting performance and the like can be further improved.
  • target slip speeds are stored in the slip speed table 72a for each road surface or wheel (tire) 2 temperature, and the surface temperature of the road surface or wheel 2 is measured while the vehicle 11001 is traveling.
  • the target slip speed corresponding to the surface temperature may be read and the slip speed of the wheel 2 may be controlled.
  • the surface temperature may be estimated from the outside air temperature, or may be measured by a non-contact temperature sensor (such as an infrared sensor).
  • a plurality of types of target slip speeds are stored in the slip speed table 72a according to the presence or absence of rainfall and the amount of rainfall, while measuring the amount of rainfall while the vehicle 11001 is traveling, A configuration may be adopted in which the target slip speed corresponding to the rainfall is read and the slip speed of the wheel 2 is controlled.
  • the rainfall amount can be measured by a known rainfall sensor.
  • a plurality of types of target slip speeds are stored in the slip speed table 72a for each type of road surface (for example, asphalt physical properties), and the type of road surface is monitored while the vehicle 11001 is traveling. It is also possible to read the target slip speed corresponding to the type of road surface and control the slip speed of wheel 2.
  • the type of the road surface may be estimated using a non-contact optical sensor device, or the road surface type information is stored in advance in the navigation system in association with the position information and obtained from the GP S. It is also possible to obtain the position information of the vehicle 11001 to be obtained, and obtain the road surface type information corresponding to the position information as well as the navigation system power.
  • a plurality of types of target slip speeds are stored in the slip speed table 72a for each type of wheels (tires) 2 (for example, for each physical property of the rubber material constituting the tire tread),
  • the target slip speed corresponding to the wheel 2 mounted on the vehicle 11001 may be read to control the slip speed of the wheel 2.
  • the type of wheel 2 is preferably configured so that it can be input by the driver.
  • the release speed and return speed (that is, the slope of the straight line shown in FIG. 30) stored in the drive release table 72b and the drive return table 72c are constant values. However, this is not necessarily limited to this, and it is naturally possible to change the release speed and the return speed.
  • the case where the vehicle 11001 is changed according to the acceleration / deceleration of the vehicle 11001 or the case where the vehicle 11001 is changed according to the road surface condition is exemplified.
  • the greater the acceleration / deceleration of the vehicle 11001 the greater the influence of the inertial force that acts on the wheel 2 when the rotational driving force is released, etc. Reduce the influence of inertial force.
  • the greater the frictional resistance of the road surface the greater the influence of the inertial force acting on the wheel 2 when releasing the rotational driving force, etc., so the influence of the inertial force is reduced by setting the release speed etc. slower.
  • the number of power wheels 2 described in the case where the vehicle 11001 is configured to include four front and rear wheels 2FL to 2RR is not necessarily limited to this.
  • It can be 3 wheels or 5 wheels or more.
  • the actuator device 4 is constituted by an electric motor and the transmission mechanism portion 23 is constituted by a screw mechanism has been described, but this is not necessarily limited, for example.
  • the actuator device 4 may be constituted by a hydraulic / pneumatic cylinder.
  • the transmission mechanism portion 23 can be omitted, so that the structure can be simplified, and the weight reduction and the part cost can be reduced.
  • a brake device for example, a drum brake or a disc brake using frictional force
  • the vehicle 11001 can be provided.
  • the wheel drive device 3 (FL to RR motors 3FL to 3RR) may be configured as a so-called regenerative brake.
  • the electric power generated by operating the regenerative brake may be configured to be charged in a battery device (not shown) for driving the wheel drive device 3.

Abstract

A control device capable of increasing braking force or drive force of a wheel, and a vehicle. The control device performs a first steering operation for steering a wheel (2) by a first angle θ1 from an initial position P0 to a first steering direction, and a second steering operation for steering the wheel (2) by a second angle θ2 to a second steering direction which is the opposite direction to the first steering direction. By this, ground contact conditions between a road surface and a ground contact surface of the wheel (2) is improved to increase braking force or drive force of the wheel (2). For example, in driving on a snow-covered road, a water film produced between the road surface and the ground contact surface of the wheel (2) can be pushed away to the outside by steering the wheel (2) to the left and right, so that the degree of contact between the road surface and the ground contact surface of the wheel (2) is increased, which in turn improves braking force or drive force of the wheel.

Description

明 細 書  Specification
制御装置、及び、車両  Control device and vehicle
技術分野  Technical field
[0001] 本発明は、転舵可能に構成される車輪と、その車輪を操舵駆動するァクチユエータ 装置とを有する車両に対し、ァクチユエータ装置を作動させ、車輪の操舵動作を制御 する制御装置、操舵可能に構成される複数の車輪と、それら複数の車輪を操舵駆動 するァクチユエータ装置とを有する車両に対し、ァクチユエータ装置を作動させ、複 数の車輪の操舵状態を制御する制御装置、転動可能に構成される車輪と、その車輪 を回転駆動する車輪駆動装置とを有する車両に対し、前記車輪駆動装置を作動さ せ、前記車輪の回転速度を制御する制御装置、及び、車両に関し、特に、車輪の制 動力又は駆動力の向上を図ることができる制御装置、車両に既存の構成を利用して 、対地速度を測定することができる制御装置、車輪の操舵状態を制御することで、外 力に対する抵抗力を車両に発生させることができる制御装置、車輪と路面との間の 摩擦係数を増加させ、車両の発進、制動或いは旋回性能の向上を図ることができる 制御装置、及び、車両に関するものである。  [0001] The present invention relates to a control device that controls a steering operation of a wheel by operating the actuator device with respect to a vehicle having a wheel configured to be steerable and an actuator device that steering-drives the wheel. A control device that controls the steering state of a plurality of wheels by operating the actuator device for a vehicle having a plurality of wheels configured and an actuator device that steering-drives the plurality of wheels. The present invention relates to a control device that controls the rotational speed of the wheel by operating the wheel drive device for a vehicle having a wheel to be driven and a wheel drive device that rotationally drives the wheel. A control device that can improve the braking power or driving force, a control device that can measure the ground speed using the existing configuration of the vehicle, and control the steering state of the wheels Thus, the control device that can generate resistance to the external force in the vehicle, the friction coefficient between the wheels and the road surface can be increased, and the vehicle start, braking or turning performance can be improved. And the vehicle.
背景技術  Background art
[0002] 車輪を制御して、その制動力や駆動力の増加 (即ち、車両の発進性能や制動性能 の向上)を図る技術としては、例えば、アンチロック制御やトラクシヨンコントロール制 御が存在する。アンチロック制御の一従来例では、車両の制動時に、車輪のスリップ 率を制御して、車輪のロックを回避することで、過大なブレーキ作動力(例えば、ブレ ーキ圧)に起因する車輪の制動力の低下を防止している(例えば、特許文献 1)。  [0002] For example, anti-lock control and traction control control exist as technologies for controlling wheels and increasing their braking force and driving force (that is, improving vehicle starting performance and braking performance). . In a conventional example of anti-lock control, when the vehicle is braked, the slip ratio of the wheel is controlled to prevent the wheel from being locked, so that the wheel is caused by an excessive braking force (for example, brake pressure). A reduction in braking force is prevented (for example, Patent Document 1).
[0003] また、トラクシヨンコントロール技術の一従来例では、駆動力がデフアレンシャル機構 を介して左右の車輪 (駆動輪)に伝達される構造において、駆動輪の一方のスリップ( 滑動)が過大となった場合に、そのスリップしている駆動輪を制動して駆動トルクを滅 殺することで、他方の駆動輪に駆動トルクが伝達されなくなることを防止している (例 えば、特許文献 2)。  [0003] In addition, in a conventional example of traction control technology, in a structure in which driving force is transmitted to the left and right wheels (driving wheels) via a differential mechanism, one slip (sliding) of the driving wheels is excessive. In this case, the slipping drive wheel is braked to destroy the drive torque, thereby preventing the drive torque from being transmitted to the other drive wheel (for example, Patent Document 2). ).
[0004] 車両の対地速度を正確に測定するための技術としては、例えば、第 5輪を車両後 方に路面上を転動するように取り付け、車両の走行時における第 5輪の回転数を計 測することにより、その第 5輪の回転数と外径とから車両の対地速度を求める技術が 知られて!/ヽる(例えば、特許文献 3)。 [0004] As a technique for accurately measuring the ground speed of a vehicle, for example, the fifth wheel is installed in the rear of the vehicle. The technology to determine the vehicle ground speed from the rotation speed and outer diameter of the fifth wheel by measuring the rotation speed of the fifth wheel when the vehicle is running, Known! / Speak (for example, Patent Document 3).
[0005] また、光学センサを車両の底面部に取付け、路面に対して送光した光と路面力 反 射した反射光とから対地速度を計測する技術も知られている (例えば、特許文献 4)。 また、光学センサの代わりに、電波式のセンサ、即ち、光よりも波長が十分に大きな 電波を用いて対地速度を計測する技術も知られて 、る(例えば、特許文献 5)。  [0005] Further, a technique is known in which an optical sensor is attached to the bottom surface of a vehicle and ground speed is measured from light transmitted to the road surface and reflected light reflected from the road surface force (for example, Patent Document 4). ). Also known is a technique of measuring the ground speed using a radio wave type sensor, that is, a radio wave having a wavelength sufficiently larger than that of light instead of an optical sensor (for example, Patent Document 5).
[0006] ここで、自動車には、一般に、車両の走行速度を下げるために用いられる主ブレー キと、停車した車両が動き出さな 、ようにする駐車ブレーキとの 2種類が設けられて 、 る。駐車ブレーキには、ブレーキレバーを引き上げて操作するタイプの他にブレーキ ペダルを踏み込んで操作するタイプもある(特許文献 6)。  [0006] Here, an automobile is generally provided with two types of a main brake used for lowering the traveling speed of the vehicle and a parking brake for preventing the stopped vehicle from moving. In addition to the type of parking brake that is operated by pulling up the brake lever, there is also a type that is operated by depressing the brake pedal (Patent Document 6).
[0007] 駐車ブレーキのブレーキレバー又はペダルが運転者により操作されると、その操作 に連動してワイヤーが牽引され、左右の後輪に設けられたブレーキ装置が作動され る。同時に、ラチェット機構の爪によりブレーキレバー又はペダルが固定される。これ により、左右の後輪に作用する制動力が保持され、駐車ブレーキがかけられる。  [0007] When the brake lever or pedal of the parking brake is operated by the driver, the wire is pulled in conjunction with the operation, and the brake devices provided on the left and right rear wheels are activated. At the same time, the brake lever or pedal is fixed by the pawl of the ratchet mechanism. As a result, the braking force acting on the left and right rear wheels is maintained, and the parking brake is applied.
[0008] 一方、ブレーキレバー又はペダルに設けられたボタンやノブが操作されると、ラチェ ット機構の爪が外れることで、ブレーキレバー又ペダルが元の位置に復帰される。同 時に、ワイヤーの緊張状態が開放され、左右の後輪に作用していた制動力が除去さ れる。これにより、駐車ブレーキが解除される。 On the other hand, when a button or knob provided on the brake lever or pedal is operated, the pawl of the ratchet mechanism is released, so that the brake lever or pedal is returned to the original position. At the same time, the tension of the wire is released and the braking force acting on the left and right rear wheels is removed. Thereby, the parking brake is released.
特許文献 1 :特開平 5— 155325号公報  Patent Document 1: JP-A-5-155325
特許文献 2:特開 2004 - 123084号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-123084
特許文献 3:特開平 5— 52710号公報  Patent Document 3: Japanese Patent Laid-Open No. 5-52710
特許文献 4:特開 2001— 315630号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-315630
特許文献 5:特開 2003 - 231460号公報  Patent Document 5: Japanese Patent Laid-Open No. 2003-231460
特許文献 6:特開平 9 99819号公報  Patent Document 6: Japanese Patent Laid-Open No. 999819
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] し力しながら、上述した従来の技術のように、車輪のスリップを抑制することで制動 力又は駆動力の向上を図るという技術では、制動力又は駆動力の向上に限界がある という問題点があった。即ち、制動力又は駆動力は、車輪が走行する路面状態 (例え ば、摩擦係数 )に依存するため、従来の技術では、路面状態によって定まる制動 力又は駆動力の最大値を越えることができない。 [0009] While braking, as in the prior art described above, braking by suppressing wheel slip The technique for improving the force or driving force has a problem that there is a limit to the improvement of the braking force or driving force. In other words, since the braking force or driving force depends on the road surface state (for example, the friction coefficient) on which the wheel travels, the conventional technology cannot exceed the maximum braking force or driving force determined by the road surface state.
[0010] また、上述した車両の対地速度を測定するための技術によれば、前者のように第 5 輪を利用する技術では、第 5輪を車体に別途設ける必要があるため、その分、部品 点数が増加して、部品コストや組み立てコストが嵩むという問題点があった。また、車 両重量増による燃費 ·操安性能の悪化や構造の複雑化による信頼性の低下と!/、う問 題点もあった。更に、第 5輪によって、車両の外観が損なわれるという問題点もあった 。そのため、一般の市販車に適用することは困難であった。  [0010] Further, according to the technique for measuring the ground speed of the vehicle described above, in the technique using the fifth wheel like the former, it is necessary to separately provide the fifth wheel on the vehicle body. There was a problem that the number of parts increased and the parts cost and assembly cost increased. In addition, there was a problem that the fuel efficiency and driving performance deteriorated due to the increase in vehicle weight, and the reliability decreased due to the complicated structure! Furthermore, there was a problem that the appearance of the vehicle was damaged by the fifth wheel. Therefore, it was difficult to apply to general commercial vehicles.
[0011] 一方、後者のように路面力 の反射波を利用する技術では、路面状態に起因する 測定ばらつきが大きいため、一般公道では、高精度な測定を安定して行うことができ ないという問題点があるばかりか、雨天時など路面が濡れている場合には、測定自体 が不能になるという問題点があった。また、路面からの反射波を検出するべぐ装置 を車体の底部に設置する必要があるため、受光レンズの汚れや飛び石による損傷な どにより、測定不能になると 、う問題点もあった。  [0011] On the other hand, in the latter technique using the reflected wave of road surface force, there is a large variation in measurement due to the road surface condition, so that high-precision measurement cannot be stably performed on general public roads. In addition to the points, there was a problem that the measurement itself was impossible when the road surface was wet, such as in rainy weather. In addition, since it is necessary to install a bellows device that detects reflected waves from the road surface at the bottom of the vehicle body, there is a problem that measurement becomes impossible due to dirt on the light receiving lens or damage due to stepping stones.
[0012] ここで、従来の駐車ブレーキは、停車中の車両が動き出さないように、ブレーキレバ 一又はペダルの操作力をワイヤーによってブレーキ装置に伝達しつつ、その状態を 保持する構成である。  [0012] Here, the conventional parking brake is configured to maintain the state of the brake lever or the pedal operation force transmitted to the brake device by a wire so that the stopped vehicle does not move.
[0013] そのため、ワイヤーの伸びが発生し易ぐブレーキレバー又はペダルの遊びが徐々 に大きくなるため、定期的な調整作業が必要になるという問題点があった。なお、油 圧方式でパーキングブレーキを構成した場合は、駐車ブレーキをかけたままにすると 、内部リークによって少しずつブレーキ油圧が減少するため、車輪への制動力を長 時間にわたって保持することができない。  [0013] For this reason, there is a problem that regular adjustment work is required because the play of the brake lever or the pedal, in which the wire is easily stretched, gradually increases. When the parking brake is configured by the hydraulic system, if the parking brake is applied, the brake hydraulic pressure gradually decreases due to internal leakage, so that the braking force on the wheels cannot be maintained for a long time.
[0014] また、上述した従来の駐車ブレーキでは、ブレーキレバー又はペダルを戻さないま ま走行すると、いわゆるブレーキの引きずりが発生し、摩擦熱でブレーキ装置を破損 してしまうという問題点があった。そのため、ブレーキレバー又はペダルが戻っていな い場合に警告灯を点灯させる報知機構が設けられているが、その分、製品コストの上 昇を招くという問題点があった。 [0014] Further, the conventional parking brake described above has a problem that if the vehicle is driven without returning the brake lever or pedal, so-called brake dragging occurs, and the brake device is damaged by frictional heat. For this reason, there is a notification mechanism that turns on the warning light when the brake lever or pedal is not returned. There was a problem of inviting ascension.
[0015] また、上述した従来の駐車ブレーキでは、走行中であっても、ブレーキレバー又は ペダルの操作により制動力を発生させることができる構成であるため、運転者等がブ レーキレバー又はペダルを不用意に操作してしまった場合には、車両の挙動が不安 定となり、安全性の低下を招くという問題点があった。  [0015] In addition, the above-described conventional parking brake is configured such that a braking force can be generated by operating the brake lever or the pedal even when the vehicle is traveling, so that the driver or the like does not use the brake lever or the pedal. If it was operated in advance, the behavior of the vehicle became unstable, causing a problem of reduced safety.
[0016] 更に、上述した従来の駐車ブレーキでは、故障時の安全性を保っためのフェール セーフ機能を設けることが困難で信頼性に欠けるという問題点があった。例えば、坂 道に車両を停車させ駐車ブレーキをかけた際に、ワイヤーが寿命に達して切れてし まうと、車両が自重で動き出してしまう。  [0016] Further, the above-described conventional parking brake has a problem that it is difficult to provide a fail-safe function for maintaining safety in the event of a failure and is unreliable. For example, when a vehicle is stopped on a slope and a parking brake is applied, if the wire reaches the end of its life and breaks, the vehicle will start to move under its own weight.
[0017] また、坂道発進をマニュアル車で行う場合には、駐車ブレーキが利用される力 上 述した従来の駐車ブレーキでは、アクセルペダル及びクラッチペダルの踏み込み操 作と、駐車ブレーキの解除操作とを連動させて行う必要があるため、高度な操作技術 が必要となり、初心者では、エンストや車両が後方へ後退する、或いは、唐突な発進 を招くという問題点があった。  [0017] In addition, when the vehicle starts on a slope, the force with which the parking brake is used. In the conventional parking brake described above, the accelerator pedal and the clutch pedal are depressed and the parking brake is released. Since it is necessary to perform the operation in conjunction with each other, advanced operation techniques are required. For beginners, there is a problem that the engine stall and the vehicle move backward, or a sudden start occurs.
[0018] ところで、上述した従来の技術 (制動力や駆動力の増加を図る技術)は、車輪のロッ ク又は過大なスリップが生じないように、その車輪のスリップ率を制御することで、制動 力又は駆動力を確保するという技術である。即ち、車輪のスリップ率と車輪及び路面 間の摩擦係数との間には、スリップ率が 0から増加すると、摩擦係数が単調に増加す る非スリップ領域を経た後に、摩擦係数が急激に低下するスリップ領域に移行すると いう関係が存在する。そのため、従来の技術は、非スリップ領域の範囲内で、スリップ 率をより大きくすることで、摩擦係数をピーク値に近づけ、車輪の制動力又は駆動力 を確保するのである。  [0018] By the way, the above-described conventional technique (a technique for increasing braking force and driving force) controls braking by controlling the slip ratio of the wheel so that the wheel is not locked or excessively slipped. This is a technique for securing a force or driving force. In other words, between the slip ratio of the wheel and the friction coefficient between the wheel and the road surface, when the slip ratio increases from 0, the friction coefficient decreases rapidly after passing through a non-slip region where the friction coefficient increases monotonously. There is a relationship of transition to the slip region. For this reason, the conventional technology increases the slip ratio within the non-slip region, thereby bringing the friction coefficient closer to the peak value and ensuring the braking force or driving force of the wheel.
[0019] これに対し、本願発明者は、車輪と路面との間の摩擦係数を増加させる新たな手法 を開発した。具体的には、車輪のスリップ率 (言い換えれば、路面に対する車輪のす ベり速度)を十分に小さな値 (例えば、非スリップ領域力もスリップ領域へ移行する際 のスリップ率よりも 1〜2桁小さな値)に制御することで、上述した従来の技術で得られ る摩擦係数の 2倍以上の摩擦係数が得られるという知見に基づくものである (本出願 時において未公知)。 [0020] 本発明は、上述した事情を背景として、車輪の制御技術若しくは駐車ブレーキに関 する新たな手法又は車輪と路面との間の摩擦係数を増加させる新たな手法を提供す ると共に、上述した問題点を解決するためになされたものであり、車輪の制動力又は 駆動力の向上を図ることができる制御装置、車両に既存の構成を利用して、対地速 度を測定することができる制御装置、車輪と路面との間の摩擦係数を増加させ、車両 の発進、制動或いは旋回性能の向上を図ることができる制御装置、車輪の操舵状態 を制御することで、外力に対する抵抗力を車両に発生させることができる制御装置、 及び、車両を提供することを目的としている。 On the other hand, the present inventor has developed a new method for increasing the coefficient of friction between the wheel and the road surface. Specifically, the slip ratio of the wheel (in other words, the slip speed of the wheel with respect to the road surface) is sufficiently small (for example, 1 to 2 orders of magnitude less than the slip ratio when the non-slip region force also shifts to the slip region). Value) is based on the knowledge that a friction coefficient more than twice that obtained by the conventional technology described above can be obtained (not known at the time of this application). [0020] The present invention provides a new method for wheel control technology or parking brake or a new method for increasing the coefficient of friction between the wheel and the road surface against the background described above. In order to solve the above-mentioned problems, it is possible to measure the ground speed using a control device that can improve the braking force or driving force of the wheel and the existing configuration of the vehicle. Control device, control device that can increase the coefficient of friction between the wheel and the road surface, and improve the start, braking or turning performance of the vehicle, control the steering state of the wheel, the resistance force against the external force It is an object to provide a control device and a vehicle that can be generated in a vehicle.
課題を解決するための手段  Means for solving the problem
[0021] この目的を達成するために、請求項 1記載の制御装置は、転舵可能に構成される 車輪と、その車輪を操舵駆動するァクチユエータ装置とを有する車両に対し、前記ァ クチユエータ装置を作動させ、前記車輪の操舵動作を制御するものであり、前記ァク チュエータ装置を作動させ、前記車輪を第 1の操舵方向に第 1の角度だけ操舵する 第 1の操舵動作と、その第 1の操舵動作の後に前記第 1の操舵方向とは反対方向と なる第 2の操舵方向に第 2の角度だけ操舵する第 2の操舵動作とを実行するァクチュ エータ作動手段を備えて 、る。  In order to achieve this object, a control device according to claim 1 is provided for a vehicle having a wheel configured to be steerable and an actuator device for steering and driving the wheel. A first steering operation for controlling the steering operation of the wheel by operating the actuator device and steering the wheel by a first angle in a first steering direction; And an actuator actuating means for performing a second steering operation for steering by a second angle in a second steering direction opposite to the first steering direction after the steering operation.
[0022] 請求項 2記載の制御装置は、請求項 1記載の制御装置において、前記車輪が制動 状態にあるか否かを判断する制動判断手段を備え、前記ァクチユエータ作動手段は 、前記制動判断手段により前記車輪が制動状態にあると判断された場合に、前記ァ クチユエータ装置を作動させる。  [0022] The control device according to claim 2 is the control device according to claim 1, further comprising a braking determination means for determining whether or not the wheel is in a braking state, and the actuator operating means is the braking determination means. When it is determined that the wheel is in a braking state, the actuator device is operated.
[0023] 請求項 3記載の制御装置は、請求項 1又は 2に記載の制御装置において、前記車 両の対地速度を検出する対地速度検出手段と、前記車輪の回転速度を検出する回 転速度検出手段と、それら対地速度検出手段および回転速度検出手段により検出さ れた対地速度および回転速度に基づいて前記車輪のスリップ率を算出するスリップ 率算出手段と、前記車輪のスリップ領域に対応するスリップ率を記憶するスリップ領 域記憶手段と、そのスリップ領域記憶手段に記憶されたスリップ率と前記スリップ率算 出手段により算出されたスリップ率とに基づいて前記車輪がスリップ領域にあるか否 かを判断する状態判断手段とを備え、前記ァクチユエータ作動手段は、前記状態判 断手段により前記車輪がスリップ領域にあると判断された場合に前記ァクチユエータ 装置を作動させる。 [0023] The control device according to claim 3 is the control device according to claim 1 or 2, wherein ground speed detection means for detecting a ground speed of the vehicle, and a rotational speed for detecting a rotational speed of the wheel. Detecting means; slip ratio calculating means for calculating the slip ratio of the wheel based on the ground speed and the rotational speed detected by the ground speed detecting means and the rotational speed detecting means; and a slip corresponding to the slip region of the wheel Slip area storage means for storing the rate, whether or not the wheel is in the slip area based on the slip ratio stored in the slip area storage means and the slip ratio calculated by the slip ratio calculation means. State judging means for judging, and the actuator actuating means comprises the state judging means. The actuator device is activated when it is determined by the disconnecting means that the wheel is in the slip region.
[0024] 請求項 4記載の制御装置は、請求項 3記載の制御装置において、前記第 1及び第 2の角度をそれぞれ決定する角度決定手段を備え、その角度決定手段は、前記スリ ップ率算出手段により算出された前記車輪のスリップ率の値に基づき前記第 1及び 第 2の角度を決定する。  [0024] The control device according to claim 4 is the control device according to claim 3, further comprising angle determination means for determining the first and second angles, respectively, and the angle determination means includes the slip ratio. The first and second angles are determined based on the wheel slip ratio value calculated by the calculation means.
[0025] 請求項 5記載の制御装置は、請求項 3記載の制御装置にお 、て、前記第 1及び第 2の操舵動作に要する時間をそれぞれ決定する時間決定手段を備え、その時間決 定手段は、前記対地速度検出手段により検出された前記車両の対地速度の値また は前記スリップ率算出手段により算出された前記車輪のスリップ率の値の少なくとも 一方に基づいて前記第 1及び第 2の操舵動作に要する時間を決定する。  [0025] The control device according to claim 5 is the control device according to claim 3, further comprising time determining means for determining times required for the first and second steering operations, respectively. The means is based on at least one of the value of the ground speed of the vehicle detected by the ground speed detection means or the value of the slip ratio of the wheel calculated by the slip ratio calculation means. The time required for the steering operation is determined.
[0026] 請求項 6記載の制御装置は、請求項 1から 5のいずれかに記載の制御装置におい て、前記車両が前記車輪を複数備えると共に、前記ァクチユエータ装置が前記複数 の車輪をそれぞれ独立に操舵駆動可能に構成され、前記ァクチユエータ作動手段 は、前記第 1及び第 2の操舵動作が前記複数の車輪ごとに独立に実行されるように、 前記ァクチユエータ装置を作動させるものである。  [0026] The control device according to claim 6 is the control device according to any one of claims 1 to 5, wherein the vehicle includes a plurality of the wheels, and the actuator device independently provides the plurality of wheels. The actuator is configured to be steerable, and the actuator operating means operates the actuator device so that the first and second steering operations are performed independently for each of the plurality of wheels.
[0027] 請求項 7記載の制御装置は、転舵可能に構成される車輪と、その車輪を操舵駆動 するァクチユエータ装置とを有する車両に対し、前記ァクチユエータ装置を作動させ 、前記車輪の操舵動作を制御するものであり、前記車輪がスリップ領域にある力否か を判断する状態判断手段と、前記状態判断手段により前記車輪がスリップ領域にあ ると判断された場合に、前記車輪を操舵操作するために運転者が操作する操作部の 操作状態に関わらず、前記ァクチユエータ装置を作動させ、前記車輪を操舵させる 第 1のァクチユエータ作動手段と、前記状態判断手段により前記車輪がスリップ領域 にないと判断された場合に、前記第 1のァクチユエータ作動手段により操舵された車 輪が、前記操作部の操作状態に応じた操舵位置まで操舵されるように、前記ァクチュ エータ装置を作動させる第 2ァクチユエータ作動手段とを備えている。  [0027] The control device according to claim 7 operates the actuator device on a vehicle having a wheel configured to be steerable and an actuator device that steering-drives the wheel to perform a steering operation of the wheel. State determining means for determining whether or not the wheel is in a slip region, and steering the wheel when the state determining means determines that the wheel is in the slip region. Therefore, regardless of the operation state of the operation unit operated by the driver, the actuator device is operated and the wheel is steered. The first actuator operating means for steering the wheel and the state determining means determine that the wheel is not in the slip region. In this case, the wheel steered by the first actuator actuating means is steered to the steering position corresponding to the operation state of the operation unit. , And a second Akuchiyueta actuating means for actuating the Akuchu eta device.
[0028] 請求項 8記載の制御装置は、請求項 3記載の制御装置にお 、て、前記対地速度検 出手段は、前記車輪が自由転動する際の周速度を算出する周速度算出手段と、そ の周速度算出手段により算出された前記自由転動する車輪の周速度に基づいて前
Figure imgf000009_0001
、る。
[0028] The control device according to claim 8 is the control device according to claim 3, wherein the ground speed detection means calculates a peripheral speed when the wheel freely rolls. And so Based on the peripheral speed of the free-rolling wheel calculated by the peripheral speed calculation means
Figure imgf000009_0001
RU
[0029] 請求項 9記載の制御装置は、請求項 8記載の制御装置にお 、て、前記車輪に回転 駆動力を付与している車輪駆動装置に対し、前記車輪への回転駆動力の付与を解 除させ、前記車輪を自由転動させる回転駆動力解除手段を備え、その回転駆動力 解除手段は、前記車輪駆動装置から前記車輪に付与されている回転駆動力の値を 徐々に減少させる。  [0029] The control device according to claim 9 is the control device according to claim 8, wherein the rotational driving force is applied to the wheel to the wheel driving device that imparts the rotational driving force to the wheel. And a rotational driving force releasing means for freely rolling the wheel, the rotational driving force releasing means gradually decreasing the value of the rotational driving force applied to the wheel from the wheel driving device. .
[0030] 請求項 10記載の制御装置は、請求項 9記載の制御装置において、前記車輪が前 記車両に複数設けられている場合に、前記車輪駆動装置からの回転駆動力の付与 が前記回転駆動力解除手段によって解除される車輪を前記複数の車輪の内から選 択する解除車輪選択手段を備え、その解除車輪選択手段は、前記複数の車輪の内 の左右対称または対角線上の車輪を選択する。  [0030] The control device according to claim 10 is the control device according to claim 9, wherein when a plurality of the wheels are provided in the vehicle, the rotation driving force is applied from the wheel driving device. Release wheel selection means for selecting a wheel to be released by the driving force release means from among the plurality of wheels, and the release wheel selection means selects a left-right symmetric or diagonal wheel among the plurality of wheels. To do.
[0031] 請求項 11記載の制御装置は、請求項 8から 10のいずれかに記載の制御装置にお いて、前記周速度算出手段は、少なくとも 2輪の自由転動する車輪の周速度を算出 し、前記対地速度算出手段は、前記周速度算出手段により算出された少なくとも 2輪 の周速度に基づいて前記車両の対地速度を算出する。  [0031] The control device according to claim 11 is the control device according to any one of claims 8 to 10, wherein the peripheral speed calculation means calculates a peripheral speed of at least two free-rolling wheels. Then, the ground speed calculation means calculates the ground speed of the vehicle based on the peripheral speed of at least two wheels calculated by the peripheral speed calculation means.
[0032] 請求項 12記載の車両は、請求項 1から 11のいずれかに記載の制御装置を備えて いる。  [0032] A vehicle according to claim 12 includes the control device according to any one of claims 1 to 11.
[0033] 請求項 13記載の制御装置は、操舵可能に構成される複数の車輪と、それら複数の 車輪の内の少なくとも 1の車輪を操舵駆動するァクチユエータ装置とを有する車両に 対し、前記ァクチユエータ装置を作動させ、前記複数の車輪の操舵状態を制御する ものであり、前記ァクチユエータ装置を作動させ、前記複数の車輪の内の少なくとも 1 の車輪を、他の車輪の回転方向に対して抵抗力を発生し得る駐車制動配置に操舵 駆動するァクチユエータ作動手段を備える。  [0033] The control device according to claim 13 is for a vehicle having a plurality of wheels configured to be steerable and an actuator device for steering and driving at least one of the plurality of wheels. And controlling the steering state of the plurality of wheels. The actuator device is operated so that at least one of the plurality of wheels has resistance against the rotation direction of the other wheels. An actuator actuating means for steering and driving the parking brake arrangement that can occur is provided.
[0034] 請求項 14記載の制御装置は、請求項 13記載の制御装置において、前記ァクチュ エータ装置を前記ァクチユエータ作動手段により作動させるか否かを判断する作動 判断手段と、その作動判断手段により、前記ァクチユエータ装置を前記ァクチユエ一 タ作動手段により作動させると判断された場合に、前記作動の前の車輪の操舵状態 を停車時配置として記憶する配置記憶手段と、前記ァクチユエータ作動手段による 前記ァクチユエータ装置の作動が実行された状態から、前記配置記憶手段により記 憶された前記停車時配置に前記車輪の操舵状態を復帰させるカゝ否かを判断する復 帰判断手段と、その復帰判断手段により、前記車輪の操舵状態を前記停車時配置 へ復帰させると判断された場合に、前記ァクチユエータ装置を作動させ、前記停車時 配置へ前記車輪の操舵状態を復帰させる復帰手段とを備えている。 [0034] The control device according to claim 14 is the control device according to claim 13, wherein the actuator determination unit determines whether or not the actuator device is to be operated by the actuator operation unit, and the operation determination unit. When it is determined that the actuator device is operated by the actuator operating means, the steering state of the wheel before the operation is determined. From the state where the operation of the actuator device by the actuator operating means is executed, and the steering state of the wheel is restored to the stop-time arrangement stored by the arrangement storing means. When it is determined by the return determination means that determines whether or not the vehicle is to be moved and the return determination means to return the steering state of the wheel to the stop-time arrangement, the actuator device is operated to Return means for returning the steering state of the wheel to the arrangement.
[0035] 請求項 15記載の制御装置は、請求項 13記載の制御装置において、前記車両の 基準速度値を記憶する速度記憶手段と、前記車両の対地速度を検出する対地速度 検出手段と、その対地速度検出手段により検出された前記対地速度の値が前記基 準速度値よりも小さいか否かを判断する速度判断手段とを備え、前記ァクチユエータ 作動手段は、前記速度判断手段により前記対地速度の値が前記基準速度値よりも 小さいと判断された場合に前記ァクチユエータ装置を作動させ前記車輪の操舵状態 を前記駐車制動配置に操舵駆動する。  [0035] A control device according to claim 15 is the control device according to claim 13, wherein a speed storage means for storing a reference speed value of the vehicle, a ground speed detection means for detecting a ground speed of the vehicle, and Speed judgment means for judging whether or not the value of the ground speed detected by the ground speed detection means is smaller than the reference speed value, and the actuator actuating means is configured to detect the ground speed by the speed judgment means. When it is determined that the value is smaller than the reference speed value, the actuator device is operated to steer the steering state of the wheel to the parking brake arrangement.
[0036] 請求項 16記載の制御装置は、請求項 15記載の制御装置において、前記ァクチュ エータ作動手段は、前記対地速度の値が小さくなるに従って、前記複数の車輪の操 舵状態を前記駐車制動配置に近づける一方、前記対地速度の値が大きくなるに従 つて、前記複数の車輪の操舵状態を運転者が前記車輪を操舵するために操作する 操作部の操作状態に応じた操舵位置に近づけるように前記ァクチユエータ装置を作 動させる。  [0036] The control device according to claim 16 is the control device according to claim 15, wherein the actuator operating means changes the steering state of the plurality of wheels as the parking brake as the value of the ground speed decreases. On the other hand, as the value of the ground speed increases, the steering state of the plurality of wheels is made closer to the steering position according to the operation state of the operation unit that the driver operates to steer the wheels as the value of the ground speed increases. The actuator device is operated.
[0037] 請求項 17記載の制御装置は、請求項 15又は 16に記載の制御装置において、基 準角度値を記憶する角度記憶手段と、路面の傾斜角度を検出する傾斜角度検出手 段と、その傾斜角度検出手段により検出された前記傾斜角度の値が前記基準角度 値よりも大きいか否かを判断する角度判断手段とを備え、前記ァクチユエータ作動手 段は、前記角度判断手段により前記傾斜角度の値が前記基準角度値よりも大きいと 判断され、かつ、前記速度判断手段により前記対地速度の値が前記基準速度値より も小さいと判断された場合に前記ァクチユエータ装置を作動させ前記車輪の操舵状 態を前記駐車制動配置に操舵駆動する。  [0037] A control device according to claim 17 is the control device according to claim 15 or 16, wherein an angle storage means for storing a reference angle value, an inclination angle detection means for detecting an inclination angle of the road surface, Angle determination means for determining whether or not the value of the inclination angle detected by the inclination angle detection means is larger than the reference angle value, and the actuator operating means is configured to detect the inclination angle by the angle determination means. Is determined to be larger than the reference angle value, and when the speed determination means determines that the ground speed value is smaller than the reference speed value, the actuator device is operated to steer the wheel. Steering is driven to the parking brake arrangement.
[0038] 請求項 18記載の制御装置は、請求項 13記載の制御装置において、基準角度値 を記憶する角度記憶手段と、路面の傾斜角度を検出する傾斜角度検出手段と、その 傾斜角度検出手段により検出された前記傾斜角度の値が前記基準角度値よりも大き いか否かを判断する角度判断手段とを備え、前記ァクチユエータ作動手段は、少なく とも、前記角度判断手段により前記傾斜角度の値が前記基準角度値よりも大きいと 判断された場合と小さ!ヽと判断された場合とで、前記車輪の操舵状態を異なる駐車 制動配置に操舵駆動する。 [0038] The control device according to claim 18 is the control device according to claim 13, wherein the reference angle value is An angle storage means for storing the inclination angle, an inclination angle detection means for detecting the inclination angle of the road surface, and an angle for determining whether or not the value of the inclination angle detected by the inclination angle detection means is larger than the reference angle value. And the actuator actuating means includes at least a case where the angle determination means determines that the value of the inclination angle is larger than the reference angle value and a case where the angle is determined to be small! The wheels are steered to different parking brake arrangements.
[0039] 請求項 19記載の車両は、請求項 13から 18のいずれかに記載の制御装置を備え ている。  [0039] A vehicle according to claim 19 includes the control device according to any of claims 13 to 18.
[0040] 請求項 20記載の制御装置は、転動可能に構成される車輪と、その車輪を回転駆 動する車輪駆動装置とを有する車両に対し、前記車輪駆動装置を作動させ、前記車 輪の回転速度を制御するものであり、路面に対する前記車輪のすべり速度を算出す るすべり速度算出手段と、前記路面と前記車輪との間の摩擦係数を最大とするため のすベり速度を目標すべり速度として記憶する記憶手段と、前記車輪の回転速度を 制御して、前記すベり速度算出手段により算出される前記車輪のすべり速度が前記 記憶手段に記憶される目標すベり速度の値となるように、前記車輪駆動装置を作動 させる車輪駆動装置作動手段とを備えて ヽる。  [0040] The control device according to claim 20 operates the wheel drive device on a vehicle having a wheel configured to be able to roll and a wheel drive device that rotationally drives the wheel, and the wheel. A slip speed calculating means for calculating the slip speed of the wheel with respect to the road surface, and a slip speed for maximizing the friction coefficient between the road surface and the wheel. A storage means for storing as a slip speed, and a wheel slip speed calculated by the slip speed calculating means by controlling the rotational speed of the wheel, and a value of a target slip speed stored in the storage means And a wheel drive device operating means for operating the wheel drive device.
[0041] 請求項 21記載の制御装置は、請求項 20記載の制御装置において、前記車両は、 前記車輪駆動装置により回転駆動される前記車輪を複数備え、前記車輪駆動装置 は、電動モータにより構成されると共に、その電動モータが前記複数の車輪毎に設け られ、前記車輪駆動装置作動手段が前記複数の電動モータをそれぞれ作動させる ことで、前記複数の車輪の回転速度をそれぞれ独立に制御可能に構成されている。  [0041] The control device according to claim 21 is the control device according to claim 20, wherein the vehicle includes a plurality of wheels that are rotationally driven by the wheel driving device, and the wheel driving device is configured by an electric motor. In addition, the electric motor is provided for each of the plurality of wheels, and the wheel driving device operating means respectively operates the plurality of electric motors so that the rotation speeds of the plurality of wheels can be independently controlled. It is configured.
[0042] 請求項 22記載の制御装置は、請求項 20又は 21に記載の制御装置において、前 記車輪の周速度を算出する周速度算出手段と、前記車両の対地速度を算出する対 地速度算出手段とを備え、前記すベり速度算出手段は、前記周速度算出手段により 算出された前記車輪の周速度と前記対地速度算出手段により算出された前記車両 の対地速度とに基づいて、前記車輪のすべり速度を算出するものである。  [0042] A control device according to claim 22 is the control device according to claim 20 or 21, wherein a peripheral speed calculation means for calculating a peripheral speed of the wheel and a ground speed for calculating the ground speed of the vehicle. And a slip speed calculating means based on the peripheral speed of the wheel calculated by the peripheral speed calculating means and the ground speed of the vehicle calculated by the ground speed calculating means. The slip speed of the wheel is calculated.
[0043] 請求項 23記載の制御装置は、請求項 20から 22のいずれかに記載の制御装置に おいて、前記車輪駆動装置作動手段は、前記車両の加速が指示されている場合、 前記車輪の回転速度を制御して、前記車輪の周速度の値が前記車両の対地速度の 値よりも大きくなり、かつ、前記車輪のすべり速度が前記目標すベり速度となるように 、前記車輪駆動装置を作動させる一方、前記車両の減速が指示されている場合、前 記車輪の回転速度を制御して、前記車輪の周速度の値が前記車両の対地速度の値 よりも小さくなり、かつ、前記車輪のすべり速度が前記目標すベり速度となるように、 前記車輪駆動装置を作動させるものである。 [0043] The control device according to claim 23 is the control device according to any one of claims 20 to 22, wherein the wheel drive device operating means is instructed to accelerate the vehicle, The wheel rotational speed is controlled so that the value of the peripheral speed of the wheel is larger than the value of the ground speed of the vehicle, and the slip speed of the wheel becomes the target slip speed. When the vehicle is instructed to decelerate the vehicle while operating the wheel drive device, the rotational speed of the wheel is controlled so that the value of the peripheral speed of the wheel becomes smaller than the value of the ground speed of the vehicle, And the said wheel drive device is operated so that the sliding speed of the said wheel may turn into the said target sliding speed.
[0044] 請求項 24記載の車両は、請求項 20から 23のいずれかに記載の制御装置を備え ている。  [0044] A vehicle according to claim 24 includes the control device according to any one of claims 20 to 23.
発明の効果  The invention's effect
[0045] 請求項 1記載の制御装置によれば、ァクチユエータ作動手段を備え、このァクチュ エータ作動手段によりァクチユエータ装置を作動させることで、車輪を操舵させること ができる。このように、車輪を操舵することで、路面と車輪の接地面との間の接地状態 を改善して、車輪の制動力又は駆動力の向上を図ることができるという効果がある。  According to the control device of the first aspect, the actuator operating means is provided, and the wheel can be steered by operating the actuator device by the actuator operating means. Thus, by steering the wheel, there is an effect that the ground contact state between the road surface and the ground contact surface of the wheel can be improved, and the braking force or driving force of the wheel can be improved.
[0046] 即ち、本発明によれば、車輪を操舵することで、制動又は駆動の妨げとなる路面上 の物体を路面と車輪の接地面との間から外部に押しのけることができるので、その分 、路面と車輪の接地面との間の密着度を高める (接地状態を改善する)ことができ、 制動力又は駆動力の向上を図ることができる。  That is, according to the present invention, by steering the wheel, an object on the road surface that hinders braking or driving can be pushed outside from between the road surface and the ground contact surface of the wheel. In addition, the degree of adhesion between the road surface and the ground contact surface of the wheel can be increased (the ground contact state can be improved), and the braking force or driving force can be improved.
[0047] 具体的な事例としては、例えば、雪道を走行する場合が例示される。この場合には 、車輪を操舵することで、路面と車輪の接地面との間に発生する水膜を外部に押しの けることができるので、路面と車輪の接地面との間の密着度を高め、その分、制動力 又は駆動力の向上を図ることができる。  [0047] As a specific example, for example, traveling on a snowy road is exemplified. In this case, since the water film generated between the road surface and the ground contact surface of the wheel can be pushed outside by steering the wheel, the degree of adhesion between the road surface and the ground contact surface of the wheel is improved. The braking force or driving force can be improved accordingly.
[0048] また、本発明によれば、車輪を操舵することで、路面の表面を破壊して新たな路面 を露出させ、車輪の接地面を新鮮な路面に接地させることができるので、その分、路 面と車輪の接地面との間の密着度を高め (接地状態を改善して)、制動力又は駆動 力の向上を図ることができる。  [0048] Further, according to the present invention, by steering the wheel, the surface of the road surface can be destroyed to expose a new road surface, and the ground contact surface of the wheel can be brought into contact with a fresh road surface. In addition, the degree of adhesion between the road surface and the ground contact surface of the wheel can be increased (improve the ground contact state), and the braking force or driving force can be improved.
[0049] 具体的な事例としては、例えば、非舗装路面を走行する場合が例示される。この場 合には、車輪を操舵することで、路面の凹凸を破壊して、下層から新たな路面を露出 させる、或いは、平坦な路面に整地することができるので、路面と車輪の接地面との 密着度を高め、その分、制動力又は駆動力の向上を図ることができる。 [0049] As a specific example, for example, a case of traveling on an unpaved road surface is exemplified. In this case, it is possible to destroy the road surface unevenness by steering the wheel, to expose a new road surface from the lower layer, or to level the road surface. of The degree of adhesion can be increased, and the braking force or driving force can be improved accordingly.
[0050] また、本発明によれば、車輪を操舵することで、車輪の接地面を操舵方向に変形さ せ、路面との接地面積の増カロ (接地状態の改善)を図ることができるので、その分、制 動力又は駆動力の向上を図ることができる。  [0050] Further, according to the present invention, by steering the wheel, the ground contact surface of the wheel can be deformed in the steering direction, and the contact area with the road surface can be increased (improvement of the ground contact state). Therefore, the braking power or driving force can be improved accordingly.
[0051] 更に、本発明によれば、上述したように、車輪を操舵することで、路面上の物体を路 面と車輪の接地面との間から外部に押しのけることができる力 この場合には、物体 を押しのけるための抵抗力が発生するので、力かる抵抗力を制動力又は駆動力とし て利用することでき、その分、制動力又は駆動力の向上を図ることができる。  [0051] Further, according to the present invention, as described above, the force by which the object on the road surface can be pushed outward from between the road surface and the ground contact surface of the wheel by steering the wheel. Since a resistance force for pushing away the object is generated, the resistance force applied can be used as a braking force or a driving force, and the braking force or the driving force can be improved accordingly.
[0052] 請求項 2記載の制御装置によれば、請求項 1記載の制御装置の奏する効果に加え 、車輪が制動状態にあるか否かを判断する制動判断手段を備え、その制動判断手 段により車輪が制動状態にあると判断された場合に、ァクチユエータ作動手段がァク チユエータ装置を作動させる、即ち、車輪が制動状態になると、車輪が第 1の方向及 び第 2の方向へ操舵され、路面と車輪の接地面との間の接地状態が改善されるので 、車輪の制動力を効率的に向上させることができるという効果がある。  [0052] According to the control device according to claim 2, in addition to the effect produced by the control device according to claim 1, the brake determination means for determining whether or not the wheel is in a braking state is provided. When it is determined that the wheel is in a braking state, the actuator actuating means activates the actuator device, that is, when the wheel enters the braking state, the wheel is steered in the first direction and the second direction. Since the ground contact state between the road surface and the ground contact surface of the wheel is improved, there is an effect that the braking force of the wheel can be efficiently improved.
[0053] また、この場合には、車輪がスリップ領域にある力否かを判断する必要がなぐ処理 を簡素化することができるので、制御装置の制御負荷を軽減して、素早い制御が可 能になるという効果がある。  [0053] Further, in this case, since it is possible to simplify the process that does not need to determine whether or not the wheel is in the slip region, the control load of the control device can be reduced, and quick control is possible. There is an effect of becoming.
[0054] 請求項 3記載の制御装置によれば、請求項 1又は 2に記載の制御装置の奏する効 果に加え、車輪のスリップ率を算出するスリップ率算出手段と、車輪のスリップ領域に 対応するスリップ率を記憶するスリップ領域記憶手段と、そのスリップ領域記憶手段に 記憶されたスリップ率とスリップ率算出手段により算出されたスリップ率とに基づいて 車輪の運動特性力 Sスリップ領域にあるカゝ否かを判断する状態判断手段とを備え、ァク チユエータ作動手段によるァクチユエータ装置の作動は、車輪の運動特性がスリップ 領域にあると状態判定手段により判断された場合に行われるので、車輪の制動力又 は駆動力の向上を効率的に図ることができるという効果がある。  [0054] According to the control device according to claim 3, in addition to the effect of the control device according to claim 1 or 2, the slip rate calculation means for calculating the slip ratio of the wheel, and the slip region of the wheel Based on the slip ratio stored in the slip area storage means and the slip ratio calculated by the slip ratio calculation means. State determining means for determining whether or not the actuator device is operated by the actuator operating means when the state determining means determines that the motion characteristic of the wheel is in the slip region. There is an effect that the power or driving force can be improved efficiently.
[0055] 即ち、車輪の運動特性が非スリップ状態にあるということは、スリップ率が増加する に従って路面力 車輪の接地面に働く制動力又は駆動力も増加する状態にあるとい うことなので、この場合には、本発明の車輪制御 (操舵制御)を適用しなくとも、加減 速時における車輪の制動力又は駆動力を最大とすることができる。 [0055] That is, the fact that the motion characteristics of the wheels are in a non-slip state means that the braking force or driving force acting on the ground contact surface of the wheels increases as the slip ratio increases. Without adjusting the wheel control (steering control) of the present invention, The braking force or driving force of the wheel at the time of speed can be maximized.
[0056] 一方、車輪の運動特性がスリップ状態にあるということは、スリップ率が増加するに 従って路面から車輪の接地面に働く制動力又は駆動力が減少する状態にあるという ことであり、この状態のまま加減速したのでは、スリップ率が更に増加して、路面から 車輪の接地面に働く制動力又は駆動力の減少を招く。  [0056] On the other hand, the fact that the wheel motion characteristics are in the slip state means that the braking force or driving force acting on the ground contact surface of the wheel from the road surface decreases as the slip ratio increases. If acceleration / deceleration is performed in the state, the slip ratio further increases, leading to a decrease in braking force or driving force acting on the ground contact surface of the wheel from the road surface.
[0057] そこで、本発明のように、ァクチユエータ作動手段によるァクチユエータ装置の作動 を車輪の運動特性力 Sスリップ状態にあると判断された場合に行うことで、路面と車輪 の接地面との接地状態を改善して、車輪のグリップを回復 (スリップ状態力も非スリツ プ状態へ遷移)させることで、制動力又は駆動力の向上を効率的に図ることができる  [0057] Therefore, as in the present invention, when the actuator device is actuated by the actuator actuating means when it is determined that the wheel motion characteristic force S is in the slip state, the ground contact state between the road surface and the wheel ground contact surface To improve the braking force or driving force efficiently by improving the wheel and restoring the grip of the wheel (the slip state force also transitions to the non-slip state)
[0058] 請求項 4記載の制御装置によれば、請求項 3記載の制御装置の奏する効果に加え 、第 1及び第 2の角度をそれぞれ決定する角度決定手段を備え、その角度決定手段 は、スリップ率算出手段により算出された車輪のスリップ率の値に基づいて第 1及び 第 2の角度を決定するので、制動力又は駆動力を適切に向上させることができるとい う効果がある。 [0058] According to the control device of claim 4, in addition to the effect produced by the control device of claim 3, the control device further includes angle determination means for determining the first and second angles, respectively. Since the first and second angles are determined based on the value of the wheel slip ratio calculated by the slip ratio calculating means, there is an effect that the braking force or the driving force can be appropriately improved.
[0059] 例えば、車輪のスリップ率の値が大き 、場合には、車輪のグリップを大きく回復させ る必要があるという知見に基づき、車輪のスリップ率の値が大きいほど第 1及び第 2の 角度が大きくなるように決定することで、グリップ回復効果をより大きく発揮させること ができる。その結果、制動力又は駆動力のより一層の向上を図ることができるという効 果がある。  [0059] For example, in the case where the value of the slip ratio of the wheel is large, the first and second angles are increased as the value of the slip ratio of the wheel is larger based on the knowledge that the wheel grip needs to be largely recovered. By determining so as to be larger, the grip recovery effect can be exerted more greatly. As a result, the braking force or driving force can be further improved.
[0060] 一方、例えば、車輪のスリップ率の値が大きいほど第 1及び第 2の角度が小さくなる ように決定する場合には、スリップ率の値が大きくなり、車両の挙動が不安定な状態と なるに従って、車輪の操舵をより小さな角度で行うことができる。これにより、例えば、 スリップ率の値が大きな状態力 車輪のグリップが急激に回復した場合でも、車両の 左右への旋回力が急激に上昇することを抑制することができるので、車両の挙動変 化をより小さくして、操舵制御を安全に行う(制動力又は駆動力を安全に発揮させる) ことができると!/、う効果がある。  [0060] On the other hand, for example, when determining that the first and second angles become smaller as the value of the wheel slip ratio increases, the value of the slip ratio increases and the behavior of the vehicle becomes unstable. As the result, the wheel can be steered at a smaller angle. As a result, for example, a state force with a large slip ratio value Even if the grip of the wheel suddenly recovers, it is possible to suppress a sudden increase in the turning force of the vehicle to the left and right. If you can make the steering smaller and perform steering control safely (braking force or driving force safely), there will be an effect!
[0061] 請求項 5記載の制御装置によれば、請求項 3記載の制御装置の奏する効果に加え 、第 1及び第 2の操舵動作に要する時間をそれぞれ決定する時間決定手段を備え、 その時間決定手段は、対地速度検出手段により検出された車両の対地速度の値ま たはスリップ率算出手段により算出された車輪のスリップ率の値に少なくとも一方に基 づいて第 1及び第 2の操舵動作に要する時間を決定するので、制動力又は駆動力を 適切に向上させることができるという効果がある。 [0061] According to the control device of claim 5, in addition to the effect of the control device of claim 3, And a time determining means for determining the time required for each of the first and second steering operations. The time determining means is determined by a ground speed value of the vehicle detected by the ground speed detecting means or a slip ratio calculating means. Since the time required for the first and second steering operations is determined based on at least one of the calculated wheel slip ratio values, the braking force or driving force can be appropriately improved.
[0062] 例えば、車両の対地速度の値が大きい (速い)場合には、車輪が単位時間当たりに 通過する路面上の障害物の量が多くなるため、車輪の操舵動作が単位時間当たりに より多く行われるように、その作動周期を短い時間とする必要があるという知見に基づ き、車両の対地速度の値が大きいほど前記時間が短くなるように決定することで、路 面と車輪の接地面との間からより多くの障害物を押しのけることができ、その結果、制 動力又は駆動力のより一層の向上を図ることができるという効果がある。 [0062] For example, when the value of the ground speed of the vehicle is large (fast), the amount of obstacles on the road surface through which the wheel passes per unit time increases, so that the steering operation of the wheel depends on the unit time. As is often done, based on the knowledge that the operation cycle needs to be a short time, by determining that the time is shorter as the value of the ground speed of the vehicle is larger, More obstacles can be pushed away from the ground plane, and as a result, the braking / driving force can be further improved.
[0063] 一方、例えば、車輪のスリップ率の値が大きいほど前記時間が短くなるように決定 することで、スリップ率の値が大きくなり、車両の挙動が不安定な状態となるに従って 、車輪をより短時間で操舵させることができる。これにより、スリップ率の値が大きくなる に従って、車輪のグリップをより短時間に回復させる (スリップ領域力も非スリップ領域 へ遷移させる)ことができ、その結果、車両を安定な状態により早期に移行させること ができるという効果がある。 [0063] On the other hand, for example, by determining that the time is shortened as the value of the slip ratio of the wheel increases, the value of the slip ratio increases, and as the vehicle behavior becomes unstable, the wheel is moved. It can be steered in a shorter time. As a result, the grip of the wheel can be recovered in a shorter time as the slip ratio value increases (the slip region force is also shifted to the non-slip region), and as a result, the vehicle is shifted earlier in a stable state. It has the effect of being able to
[0064] また、車輪のスリップ率の値が大きいほど前記時間が短くなるように決定する場合に は、スリップ率の値が比較的小さい領域においては、車輪の操舵がより長い時間をか けて行われるので、その分、ァクチユエータ装置や制御の負担を軽減して、装置コス トゃ制御コストの低減することができるという効果がある。特に、車輪のスリップ率が小 さいほど第 1及び第 2の角度が大きくなるように決定される場合に有効となる。 [0064] When determining that the time is shortened as the value of the slip ratio of the wheel is larger, in a region where the value of the slip ratio is relatively small, it takes a longer time to steer the wheel. Therefore, it is possible to reduce the burden on the actuator device and control, and to reduce the control cost of the device cost. This is particularly effective when the first and second angles are determined to increase as the wheel slip ratio decreases.
[0065] 請求項 6記載の制御装置によれば、請求項 1から 5のいずれかに記載の制御装置 の奏する効果に加え、車両が車輪を複数備えると共に、ァクチユエータ装置が複数 の車輪をそれぞれ独立に操舵駆動可能に構成され、ァクチユエータ作動手段は、第 1及び第 2の操舵動作が複数の車輪ごとに独立に実行されるように、ァクチユエータ 装置を作動させることができる。通常、車両の走行時には、路面と各車輪の接地面と の間の接地状態は、車輪毎にそれぞれ異なる接地状態となっているが、この場合で も、接地状態を車輪毎に適切に改善して、車両全体としての制動力又は駆動力の向 上を効率的に達成することができるという効果がある。 [0065] According to the control device according to claim 6, in addition to the effect of the control device according to any one of claims 1 to 5, the vehicle includes a plurality of wheels, and the actuator device independently includes the plurality of wheels. The actuator actuating means can actuate the actuator device so that the first and second steering operations are performed independently for each of the plurality of wheels. Normally, when the vehicle is running, the ground contact state between the road surface and the ground contact surface of each wheel is different for each wheel. In addition, there is an effect that the ground contact state can be appropriately improved for each wheel, and the braking force or driving force of the vehicle as a whole can be efficiently improved.
[0066] 請求項 7記載の制御装置によれば、第 1ァクチユエータ作動手段を備え、この第 1 ァクチユエータ作動手段によりァクチユエータ装置を作動させることで、車輪を操舵さ せることができるので、請求項 1記載の制御装置と同様の効果を奏する。即ち、車輪 を操舵することで、路面と車輪の接地面との間の接地状態を改善して、車輪の制動 力又は駆動力の向上を図ることができるという効果がある。  [0066] According to the control device of claim 7, the first actuator actuating means is provided, and the wheel can be steered by actuating the actuator device by the first actuator actuating means. The same effects as the described control device are obtained. That is, by steering the wheel, there is an effect that the ground contact state between the road surface and the ground contact surface of the wheel can be improved, and the braking force or driving force of the wheel can be improved.
[0067] また、第 1ァクチユエータ作動手段は、状態判定手段により車輪がスリップ領域にあ ると判断された場合にァクチユエータ装置を作動させるので、請求項 4記載の制御装 置と同様の効果を奏する。即ち、車輪の制動力又は駆動力の向上を効率的に図るこ とができるという効果がある。  [0067] In addition, since the first actuator operating means operates the actuator apparatus when the state determining means determines that the wheel is in the slip region, the same effect as the control apparatus according to claim 4 is achieved. . That is, there is an effect that it is possible to efficiently improve the braking force or driving force of the wheels.
[0068] また、第 1ァクチユエータ作動手段は、車輪を操舵操作するために運転者が操作す る操作部の操作状態に関わらず、車輪を操舵させるので、車両の走行状態 (直進中 又は旋回中)に依存することなぐ路面と車輪の接地面との接地状態を改善して、車 輪のグリップを回復させることできるという効果がある。  [0068] Further, the first actuator actuating means steers the wheel regardless of the operation state of the operation unit operated by the driver to steer the wheel, so that the vehicle running state (straight or turning) It is possible to improve the ground contact state between the road surface and the ground contact surface of the wheel and to restore the grip of the wheel.
[0069] 更に、第 2ァクチユエータ作動手段は、状態判断手段により車輪がスリップ領域にな いと判断された場合に、第 1ァクチユエータ作動手段により操舵されている車輪が、 運転者による操作部の操作状態に応じた操舵位置まで操舵される (復帰される)よう に、ァクチユエータ装置を作動させるので、車両の挙動の安定ィ匕を図ることができると いう効果がある。  [0069] Further, in the second actuator operating means, when the state determining means determines that the wheel is not in the slip region, the wheel steered by the first actuator operating means indicates that the operating state of the operating unit by the driver is Since the actuator device is operated so that the vehicle is steered (returned) to the steering position corresponding to the vehicle position, there is an effect that the behavior of the vehicle can be stabilized.
[0070] なお、請求項 7記載の第 1ァクチユエータ作動手段による車輪の操舵とは、第 2ァク チユエータ作動手段による車輪の操舵が開始されるまでの間、即ち、状態判断手段 により車輪がスリップ状態にあると判断されている間、繰り返し実行される動作を意味 し、一方、第 2ァクチユエータ作動手段による車輪の操舵とは、状態判断手段により 車輪がスリップ状態にないと判断された際の操舵位置力も操作部の操作状態に応じ た操舵位置まで復帰する動作を意味する。  It should be noted that the steering of the wheel by the first actuator actuating means according to claim 7 is a period until the wheel steering by the second actuator actuating means is started, that is, the wheel slips by the state judging means. This means an operation that is repeatedly executed while it is determined that the vehicle is in a state. On the other hand, the steering of the wheel by the second actuator actuating means is the steering when the state determining means determines that the wheel is not slipping. The position force also means the operation to return to the steering position according to the operation state of the operation unit.
[0071] 請求項 8記載の制御装置によれば、請求項 3記載の制御装置の奏する効果に加え 、自由転動する車輪の周速度を周速度算出手段により算出すると共に、その周速度 算出手段により算出された自由転動する車輪の周速度に基づいて車両の対地速度 を対地速度算出手段により算出するように対地速度検出手段を構成したので、対地 速度を既存の構成を利用して安価に且つ安定して測定することができるという効果が ある。 [0071] According to the control device of claim 8, in addition to the effect produced by the control device of claim 3, the peripheral speed of the freely rolling wheel is calculated by the peripheral speed calculation means, and the peripheral speed Since the ground speed detection means is configured to calculate the ground speed of the vehicle based on the peripheral speed of the free-rolling wheel calculated by the calculation means, the ground speed is calculated using the existing configuration. There is an effect that measurement can be performed stably at low cost.
[0072] 即ち、本発明によれば、車両に既存の車輪を利用して対地速度を測定することが でき、従来品のように、第 5輪や光学センサなどの装置を別途設ける必要がないので 、部品コストや み立てコストの低減を図り、安価に対地速度を測定することができる という効果がある。  That is, according to the present invention, the ground speed can be measured using existing wheels in the vehicle, and there is no need to separately provide a device such as a fifth wheel or an optical sensor as in the conventional product. Therefore, there is an effect that the ground speed can be measured at a low cost by reducing the parts cost and the preparation cost.
[0073] また、本発明によれば、第 5輪や光学センサなどの装置を別途設ける必要がな 、の で、車両重量増による燃費'操安性能の悪ィ匕ゃ構造の複雑ィ匕による信頼性の低下を 回避することができると共に、車両の外観が損なわれることも回避することができると いう効果がある。  [0073] Further, according to the present invention, it is not necessary to separately provide a device such as a fifth wheel or an optical sensor. Therefore, the fuel efficiency due to the increase in the vehicle weight, the poor driving performance, and the complicated structure. There is an effect that it is possible to avoid a decrease in reliability and to prevent the appearance of the vehicle from being damaged.
[0074] 更に、本発明によれば、自由転動する車輪の周速度に基づいて車両の対地速度 を測定 (算出)するので、回転駆動力が付与されている駆動輪の周速度力も車両の 対地速度を測定する場合と比較して、車輪と路面との間の滑りによる影響を最小限と することができ、その結果、車両の対地速度を高精度に測定することができるという効 果がある。  [0074] Furthermore, according to the present invention, the ground speed of the vehicle is measured (calculated) based on the peripheral speed of the free-rolling wheel, so the peripheral speed force of the drive wheel to which the rotational driving force is applied is Compared to measuring ground speed, the effect of slipping between the wheel and the road surface can be minimized, and as a result, the ground speed of the vehicle can be measured with high accuracy. is there.
[0075] また、このように、自由転動する車輪の周速度に基づいて車両の対地速度を測定( 算出)する構成であれば、路面からの反射光を利用する従来の技術と比較して、路 面状態に起因する測定ばらつきの縮小を図ることができるという効果がある。  [0075] Further, in this way, if the configuration is such that the ground speed of the vehicle is measured (calculated) based on the peripheral speed of the free-rolling wheel, it is compared with the conventional technique using reflected light from the road surface. There is an effect that it is possible to reduce the measurement variation caused by the road surface condition.
[0076] 同様に、路面からの反射光を利用する従来の技術では、路面が濡れている場合や 受光レンズの汚れ'飛び石による損傷などが生じた場合、測定自体が不能になるとい う不具合があつたところ、本発明によれば、これらの不具合を未然に回避することが できるという効果がある。  [0076] Similarly, in the conventional technique using reflected light from the road surface, when the road surface is wet or when the light receiving lens is soiled or damaged by a stepping stone, the measurement itself becomes impossible. As a result, according to the present invention, there is an effect that these problems can be avoided in advance.
[0077] 請求項 9記載の制御装置によれば、請求項 8記載の制御装置の奏する効果に加え 、車輪駆動装置から車輪への回転駆動力の付与を回転駆動力解除手段により解除 し得るように構成した、即ち、必要な場合のみ車輪を自由転動させることができるので 、対地速度を測定するために少なくとも 1の車輪を車両の走行中に常に自由転動さ せておくことを不要とすることができるという効果がある。その結果、前記複数の車輪 の内のより多くの車輪 (例えば、全ての車輪)を駆動輪として活用して、駆動力の向上 を図ることができると 、う効果がある。 [0077] According to the control device according to claim 9, in addition to the effect of the control device according to claim 8, the application of the rotational driving force from the wheel driving device to the wheel can be canceled by the rotational driving force releasing means. In other words, at least one wheel is always free-rolled while the vehicle is running in order to measure the ground speed. There is an effect that it can be made unnecessary. As a result, it is possible to improve the driving force by using more of the plurality of wheels (for example, all the wheels) as driving wheels.
[0078] 更に、本発明によれば、車輪に付与されている回転駆動力を解除する場合、カゝか る回転駆動力を一気に解除するのではなぐ徐々に減少させるように構成したので、 車輪に作用する慣性力の影響を低減して、路面に対する追従特性を向上させること ができるという効果がある。これにより、車輪の回転速度を路面に対して早期に同期さ せるができ、その結果、車両の対地速度の測定を高効率かつ高精度に行うことがで きる。  [0078] Furthermore, according to the present invention, when the rotational driving force applied to the wheel is released, the rotational driving force applied to the wheel is gradually reduced rather than released all at once. This has the effect of reducing the influence of the inertial force acting on the road surface and improving the following characteristics with respect to the road surface. As a result, the rotational speed of the wheel can be synchronized with the road surface at an early stage, and as a result, the ground speed of the vehicle can be measured with high efficiency and high accuracy.
[0079] 請求項 10記載の制御装置によれば、請求項 9記載の制御装置の奏する効果にカロ え、車輪駆動装置力 の回転駆動力の付与が回転駆動力解除手段によって解除さ れる車輪を複数の車輪の内から選択する解除車輪選択手段を備えると共に、その解 除車輪選択手段が複数の車輪の内の左右対称の車輪または対角線上の車輪を選 択するように構成したので、車両の挙動を安定に保ちつつ、車輪を自由転動させるこ とができるという効果がある。  [0079] According to the control device according to claim 10, in addition to the effect produced by the control device according to claim 9, the wheel to which the rotation driving force is applied by the rotation driving force releasing means is released. Since there is provided a release wheel selection means for selecting from among a plurality of wheels, and the release wheel selection means is configured to select a symmetrical wheel or a diagonal wheel among the plurality of wheels, the vehicle There is an effect that the wheel can freely roll while keeping the behavior stable.
[0080] 即ち、複数 (例えば、全て)の車輪に車輪駆動装置力も回転駆動力が付与されてい る場合に、それら各車輪の内の 1輪のみが自由転動される(即ち、回転駆動力が解 除される)と、車両に作用する駆動力が全体として不均一となるため、バランスが悪ィ匕 し (例えば、車両を回転させようとする回転モーメントが発生し)、車両の挙動の不安 定化を招く。  That is, when a plurality of (for example, all) wheels are provided with a rotational driving force as a wheel driving device force, only one of the wheels is freely rolled (ie, rotational driving force). ), The driving force acting on the vehicle becomes uneven as a whole, resulting in a poor balance (for example, a rotational moment to rotate the vehicle occurs) and the behavior of the vehicle. Causes anxiety.
[0081] これに対し、本発明のように、左右対称の車輪又は対角線上の車輪を自由転動さ せる構成とすれば、車両に作用する駆動力をより均一化して、バランスを確保 (車両 を回転させようとする回転モーメントの発生を抑制)することができるので、車両の挙 動を安定に保つことができる。  [0081] On the other hand, if the configuration is such that the left-right symmetric wheels or the diagonal wheels freely roll as in the present invention, the driving force acting on the vehicle is made more uniform and the balance is secured (vehicle The occurrence of a rotational moment that attempts to rotate the vehicle can be suppressed), so that the movement of the vehicle can be kept stable.
[0082] なお、車両が例えば前輪、中間輪及び後輪をそれぞれ 2輪ずつ合計 6輪の車輪を 有して構成されている場合であれば、上記した左右対称の車輪とは、前輪の 2輪、中 間輪の 2輪又は後輪の 2輪のいずれであっても良い。また、上記した対角線上の車 輪としては、例えば、左の前輪と右の中間輪又は後輪との 2輪、左の中間輪と右の前 輪又は後輪との 2輪、左の後輪と右の前輪又は中間輪との 2輪のいずれであっても 良い。これらいずれによっても、上述した効果を奏することができる。 [0082] Note that if the vehicle has a total of six wheels, for example, two front wheels, two intermediate wheels, and two rear wheels, the left-right symmetric wheels described above are the two front wheels. Either a wheel, two middle wheels, or two rear wheels may be used. Examples of the diagonal wheels described above include, for example, two wheels, a left front wheel and a right intermediate wheel or a rear wheel, and a left intermediate wheel and a right front wheel. It may be either two wheels with a wheel or a rear wheel, or two wheels with a left rear wheel and a right front wheel or an intermediate wheel. Any of these can provide the above-described effects.
[0083] 請求項 11記載の制御装置によれば、請求項 8から 10のいずれかに記載の制御装 置の奏する効果に加え、周速度算出手段が少なくとも 2輪の自由転動する車輪の周 速度を算出すると共に、その周速度算出手段により算出された少なくとも 2輪の周速 度に基づいて対地速度算出手段が車両の対地速度を算出するように構成したので、 1輪だけの場合と比較して、より多くの情報に基づいて車両の対地速度を算出するこ とができ、その結果、車両の対地速度をより高精度に算出することができるという効果 がある。 [0083] According to the control device of claim 11, in addition to the effect produced by the control device according to any of claims 8 to 10, the peripheral speed calculation means has at least two peripheral wheels of the free-rolling wheel. In addition to calculating the speed, the ground speed calculator is configured to calculate the ground speed of the vehicle based on the peripheral speed of at least two wheels calculated by the peripheral speed calculator. Thus, the ground speed of the vehicle can be calculated based on more information, and as a result, the ground speed of the vehicle can be calculated with higher accuracy.
[0084] 請求項 12記載の車両によれば、請求項 1から 11のいずれかに記載の制御装置を 備えて 、る車両と同様の効果を奏する。  [0084] According to the vehicle of the twelfth aspect, the control device according to any one of the first to eleventh aspects is provided, and the same effect as that of the vehicle is obtained.
[0085] 請求項 13記載の制御装置によれば、ァクチユエータ装置を作動させ、複数の車輪 の内の少なくとも 1の車輪を、他の車輪の回転方向に対して抵抗力を発生し得る駐車 制動配置に操舵駆動するァクチユエータ作動手段を備えて 、るので、複数の車輪を 停車制動配置とすることで発生する抵抗力をいわゆる駐車ブレーキとして利用して、 車両を停車位置に固定することができるという効果がある。  [0085] According to the control device of claim 13, the parking brake arrangement capable of operating the actuator device and generating at least one of the plurality of wheels in the direction of rotation of the other wheels. Since the actuator actuating means for steering is provided, the vehicle can be fixed at the stop position by using a resistance force generated by setting a plurality of wheels as a stop brake arrangement as a so-called parking brake. There is.
[0086] その結果、従来の駐車ブレーキでは、ワイヤーの伸びに起因して発生するブレーキ レバー等の遊びを定期的に調整する必要があつたのに対し、本発明では、かかる調 整作業を不要として、メンテナンス性の向上を図ることができるという効果がある。 As a result, in the conventional parking brake, it is necessary to periodically adjust the play of the brake lever or the like generated due to the elongation of the wire, whereas the present invention does not require such adjustment work. As a result, it is possible to improve the maintainability.
[0087] また、従来の駐車ブレーキを油圧方式で構成した場合には、ブレーキ油圧の内部リ ークに起因して、車輪への制動力を長時間にわたって保持することができな力つたの に対し、本発明では、ァクチユエータ装置を機械式として構成することができるので、 駐車制動配置の状態、即ち、駐車ブレーキをかけた状態を長時間にわたって安定し て保持することができるという効果がある。 [0087] Further, when the conventional parking brake is configured by a hydraulic system, the braking force applied to the wheels cannot be maintained for a long time due to an internal leak of the brake hydraulic pressure. In the present invention, since the actuator device can be configured as a mechanical type, there is an effect that the state of the parking brake arrangement, that is, the state where the parking brake is applied can be stably maintained for a long time.
[0088] また、従来の駐車ブレーキでは、坂道駐車でワイヤーが切れた場合など、故障時の 安全性を保っためのフェールセーフ機能を設けることが困難で信頼性に欠けるという 問題点があつたのに対し、本発明では、車輪の操舵状態 (駐車制動配置)により発生 する抵抗力を駐車ブレーキとして利用するので、かかる駐車ブレーキ (駐車制動配置 )とは別に車輪にブレーキ装置を更に設けることもできるので、フェールセーフ機能を 確保して、信頼性の向上を図ることができるという効果がある。 [0088] In addition, the conventional parking brake has a problem that it is difficult to provide a fail-safe function for maintaining safety in the event of a failure, such as when a wire is cut in parking on a slope, and lacks reliability. On the other hand, in the present invention, the resistance generated by the wheel steering state (parking braking arrangement) is used as a parking brake. In addition to this, a brake device can be further provided on the wheel, so that the fail-safe function can be secured and the reliability can be improved.
[0089] なお、請求項 13記載の駐車制動配置は、前記複数の車輪の内のいずれの車輪の 回転方向に対しても、前記複数の車輪の内の少なくともいずれ力 1の車輪が抵抗力 を発生し得るという配置であることが好ましい。これにより、車両に駐車平面上のいず れの方向(全方向)へ外力が作用した場合でも、その外力に対する抵抗力を発生さ せることができるので、車両の盗難防止効果の向上を図ることができるという効果があ る。  [0089] Note that in the parking braking arrangement according to claim 13, at least one of the plurality of wheels has a resistance force with respect to the rotation direction of any of the plurality of wheels. The arrangement is preferably such that it can occur. As a result, even if an external force is applied to the vehicle in any direction (all directions) on the parking plane, a resistance force against the external force can be generated, so that the antitheft effect of the vehicle can be improved. This has the effect of being able to
[0090] 請求項 14記載の制御装置によれば、請求項 13記載の制御装置の奏する効果に 加え、復帰手段により、複数の車輪の操舵状態を駐車制動配置力 停車時配置に 復帰させることができる、即ち、駐車制動配置に移行させる前の状態に複数の車輪 の操舵状態を復帰させることができるので、運転者のハンドル操作等を簡素化させ、 駐車後の再発進をスムーズに行わせることができるという効果がある。  [0090] According to the control device of claim 14, in addition to the effect produced by the control device of claim 13, the return means can return the steering state of the plurality of wheels to the parking braking arrangement force stop arrangement. Yes, that is, the steering state of multiple wheels can be restored to the state before the transition to the parking braking arrangement, so that the driver's steering wheel operation etc. can be simplified and the vehicle can smoothly restart after parking. There is an effect that can be.
[0091] 例えば、前後の車両との間隔が狭いスペースに縦列駐車するような場合には、車 輪 (操舵輪)に大きな舵角を付与して車両を駐車スペースへ入り込ませるため、再発 進時にも同じだけの舵角を車輪に付与する必要がある。そのため、本発明のように、 車輪を駐車制動配置に移行した後、その車輪を停車時配置に復帰させることができ れば、運転者に再度のハンドル操作を行わせることなぐ狭い駐車スペースからでも 車両をスムーズに再発進させることができる。  [0091] For example, when parking in parallel in a space where the distance between the front and rear vehicles is narrow, a large rudder angle is given to the wheel (steering wheel) so that the vehicle enters the parking space. The same rudder angle must be given to the wheels. Therefore, as in the present invention, if the wheel can be returned to the parking position after shifting to the parking braking arrangement, even from a narrow parking space where the driver does not perform the steering operation again. The vehicle can be restarted smoothly.
[0092] 請求項 15記載の制御装置によれば、請求項 13記載の制御装置の奏する効果に 加え、ァクチユエータ作動手段は、速度判断手段により対地速度の値が基準速度よ りも小さいと判断された場合に、ァクチユエータ装置を作動させ、車輪を駐車制動配 置へ操舵駆動するので、運転者の操作負担を軽減させることができると共に、安全を 確保することができると 、う効果がある。  [0092] According to the control device according to claim 15, in addition to the effect achieved by the control device according to claim 13, the actuator actuating means determines that the value of the ground speed is smaller than the reference speed by the speed determination means. In this case, the actuator device is operated and the wheels are steered to the parking brake arrangement, so that the burden on the driver can be reduced and safety can be ensured.
[0093] 請求項 16記載の制御装置によれば、請求項 15記載の制御装置の奏する効果に 加え、ァクチユエータ作動手段は、車両の対地速度の値が小さくなるに従って、車輪 の操舵状態を駐車制動配置に近づける一方、車両の対地速度の値が大きくなるに 従って、車輪の操舵状態を運転者が車輪を操舵するために操作する操作部の操作 状態に応じた操舵位置に近づけることができる。 [0093] According to the control device of claim 16, in addition to the effect of the control device of claim 15, the actuator actuating means performs parking braking on the steering state of the wheel as the value of the ground speed of the vehicle decreases. The operation of the operating unit that allows the driver to steer the wheel to steer the wheel as the ground speed value of the vehicle increases while approaching the arrangement It is possible to approach the steering position according to the state.
[0094] よって、例えば、車両が下り坂で停車する場合には、車輪の操舵状態を、車両の対 地速度に応じて、徐々に駐車制動配置に近づけるので、車両の停車をスムーズに行 うことができるという効果がある。同時に、車輪が停車制動配置となることで、停車平 面上の全方向に抵抗力を発生させることができるので、車両を停車位置に安全に停 車させることができると 、う効果がある。  Therefore, for example, when the vehicle stops on a downhill, the steering state of the wheels is gradually brought closer to the parking brake arrangement according to the ground speed of the vehicle, so that the vehicle can be stopped smoothly. There is an effect that can be. At the same time, because the wheels are placed in the stop braking arrangement, resistance can be generated in all directions on the stop plane, so there is an effect that the vehicle can be safely stopped at the stop position.
[0095] 更に、この場合には、運転者は、減速操作 (例えば、アクセルペダルを戻す、主ブ レーキとしてのブレーキペダルを踏み込む)を行うだけで、車両を停車させ、かつ、駐 車ブレーキをかけるという 2動作を一度に行うことができる。そのため、従来品で必要 とされた駐車時にブレーキレバーを別途引き上げる等といった操作が不要となり、運 転者の操作負担の軽減を図ることができるという効果がある。  [0095] Further, in this case, the driver stops the vehicle and applies the parking brake only by performing a deceleration operation (for example, returning the accelerator pedal or depressing the brake pedal as the main brake). You can do two actions at once. As a result, there is no need to pull up the brake lever separately when parking, which is required for conventional products, and it is possible to reduce the burden on the driver.
[0096] 一方、例えば、車両を上り坂で停車させた後に再度発進させる坂道発進では、車 輪の操舵状態を、車両の対地速度に応じて、運転者が車輪を操舵するために操作 する操作部(例えば、ハンドル)の操作状態に応じた操舵位置 (例えば、ハンドルが 直進を指示する操作状態にあれば、各車輪を直進状態)に近づけることができるので 、坂道発進をスムーズに行うことができるという効果がある。  [0096] On the other hand, for example, in a slope start where the vehicle is stopped on an uphill and then started again, an operation in which the driver steers the wheel according to the ground speed of the vehicle according to the ground speed of the vehicle. Since the steering position can be brought close to the steering position (for example, if the steering wheel is in the operation state instructing straight travel) according to the operation state of the part (for example, the steering wheel), the hill can be started smoothly. There is an effect that can be done.
[0097] 即ち、従来品では、アクセルペダル等の操作と連動して駐車ブレーキの解除操作 を別々に行う必要があつたため、高度な操作技術が必要とされたのに対し、本発明 によれば、そのような操作技術が不要となるので、初心者であっても、坂道発進時を 、エンストや車両の後方への後退、或いは、唐突な発進といった不具合を起こすこと なぐスムーズに行うことができる。  [0097] That is, in the conventional product, since it was necessary to perform the release operation of the parking brake separately in conjunction with the operation of the accelerator pedal or the like, an advanced operation technique was required, whereas according to the present invention, Since such an operation technique becomes unnecessary, even a beginner can smoothly start a slope without causing problems such as an engine stall, backward movement of the vehicle, or sudden start.
[0098] 同時に、車輪が停車制動配置となることで、停車平面上の全方向に抵抗力を発生 させることができるので、坂道発進を安全に行うことができると 、う効果がある。  [0098] At the same time, since the wheels are in the stop braking arrangement, it is possible to generate a resistance force in all directions on the stop plane, so that it is possible to safely start the hill.
[0099] また、従来品では、走行中に運転者等がブレーキレバー又はペダルを不用意に操 作した場合には、車両の挙動が不安定となり、安全性の低下を招くという問題点があ つたのに対し、本発明では、車両の対地速度の値が小さくなるに従って、車輪の操舵 状態を駐車制動配置に近づける構成であるので、運転者等の不用意な操作による 安全性の低下を回避することができるという効果がある。 [0100] また、従来品では、ブレーキレバー等を戻さないまま走行すると、いわゆるブレーキ の弓 Iきずりが発生し、摩擦熱でブレーキ装置を破損してしまうと 、う問題点があつたの に対し、本発明では、例えば、アクセルペダルを踏み込み、車両の走行を開始する だけで、駐車ブレーキを解除する(車輪が駐車制動配置から操作部の操作状態に応 じた操舵位置に近づカゝせる)ことができるので、運転者の操作負担を軽減すると同時 に、ブレーキ装置の破損を回避することができるという効果がある。 [0099] In addition, the conventional product has a problem in that if the driver or the like carelessly operates the brake lever or pedal while traveling, the behavior of the vehicle becomes unstable and the safety is lowered. On the other hand, in the present invention, as the vehicle ground speed value decreases, the steering state of the wheel is brought closer to the parking brake arrangement, thereby avoiding a decrease in safety due to careless operation by the driver or the like. There is an effect that can be. [0100] In addition, with the conventional product, if the vehicle is driven without the brake lever, etc., the so-called brake bow I scratches occur and the brake device is damaged by frictional heat, there is a problem. On the other hand, in the present invention, for example, the parking brake is released simply by depressing the accelerator pedal and starting the vehicle travel (the wheel approaches the steering position corresponding to the operation state of the operation unit from the parking brake arrangement). This reduces the burden on the driver and at the same time prevents the brake device from being damaged.
[0101] よって、本発明では、従来品で必要とされたブレーキレバー等が戻って 、な 、こと を報知するための報知機構を車両に装着することが不要となるので、その分、製品コ ストの軽減を図ることができると 、う効果がある。  [0101] Therefore, in the present invention, it is not necessary to attach a notification mechanism for informing the vehicle when the brake lever or the like required for the conventional product is returned, and accordingly, the product code is reduced accordingly. If the strike can be reduced, there is a positive effect.
[0102] 請求項 17記載の制御装置によれば、請求項 15又は 16に記載の制御装置の奏す る効果に加え、基準角度値を記憶する角度記憶手段と、路面の傾斜角度を検出する 傾斜角度検出手段と、その傾斜角度検出手段により検出された傾斜角度の値が基 準角度値よりも大きいか否かを判断する角度判断手段とを備え、ァクチユエータ作動 手段は、車両の路面に対する傾斜角度の値が基準角度値よりも大きぐかつ、対地 速度の値が基準速度値よりも小さいと判断された場合に、ァクチユエータ装置を作動 させ、車輪の操舵状態を駐車制動配置に操舵駆動するので、駐車制動配置への移 行が有効となる坂道で駐停車する際には駐車制動配置へ移行させる一方、駐車制 動配置への移行が比較的不要とされる平坦な路面上で駐停車する際には駐車制動 配置への移行を制限することができ、その分、車輪の摩耗を抑制することができると いう効果がある。  [0102] According to the control device according to claim 17, in addition to the effect produced by the control device according to claim 15 or 16, the angle storage means for storing the reference angle value, and the inclination for detecting the inclination angle of the road surface An angle detection means, and an angle determination means for determining whether or not the value of the inclination angle detected by the inclination angle detection means is larger than a reference angle value. The actuator actuating means is an inclination angle with respect to the road surface of the vehicle. When the value of is greater than the reference angle value and the ground speed value is determined to be smaller than the reference speed value, the actuator device is operated to steer the wheel steering state to the parking brake arrangement. When parked and parked on a slope where the transition to the parking braking arrangement is effective, the parking brake arrangement is shifted, while the parking and parking is parked on a flat road where the transition to the parking braking arrangement is relatively unnecessary. Parking braking There is an effect that it is possible to limit the shift to the position and to suppress the wear of the wheel.
[0103] 更に、基準角度値を超える傾斜の坂道に駐停車する際には、対地速度の減速と共 に駐車制動配置へ自動的に移行させることができるので、運転者の操作負担を軽減 することができると共に、車両を安全確実に駐停車させることができると!/、う効果があ る。例えば、従来品では、坂道において、運転者が不注意により駐車ブレーキをかけ ないまま車両力 離れてしまった場合には、車両が自重で走行してしまい、極めて危 険であるところ、本発明によれば、運転者が駐停車時に駐車ブレーキを作動させるた めの動作を別途行うことが不要なるので、その分、運転者の負担を軽減すると共に、 坂道でも車両を駐停車位置に確実に固定しておくことができる。 [0104] 請求項 18記載の制御装置によれば、請求項 13記載の制御装置の奏する効果に 加え、車両の基準角度値を記憶する角度記憶手段と、車両の路面に対する傾斜角 度を検出する傾斜角度検出手段と、その傾斜角度検出手段により検出された傾斜角 度の値が基準角度値よりも大きいか否かを判断する角度判断手段とを備え、ァクチュ エータ作動手段は、少なくとも、傾斜角度の値が基準角度値よりも大きいと判断され た場合と小さ!/ヽと判断された場合とで、車輪の操舵状態を異なる駐車制動配置に操 舵駆動するので、車両の固定の確実ィ匕と車輪の摩耗の抑制との両立を図ることがで きるという効果がある。 [0103] Furthermore, when parked on a slope with a slope exceeding the reference angle value, it is possible to automatically shift to a parking brake arrangement together with a reduction in ground speed, thus reducing the driver's operational burden. It is also possible to park and stop the vehicle safely and reliably! For example, with conventional products, if the driver inadvertently leaves the vehicle without inadvertently applying the parking brake, the vehicle will run under its own weight, which is extremely dangerous. According to this, it is not necessary for the driver to perform a separate operation to activate the parking brake when parked, so that the burden on the driver is reduced and the vehicle is securely fixed at the parked position even on slopes. Can be kept. [0104] According to the control device of claim 18, in addition to the effect produced by the control device of claim 13, the angle storage means for storing the reference angle value of the vehicle and the inclination angle of the vehicle with respect to the road surface are detected. A tilt angle detection unit; and an angle determination unit that determines whether or not the value of the tilt angle detected by the tilt angle detection unit is larger than a reference angle value. Since the wheel steering state is steered to different parking brake arrangements depending on whether the value is determined to be larger than the reference angle value or smaller! / ヽ, the vehicle is surely fixed. And the reduction of wheel wear can be achieved.
[0105] 例えば、坂道で駐停車する場合には、平坦な路面上に駐停車する場合と比較して 、重力の影響が大きくなるので、重力方向への抵抗力がより大きくなる駐車制動配置 を採用することで、車両を駐停車位置へより確実に固定することができる。一方、平 坦な路面上に駐停車する場合には、坂道に駐停車する場合と比較して、駐車ブレー キとして必要な抵抗力を比較的小さく設定することができるので、車輪の操舵量が小 さくなる駐車制動配置を採用して、不必要な操舵駆動を排除することで、その分、車 輪の摩耗を抑制することができる。  [0105] For example, when parking and stopping on a slope, the influence of gravity is greater than when parking and stopping on a flat road surface. By adopting, the vehicle can be more securely fixed at the parking / stopping position. On the other hand, when parking on a flat road, compared to parking on a slope, the resistance required as a parking brake can be set relatively small, so the steering amount of the wheels By adopting a parking braking arrangement that reduces the size and eliminating unnecessary steering drive, it is possible to suppress the wear of the wheel.
[0106] 請求項 19記載の車両によれば、請求項 13から 18のいずれかに記載の制御装置 を備えて ヽる車両と同様の効果を奏する。  [0106] According to the vehicle described in claim 19, the same effect as the vehicle provided with the control device according to any one of claims 13 to 18 can be obtained.
[0107] 請求項 20記載の制御装置によれば、車輪駆動装置作動手段により車輪駆動装置 を作動させることで、車輪のすべり速度が目標すベり速度となるように、車輪の回転 速度を制御することができる。ここで、本発明の記憶手段に記憶される目標すベり速 度は、他のすべり速度で得られる摩擦係数、即ち、上述した従来の技術で得られる 摩擦係数の 2倍以上の摩擦係数が得られるすべり速度であるので、かかる従来の技 術と比較して、車輪と路面との間の摩擦係数を増大させて、車両の発進、制動或い は旋回性能の大幅な向上を図ることができるという効果がある。  [0107] According to the control device of claim 20, the wheel drive device is operated by the wheel drive device actuating means, so that the wheel rotation speed is controlled so that the wheel slip speed becomes the target slip speed. can do. Here, the target slip speed stored in the storage means of the present invention is a friction coefficient obtained at other slip speeds, that is, a friction coefficient more than twice that obtained by the above-described conventional technology. Since the resulting sliding speed is higher than that of the conventional technology, the coefficient of friction between the wheel and the road surface can be increased to greatly improve the start, braking or turning performance of the vehicle. There is an effect that can be done.
[0108] 請求項 21記載の制御装置によれば、請求項 20記載の制御装置の奏する効果に 加え、車輪駆動装置を電動モータにより構成したので、従来の内燃機関による場合と 比較して、車輪の回転速度を極めて応答性良くかつ高精度に制御することができる という効果がある。これにより、車輪のすべり速度が目標すベり速度となるように制御 して、車輪と路面との間の摩擦係数を増大させることができ、その結果、車両の発進 、制動或いは旋回性能の大幅な向上を図ることができる。 [0108] According to the control device according to claim 21, in addition to the effect achieved by the control device according to claim 20, the wheel drive device is constituted by an electric motor. There is an effect that it is possible to control the rotation speed of the machine with extremely high responsiveness and high accuracy. As a result, the wheel slip speed is controlled to be the target slip speed. Thus, the coefficient of friction between the wheel and the road surface can be increased, and as a result, the vehicle start, braking or turning performance can be greatly improved.
[0109] 即ち、本発明の目標すベり速度は、極めて小さな値 (例えば、 lOcmZs程度)であ るため、従来の内燃機関ではこのようなすべり速度に車輪を制御することが不可能で あり、本発明のように車輪駆動装置を電動モータで構成することで初めて制御可能と なったものである。これにより、車輪のすべり速度が目標すベり速度となるように制御 することができ、その結果、車輪と路面との間の摩擦係数を増大させ、車両の発進、 制動或いは旋回性能の大幅な向上を図ることができる。  That is, the target slip speed of the present invention is an extremely small value (for example, about lOcmZs), and thus it is impossible for a conventional internal combustion engine to control the wheel to such a slip speed. The wheel drive device can be controlled for the first time by configuring it with an electric motor as in the present invention. As a result, it is possible to control so that the slipping speed of the wheel becomes the target slipping speed. As a result, the friction coefficient between the wheel and the road surface is increased, and the start, braking or turning performance of the vehicle is greatly increased. Improvements can be made.
[0110] 更に、本発明では、電動モータを複数の車輪毎に設けたので、これら複数の車輪 の回転速度をそれぞれ独立に制御することができるという効果がある。通常、車両の 走行時には、路面と各車輪との間の接地状態が各車輪でそれぞれ異なるため、これ ら各車輪に同じ回転駆動力が付与されたのでは、各車輪のすべり速度にばらつきが 生じる。  [0110] Further, in the present invention, since the electric motor is provided for each of the plurality of wheels, there is an effect that the rotational speeds of the plurality of wheels can be independently controlled. Normally, when the vehicle is running, the ground contact state between the road surface and each wheel is different for each wheel, so if the same rotational driving force is applied to each wheel, the sliding speed of each wheel will vary. .
[0111] これに対し、本発明のように、各車輪を独立に制御することができれば、各車輪の すべり速度が目標すベり速度となるようにそれぞれを高精度に制御することができる ので、各車輪の摩擦係数を効率的に向上させることができるという効果がある。その 結果、車両全体としての発進、制動或いは旋回性能のより一層の向上を図ることがで きる。  [0111] On the other hand, if each wheel can be controlled independently as in the present invention, each wheel can be controlled with high accuracy so that the sliding speed of each wheel becomes the target sliding speed. There is an effect that the friction coefficient of each wheel can be improved efficiently. As a result, the starting, braking or turning performance of the entire vehicle can be further improved.
[0112] 請求項 22記載の制御装置によれば、請求項 20又は 21に記載の制御装置の奏す る効果に加え、周速度算出手段と対地速度算出手段とを備え、それら周速度算出手 段及び対地速度算出手段により算出された車輪の周速度及び車両の対地速度とに 基づいて、車輪のすべり速度がすべり速度算出手段により算出されるので、かかる車 輪のすべり速度を高精度に算出することができるという効果がある。  [0112] According to the control device according to claim 22, in addition to the effect of the control device according to claim 20 or 21, the peripheral speed calculation means and the ground speed calculation means are provided, and these peripheral speed calculation means The wheel slip speed is calculated by the slip speed calculation means on the basis of the wheel peripheral speed and the vehicle ground speed calculated by the ground speed calculation means. Therefore, the slip speed of the wheel is calculated with high accuracy. There is an effect that can be.
[0113] 請求項 23記載の制御装置によれば、請求項 20から 22のいずれかに記載の制御 装置の奏する効果に加え、車輪駆動装置作動手段は、車両の加速が、例えば、運 転者の操作により或いは運転者の操作とは無関係に、指示されている場合、車輪の 周速度の値が車両の対地速度の値よりも大きくなり、かつ、車輪のすべり速度が目標 すべり速度となるように、車輪駆動装置を作動させるので、車両の加速が指示されて いるにも関わらず、車両が減速されてしまうことを回避しつつ、路面と車輪との間の摩 擦係数を増大させることができると 、う効果がある。 [0113] According to the control device according to claim 23, in addition to the effect exerted by the control device according to any of claims 20 to 22, the wheel drive device actuating means is capable of, for example, accelerating the vehicle. When directed, regardless of the driver's operation or regardless of the driver's operation, the wheel's peripheral speed value will be greater than the vehicle's ground speed value, and the wheel slip speed will be the target slip speed. In addition, the vehicle is instructed to accelerate the vehicle In spite of this, it is possible to increase the friction coefficient between the road surface and the wheel while avoiding the vehicle being decelerated.
[0114] 一方、車両の減速が、例えば、運転者の操作により或いは運転者の操作とは無関 係に、指示されている場合、車輪駆動装置作動手段は、車輪の周速度の値が車両 の対地速度の値よりも小さくなり、かつ、車輪のすべり速度が目標すベり速度となるよ うに、車輪駆動装置を作動させるので、車両の減速が指示されているにも関わらず、 車両が加速されてしまうことを回避しつつ、路面と車輪との間の摩擦係数を増大させ ることができると!/、う効果がある。  [0114] On the other hand, when deceleration of the vehicle is instructed, for example, by the driver's operation or independently of the driver's operation, the wheel drive device operating means has a wheel peripheral speed value of the vehicle. Since the wheel drive system is operated so that the wheel speed becomes smaller than the ground speed value and the wheel slip speed becomes the target slip speed, the vehicle accelerates even though the vehicle is instructed to decelerate. It is possible to increase the coefficient of friction between the road surface and the wheel while avoiding this!
[0115] 請求項 24記載の車両によれば、請求項 20から 23のいずれかに記載の制御装置 を備える車両と同様の効果を奏する。  [0115] According to the vehicle of claim 24, the same effect as that of the vehicle including the control device according to any of claims 20 to 23 can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0116] [図 1]本発明の第 1実施の形態における制御装置が搭載される車両を模式的に示し た模式図である。  FIG. 1 is a schematic diagram schematically showing a vehicle on which a control device according to a first embodiment of the present invention is mounted.
[図 2]制御装置の電気的構成を示したブロック図である。  FIG. 2 is a block diagram showing an electrical configuration of a control device.
[図 3]操舵制御処理を示すフローチャートである。  FIG. 3 is a flowchart showing a steering control process.
[図 4]摩擦力テーブルの内容を模式的に図示する模式図である。  FIG. 4 is a schematic diagram schematically showing the contents of a friction force table.
[図 5]振幅角,作動周期テーブルの内容を模式的に図示する模式図である。  FIG. 5 is a schematic diagram schematically showing the contents of an amplitude angle and operation cycle table.
[図 6] (a)は振幅角とグリップ回復効果との関係を、 (b)は作動周期とグリップ回復効 果との関係を、それぞれ模式的に示す模式図である。  [FIG. 6] (a) is a schematic diagram schematically showing the relationship between the amplitude angle and the grip recovery effect, and (b) is a schematic diagram showing the relationship between the operation period and the grip recovery effect.
[図 7] (a)は車輪の上面図であり、(b)及び (c)は車輪の側面図である。  [FIG. 7] (a) is a top view of the wheel, and (b) and (c) are side views of the wheel.
[図 8] (a)は第 2実施の形態における振幅角テーブルの内容を、 (b)は第 2実施の形 態における作動周期テーブルの内容を、それぞれ模式的に図示する模式図である。  [FIG. 8] (a) is a schematic diagram schematically illustrating the contents of an amplitude angle table in the second embodiment, and (b) is a schematic diagram illustrating the contents of an operation cycle table in the second embodiment.
[図 9]本発明の第 3実施の形態における制御装置が搭載される車両を模式的に示し た模式図である。  FIG. 9 is a schematic diagram schematically showing a vehicle on which a control device according to a third embodiment of the present invention is mounted.
[図 10]制御装置の電気的構成を示したブロック図である。  FIG. 10 is a block diagram showing an electrical configuration of a control device.
[図 11]すべり速度と摩擦係数との関係を示す図である。  FIG. 11 is a graph showing the relationship between the sliding speed and the friction coefficient.
[図 12] (a)及び (b)は、駆動解除テーブル及び駆動復帰テーブルの内容を模式的に 図示する模式図である。 [図 13]回転制御処理を示すフローチャートである。 [FIG. 12] (a) and (b) are schematic views schematically showing the contents of a drive release table and a drive return table. FIG. 13 is a flowchart showing rotation control processing.
[図 14]対地速度算出処理を示すフローチャートである。 FIG. 14 is a flowchart showing ground speed calculation processing.
[図 15]駆動解除及び復帰処理を示すフローチャートである。 FIG. 15 is a flowchart showing drive release and return processing.
[図 16]本発明の第 4実施の形態における制御装置が搭載される車両を模式的に示し た模式図である。  FIG. 16 is a schematic diagram schematically showing a vehicle equipped with a control device in a fourth embodiment of the present invention.
[図 17]制御装置の電気的構成を示したブロック図である。  FIG. 17 is a block diagram showing an electrical configuration of the control device.
[図 18]駐車制御処理を示すフローチャートである。 FIG. 18 is a flowchart showing parking control processing.
[図 19]第 5実施の形態における駐車制御処理を示すフローチャートである。  FIG. 19 is a flowchart showing a parking control process in the fifth embodiment.
[図 20] (a)から (c)は第 6から第 8実施の形態における駐車制動配置を説明する模式 図である。  [FIG. 20] (a) to (c) are schematic views for explaining parking braking arrangements in sixth to eighth embodiments.
[図 21]第 9実施の形態における制御装置の電気的構成を示したブロック図である。  FIG. 21 is a block diagram showing an electrical configuration of a control device according to a ninth embodiment.
[図 22]駐車制御処理を示すフローチャートである。  FIG. 22 is a flowchart showing parking control processing.
[図 23] (a)は車両の上面図であり、 (b)は車両の側面図である。  [FIG. 23] (a) is a top view of the vehicle, and (b) is a side view of the vehicle.
[図 24] (a)は車両の上面図であり、 (b)は車両の側面図である。  [FIG. 24] (a) is a top view of the vehicle, and (b) is a side view of the vehicle.
[図 25]第 10実施の形態における制御装置の電気的構成を示したブロック図である。  FIG. 25 is a block diagram showing an electrical configuration of a control device in a tenth embodiment.
[図 26]駐車制御処理を示すフローチャートである。  FIG. 26 is a flowchart showing parking control processing.
[図 27]本発明の第 11実施の形態における制御装置が搭載される車両を模式的に示 した模式図である。  FIG. 27 is a schematic diagram schematically showing a vehicle equipped with a control device in an eleventh embodiment of the present invention.
[図 28]制御装置の電気的構成を示したブロック図である。  FIG. 28 is a block diagram showing an electrical configuration of a control device.
[図 29]すべり速度と摩擦係数との関係を示す図である。 FIG. 29 is a diagram showing a relationship between a sliding speed and a friction coefficient.
[図 30] (a)及び (b)は、駆動解除テーブル及び駆動復帰テーブルの内容を模式的に 図示する模式図である。  FIGS. 30 (a) and 30 (b) are schematic views schematically showing the contents of a drive release table and a drive return table.
[図 31]回転制御処理を示すフローチャートである。  FIG. 31 is a flowchart showing rotation control processing.
[図 32]対地速度算出処理を示すフローチャートである。 FIG. 32 is a flowchart showing ground speed calculation processing.
[図 33]駆動解除及び復帰処理を示すフローチャートである。 FIG. 33 is a flowchart showing drive release and return processing.
符号の説明 Explanation of symbols
100, 3100, 4100, 9600, 10700, 11100 制御装置 100, 3100, 4100, 9600, 10700, 11100 Controller
1, 3001, 4001, 11001 車両 2 車輪 1, 3001, 4001, 11001 Vehicle 2 wheels
2FL 前輪 (車輪、左車輪)  2FL front wheel (wheel, left wheel)
2FR 前輪 (車輪、右車輪)  2FR front wheel (wheel, right wheel)
2RL 後輪 (車輪、左車輪)  2RL Rear wheel (wheel, left wheel)
2RR 後輪 (車輪、右車輪)  2RR Rear wheel (wheel, right wheel)
3 車輪駆動装置  3 Wheel drive
3FL〜3RR FL〜RRモータ(車輪駆動装置)  3FL to 3RR FL to RR motor (wheel drive device)
4 ァクチユエータ装置  4 Actuator device
4FL〜4RR FL〜RRァクチユエータ(ァクチユエータ装置)  4FL-4RR FL-RR Actuator (actuator device)
32 車両速度センサ装置 (対地速度検出手段)  32 Vehicle speed sensor device (Ground speed detection means)
32a 前後方向加速度センサ (対地速度検出手段の一部)  32a Longitudinal acceleration sensor (part of ground speed detection means)
32b 左右方向加速度センサ (対地速度検出手段の一部)  32b Lateral acceleration sensor (part of ground speed detection means)
33 車輪回転速度センサ装置(回転速度検出手段)  33 Wheel rotation speed sensor (rotation speed detection means)
33FL〜33RR FL〜RR回転速度センサ(回転速度検出手段) 33FL to 33RR FL to RR rotational speed sensor (rotational speed detection means)
51 ハンドル (操作部) 51 Handle (control unit)
72 ROM (速度記憶手段、角度記憶手段)  72 ROM (speed storage means, angle storage means)
72a 摩擦力テーブル (スリップ領域記憶手段)  72a Friction force table (slip area storage means)
72a すべり速度テーブル (記憶手段)  72a Sliding speed table (memory means)
73a 停車時配置メモリ(配置記憶手段)  73a Stop memory memory (location memory)
134 車両傾斜センサ装置 (傾斜角度検出手段)  134 Vehicle inclination sensor device (Inclination angle detection means)
θ 1 第 1の角度(又は第 2の角度)  θ 1 First angle (or second angle)
Θ 2 第 2の角度 (又は第 1の角度)  Θ 2 Second angle (or first angle)
T1 時間 (第 1又は第 2の操舵動作に要する作動時間)  T1 time (operation time required for the first or second steering operation)
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図 1 は、本発明の第 1実施の形態における制御装置 100が搭載される車両 1を模式的に 示した模式図である。なお、図 1の矢印 FWDは、車両 1の前進方向を示す。また、図 1では、全車輪 2に所定の舵角が付与された状態が図示されている。 [0119] まず、車両 1の概略構成について説明する。車両 1は、図 1に示すように、車体フレ ーム BFと、その車体フレーム BFに支持される複数 (本実施の形態では 4輪)の車輪 2と、それら各車輪 2を独立に回転駆動する車輪駆動装置 3と、各車輪 2を独立に操 舵駆動するァクチユエータ装置 4とを主に備えて 、る。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram schematically showing a vehicle 1 on which a control device 100 according to the first embodiment of the present invention is mounted. The arrow FWD in FIG. 1 indicates the forward direction of the vehicle 1. Further, FIG. 1 shows a state where a predetermined rudder angle is given to all the wheels 2. First, the schematic configuration of the vehicle 1 will be described. As shown in FIG. 1, the vehicle 1 includes a vehicle body frame BF, a plurality of (in this embodiment, four) wheels 2 supported by the vehicle body frame BF, and each of these wheels 2 is driven to rotate independently. The vehicle is mainly provided with a wheel drive device 3 for driving and an actuator device 4 for steering and driving each wheel 2 independently.
[0120] 本発明における車両 1は、制動時や駆動時に、後述する制御装置 100が車輪 2の 運動特性を監視して、所定の状態 (本実施の形態では、スリップ領域)にある車輪 2を 左右に操舵させることで、路面と車輪 2の接地面との間の接地状態を改善して、制動 力又は駆動力の向上を達成可能に構成されている。  [0120] When the vehicle 1 according to the present invention is braked or driven, the control device 100 described later monitors the motion characteristics of the wheels 2, and the wheels 2 in a predetermined state (slip region in the present embodiment) are detected. By steering left and right, the ground contact state between the road surface and the ground contact surface of the wheel 2 is improved, and an improvement in braking force or driving force can be achieved.
[0121] 次いで、各部の詳細構成について説明する。車輪 2は、図 1に示すように、車両 1の 進行方向前方側に位置する左右の前輪 2FL, 2FRと、進行方向後方側に位置する 左右の後輪 2RL, 2RRとの 4輪を備え、これら前後輪 2FL〜2RRは、ステアリング装 置 20, 30により操舵可能に構成されている。  [0121] Next, a detailed configuration of each unit will be described. As shown in FIG. 1, the wheel 2 has four wheels, left and right front wheels 2FL and 2FR located on the front side in the traveling direction of the vehicle 1, and left and right rear wheels 2RL and 2RR located on the rear side in the traveling direction. These front and rear wheels 2FL to 2RR are configured to be steerable by steering devices 20, 30.
[0122] ステアリング装置 20, 30は、各車輪 2を操舵するための操舵装置であり、図 1に示 すように、各車輪 2を揺動可能に支持するキングピン 21と、各車輪 2のナックルアーム (図示せず)に連結されるタイロッド 22と、そのタイロッド 22にァクチユエータ装置 4の 駆動力を伝達する伝達機構部 23とを主に備えて構成されている。  [0122] Steering devices 20, 30 are steering devices for steering each wheel 2. As shown in Fig. 1, the king pin 21 that supports each wheel 2 so as to be swingable and the knuckle of each wheel 2 are provided. A tie rod 22 connected to an arm (not shown) and a transmission mechanism 23 for transmitting the driving force of the actuator device 4 to the tie rod 22 are mainly provided.
[0123] ァクチユエータ装置 4は、上述したように、各車輪 2を独立に操舵駆動するための操 舵駆動装置であり、図 1に示すように、 4個のァクチユエータ(FL〜RRァクチユエータ 4FL〜4RR)を備えて構成されている。運転者がハンドル 51を操作した場合には、 ァクチユエータ装置 4の一部(例えば、前輪 2FL, 2FRのみ)又は全部が駆動され、 ハンドル 51の操作量に応じた舵角が付与される。  [0123] As described above, the actuator device 4 is a steering drive device for independently driving the wheels 2 and, as shown in FIG. ). When the driver operates the handle 51, a part of the actuator device 4 (for example, only the front wheels 2FL, 2FR) or the whole is driven, and a steering angle corresponding to the amount of operation of the handle 51 is given.
[0124] また、運転者によるハンドル操作が行われて 、な 、場合であっても、制動時や駆動 時に車輪 2がスリップ領域に遷移した場合には、その車輪 2に対応するァクチユエ一 タ装置 4 (FL〜RRァクチユエータ 4FL〜4RR)が駆動され、車輪 2を左右に操舵駆 動する。これにより、路面と車輪 2の接地面との接地状態を改善して、制動力又は駆 動力の向上を図る。  [0124] In addition, even if the steering wheel operation is performed by the driver, even if the wheel 2 transits to the slip region during braking or driving, the actuator device corresponding to the wheel 2 is used. 4 (FL to RR Actuator 4FL to 4RR) is driven to steer the wheel 2 left and right. As a result, the ground contact state between the road surface and the ground contact surface of the wheel 2 is improved, and the braking force or driving force is improved.
[0125] このように、ァクチユエータ装置 4による車輪 2の操舵駆動は、ハンドル 51の操作に 起因し、旋回を目的として行われる場合と、ハンドル 51の操作の有無に関わらず、制 動力又は駆動力の向上を目的として行われる場合との 2種類があり、本実施の形態 では前者を旋回制御と称し、後者を操舵制御と称す。なお、操舵制御の詳細につい ては、後述する(図 3参照)。 [0125] In this way, the steering drive of the wheel 2 by the actuator device 4 is caused by the operation of the handle 51, and is controlled for the purpose of turning and whether or not the handle 51 is operated. There are two types, that is, for the purpose of improving power or driving force. In the present embodiment, the former is referred to as turning control and the latter is referred to as steering control. Details of the steering control will be described later (see Fig. 3).
[0126] ここで、本実施の形態では、 FL〜RRァクチユエータ 4FL〜4RRが電動モータで構 成されると共に、伝達機構部 23がねじ機構で構成される。電動モータが回転されると 、その回転運動が伝達機構部 23により直線運動に変換され、タイロッド 22に伝達さ れる。その結果、各車輪 2がキングピン 21を揺動中心として揺動駆動され、各車輪 2 に所定の舵角が付与される。  [0126] Here, in the present embodiment, FL to RR actuators 4FL to 4RR are constituted by electric motors, and transmission mechanism portion 23 is constituted by a screw mechanism. When the electric motor is rotated, the rotational motion is converted to a linear motion by the transmission mechanism 23 and transmitted to the tie rod 22. As a result, each wheel 2 is driven to swing around the king pin 21 as a swing center, and a predetermined steering angle is given to each wheel 2.
[0127] 車輪駆動装置 3は、各車輪 2を独立に回転駆動するための回転駆動装置であり、 図 1に示すように、 4個の電動モータ(FL〜RRモータ 3FL〜3RR)を各車輪 2ごとに (即ち、インホイールモータとして)配設して構成されている。運転者がアクセルぺダ ル 53を操作した場合には、各車輪駆動装置 3から回転駆動力が各車輪 2に付与され 、各車輪 2がアクセルペダル 53の操作量に応じた回転速度で回転される。  [0127] The wheel driving device 3 is a rotation driving device for independently rotating and driving each wheel 2. As shown in Fig. 1, four electric motors (FL to RR motors 3FL to 3RR) are connected to each wheel. It is configured to be arranged every two (that is, as an in-wheel motor). When the driver operates the accelerator pedal 53, a rotational driving force is applied to each wheel 2 from each wheel drive device 3, and each wheel 2 is rotated at a rotational speed corresponding to the operation amount of the accelerator pedal 53. The
[0128] 制御装置 100は、上述のように構成された車両 1の各部を制御するための制御装 置であり、例えば、アクセルペダル 53が操作された場合などには、車輪駆動装置 3の 駆動制御を行う一方、ハンドル 51や各ペダル 52, 53が操作された場合などには、ァ クチユエータ装置 4の駆動制御 (旋回制御、操舵制御)を行う。  [0128] The control device 100 is a control device for controlling each part of the vehicle 1 configured as described above. For example, when the accelerator pedal 53 is operated, the wheel drive device 3 is driven. On the other hand, when the handle 51 and the pedals 52 and 53 are operated, the actuator device 4 is driven (turning control, steering control).
[0129] また、制御装置 100は、上述したように、各車輪 2のスリップ率を監視して、スリップ 領域に遷移した車輪 2がある場合には、その車輪 2が左右に操舵されるように、ァク チユエータ装置 4の駆動制御 (操舵制御)を行う。ここで、図 2を参照して、制御装置 1 00の詳細構成について説明する。  [0129] Further, as described above, the control device 100 monitors the slip rate of each wheel 2 so that if there is a wheel 2 that has transitioned to the slip region, the wheel 2 is steered left and right. Then, drive control (steering control) of the actuator device 4 is performed. Here, the detailed configuration of the control device 100 will be described with reference to FIG.
[0130] 図 2は、制御装置 100の電気的構成を示したブロック図である。制御装置 100は、 図 2に示すように、 CPU71、 ROM72及び RAM73を備え、これらはバスライン 74を 介して入出力ポート 75に接続されている。また、入出力ポート 75には、車輪駆動装 置 3等の複数の装置が接続されて 、る。  FIG. 2 is a block diagram showing an electrical configuration of control device 100. As shown in FIG. As shown in FIG. 2, the control device 100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74. The input / output port 75 is connected to a plurality of devices such as the wheel drive device 3.
[0131] CPU71は、バスライン 74により接続された各部を制御する演算装置である。 ROM 72は、 CPU71により実行される制御プログラム(例えば、図 3に図示される操舵制御 処理のフローチャート)や固定値データ等を格納した書き換え不能な不揮発性のメモ リであり、 RAM73は、制御プログラムの実行時に各種のデータを書き換え可能に記 憶するためのメモリである。 The CPU 71 is an arithmetic device that controls each unit connected by the bus line 74. The ROM 72 stores a control program executed by the CPU 71 (for example, a flowchart of the steering control process shown in FIG. 3), a non-rewritable nonvolatile memory storing fixed value data, and the like. The RAM 73 is a memory for storing various data in a rewritable manner when the control program is executed.
[0132] ここで、 ROM72には、図 2に示すように、摩擦力テーブル 72aと、振幅角'作動周 期テーブル 72bとが設けられている。摩擦力テーブル 72aは、車輪 2のスリップ率 sと 車両進行方向摩擦力 Tとの関係(図 4参照)を記憶したテーブルであり、 CPU71は、 この摩擦力テーブル 72aの内容に基づいて、車輪 2がスリップ領域にある力否かを判 断する。 Here, as shown in FIG. 2, the ROM 72 is provided with a frictional force table 72a and an amplitude angle working period table 72b. The frictional force table 72a is a table that stores the relationship between the slip rate s of the wheel 2 and the vehicle traveling direction frictional force T (see FIG. 4). The CPU 71 determines that the wheel 2 is based on the content of the frictional force table 72a. Determine whether the force is in the slip region.
[0133] また、振幅角 ·作動周期テーブル 72bは車輪 2のスリップ率 sと振幅角 Θ及び作動 周期 Tとの関係(図 5参照)を記憶するテーブルであり、 CPU71は、後述する操舵制 御処理(図 3参照)において、振幅角 ·作動周期テーブル 72bの内容に基づいて、車 輪 2を左右に操舵させる際の操舵角度と作動周期とを決定する。  [0133] The amplitude angle / operation cycle table 72b is a table that stores the relationship between the slip ratio s of the wheel 2, the amplitude angle Θ, and the operation cycle T (see FIG. 5). The CPU 71 controls the steering control described later. In the processing (see FIG. 3), the steering angle and the operation cycle for steering the wheel 2 to the left and right are determined based on the contents of the amplitude angle / operation cycle table 72b.
[0134] 車輪駆動装置 3は、上述したように、各車輪 2 (図 1参照)を回転駆動するための装 置であり、各車輪 2に回転駆動力を付与する 4個の FL〜: RRモータ 3FL〜3RRと、そ れら各モータ 3FL〜3RRを CPU71からの命令に基づいて駆動制御する駆動回路( 図示せず)とを備えている。  [0134] As described above, the wheel drive device 3 is a device for rotationally driving each wheel 2 (see Fig. 1), and four FLs ~: RR that apply rotational drive force to each wheel 2 are provided. Motors 3FL to 3RR and a drive circuit (not shown) for driving and controlling the motors 3FL to 3RR based on a command from the CPU 71 are provided.
[0135] また、ァクチユエータ装置 4は、上述したように、各車輪 2を操舵駆動するための装 置であり、各車輪 2に操舵駆動力を付与する 4個の FL〜RRァクチユエータ 4FL〜4 RRと、それら各ァクチユエータ 4FL〜4RRを CPU71からの命令に基づ!/、て駆動制 御する駆動回路(図示せず)とを備えている。  [0135] Further, as described above, the actuator device 4 is a device for steering and driving each wheel 2, and the four FL to RR actuators 4FL to 4 RR for applying a steering driving force to each wheel 2 are provided. And a drive circuit (not shown) for controlling the drive of each of these actuators 4FL to 4RR based on a command from the CPU 71 !.
[0136] 舵角センサ装置 31は、各車輪 2の舵角を検出すると共に、その検出結果を CPU7 1に出力するための装置であり、各車輪 2の舵角をそれぞれ検出する 4個の FL〜RR 舵角センサ 31FL〜31RRと、それら各舵角センサ 31FL〜31RRの検出結果を処理 して CPU71に出力する処理回路(図示せず)とを備えて!/、る。  [0136] The rudder angle sensor device 31 is a device for detecting the rudder angle of each wheel 2 and outputting the detection result to the CPU 71. The four FLs for detecting the rudder angle of each wheel 2 respectively. ~ RR Rudder angle sensors 31FL ~ 31RR and a processing circuit (not shown) that processes the detection results of these rudder angle sensors 31FL ~ 31RR and outputs them to the CPU 71!
[0137] なお、本実施の形態では、各舵角センサ 31FL〜31RRが各伝達機構部 23にそれ ぞれ設けられ、その伝達機構部 23において回転運動が直線運動に変換される際の 回転数を検出する非接触式の回転角度センサとして構成されている。この回転数は 、タイロッド 22の変位量に比例するので、 CPU71は、舵角センサ装置 31から入力さ れた検出結果(回転数)に基づいて、各車輪 2の舵角を得ることができる。 [0138] ここで、舵角センサ装置 31により検出される舵角とは、各車輪 2の中心線と車両 1 ( 車体フレーム BF)の基準線 (各線ともに図示せず)とがなす角度であり、車両 1の進 行方向とは無関係に定まる角度である。 [0137] In the present embodiment, each steering angle sensor 31FL to 31RR is provided in each transmission mechanism 23, and the rotational speed when the rotational motion is converted into linear motion in the transmission mechanism 23. It is comprised as a non-contact-type rotation angle sensor which detects this. Since this rotational speed is proportional to the amount of displacement of the tie rod 22, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result (rotational speed) input from the steering angle sensor device 31. [0138] Here, the rudder angle detected by the rudder angle sensor device 31 is an angle formed by the center line of each wheel 2 and the reference line (both lines not shown) of the vehicle 1 (body frame BF). The angle is determined independently of the traveling direction of vehicle 1.
[0139] 車両速度センサ装置 32は、路面に対する車両 1の対地速度 (絶対値及び進行方 向)を検出すると共に、その検出結果を CPU71に出力するための装置であり、前後 及び左右方向加速度センサ 32a, 32bと、それら各加速度センサ 32a, 32bの検出 結果を処理して CPU71に出力する処理回路(図示せず)とを備えて!/、る。  [0139] The vehicle speed sensor device 32 is a device for detecting the ground speed (absolute value and traveling direction) of the vehicle 1 with respect to the road surface and outputting the detection result to the CPU 71. 32a, 32b and a processing circuit (not shown) for processing the detection results of the respective acceleration sensors 32a, 32b and outputting them to the CPU 71.
[0140] 前後方向加速度センサ 32aは、車両 1 (車体フレーム BF)の前後方向(図 1上下方 向)の加速度を検出するセンサであり、左右方向加速度センサ 32bは、車両 1 (車体 フレーム BF)の左右方向(図 1左右方向)の加速度を検出するセンサである。なお、 本実施の形態では、これら各加速度センサ 32a, 32bが圧電素子を利用した圧電型 センサとして構成されて!、る。  [0140] The longitudinal acceleration sensor 32a is a sensor that detects acceleration in the longitudinal direction (upward and downward in Fig. 1) of the vehicle 1 (body frame BF), and the lateral acceleration sensor 32b is the vehicle 1 (body frame BF). This sensor detects the acceleration in the left-right direction (left-right direction in FIG. 1). In this embodiment, each of these acceleration sensors 32a and 32b is configured as a piezoelectric sensor using a piezoelectric element! RU
[0141] CPU71は、車両速度センサ装置 32から入力された各加速度センサ 32a, 32bの 検出結果 (加速度値)を時間積分して、 2方向(前後及び左右方向)の速度をそれぞ れ算出すると共に、それら 2方向成分を合成することで、車両 1の対地速度 (絶対値 及び進行方向)を得ることができる。  [0141] The CPU 71 time-integrates the detection results (acceleration values) of the respective acceleration sensors 32a and 32b input from the vehicle speed sensor device 32, and calculates speeds in two directions (front and rear and left and right directions), respectively. At the same time, the ground speed (absolute value and traveling direction) of the vehicle 1 can be obtained by combining these two direction components.
[0142] 車輪回転速度センサ装置 33は、各車輪 2の回転速度を検出すると共に、その検出 結果を CPU71に出力するための装置であり、各車輪 2の回転速度をそれぞれ検出 する 4個の FL〜RR回転速度センサ 33FL〜33RRと、それら各回転速度センサ 33F L〜33RRの検出結果を処理して CPU71に出力する処理回路(図示せず)とを備え ている。  [0142] The wheel rotation speed sensor device 33 is a device for detecting the rotation speed of each wheel 2 and outputting the detection result to the CPU 71. The four FLs for detecting the rotation speed of each wheel 2 respectively. To RR rotational speed sensors 33FL to 33RR, and a processing circuit (not shown) for processing the detection results of the rotational speed sensors 33FL to 33RR and outputting them to the CPU 71.
[0143] なお、本実施の形態では、各回転センサ 33FL〜33RRが各車輪 2に設けられ、各 車輪 2の角速度を回転速度として検出する。即ち、各回転センサ 33FL〜33RRは、 各車輪 2に連動して回転する回転体と、その回転体の周方向に多数形成された歯の 有無を電磁的に検出するピックアップとを備えた電磁ピックアップ式のセンサとして構 成されている。  [0143] In the present embodiment, each rotation sensor 33FL to 33RR is provided on each wheel 2, and the angular velocity of each wheel 2 is detected as the rotation velocity. That is, each rotation sensor 33FL to 33RR is an electromagnetic pickup provided with a rotating body that rotates in conjunction with each wheel 2 and a pickup that electromagnetically detects the presence or absence of teeth formed in the circumferential direction of the rotating body. It is configured as a sensor of the type.
[0144] CPU71は、車輪回転速度センサ装置 33から入力された各車輪 2の回転速度と、 予め ROM72に記憶されて 、る各車輪 2の外径とから、各車輪 2の実際の周速度を それぞれ得ることができる。 The CPU 71 calculates the actual peripheral speed of each wheel 2 from the rotational speed of each wheel 2 input from the wheel rotational speed sensor device 33 and the outer diameter of each wheel 2 stored in the ROM 72 in advance. Each can be obtained.
[0145] 接地荷重センサ装置 34は、各車輪 2と路面との間に発生する接地荷重を検出する と共に、その検出結果を CPU71に出力するための装置であり、各車輪 2の接地荷重 をそれぞれ検出する FL〜RR荷重センサ 34FL〜34RRと、それら各荷重センサ 34 FL〜34RRの検出結果を処理して CPU71に出力する処理回路(図示せず)とを備 えている。  [0145] The ground load sensor device 34 is a device for detecting the ground load generated between each wheel 2 and the road surface and outputting the detection result to the CPU 71. It includes FL to RR load sensors 34FL to 34RR to be detected, and a processing circuit (not shown) that processes the detection results of the load sensors 34FL to 34RR and outputs them to the CPU 71.
[0146] なお、本実施の形態では、各荷重センサ 34FL〜34RRがピエゾ抵抗型の 3軸荷重 センサとして構成されている。これら各荷重センサ 34FL〜34RRは、各車輪 2のサス ペンション軸(図示せず)上に配設され、上述した接地荷重を車両 1の前後方向、左 右方向および垂直方向で検出する。  In the present embodiment, each of the load sensors 34FL to 34RR is configured as a piezoresistive triaxial load sensor. Each of these load sensors 34FL to 34RR is disposed on a suspension shaft (not shown) of each wheel 2 and detects the above-described ground load in the front-rear direction, left-right direction, and vertical direction of the vehicle 1.
[0147] CPU71は、接地荷重センサ装置 34から入力された各荷重センサ 34FL〜34RR の検出結果 (接地荷重)より、各車輪 2の接地面における路面の摩擦係数; zを得るこ とがでさる。  [0147] The CPU 71 can obtain the friction coefficient z of the road surface on the ground contact surface of each wheel 2 from the detection result (ground load) of each load sensor 34FL to 34RR input from the ground load sensor device 34. .
[0148] 例えば、前輪 2FLに着目すると、 FL荷重センサ 34FLにより検出された車両 1の前 後方向、左右方向および垂直方向の荷重がそれぞれ Fx、 Fy及び Fzである場合に は、前輪 2FLの接地面に対応する部分の路面の摩擦係数 は、車両 1の進行方向 の摩擦係数 Xが FxZFzにより、車両 1の左右方向の摩擦係数/ z yが FyZFzにより 、それぞれ算出される。  [0148] For example, when focusing on the front wheel 2FL, if the loads in the front-rear direction, left-right direction, and vertical direction of the vehicle 1 detected by the FL load sensor 34FL are Fx, Fy, and Fz, respectively, the contact of the front wheel 2FL The friction coefficient of the road surface corresponding to the ground is calculated by FxZFz for the friction coefficient X in the traveling direction of the vehicle 1 and FyZFz for the friction coefficient / zy in the left-right direction of the vehicle 1, respectively.
[0149] 図 2に示す他の入出力装置 35としては、例えば、ハンドル 51、ブレーキペダル 52 及びアクセルペダル 53 (いずれも図 1参照)の操作状態(回転角や踏み込み量、操 作速度など)を検出するための操作状態検出センサ装置(図示せず)が例示される。  [0149] Other input / output devices 35 shown in Fig. 2 include, for example, operating states of the handle 51, the brake pedal 52, and the accelerator pedal 53 (all of which are shown in Fig. 1) (rotation angle, stepping amount, operating speed, etc.) An operation state detection sensor device (not shown) for detecting the above is exemplified.
[0150] 次いで、図 3から図 7を参照して、本発明の操舵制御について説明する。なお、操 舵制御とは、上述した通り、制動力又は駆動力の向上を図ることを目的として、車輪 2 を左右に操舵駆動するための制御であり、車両 1の旋回を目的とする上述した旋回 制御と区別される。  Next, steering control of the present invention will be described with reference to FIGS. As described above, the steering control is a control for steering and driving the wheel 2 to the left and right for the purpose of improving the braking force or the driving force, and is described above for the purpose of turning the vehicle 1. Distinct from turning control.
[0151] 図 3は、操舵制御処理を示すフローチャートである。この処理は、制御装置 100の 電源が投入されている間、 CPU71によって繰り返し (例えば、 0. 5秒間隔で)実行さ れる処理である。 [0152] CPU71は、操舵制御処理に関し、まず、現在の車両 1の対地速度と、各車輪 2の 回転速度とをそれぞれ検出し (SI, S2)、それら検出された対地速度と回転速度とに 基づいて、各車輪 2のスリップ率 sを算出する(S3)。 FIG. 3 is a flowchart showing the steering control process. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.5 seconds) while the control device 100 is powered on. [0152] Regarding the steering control process, the CPU 71 first detects the current ground speed of the vehicle 1 and the rotational speed of each wheel 2 (SI, S2), and determines the detected ground speed and rotational speed. Based on this, the slip ratio s of each wheel 2 is calculated (S3).
[0153] なお、上述したように、車両 1の対地速度は車両速度センサ装置 32により、各車輪[0153] As described above, the ground speed of the vehicle 1 is adjusted by the vehicle speed sensor device 32 to each wheel.
2の回転速度は車輪回転速度センサ装置 33により(いずれも図 2参照)、それぞれ検 出され、それら各装置 32, 33から CPU71に入力される。 The rotation speed of 2 is detected by the wheel rotation speed sensor device 33 (see FIG. 2 for both), and input to the CPU 71 from each of the devices 32 and 33.
[0154] また、各車輪 2のスリップ率 sは、車輪 2の自由転動時の周速度 Vrfと、車輪 2の実際 の周速度 Vrとを用いて、 Vrf >Vrの場合には、 s= (Vr—Vrf) ZVrfで表され、 Vr>[0154] Further, the slip rate s of each wheel 2 is obtained by using the peripheral speed Vrf at the time of free rolling of the wheel 2 and the actual peripheral speed Vr of the wheel 2, and when Vrf> Vr, s = (Vr-Vrf) ZVrf, Vr>
Vrfの場合には、 s= (Vr—Vrf) ZVrで表される。 In the case of Vrf, it is expressed as s = (Vr−Vrf) ZVr.
[0155] なお、 Vrfは、車輪 2の自由転動時 (即ち、車輪 2と路面との間にスリップが生じない 状態で転動していると仮定した場合)の周速度であり、 Vrf=Vc/cos Θで表される。 ここで、 Vcは、車両 1の対地速度であり、 Θは、車輪 2のスリップ角(車輪 2の中心線と 車両 1の進行方向とがなす角度)である。 [0155] Note that Vrf is a peripheral speed at the time of free rolling of the wheel 2 (that is, assuming that the wheel 2 and the road surface roll without slip), and Vrf = Vc / cos Θ. Here, Vc is the ground speed of the vehicle 1, and Θ is the slip angle of the wheel 2 (the angle formed by the center line of the wheel 2 and the traveling direction of the vehicle 1).
[0156] また、 Vrは、車輪 2の実際の周速度であり、上述したように、車輪回転速度センサ 装置 33 (図 2参照)で検出された車輪 2の回転速度と、予め ROM72に記憶されてい る車輪 2の外径とから算出される。 [0156] Further, Vr is the actual peripheral speed of the wheel 2, and as described above, the rotational speed of the wheel 2 detected by the wheel rotational speed sensor device 33 (see Fig. 2) and the ROM 72 are stored in advance. It is calculated from the outer diameter of the wheel 2 that is on.
[0157] S3の処理で各車輪 2のスリップ率 sを算出した後は、このスリップ率 sと、 ROM72に 設けられて 、る摩擦力テーブル 72a (図 2参照)の内容とに基づ 、て、各車輪 2がスリ ップ領域にあるカゝ否かを判断する(S4)。ここで、図 4を参照して、摩擦力テーブル 72 aの内容について説明する。 [0157] After calculating the slip ratio s of each wheel 2 in the process of S3, based on the slip ratio s and the content of the friction force table 72a (see Fig. 2) provided in the ROM 72, Then, it is determined whether or not each wheel 2 is in the slip region (S4). Here, the contents of the friction force table 72a will be described with reference to FIG.
[0158] 図 4は、摩擦力テーブル 72aの内容を模式的に図示した模式図である。図 4に示す ように、摩擦力テーブル 72aには、車輪 2のスリップ率 sと車両進行方向摩擦力 Fとの 関係が記憶されている。なお、車両進行方向摩擦力 Fは、路面から車輪 2の接地面 に働く車両進行方向の摩擦力である。 FIG. 4 is a schematic diagram schematically showing the contents of the friction force table 72a. As shown in FIG. 4, the frictional force table 72a stores the relationship between the slip rate s of the wheel 2 and the frictional force F in the vehicle traveling direction. The vehicle traveling direction frictional force F is a frictional force in the vehicle traveling direction that acts on the ground contact surface of the wheel 2 from the road surface.
[0159] 図 4に示すように、スリップ率 sが 0から sbまでの範囲では、スリップ率 sの増加に伴つ て車両進行方向摩擦力 Fも増加する力 スリップ率 sが sb以上となる範囲では、スリツ プ率 sの増加によって車両進行方向摩擦力 Fが減少し、車輪 2がスリップ領域に遷移 する。 [0160] 従って、 CPU71は、各車輪 2のスリップ率 sを監視して、そのスリップ率 sが sb以上 であるか否かを確認することで、各車輪 2がスリップ領域にあるカゝ否かを判断すること ができる。 [0159] As shown in FIG. 4, when the slip ratio s is in the range from 0 to sb, the force in which the vehicle traveling direction friction force F increases as the slip ratio s increases. The range in which the slip ratio s is greater than or equal to sb. In this case, the frictional force F in the vehicle traveling direction decreases as the slip ratio s increases, and the wheel 2 transitions to the slip region. Therefore, the CPU 71 monitors the slip rate s of each wheel 2 and checks whether or not each wheel 2 is in the slip region by checking whether the slip rate s is greater than or equal to sb. Can be judged.
[0161] その結果、 S4の処理において、各車輪 2がいずれもスリップ領域にはない、即ち、 各車輪 2がすべて非スリップ領域にあると判断される場合には(S4 : No)、スリップ率 s の増加と共に車両進行方向摩擦力 F (制動力又は駆動力)も増加する状態にあると いうことである。  [0161] As a result, in the process of S4, when it is determined that none of the wheels 2 are in the slip region, that is, all the wheels 2 are in the non-slip region (S4: No), the slip rate is determined. This means that the vehicle traveling direction frictional force F (braking force or driving force) increases as s increases.
[0162] よって、この場合 (S4 :No)には、本発明の操舵制御を適用しなくても、加減速時に おける各車輪 2の制動力又は駆動力を最大とすることができるので、 S5から S7の処 理をスキップして、操舵制御処理を終了する。  [0162] Therefore, in this case (S4: No), the braking force or driving force of each wheel 2 during acceleration / deceleration can be maximized without applying the steering control of the present invention. To S7, and the steering control process is terminated.
[0163] 一方、 S4の処理にぉ 、て、スリップ領域にある車輪 2がー輪でもあると判断される場 合には(S4 : Yes)、そのスリップ領域にある車輪 2は、スリップ率 sの増加に伴って車 両進行方向摩擦力 F (制動力又は駆動力)が減少する状態にあるということであり、こ の状態のまま加減速したのでは、スリップ率 sが更に増加して、路面から車輪 2の接地 面に働く制動力又は駆動力の減少を招く。  [0163] On the other hand, if it is determined that the wheel 2 in the slip region is also a wheel during the process of S4 (S4: Yes), the wheel 2 in the slip region has a slip ratio s. As the vehicle speed increases, the vehicle frictional force F (braking force or driving force) is in a state of decreasing. When acceleration / deceleration is continued in this state, the slip ratio s further increases, The braking force or driving force acting on the ground contact surface of wheel 2 from the road surface is reduced.
[0164] そこで、この場合 (S4 : Yes)には、スリップ領域にあると判断された車輪 2の制動力 又は駆動力の向上を図るベぐ S5から S7の処理へ移行して、上述した操舵制御を 実行する。  [0164] Therefore, in this case (S4: Yes), the process shifts from S5 to S7 to improve the braking force or driving force of the wheel 2 determined to be in the slip region, and the steering operation described above is performed. Execute control.
[0165] ここで、操舵制御は、後述するように、車輪 2を第 1の操舵方向に第 1の角度 θ 1だ け操舵する第 1の操舵動作と、その第 1の操舵動作の後、車輪 2を第 1の操舵方向と は反対方向となる第 2の操舵方向に第 2の角度 Θ 2だけ操舵する第 2の操舵動作とを 少なくとも実行するものである(図 7 (a)参照)。  Here, as will be described later, the steering control is performed after the first steering operation for steering the wheel 2 by the first angle θ 1 in the first steering direction, and after the first steering operation, At least a second steering operation is performed in which the wheel 2 is steered by a second angle Θ 2 in a second steering direction opposite to the first steering direction (see FIG. 7 (a)). .
[0166] これにより、車輪 2の接地面と路面との接地状態を改善して、車輪 2のグリップを回 復 (スリップ状態力も非スリップ状態へ遷移)させることができ、その結果、制動力又は 駆動力の向上を図ることができる。  [0166] Thereby, the ground contact state between the wheel 2 and the road surface can be improved, and the grip of the wheel 2 can be recovered (the slip state force also transitions to the non-slip state). The driving force can be improved.
[0167] なお、操舵制御では、第 1及び第 2の操舵動作が複数 (本実施の形態では 4輪)の 車輪 2ごとに独立に実行される。通常、車両 1の走行時には、路面と各車輪 2の接地 面との間の接地状態は、車輪 2毎にそれぞれ異なる接地状態となっているので、接 地状態を車輪 2毎に改善することができれば、車両 1全体としての制動力又は駆動力 の向上を効率的に達成することができる。 [0167] In the steering control, the first and second steering operations are executed independently for each of a plurality of wheels (four in this embodiment). Normally, when the vehicle 1 is running, the ground contact state between the road surface and the ground contact surface of each wheel 2 is a different ground contact state for each wheel 2. If the ground condition can be improved for each wheel 2, it is possible to efficiently improve the braking force or driving force of the vehicle 1 as a whole.
[0168] 操舵制御では、まず、 S5及び図 6の処理を実行し、 ROM72に設けられている振幅 角 ·作動周期テーブル 72b (図 2参照)の内容に基づいて、車輪 2の振幅角 0及び作 動周期 Tを決定する。ここで、図 5を参照して、振幅角'作動周期テーブル 72bの内 容について説明する。 [0168] In the steering control, first, the processing of S5 and Fig. 6 is executed, and the amplitude angle 0 and 2 of the wheel 2 are determined based on the contents of the amplitude angle / operation cycle table 72b (see Fig. 2) provided in the ROM 72. Determine the operating period T. Here, with reference to FIG. 5, the contents of the amplitude angle 'operation cycle table 72b will be described.
[0169] 図 5は、振幅角 ·作動周期テーブル 72bの内容を模式的に図示した模式図である。  FIG. 5 is a schematic diagram schematically showing the contents of the amplitude angle / operation cycle table 72b.
振幅角 ·作動周期テーブル 72bには、振幅角 Θ及び作動周期 Tが車輪 2のスリップ 率 sと車両 1の対地速度とにそれぞれ関連付けられて記憶されている。なお、図 5には 、理解を容易とするために、振幅角 ·作動周期テーブル 72bが縦横等間隔の 3行 3列 9区分に区画されて構成される場合を図示して!/、る。  In the amplitude angle / operation cycle table 72b, the amplitude angle Θ and the operation cycle T are stored in association with the slip ratio s of the wheel 2 and the ground speed of the vehicle 1, respectively. In order to facilitate understanding, FIG. 5 shows a case where the amplitude angle / operation cycle table 72b is divided into 3 rows and 3 columns and 9 sections with equal vertical and horizontal intervals.
[0170] 例えば、スリップ率 sの最小値 sbが 0. 25であれば(即ち、操舵制御はスリップ率 sが sb以上の場合に行われる)、図 5の下側の行はスリップ率 sが 0. 25以上かつ 0. 5未 満の範囲を、図 5の中央の行はスリップ率 sが 0. 5以上かつ 0. 75未満の範囲を、図 5 の上側の行はスリップ率 sが 0. 75以上かつ 1以下の範囲を、それぞれ表している。  [0170] For example, if the minimum value sb of the slip rate s is 0.25 (that is, the steering control is performed when the slip rate s is greater than or equal to sb), the lower row of FIG. The range of 0.25 or more and less than 0.5, the middle row in Fig. 5 has a slip ratio s of 0.5 or more and less than 0.75, and the upper row of Fig. 5 has a slip ratio s of 0. Each range is 75 or more and 1 or less.
[0171] 同様に、例えば、操舵制御を行う対地速度の範囲が時速 Okmから時速 100kmで あれば、図 5の左側の列は対地速度が時速 Okm以上かつ時速 34km未満の範囲を 、図 5の中央の列は対地速度が時速 34km以上かつ時速 67km未満の範囲を、図 5 の右側の列は対地速度が時速 67km以上かつ時速 100以下の範囲を、それぞれ表 している。  [0171] Similarly, for example, if the ground speed range for steering control is from Okm / h to 100km / h, the left column in Fig. 5 indicates the range where the ground speed is Okm / h and less than 34km / h. The center column shows the range where the ground speed is 34 km / h or more and less than 67 km / h, and the right column in Fig. 5 shows the range where the ground speed is 67 km / h or more and 100 or less h / h.
[0172] また、本実施の形態では、振幅角 Θの「大、中、小」に「90° 、 45° 、 10° 」力 作 動周期 Tの「長、中、短」に「0. 20秒、 0. 15秒、 0. 10秒」が、それぞれ対応する。  Further, in this embodiment, “90 °, 45 °, 10 °” is applied to “large, medium, small” of the amplitude angle Θ, and “0. “20 seconds, 0.15 seconds, and 0.10 seconds” correspond respectively.
[0173] ここで、本実施の形態では、振幅角 Θが操舵制御における第 1及び第 2の角度 θ 1 , Θ 2の合計値として( θ = Θ 1 + Θ 2)、作動周期 Tが操舵制御における第 1及び第 2の操舵動作に要する時間 Tl, T2の合計値として、それぞれ定義されている。また。 第 1及び第 2の角度 θ 1, Θ 2の絶対値が互いに同値とされると共に、第 1及び第 2の 操舵動作に要する時間 Tl, T2も互いに同値とされている。  Here, in the present embodiment, the amplitude angle Θ is the sum of the first and second angles θ 1 and Θ 2 in the steering control (θ = Θ 1 + Θ 2), and the operation period T is the steering It is defined as the total value of the times Tl and T2 required for the first and second steering operations in the control. Also. The absolute values of the first and second angles θ 1 and Θ 2 are the same, and the times Tl and T2 required for the first and second steering operations are also the same.
[0174] よって、本実施の形態では、振幅角 Θ力 ^大 (又は、中、小)」である場合には、第 1 及び第 2の角度 0 1, 0 2は、「0 1 = 0 2=45° (又は、 22. 5° 、5° ;)」となる。同 様に、作動周期 Tが「長(又は、中、短)」である場合には、時間 Tl, T2は、「T1 =T2 =0. 10禾少(又は、 0. 075禾少、 0. 05禾少)」となる。 Therefore, in the present embodiment, when the amplitude angle is Θ force ^ large (or medium, small), the first The second angle 0 1, 0 2 is “0 1 = 0 2 = 45 ° (or 22.5 °, 5 °;)”. Similarly, when the operation cycle T is “long (or medium, short)”, the times Tl and T2 are “T1 = T2 = 0.10 less (or 0.075 less, 0 05)) ”.
[0175] このように構成された振幅角 ·作動周期テーブル 72bの内容に基づいて、 S5及び S 6の処理では、振幅角 Θと作動周期 Tとが CPU71により決定される。即ち、車輪 2の 現在のスリップ率 sについては、上述した S3の処理において既に算出されており、車 両 1の対地速度については、車両速度センサ装置 32 (図 2参照)により検出され CP U71に入力されている。  Based on the contents of the amplitude angle / operation cycle table 72b configured as described above, the CPU 71 determines the amplitude angle Θ and the operation cycle T in the processing of S5 and S6. That is, the current slip rate s of the wheel 2 has already been calculated in the above-described processing of S3, and the ground speed of the vehicle 1 is detected by the vehicle speed sensor device 32 (see FIG. 2) and is transmitted to the CP U71. Have been entered.
[0176] よって、 CPU71は、 S3の処理において算出された現在のスリップ率 sと、車両速度 センサ装置 32により検出された対地速度とに対応する振幅角 Θ及び作動周期 Tを 振幅角 ·作動周期テーブル 72bの内容力も読み出すことで、各車輪 2の振幅角 Θ及 び作動周期 Tをそれぞれ決定することができる(S5, S6)。  [0176] Therefore, the CPU 71 determines the amplitude angle Θ and the operation cycle T corresponding to the current slip ratio s calculated in the process of S3 and the ground speed detected by the vehicle speed sensor device 32 as the amplitude angle · the operation cycle. By reading the contents of the table 72b, the amplitude angle Θ and the operation period T of each wheel 2 can be determined (S5, S6).
[0177] なお、本実施の形態では、 S3の処理において算出されたスリップ率 sが負の値であ る場合には、そのスリップ率 sの絶対値で評価する。但し、スリップ率 sの値が正の場 合 (即ち、駆動時)と負の場合 (即ち、制動時)とで異なるテーブル (振幅角,作動周期 テーブル)を有するように構成しても良い。  In the present embodiment, when the slip rate s calculated in the process of S3 is a negative value, the absolute value of the slip rate s is evaluated. However, a different table (amplitude angle, operation cycle table) may be used when the slip ratio s is positive (ie, during driving) and negative (ie, during braking).
[0178] ここで、 S5の処理では、図 5に示すように、車輪 2のスリップ率 sが大きな値である(ス リップ率が高い)ほど、振幅角 Θ (第 1及び第 2の角度 θ 1, Θ 2)が大きな角度として 決定される。これは、図 6 (a)に示すように、操舵制御を行った場合には、振幅角 Θ ( 即ち、第 1及び第 2の角度 θ 1, Θ 2)が大きな角度となるほど、グリップ回復効果が高 まるという知見に基づくものである。  Here, in the process of S5, as shown in FIG. 5, the larger the slip ratio s of the wheel 2 (the higher the slip ratio), the larger the amplitude angle Θ (the first and second angles θ). 1, Θ 2) is determined as a large angle. As shown in FIG. 6 (a), when steering control is performed, the grip recovery effect increases as the amplitude angle Θ (that is, the first and second angles θ1, Θ2) becomes larger. This is based on the knowledge that the price increases.
[0179] 即ち、車輪 2のスリップ率 sが大きな値である (スリップ率が高い)ということは、路面に 対する車輪 2のスリップがより顕著であり、車輪 2のグリップを回復させることが困難な 状態にあるといえる。よって、この場合には、グリップを大きく回復させる必要があるの で、より大きなグリップ回復効果が得られるように、振幅角 Θを大きな角度とする(図 5 及び図 6 (a)参照)。  [0179] That is, the slip ratio s of the wheel 2 is a large value (the slip ratio is high), the slip of the wheel 2 with respect to the road surface is more remarkable, and it is difficult to recover the grip of the wheel 2. It can be said that it is in a state. Therefore, in this case, since the grip needs to be greatly recovered, the amplitude angle Θ is set to a large angle so that a greater grip recovery effect can be obtained (see FIGS. 5 and 6 (a)).
[0180] 一方、 S5の処理では、図 5に示すように、車両 1の対地速度が大きな値であるほど 、作動周期 T (時間 Tl, T2)が短い時間として決定される。これは、図 6 (b)に示すよ うに、操舵制御を行った場合には、作動周期 T (即ち、時間 Tl, T2)が短い時間とな るほど、傾きは小さくなり収束するが、グリップ回復効果が高まるという知見に基づくも のである。 On the other hand, in the process of S5, as shown in FIG. 5, the operation period T (time Tl, T2) is determined to be shorter as the ground speed of the vehicle 1 is larger. This is shown in Figure 6 (b). Thus, when steering control is performed, it is based on the knowledge that, as the operation cycle T (i.e., time Tl, T2) becomes shorter, the inclination becomes smaller and converges, but the grip recovery effect increases. .
[0181] 即ち、車両 1の対地速度が大きな値であるということは、車輪 2が単位時間当たりに 通過する路面上の障害物の量が多いということである。よって、この場合には、路面と 車輪 2の接地面との間力 より多くの障害物を押しのける必要があるので、単位時間 当たりにより多くの操舵動作が行われるように、作動周期 Tを短い時間とする(図 5及 び図 6 (b)参照)。  That is, the fact that the ground speed of the vehicle 1 is a large value means that the amount of obstacles on the road surface through which the wheel 2 passes per unit time is large. Therefore, in this case, it is necessary to push away more obstacles than the force between the road surface and the ground contact surface of the wheel 2. Therefore, the operation cycle T should be shortened so that more steering operations can be performed per unit time. (See Fig. 5 and Fig. 6 (b)).
[0182] なお、スリップ率 sが大きな値であり(スリップ率が高く)、かつ、車両 1の対地速度が 大きい場合には、振幅角 Θが大きな角度となるが、作動周期 Θは短い時間となる。よ つて、車輪 2をより短い時間で初期位置 PO (図 7 (a)参照)に復帰させることができる ので、車輪 2のグリップが突然回復した場合でも、車両 1の左右への旋回力が急激に 上昇することを抑制することができる。その結果、車両 1の挙動変化を小さくして、操 舵制御を安全に行うことができる。  [0182] When the slip ratio s is a large value (the slip ratio is high) and the ground speed of the vehicle 1 is large, the amplitude angle Θ is a large angle, but the operation cycle Θ is a short time. Become. Therefore, since the wheel 2 can be returned to the initial position PO (see Fig. 7 (a)) in a shorter time, even if the grip of the wheel 2 suddenly recovers, the turning force of the vehicle 1 to the left and right suddenly increases. Can be prevented from rising. As a result, the behavior change of the vehicle 1 can be reduced and the steering control can be performed safely.
[0183] S5及び S6の処理において車輪 2の振幅角 Θ及び作動周期 Tを決定した後は、次 いで、 S7の処理へ移行して、これら S5及び S6の処理で決定した振幅角 Θ及び作動 周期 Tで車輪 2を左右に操舵駆動して (S7)、この操舵制御処理を終了する。ここで、 図 7を参照して、 S7の処理で実行される動作を説明する。  [0183] After determining the amplitude angle Θ and operation cycle T of wheel 2 in the processing of S5 and S6, the process then proceeds to processing of S7, and the amplitude angle Θ and operation determined in the processing of S5 and S6. The wheel 2 is steered left and right at a cycle T (S7), and this steering control process is terminated. Here, with reference to FIG. 7, the operation executed in the processing of S7 will be described.
[0184] 図 7 (a)は、車輪 2の上面図であり、図 7 (b)及び図 7 (c)は、車輪 2の側面図である 。 S7の処理では、上述した第 1及び第 2の操舵動作を操舵角 0 ( 0 1, Θ 2)及び作 動周期 T(T1, Τ2)で実行する。  FIG. 7 (a) is a top view of the wheel 2, and FIG. 7 (b) and FIG. 7 (c) are side views of the wheel 2. FIG. In the process of S7, the first and second steering operations described above are executed at the steering angle 0 (01, Θ2) and the operation cycle T (T1, Τ2).
[0185] 即ち、図 7 (a)に示すように、まず、車輪 2を初期位置 POから第 1の操舵方向(本実 施の形態では右方向)に第 1の角度 Θ 1だけ操舵する第 1の操舵動作を時間 T1で行 い、次いで、車輪 2を第 1の操舵方向とは反対方向となる第 2の操舵方向(本実施の 形態では左方向)に第 2の角度 Θ 2だけ操舵する第 2の操舵動作を時間 T2で行う。  That is, as shown in FIG. 7 (a), first, the wheel 2 is steered from the initial position PO by the first angle Θ 1 in the first steering direction (right direction in the present embodiment). Steering operation 1 is performed at time T1, and then wheel 2 is steered by a second angle Θ 2 in a second steering direction (leftward in this embodiment) that is opposite to the first steering direction. The second steering operation is performed at time T2.
[0186] なお、初期位置 POとは、 S7の処理中の所定のタイミング (本実施の形態では、 S7 の処理を開始するタイミング)における車輪 2の中心線の方向に対応する。即ち、運 転者が車両 1の旋回を目的としてハンドル 51を操作し、そのハンドル 51の操作に起 因して、車輪 2に所定の舵角が付与されている場合には、その舵角が付与された状 態における車輪 2の中心線が初期位置 POとなる。 [0186] The initial position PO corresponds to the direction of the center line of the wheel 2 at a predetermined timing during the processing of S7 (in this embodiment, the timing of starting the processing of S7). That is, the driver operates the handle 51 for the purpose of turning the vehicle 1. Therefore, when a predetermined rudder angle is given to the wheel 2, the center line of the wheel 2 in the state where the rudder angle is given becomes the initial position PO.
[0187] ここで、本実施の形態では、車輪 2を第 1の操舵方向へ操舵した後、第 2の操舵方 向へ第 2の角度 Θ 2だけ操舵する場合を説明する。但し、第 2の操舵方向への車輪 2 の操舵は、必ずしも第 2の角度 Θ 2だけ行われる必要はなぐ第 2の角度 Θ 2よりも大 きな角度 (例えば、 Θ 2+ α )だけ行われても良ぐ或いは、第 2の角度 Θ 2よりも小さ な角度 (例えば、 0 2— α )だけ行われても良 、。  [0187] Here, in the present embodiment, a case will be described in which the wheel 2 is steered in the first steering direction and then steered by the second angle Θ2 in the second steering direction. However, the steering of the wheel 2 in the second steering direction is not necessarily performed by the second angle Θ2, and is performed by an angle larger than the second angle Θ2 (for example, Θ2 + α). It can be done, or it can be done only by an angle smaller than the second angle Θ 2 (for example, 0 2− α).
[0188] 例えば、 S7の処理中に、ハンドル 51が運転者によって更に操作され、少なくとも第 2の操舵動作が完了する前に、車輪 2の中心線の方向が初期位置 ΡΟから角度ひだ け移動されている場合には、第 1の操舵動作により第 1の操舵方向に第 1の角度 0 1 だけ操舵された車輪 2を、運転者によるハンドル 51の操作状態に応じた操舵位置( 即ち、初期位置 ΡΟから角度 αだけ移動した位置)まで復帰させる、即ち、第 2の操舵 動作を第 2の操舵方向へ角度 αにより補正した角度 (即ち、 Θ 2+ α、又は、角度 Θ 2— α )だけ行うように構成しても良い。これにより、運転者によるハンドル 51の操作 状態に応じて操舵制御を行うことができるので、車両 1の挙動の安定ィ匕を図ることが できる。  [0188] For example, during the process of S7, the steering wheel 51 is further operated by the driver, and at least before the second steering operation is completed, the direction of the center line of the wheel 2 is moved by an angle from the initial position ΡΟ. If the wheel 2 is steered by the first steering operation in the first steering direction by the first angle 0 1, the steering position corresponding to the operating state of the handle 51 by the driver (ie, the initial position) To the second steering direction in the second steering direction by the angle α (ie, Θ 2+ α or the angle Θ 2− α). You may comprise so that it may perform. As a result, the steering control can be performed according to the operating state of the handle 51 by the driver, so that the behavior of the vehicle 1 can be stabilized.
[0189] なお、 CPU71は、上述したように、舵角センサ装置 31 (図 2参照)から入力された 検出結果に基づいて、各車輪 2の舵角を得ることができるので、少なくとも第 2の操舵 動作が完了する前に上記角度 α (即ち、初期位置 ΡΟからの移動量)を算出すること で、、上記制御(即ち、運転者によるハンドル 51の操作状態に応じた操舵位置まで 車輪 2を復帰させる動作)を行うことができる。  Note that, as described above, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result input from the steering angle sensor device 31 (see FIG. 2), so that at least the second By calculating the angle α (that is, the amount of movement from the initial position ΡΟ) before the steering operation is completed, the wheel 2 is moved to the steering position corresponding to the operation state of the handle 51 by the driver. Return operation).
[0190] また、車輪 2がスリップ領域にあると判断される場合に、ハンドル 51の操作状態に関 わらず、車輪 2の操舵駆動を繰り返し実行させる手段 (第 1ァクチユエータ作動手段) と、車輪 2がスリップ領域にないと判断された場合に、第 1のァクチユエータ作動手段 により操舵駆動されて ヽる車輪 2が、ハンドル 51の操作状態に応じた操舵位置まで 操舵される (復帰される)ように、ァクチユエータ装置 4を作動させる手段 (第 2ァクチュ エータ作動手段)とを設けても良い。  [0190] Further, when it is determined that the wheel 2 is in the slip region, regardless of the operation state of the handle 51, means for repeatedly executing the steering drive of the wheel 2 (first actuator operating means), and the wheel 2 When the wheel 2 is determined not to be in the slip region, the wheel 2 driven by the first actuator actuating means is steered (returned) to the steering position corresponding to the operation state of the handle 51. Further, means for operating the actuator device 4 (second actuator operating means) may be provided.
[0191] S7の処理を実行することで、路面と車輪 2の接地面との間の接地状態が改善され、 車輪 2の制動力又は駆動力の向上を図ることができる。具体的には、例えば、雪道を 走行する場合には、車輪 2を操舵することで、路面と車輪 2の接地面との間に発生す る水膜を外部に押しのけることができるので、路面と車輪 2の接地面との間の密着度 を高め、その分、制動力又は駆動力の向上を図ることができる。 [0191] By executing the process of S7, the contact state between the road surface and the contact surface of the wheel 2 is improved. The braking force or driving force of the wheel 2 can be improved. Specifically, for example, when traveling on a snowy road, steering the wheel 2 can push the water film generated between the road surface and the ground contact surface of the wheel 2 to the outside. The contact between the wheel and the ground contact surface of the wheel 2 can be increased, and the braking force or driving force can be improved accordingly.
[0192] また、例えば、図 7 (b)に示すように、非舗装路面 60を走行する場合には、車輪 2を 操舵することで、路面 60aの凹凸を破壊して、下層から新たな路面 60bを露出させる 、言い換えれば、路面 60aを平坦な路面 60bに整地することができるので、路面 60b と車輪 2の接地面との密着度を高め、その分、制動力又は駆動力の向上を図ることが できる。 [0192] Also, for example, as shown in Fig. 7 (b), when traveling on an unpaved road surface 60, by driving the wheel 2, the unevenness of the road surface 60a is destroyed, and a new road surface is started from the lower layer. 60b is exposed, in other words, since the road surface 60a can be leveled to a flat road surface 60b, the degree of adhesion between the road surface 60b and the ground contact surface of the wheel 2 is increased, and the braking force or driving force is improved accordingly. be able to.
[0193] また、例えば、車輪 2を操舵することで、車輪 2の接地面を左右方向(操舵方向)に 変形させ、路面との接地面積を増カロさせることもできるので、この点力もも、制動力又 は駆動力の向上を図ることができる。  [0193] Also, for example, by steering the wheel 2, the ground contact surface of the wheel 2 can be deformed in the left-right direction (steering direction), and the ground contact area with the road surface can be increased. The braking force or driving force can be improved.
[0194] 更に、例えば、図 7 (c)に示すように、路面 70上に小石などの物体 80が存在する場 合には、車輪 2を左右に操舵することで、路面 70上の物体 80を路面 70と車輪 2の接 地面との間から外部に押しのける際に、その物体 80を押しのけるための抵抗力を車 輪 2に作用させることができる。よって、力かる抵抗力を制動力又は駆動力として利用 することで、その分、制動力又は駆動力の向上を図ることができる。  [0194] Further, for example, as shown in Fig. 7 (c), when an object 80 such as a pebble exists on the road surface 70, the object 80 on the road surface 70 is steered by steering the wheel 2 left and right. When the vehicle is pushed outward from between the road surface 70 and the ground contact surface of the wheel 2, a resistance force to push the object 80 can be applied to the wheel 2. Therefore, by using the strong resistance force as the braking force or the driving force, the braking force or the driving force can be improved accordingly.
[0195] ここで、 S7の処理では、第 1の操舵動作と第 2の操舵動作との 2動作のみを行うの で、車両 1の走行中に車輪 2を操舵駆動 (操舵制御)した場合であっても、その操舵 駆動により車両 1に発生する左右への旋回力を全体として相殺することができ、その 結果、操舵制御時に車両 1の挙動が不安定となることを抑制することができる。  [0195] Here, in the process of S7, only the two operations of the first steering operation and the second steering operation are performed. Therefore, when the wheel 2 is steered and driven (steering control) while the vehicle 1 is traveling, Even in this case, the left / right turning force generated in the vehicle 1 by the steering drive can be canceled as a whole, and as a result, the behavior of the vehicle 1 can be prevented from becoming unstable during steering control.
[0196] また、このように、上記 2動作のみと 、う最低限の動作のみを行うように制御すること で、車輪 2のグリップが回復した後も車輪 2の左右への操舵駆動が行われると 、ぅ不 必要な動作を抑制することができる。  [0196] Further, by controlling so that only the above-mentioned two movements and only the minimum movement are performed in this way, the steering drive to the left and right of the wheel 2 is performed even after the grip of the wheel 2 is restored. As a result, unnecessary operations can be suppressed.
[0197] 即ち、今回の S7の処理において、上記 2動作のみで車輪 2のグリップを回復(車輪 2がスリップ領域力も非スリップ領域へ遷移)することができな力つた場合でも、図 5に 示す操舵制御処理は、制御装置 100の電源が投入されている間、所定時間毎に繰 り返し実行されるので、次回の S7の処理にぉ 、て操舵駆動を再び実行することがで きる。し力も、この場合には、その時点の車輪 2のスリップ率 sと車両 1の対地速度とに 基づいて操舵駆動が行われるので、より効率良ぐ車輪 2のグリップを回復させること ができる。 [0197] That is, in this processing of S7, even if the grip of the wheel 2 is recovered only by the above two operations (the wheel 2 cannot recover the slip region force to the non-slip region), it is shown in FIG. Since the steering control process is repeatedly executed every predetermined time while the power of the control device 100 is turned on, the steering drive can be executed again in the next S7 process. wear. In this case, since the steering drive is performed based on the slip ratio s of the wheel 2 and the ground speed of the vehicle 1 at that time, the grip of the wheel 2 can be recovered more efficiently.
[0198] なお、 S7の処理における車輪 2の左右の操舵駆動の回数は、第 1の操舵動作と第 2の操舵動作との 2動作のみに限られるものではなぐこれよりも少ない回数であって も良ぐ或いは、多い回数であっても良い。  [0198] It should be noted that the number of left and right steering driving of the wheel 2 in the processing of S7 is not limited to the two operations of the first steering operation and the second steering operation, and is less than this. Or may be a large number of times.
[0199] 但し、第 1の操舵動作と第 2の操舵動作との 2動作を最小単位動作として、その最 小単位動作を整数回だけ実行することが好ましい。ここで、整数とは、 1, 2, 3, · · ·で ある。これにより、車輪 2を操舵駆動することにより車両 1に発生する左右への旋回力 を全体として相殺して、制動時又は駆動時の車両 1の挙動を安定ィ匕することができる 力 である。  [0199] However, it is preferable that two operations of the first steering operation and the second steering operation are the minimum unit operations, and the minimum unit operations are executed an integer number of times. Here, the integers are 1, 2, 3, .... As a result, the left and right turning force generated in the vehicle 1 by steering and driving the wheels 2 is canceled as a whole, and the behavior of the vehicle 1 during braking or driving can be stabilized.
[0200] また、第 1及び第 2の操舵方向は、 S7の処理を実行する毎に逆方向に変更しても 良い。具体的には、例えば、第 1回目の S7の処理において、第 1の操舵方向(第 2の 操舵方向)を右方向(左方向)に設定した場合には、第 2回目の S7の処理では、第 1 回目の処理とは逆に、第 1の操舵方向(第 2の操舵方向)を左方向(右方向)に設定し 、第 3回目の S7の処理では、第 2回目の処理とは逆に、第 1の操舵方向(第 2の操舵 方向)を右方向(左方向)に設定するのである。これにより、制動時又は駆動時の車 両 1の挙動の安定ィ匕をより一層向上させることができる。  [0200] The first and second steering directions may be changed in opposite directions each time the processing of S7 is executed. Specifically, for example, in the first processing of S7, when the first steering direction (second steering direction) is set to the right (left), the second processing of S7 Contrary to the first processing, the first steering direction (second steering direction) is set to the left (right), and in the third processing of S7, the second processing is Conversely, the first steering direction (second steering direction) is set to the right (left). As a result, the stability of the behavior of the vehicle 1 during braking or driving can be further improved.
[0201] 次いで、図 3及び図 8を参照して、第 2実施の形態について説明する。第 1実施の 形態では、振幅角 Θ及び作動周期 Tが車輪 2のスリップ率 sと車両 1の対地速度とに 対応付けられていたが、第 2実施の形態では、振幅角 Θ及び作動周期 Tがスリップ率 sのみに対応付けられている。なお、上記した第 1実施の形態と同一の部分には同一 の符号を付して、その説明は省略する。  [0201] Next, a second embodiment will be described with reference to FIG. 3 and FIG. In the first embodiment, the amplitude angle Θ and the operation period T are associated with the slip ratio s of the wheel 2 and the ground speed of the vehicle 1, but in the second embodiment, the amplitude angle Θ and the operation period T Is associated only with the slip ratio s. The same parts as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
[0202] 図 8 (a)及び図 8 (b)は、第 2実施の形態における振幅角テーブル及び作動周期テ 一ブルの内容を模式的に示す図であり、これら振幅角テーブル及び作動周期テー ブルは、上述した第 1実施の形態における振幅角 ·作動周期テーブルに対応するも のであり、 ROM72に設けられている。  [0202] Figs. 8 (a) and 8 (b) are diagrams schematically showing the contents of the amplitude angle table and the operation cycle table in the second embodiment, and these amplitude angle table and operation cycle table. The bull corresponds to the amplitude angle / operation cycle table in the first embodiment described above, and is provided in the ROM 72.
[0203] 第 2実施の形態では、図 3の操舵制御処理において、車輪 2がスリップ領域にあると 判断された場合 (S4 : Yes)、車輪 2の振幅角 Θが図 8 (a)に示す振幅角テーブルの 内容に基づいて決定される(S5)。この振幅角テーブルには、振幅角 Θが車輪 2のス リップ率 sに対応付けられて記憶されて 、る。 [0203] In the second embodiment, when the wheel 2 is in the slip region in the steering control process of FIG. If it is determined (S4: Yes), the amplitude angle Θ of the wheel 2 is determined based on the contents of the amplitude angle table shown in FIG. 8 (a) (S5). In this amplitude angle table, the amplitude angle Θ is stored in association with the slip ratio s of the wheel 2.
[0204] 即ち、図 8 (a)に示すように、スリップ率 sが 0から sbまでの範囲では、振幅角 Θの値 力 SOに定義される一方、スリップ率 sが sb以上となる範囲 (スリップ領域)では、スリップ 率 sの増加によって振幅角 Θが最大角 0 b (例えば、 90° )から最小角 Θ a (例えば、 10° )まで線形に減少される。  That is, as shown in FIG. 8 (a), in the range where the slip rate s is from 0 to sb, the value SO of the amplitude angle Θ is defined, while the slip rate s is greater than or equal to sb ( In the slip region), the amplitude angle Θ is linearly decreased from the maximum angle 0 b (eg, 90 °) to the minimum angle Θ a (eg, 10 °) as the slip ratio s increases.
[0205] 車輪 2の現在のスリップ率 sについては、 S3の処理において既に算出されているの で、 CPU71は、その S3の処理において算出された現在のスリップ率 sと振幅角テー ブルの内容とに基づいて、車輪 2の振幅角 Θの値 (即ち、第 1及び第 2の角度 θ 1, Θ 2)を決定する。なお、 S3の処理において算出されたスリップ率 sが負の値である場 合には、そのスリップ率 sの絶対値で評価する。  [0205] Since the current slip ratio s of wheel 2 has already been calculated in the process of S3, the CPU 71 determines the current slip ratio s calculated in the process of S3 and the contents of the amplitude angle table. Based on the above, the value of the amplitude angle Θ of the wheel 2 (that is, the first and second angles θ1, Θ2) is determined. When the slip ratio s calculated in the process of S3 is a negative value, the absolute value of the slip ratio s is evaluated.
[0206] ここで、 S5の処理では、図 8 (a)に示すように、車輪 2のスリップ率 sが大きな値であ るほど、振幅角 Θ (第 1及び第 2の角度 θ 1, Θ 2)が小さな角度として決定される。即 ち、スリップ領域において、スリップ率 sが大きくなり、車両 1の挙動が不安定な状態と なるに従って、車輪 2の左右への操舵駆動をより小さな角度で行うことができる。  Here, in the process of S5, as shown in FIG. 8 (a), the larger the slip ratio s of the wheel 2, the larger the amplitude angle Θ (the first and second angles θ 1, Θ 2) is determined as a small angle. That is, in the slip region, as the slip ratio s increases and the behavior of the vehicle 1 becomes unstable, the steering drive of the wheels 2 to the left and right can be performed at a smaller angle.
[0207] これにより、車輪 2のグリップが突然回復した場合でも、車両 1の左右への旋回力が 急激に上昇することを抑制して、車両 1の挙動変化を小さくすることができ、その結果 、操舵制御を安全に行うことができる。  [0207] As a result, even when the grip of the wheel 2 suddenly recovers, the turning force of the vehicle 1 to the left and right can be suppressed from rapidly increasing, and the change in behavior of the vehicle 1 can be reduced. Steering control can be performed safely.
[0208] 第 2実施の形態では、 S5の処理において車輪 2の振幅角 Θを決定した後、 S6の処 理へ移行において、車輪 2の作動周期 Tが図 8 (b)に示す作動周期テーブルの内容 に基づいて決定される。この作動周期テーブルには、作動周期 Tが車輪 2のスリップ 率 sに対応付けられて記憶されて 、る。  In the second embodiment, after determining the amplitude angle Θ of the wheel 2 in the process of S5, the operation period T of the wheel 2 is the operation period table shown in FIG. Determined based on the contents of In this operation cycle table, the operation cycle T is stored in association with the slip rate s of the wheel 2.
[0209] 即ち、図 8 (b)に示すように、スリップ率 sが 0から sbまでの範囲では、作動周期丁の 値が 0に定義される一方、スリップ率 sが sb以上となる範囲 (スリップ領域)では、スリツ プ率 sの増加によって作動周期 Tが最大周期 Tb (例えば、 0. 2秒)から最小周期 Ta ( 例えば、 0. 10秒)まで線形に減少される。  That is, as shown in FIG. 8 (b), in the range where the slip rate s is from 0 to sb, the value of the operating cycle is defined as 0, while the range in which the slip rate s is equal to or greater than sb ( In the slip region), the operating cycle T is linearly decreased from the maximum cycle Tb (for example, 0.2 seconds) to the minimum cycle Ta (for example, 0.10 seconds) by increasing the slip ratio s.
[0210] S5の処理の場合と同様に、車輪 2の現在のスリップ率 sについては、上述した S3の 処理において既に算出されているので、 CPU71は、その S3の処理において算出さ れた現在のスリップ率 sと作動周期テーブルの内容とに基づいて、車輪 2の作動周期 Tの値 (即ち、第 1及び第 2の操舵動作に要する時間 Tl, T2)を決定することができ る(S6)。なお、 S3の処理において算出されたスリップ率 sが負の値である場合には、 そのスリップ率 sの絶対値で評価する。 [0210] As with the processing of S5, the current slip rate s of wheel 2 is Since it has already been calculated in the process, the CPU 71 determines the value of the operation cycle T of the wheel 2 (i.e., the first cycle) based on the current slip rate s calculated in the process of S3 and the content of the operation cycle table. And the time Tl, T2) required for the second steering operation can be determined (S6). When the slip rate s calculated in the process of S3 is a negative value, the absolute value of the slip rate s is evaluated.
[0211] ここで、 S6の処理では、図 8 (b)に示すように、車輪 2のスリップ率が大きな値である ほど、作動周期 T (時間 Tl, T2)が短い時間として決定される。即ち、スリップ領域に おいて、スリップ率 sが大きくなり、車両 1の挙動が不安定な状態となるに従って、車輪 2をより短時間で操舵させることができる。  Here, in the process of S6, as shown in FIG. 8 (b), the greater the slip ratio of the wheel 2, the shorter the operation cycle T (time Tl, T2) is determined. That is, in the slip region, the wheel 2 can be steered in a shorter time as the slip ratio s increases and the behavior of the vehicle 1 becomes unstable.
[0212] これにより、スリップ率 sが大きくなるに従って、車輪 2のグリップをより短時間に回復 させることができるので、車両 1を不安定な状態から安定な状態へより早期に移行さ せることができる。  [0212] Thereby, as the slip ratio s increases, the grip of the wheel 2 can be recovered in a shorter time, so that the vehicle 1 can be shifted from an unstable state to a stable state earlier. it can.
[0213] なお、図 3に示すフローチャート (操舵制御処理)において、請求項 1記載のァクチ ユエータ作動手段としては S7の処理が、請求項 3記載の対地速度検出手段としては S1の処理が、回転速度検出手段としては S2の処理力 スリップ率検出手段としては S3の処理が、状態判断手段としては S4の処理が、請求項 4記載の角度決定手段と しては S5の処理が、請求項 5記載の時間決定手段としては S6の処理力 請求項 7記 載の状態判断手段としては S4の処理力 第 1ァクチユエータ作動手段としては S7の 処理が、それぞれ該当する。  [0213] In the flowchart (steering control process) shown in FIG. 3, the process of S7 is performed as the actuator actuating means according to claim 1, and the process of S1 is rotated as the ground speed detection means according to claim 3. The processing force of S2 as the speed detection means The processing of S3 as the slip ratio detection means, the processing of S4 as the state determination means, and the processing of S5 as the angle determination means according to claim 4 The time determination means described is the processing power of S6. The state determination means described in claim 7 is the processing power of S4. The first actuator activation means is the processing of S7.
[0214] 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら 限定されるものではなぐ本発明の趣旨を逸脱しない範囲内で種々の改良変形が可 能であることは容易に推察できるものである。  [0214] Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. Something can be easily guessed.
[0215] 例えば、上記第 1及び第 2実施の形態で挙げた数値は一例であり、他の数値を採 用することは当然可能である。  [0215] For example, the numerical values given in the first and second embodiments are merely examples, and other numerical values can naturally be adopted.
[0216] また、上記第 1及び第 2実施の形態では、車輪 2のスリップ率 sと車両 1の対地速度と の両方又は一方に基づいて車輪 2の振幅角 Θ及び作動周期 Tが決定される場合を 説明したが(図 5及び図 8参照)、必ずしもこれに限られるものではなぐ他の状態量 に基づいて車輪 2の振幅角 Θ及び作動周期 Tを決定することは当然可能である。 [0217] ここで、他の状態量としては、例えば、ブレーキペダル 52やアクセルペダル 53の操 作状態 (操作速度や踏み込み量など)や路面の摩擦係数 μなどが例示される。 [0216] In the first and second embodiments, the amplitude angle Θ and the operation cycle T of the wheel 2 are determined based on both or one of the slip ratio s of the wheel 2 and the ground speed of the vehicle 1. Although the case has been described (see FIG. 5 and FIG. 8), it is naturally possible to determine the amplitude angle Θ and the operation period T of the wheel 2 based on other state quantities that are not necessarily limited to this. Here, as other state quantities, for example, the operating state of the brake pedal 52 and the accelerator pedal 53 (operating speed, the amount of depression, etc.), the friction coefficient μ of the road surface, and the like are exemplified.
[0218] 例えば、各ペダル 52, 53の踏み込み量やスリップ率 s、対地速度などが同一であつ ても、その操作速度が速い (遅い)場合には、振幅角 Θをより大きく(小さく)、かつ、 作動周期 Tをより短く(長く)するように制御しても良い。  [0218] For example, even if the depression amount, slip ratio s, and ground speed of each pedal 52, 53 are the same, if the operation speed is fast (slow), the amplitude angle Θ is made larger (smaller), In addition, the operation cycle T may be controlled to be shorter (longer).
[0219] 或いは、例えば、各ペダル 52, 53の操作状態やスリップ率 s、対地速度などが同一 であっても、路面の摩擦係数 が小さい(大きい)場合には、振幅角 Θをより大きく( 小さく)、かつ、作動周期 Tをより短く(長く)するように制御しても良い。  [0219] Or, for example, even if the operation state of each pedal 52, 53, slip rate s, ground speed, etc. are the same, if the friction coefficient of the road surface is small (large), the amplitude angle Θ is larger ( It is also possible to control the operation cycle T to be shorter (longer) and smaller (smaller).
[0220] 更には、路面の摩擦係数; zが所定の基準値以下の場合のみ操舵制御(S5から S7 の処理)を実行する一方、所定の基準値以上であれば、操舵制御(S5から S7の処理 )を省略するように制御しても良 、。  [0220] Furthermore, the steering control (the processing from S5 to S7) is executed only when the friction coefficient of the road surface; z is equal to or smaller than a predetermined reference value. It is also possible to control so as to omit the process.
[0221] なお、これらの各状態量は、振幅角 Θ及び作動周期 Tを決定するための基準値と して、単独で用いても良ぐ又は、組み合わせて用いても良い。これにより、運転者の 操作状態が操舵制御に的確に反映され、操作感の向上を図ることができると共に、 車両 1の挙動をより安定化させた状態で操舵制御を行うことができる。  [0221] Each of these state quantities may be used alone or in combination as a reference value for determining the amplitude angle Θ and the operation cycle T. As a result, the operation state of the driver is accurately reflected in the steering control, so that the operational feeling can be improved and the steering control can be performed in a state where the behavior of the vehicle 1 is further stabilized.
[0222] また、上記第 1及び第 2実施の形態では、車輪 2がスリップ領域にある場合に操舵 制御 (第 1及び第 2の操舵動作)を行う場合を説明したが(図 3の S4を参照)、必ずし もこれに限られるものではなぐ他の基準に基づいて操舵制御を行うように構成するこ とは当然可能である。  [0222] In the first and second embodiments, the case where the steering control (first and second steering operations) is performed when the wheel 2 is in the slip region has been described (S4 in Fig. 3 is performed). It is of course possible to configure the steering control based on other criteria that are not necessarily limited to this.
[0223] ここで、他の基準としては、例えば、車輪 2が制動状態にあるか否力を基準とする場 合が例示される。具体的には、車輪 2が制動状態にある力否かを判断する制動判断 手段を設け、その制動判断手段により車輪 2が制動状態にあると判断された場合に、 操舵制御を開始するのである。これにより、車輪 2がスリップ領域にあるか否かを判断 する必要がなくなるので、処理を簡素化して、その分、制御装置 100 (CPU71)の制 御負荷を軽減することができる。その結果、素早い制御が可能となる。  [0223] Here, as another criterion, for example, a case where the force based on whether or not the wheel 2 is in a braking state is used as a criterion is exemplified. Specifically, a braking judgment means for judging whether or not the wheel 2 is in a braking state is provided, and the steering control is started when the braking judgment means judges that the wheel 2 is in a braking state. . This eliminates the need to determine whether or not the wheel 2 is in the slip region, thus simplifying the process and reducing the control load on the control device 100 (CPU 71) accordingly. As a result, quick control is possible.
[0224] なお、車輪 2が制動状態にある力否かは、車両速度センサ装置 32 (図 2参照)により 検出される車両 1の加速度に基づいて判断しても良ぐ或いは、ブレーキペダル 52 の操作状態に基づいて判断しても良い。また、前記基準を組み合わせても良い。即 ち、車輪 2がスリップ領域にあり、かつ、制動状態にあると判断される場合に、操舵制 御を開始するように構成しても良 、。 [0224] It should be noted that whether or not the wheel 2 is in a braking state may be determined based on the acceleration of the vehicle 1 detected by the vehicle speed sensor device 32 (see Fig. 2) or the brake pedal 52 You may judge based on an operation state. Moreover, you may combine the said reference | standard. Immediately That is, it may be configured to start the steering control when it is determined that the wheel 2 is in the slip region and is in a braking state.
[0225] また、上記第 1及び第 2実施の形態では、各車輪 2の操舵制御をそれぞれ独立に 行う場合を説明した力 必ずしもこれに限られるものではなぐ例えば、左右の車輪 2 を同じ振幅角 Θ及び作動周期 Tで同時に操舵制御しても良ぐ或いは、全ての車輪 2を同じ振幅角 Θ及び作動周期 Tで同時に操舵制御しても良い。これにより制御装 置 100の制御負担の軽減を図ることができる。  [0225] Further, in the first and second embodiments described above, the force described in the case where the steering control of each wheel 2 is performed independently is not necessarily limited to this. For example, the left and right wheels 2 have the same amplitude angle. The steering control may be performed simultaneously with Θ and the operation cycle T, or all the wheels 2 may be simultaneously controlled with the same amplitude angle Θ and the operation cycle T. As a result, the control burden on the control device 100 can be reduced.
[0226] この場合には、左右の車輪 2がトーイン及びトーアウトとなるように、左右の車輪 2の 操舵方向を互いに逆方向として、同時に操舵制御を行うことが好ましい。例えば、左 の車輪 2を左方向に操舵した後に右方向に操舵するのであれば、右の車輪 2は、右 方向に操舵した後に左方向に操舵するのである。これにより、車輪 2を左右に操舵す ることで車両 1に発生する旋回力を全体として相殺して、操舵制御時の車両 1の挙動 をより安定させることができる。  In this case, it is preferable to perform steering control simultaneously with the steering directions of the left and right wheels 2 being opposite to each other so that the left and right wheels 2 are toe-in and toe-out. For example, if the left wheel 2 is steered in the left direction and then steered in the right direction, the right wheel 2 is steered in the right direction and then steered in the left direction. As a result, by turning the wheel 2 to the left and right, the turning force generated in the vehicle 1 can be canceled as a whole, and the behavior of the vehicle 1 during steering control can be made more stable.
[0227] また、上記第 1及び第 2実施の形態では、車両 1が旋回中である力否かに関わらず 操舵制御を行う場合を説明したが、必ずしもこれに限られるものではなぐ例えば、車 両 1が直進走行して 、る場合にのみ操舵制御を行うように構成しても良 、。これにより 、車両 1の挙動が不安定ィ匕することを抑制することができる。  [0227] In the first and second embodiments, the case where the steering control is performed regardless of whether or not the vehicle 1 is turning is described. However, the present invention is not necessarily limited to this. It may be configured so that the steering control is performed only when both 1 are traveling straight ahead. Thereby, it is possible to suppress the behavior of the vehicle 1 from becoming unstable.
[0228] また、上記第 1及び第 2実施の形態では、理解を容易とするために、摩擦力テープ ル 72aがスリップ率 sと車両進行方向摩擦力 Fとの関係を有して構成される場合を説 明したが、摩擦力テーブル 72a (ROM72)には、少なくとも上述した値 sbのみが記憶 されていれば足りる。  In the first and second embodiments, the frictional force table 72a is configured to have a relationship between the slip ratio s and the vehicle traveling direction frictional force F in order to facilitate understanding. Although the case has been described, it is sufficient that at least only the value sb described above is stored in the frictional force table 72a (ROM 72).
[0229] これは、第 2実施の形態における振幅角テーブル及び作動周期テーブルについて も同様であり、少なくとも上述した最大値 Θ b, Tb及び最小値 Θ a, Taが記憶されて いれば足りる。  The same applies to the amplitude angle table and the operation cycle table in the second embodiment, and it is sufficient that at least the maximum values Θ b and Tb and the minimum values Θ a and Ta described above are stored.
[0230] なお、摩擦力テーブル 72aにおけるスリップ率 sと車両進行方向摩擦力 Fとの関係 は、車輪 2が走行する路面のうち、その車輪 2の接地面に対応する部分の摩擦係数 μに応じて変化する。そこで、路面の摩擦係数 に対応する複数の摩擦力テーブル 72aを ROM72に設けておき、車輪 2の接地面に対応する部分の摩擦係数 に応じ て、使用する摩擦力テーブル 72aを変更するように構成しても良い。各車輪 2の接地 面における路面の摩擦係数 は、上述した通り、接地荷重センサ装置 34の検出結 果より車輪 2毎に得ることができる。 [0230] The relationship between the slip ratio s and the frictional force F in the vehicle traveling direction in the friction force table 72a depends on the friction coefficient μ of the portion of the road surface on which the wheel 2 travels that corresponds to the ground contact surface of the wheel 2. Change. Therefore, a plurality of friction force tables 72a corresponding to the friction coefficient of the road surface are provided in the ROM 72, and according to the friction coefficient of the portion corresponding to the ground contact surface of the wheel 2. The frictional force table 72a to be used may be changed. The friction coefficient of the road surface on the ground contact surface of each wheel 2 can be obtained for each wheel 2 from the detection result of the ground load sensor device 34 as described above.
[0231] また、上記第 1及び第 2実施の形態では、第 1及び第 2の角度 θ 1, Θ 2 (図 7 (a)参 照)の絶対値が互いに同値とされる場合を説明したが、必ずしもこれに限られるもの ではなぐ第 1及び第 2の角度 θ 1, Θ 2を互いに異なる値に設定することは当然可能 である。時間 Tl, T2についても同様である。  [0231] In the first and second embodiments, the case where the absolute values of the first and second angles θ1, Θ2 (see Fig. 7 (a)) are set to the same value has been described. However, the first and second angles θ 1 and Θ 2 that are not necessarily limited to this can naturally be set to different values. The same applies to the times Tl and T2.
[0232] 例えば、車両 1を旋回させるために、車輪 2に舵角が付与されている場合には、第 1 及び第 2の角度 θ 1, Θ 2の一方を他方よりも大きな値に設定し、この第 1及び第 2の 角度 θ 1, Θ 2により車輪 2の操舵制御を行っても良い。時間 Tl, T2についても同様 である。  [0232] For example, when the steering angle is given to the wheel 2 in order to turn the vehicle 1, one of the first and second angles θ1, Θ2 is set to a larger value than the other. The steering control of the wheel 2 may be performed by the first and second angles θ1, Θ2. The same applies to times Tl and T2.
[0233] また、上記第 1及び第 2実施の形態では、操舵制御として、車輪 2を左右に操舵す る場合を説明した、即ち、車輪 2を左右へ操舵する第 1及び第 2の操舵動作 (2動作) を最小単位動作とする場合を説明したが、必ずしもこれに限られるものではなぐ左( 又は右)への操舵動作(1動作)を最小単位動作とすることは当然可能である。  [0233] In the first and second embodiments, the case where the wheel 2 is steered left and right as steering control has been described, that is, the first and second steering operations for steering the wheel 2 left and right. Although the case where (2 motions) is set as the minimum unit motion has been described, the steering motion (1 motion) to the left (or right), which is not necessarily limited to this, can naturally be set as the minimum unit motion.
[0234] なお、力かる 1動作 (最小単位動作)を繰り返し実行する場合には、同方向(例えば 、左方向)への操舵動作だけを繰り返し実行しても良ぐ異なる方向(例えば、左方向 と右方向)への操舵動作を交互に繰り返し実行しても良ぐ或いは、これらを組み合 わせて実行しても良い。  [0234] In the case of repeatedly executing one powerful operation (minimum unit operation), different directions (for example, left direction) in which only the steering operation in the same direction (for example, left direction) may be repeatedly performed. And rightward steering operations may be performed alternately or in combination.
[0235] また、上記第 1及び第 2実施の形態では、ァクチユエータ装置 4を電動モータで、伝 達機構部 23をねじ機構で、それぞれ構成する場合を説明したが、必ずしもこれに限 られるものではなぐ例えば、ァクチユエータ装置 4を油圧 ·空圧シリンダーで構成して も良い。これにより、伝達機構部 23を省略することができるので、構造を簡素化して、 軽量化と部品コストの削減とを図ることができる。  [0235] In the first and second embodiments, the case where the actuator device 4 is configured by an electric motor and the transmission mechanism unit 23 is configured by a screw mechanism has been described. However, the present invention is not necessarily limited thereto. For example, the actuator device 4 may be composed of a hydraulic / pneumatic cylinder. Thereby, since the transmission mechanism part 23 can be omitted, the structure can be simplified, and the weight can be reduced and the parts cost can be reduced.
[0236] また、上記第 1及び第 2実施の形態では、ブレーキ装置 (例えば、摩擦力を利用し たドラムブレーキやディスクブレーキ)の説明を省略したが、かかるブレーキ装置を車 両 1に設けることは当然可能である。また、車輪駆動装置 3を回生ブレーキとして構成 し、これをブレーキ装置として利用しても良い。 [0237] 次いで、第 3実施の形態について説明する。図 9は、本発明の第 3実施の形態にお ける制御装置 3100が搭載される車両 3001を模式的に示した模式図である。なお、 図 9の矢印 FWDは、車両 3001の前進方向を示す。また、図 9では、全車輪 2に所定 の舵角が付与された状態が図示されて!ヽる。 [0236] In the first and second embodiments, the description of the brake device (for example, a drum brake or a disc brake using frictional force) is omitted, but such a brake device is provided in the vehicle 1. Is of course possible. Further, the wheel drive device 3 may be configured as a regenerative brake and used as a brake device. [0237] Next, a third embodiment will be described. FIG. 9 is a schematic diagram schematically showing a vehicle 3001 on which a control device 3100 according to the third embodiment of the present invention is mounted. The arrow FWD in FIG. 9 indicates the forward direction of the vehicle 3001. In addition, FIG. 9 shows a state in which a predetermined rudder angle is given to all wheels 2! Speak.
[0238] まず、車両 3001の概略構成について説明する。車両 3001は、図 9に示すように、 車体フレーム BFと、その車体フレーム BFに支持される複数 (本実施の形態では 4輪 )の車輪 2と、それら各車輪 2を独立に回転駆動する車輪駆動装置 3と、各車輪 2を独 立に操舵駆動するァクチユエータ装置 4とを主に備え、走行時には、車輪 2の路面に 対するすべり速度を後述する制御装置 3100により制御することで、車輪 2と路面との 間の摩擦係数を増大させ、発進性能や制動性能、或いは、旋回性能の向上を図るこ とができるように構成されて!、る。  [0238] First, a schematic configuration of the vehicle 3001 will be described. As shown in FIG. 9, a vehicle 3001 includes a vehicle body frame BF, a plurality of (four wheels in this embodiment) wheels 2 supported by the vehicle body frame BF, and wheels that rotate and drive these wheels 2 independently. It is mainly provided with a drive device 3 and an actuator device 4 that independently drives each wheel 2 to control the slip speed of the wheel 2 with respect to the road surface by a control device 3100 to be described later. It is configured to increase the coefficient of friction with the road surface and improve the starting performance, braking performance, and turning performance! RU
[0239] 次いで、各部の詳細構成について説明する。車輪 2は、図 9に示すように、車両 30 01の進行方向前方側に位置する左右の前輪 2FL, 2FRと、進行方向後方側に位置 する左右の後輪 2RL, 2RRとの 4輪を備え、これら前後輪 2FL〜2RRは、ステアリン グ装置 20, 30により転舵可能に構成されている。  [0239] Next, a detailed configuration of each unit will be described. As shown in FIG. 9, the wheel 2 has four wheels, left and right front wheels 2FL, 2FR located on the front side in the traveling direction of the vehicle 3011, and left and right rear wheels 2RL, 2RR located on the rear side in the traveling direction. These front and rear wheels 2FL to 2RR are configured to be steerable by the steering devices 20, 30.
[0240] なお、車輪 2は、ゴム材料から主に構成されるタイヤと、そのタイヤを保持すると共に スチール、アルミニウム合金或!、はマグネシウム合金などの金属材料力も構成される ホイールとを備えており、ホイールが車輪駆動装置 3の駆動軸に連結され、その駆動 軸を介して、車輪駆動装置 3からホイール (車輪 2)に回転駆動力が伝達される。  [0240] The wheel 2 includes a tire mainly composed of a rubber material, and a wheel that holds the tire and also includes a metal material force such as steel, aluminum alloy, or magnesium alloy. The wheel is connected to the drive shaft of the wheel drive device 3, and the rotational drive force is transmitted from the wheel drive device 3 to the wheel (wheel 2) via the drive shaft.
[0241] ステアリング装置 20, 30は、各車輪 2を操舵するための操舵装置であり、図 9に示 すように、各車輪 2を揺動可能に支持するキングピン 21と、各車輪 2のナックルアーム (図示せず)に連結されるタイロッド 22と、そのタイロッド 22にァクチユエータ装置 4の 駆動力を伝達する伝達機構部 23とを主に備えて構成されている。  [0241] Steering devices 20 and 30 are steering devices for steering each wheel 2. As shown in FIG. 9, a king pin 21 that supports each wheel 2 in a swingable manner and a knuckle of each wheel 2 are provided. A tie rod 22 connected to an arm (not shown) and a transmission mechanism 23 for transmitting the driving force of the actuator device 4 to the tie rod 22 are mainly provided.
[0242] ァクチユエータ装置 4は、上述したように、各車輪 2を独立に操舵駆動するための操 舵駆動装置であり、図 9に示すように、 4個のァクチユエータ(FL〜RRァクチユエータ 4FL〜4RR)を備えて構成されている。運転者がハンドル 51を操作した場合には、 ァクチユエータ装置 4の一部(例えば、前輪 2FL, 2FRのみ)又は全部が駆動され、 ハンドル 51の操作量に応じた舵角が付与される。 [0243] ここで、本実施の形態では、 FL〜RRァクチユエータ 4FL〜4RRが電動モータで構 成されると共に、伝達機構部 23がねじ機構で構成される。電動モータが回転されると 、その回転運動が伝達機構部 23により直線運動に変換され、タイロッド 22に伝達さ れる。その結果、各車輪 2がキングピン 21を揺動中心として揺動駆動され、各車輪 2 に所定の舵角が付与される。 [0242] As described above, the actuator device 4 is a steering drive device for independently steering driving each wheel 2, and as shown in FIG. ). When the driver operates the handle 51, a part of the actuator device 4 (for example, only the front wheels 2FL, 2FR) or the whole is driven, and a steering angle corresponding to the amount of operation of the handle 51 is given. [0243] Here, in the present embodiment, FL to RR actuators 4FL to 4RR are configured by electric motors, and transmission mechanism portion 23 is configured by a screw mechanism. When the electric motor is rotated, the rotational motion is converted to a linear motion by the transmission mechanism 23 and transmitted to the tie rod 22. As a result, each wheel 2 is driven to swing around the king pin 21 as a swing center, and a predetermined steering angle is given to each wheel 2.
[0244] 車輪駆動装置 3は、各車輪 2を独立に回転駆動するための回転駆動装置であり、 図 9に示すように、 4個の電動モータ(FL〜RRモータ 3FL〜3RR)を各車輪 2ごとに (即ち、インホイールモータとして)配設して構成されている。これにより、各車輪 2の 回転速度がそれぞれ独立に制御可能とされている。  [0244] The wheel drive device 3 is a rotation drive device for independently rotating and driving each wheel 2. As shown in Fig. 9, four electric motors (FL to RR motors 3FL to 3RR) are connected to each wheel. It is configured to be arranged every two (that is, as an in-wheel motor). As a result, the rotational speed of each wheel 2 can be controlled independently.
[0245] 運転者がアクセルペダル 53を操作した場合には、車輪駆動装置 3から回転駆動力 が各車輪 2に付与され、各車輪 2がアクセルペダル 53の操作量に応じた回転速度で 回転される。本発明では、この場合に、各車輪 2の路面に対するすべり速度が後述 する目標すベり速度に近づくようにする回転制御が行われる。なお、回転制御の詳 細については、後述する。  [0245] When the driver operates the accelerator pedal 53, a rotational driving force is applied to each wheel 2 from the wheel driving device 3, and each wheel 2 is rotated at a rotational speed corresponding to the operation amount of the accelerator pedal 53. The In the present invention, in this case, rotation control is performed so that the sliding speed of each wheel 2 with respect to the road surface approaches a target slip speed described later. Details of the rotation control will be described later.
[0246] 制御装置 3100は、上述のように構成された車両 3001の各部を制御するための制 御装置であり、例えば、車輪駆動装置 3とァクチユエータ装置 4とを作動させ、車輪 2 の回転速度を制御することで、車輪 2の回転制御を行う。ここで、図 10を参照して、制 御装置 3100の詳細構成について説明する。  [0246] The control device 3100 is a control device for controlling each part of the vehicle 3001 configured as described above. For example, the wheel drive device 3 and the actuator device 4 are operated to rotate the rotation speed of the wheel 2. Rotation control of wheel 2 is performed by controlling. Here, a detailed configuration of the control device 3100 will be described with reference to FIG.
[0247] 図 10は、制御装置 3100の電気的構成を示したブロック図である。制御装置 3100 は、図 10に示すように、 CPU71、 ROM72及び RAM73を備え、これらはバスライン 74を介して入出力ポート 75に接続されている。また、入出力ポート 75には、車輪駆 動モータ 3等の複数の装置が接続されて 、る。  FIG. 10 is a block diagram showing an electrical configuration of control device 3100. As shown in FIG. 10, the control device 3100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74. The input / output port 75 is connected to a plurality of devices such as a wheel drive motor 3.
[0248] CPU71は、バスライン 74により接続された各部を制御する演算装置である。 ROM 72は、 CPU71により実行される制御プログラム(例えば、図 13から図 15に図示され る各処理のフローチャート)や固定値データ等を格納した書き換え不能な不揮発性 のメモリであり、 RAM73は、制御プログラムの実行時に各種のワークデータやフラグ 等を書き換え可能に記憶するためのメモリである。  The CPU 71 is an arithmetic device that controls each unit connected by the bus line 74. The ROM 72 is a non-rewritable nonvolatile memory storing a control program executed by the CPU 71 (for example, flowcharts of each process shown in FIGS. 13 to 15) and fixed value data, and the RAM 73 is a control memory. This memory is used to store various work data and flags in a rewritable manner during program execution.
[0249] ROM72には、図 10に示すように、すべり速度テーブル 72aが設けられている。す ベり速度テーブル 72aは、目標すベり速度の値を記憶したテーブルである。なお、目 標すべり速度とは、車輪 2の回転制御を行う際の目標値であり、 CPU71は、車両 30 01の走行中、各車輪 2の路面に対するすべり速度が目標すベり速度に近づくように 、各車輪 2の回転速度を制御する。 [0249] As shown in FIG. 10, the ROM 72 is provided with a sliding speed table 72a. The The sliding speed table 72a is a table that stores values of target sliding speeds. The target slip speed is a target value when the rotation control of the wheel 2 is performed. The CPU 71 keeps the slip speed on the road surface of each wheel 2 close to the target slip speed while the vehicle 301 is traveling. In addition, the rotational speed of each wheel 2 is controlled.
[0250] ここで、図 11を参照して、すべり速度と摩擦係数との関係について説明する。図 11 は、すべり速度と摩擦係数との関係を示す図であり、本実施の形態における車輪 2 ( タイヤ)の物性を用いて測定した結果が例示されている。なお、図 11において、横軸 は、車輪 2の路面に対するすべり速度を示し、縦軸は、車輪 2と路面との間の摩擦係 数を示している。 [0250] Here, the relationship between the sliding speed and the friction coefficient will be described with reference to FIG. FIG. 11 is a diagram showing the relationship between the sliding speed and the friction coefficient, and illustrates the result of measurement using the physical properties of the wheel 2 (tire) in the present embodiment. In FIG. 11, the horizontal axis indicates the sliding speed of the wheel 2 with respect to the road surface, and the vertical axis indicates the friction coefficient between the wheel 2 and the road surface.
[0251] 図 11に示すように、車輪 2と路面との間の摩擦係数は、すべり速度の値に応じて変 化し、かつ、所定のすべり速度 (本実施の形態では、 lcmZs)で最大値を有する。  [0251] As shown in FIG. 11, the coefficient of friction between the wheel 2 and the road surface changes according to the value of the sliding speed, and is the maximum value at a predetermined sliding speed (in this embodiment, lcmZs). Have
[0252] そこで、本発明では、摩擦係数が最大となるすべり速度を予め測定すると共に、こ の測定値を目標すべり速度として ROM72 (すべり速度テーブル 72a)内に記憶して おき、車輪 2の路面に対するすべり速度が目標すベり速度の値に近づくように、車輪 2の回転速度を制御する。これにより、車輪 2と路面との間の摩擦係数を増大させるこ とができるので、制動 ·加速性能や旋回性能の向上を図ることができる。  [0252] Therefore, in the present invention, the slip speed at which the friction coefficient is maximized is measured in advance, and this measured value is stored in the ROM 72 (slip speed table 72a) as the target slip speed, and the road surface of the wheel 2 is stored. The rotation speed of wheel 2 is controlled so that the slip speed with respect to approaches the target slip speed value. As a result, the friction coefficient between the wheel 2 and the road surface can be increased, so that the braking / acceleration performance and the turning performance can be improved.
[0253] なお、従来のアンチロック制御では、上述したように、車輪 2のスリップ率が非スリツ プ領域からスリップ領域へ移行する直前の値を取るように制御する力 この場合の目 標スリップ率は、通常、 0. 2〜0. 3程度である。これに対し、本発明の回転制御にお ける目標すベり速度は、スリップ率に換算すれば、従来の目標スリップ率の 1〜2桁小 さな値に相当する。このような領域で車輪 2の回転速度 (すべり速度)を制御して、摩 擦係数の増大を図ると 、う技術は従来にな 、新規なものである。  [0253] In the conventional anti-lock control, as described above, the force for controlling the slip rate of the wheel 2 to take a value just before the transition from the non-slip region to the slip region. In this case, the target slip rate Is usually about 0.2 to 0.3. On the other hand, the target slip speed in the rotation control of the present invention is equivalent to a value that is 1 to 2 digits smaller than the conventional target slip ratio in terms of the slip ratio. When the rotational speed (sliding speed) of the wheel 2 is controlled in such a region to increase the friction coefficient, the technique is novel.
[0254] 図 10に戻って説明する。 ROM72には、図 10に示すように、駆動解除テーブル 72 bと駆動復帰テーブル 72cとが設けられている。  [0254] Returning to FIG. As shown in FIG. 10, the ROM 72 is provided with a drive release table 72b and a drive return table 72c.
[0255] ここで、本発明では、車両 3001の走行中、いずれかの車輪 2を自由転動させること で、その車輪 2の周速度力も車両 3001の対地速度を算出する。そのため、車輪 2を 自由転動させるベぐ車輪駆動装置 3から付与される回転駆動力を解除する必要が ある。 [0256] そこで、駆動解除テーブル 72bには、車両 3001の対地速度を計測するべぐ車輪 駆動装置 3から車輪 2に付与されている回転駆動力を解除する際の解除速度が規定 されている。一方、駆動復帰テーブル 72cには、車両 3001の対地速度の計測が完 了し、車輪駆動装置 3から車輪 2への回転駆動力の付与を再開する際の付与速度が 規定されている。 [0255] Here, in the present invention, while the vehicle 3001 is traveling, any wheel 2 freely rolls, and the circumferential speed force of the wheel 2 calculates the ground speed of the vehicle 3001. Therefore, it is necessary to release the rotational driving force applied from the beg wheel driving device 3 that freely rolls the wheel 2. [0256] Therefore, in the drive release table 72b, a release speed for releasing the rotational driving force applied to the wheel 2 from the Veg wheel drive device 3 that measures the ground speed of the vehicle 3001 is defined. On the other hand, the drive return table 72c defines the applied speed when the measurement of the ground speed of the vehicle 3001 is completed and the application of the rotational driving force from the wheel drive device 3 to the wheel 2 is resumed.
[0257] これら駆動解除テーブル 72b及び駆動復帰テーブル 72cの詳細について、図 12を 参照して説明する。図 12 (a)は、駆動解除テーブル 72bの内容を模式的に図示した 模式図であり、図 12 (b)は、駆動復帰テーブル 72cの内容を模式的に図示した模式 図である。  Details of the drive release table 72b and the drive return table 72c will be described with reference to FIG. FIG. 12 (a) is a schematic diagram schematically illustrating the contents of the drive release table 72b, and FIG. 12 (b) is a schematic diagram schematically illustrating the contents of the drive return table 72c.
[0258] なお、図 12 (a)及び図 12 (b)において、横軸は、回転駆動力の解除又は付与を開 始してからの経過時間を示し、縦軸は、車輪駆動装置 3から車輪 2に付与される回転 駆動力の大きさを示している。  In FIG. 12 (a) and FIG. 12 (b), the horizontal axis indicates the elapsed time from the start of the release or application of the rotational driving force, and the vertical axis indicates from the wheel driving device 3. The magnitude of the rotational driving force applied to wheel 2 is shown.
[0259] 例えば、車輪 2に付与される回転駆動力を解除する場合には、 CPU71は、図 12 ( a)に示す駆動解除テーブル 72bから解除速度 (即ち、経過時間に対する回転駆動 力の変化率)を読み出し、その読み出した解除速度に基づいて、車輪駆動装置 3を 制御することで、車輪 2に付与する回転駆動力を徐々に減少させる。  [0259] For example, when releasing the rotational driving force applied to the wheel 2, the CPU 71 determines the release speed (that is, the rate of change of the rotational driving force with respect to the elapsed time) from the drive release table 72b shown in FIG. ), And the wheel driving device 3 is controlled based on the read release speed, thereby gradually reducing the rotational driving force applied to the wheel 2.
[0260] このように、車輪 2に既に付与されている回転駆動力を解除する場合には、かかる 回転駆動力を一気に解除するのではなぐ徐々に減少させることで、車輪 2に作用す る慣性力の影響を低減して、路面に対する追従特性を向上させることができる。これ により、車輪 2と路面との同期を安定させると共に早めることができ、その結果、車両 3 001の対地速度の測定を高効率かつ高精度に行うことができる。  [0260] As described above, when the rotational driving force already applied to the wheel 2 is released, the inertial force acting on the wheel 2 is reduced by gradually reducing the rotational driving force rather than releasing it at once. It is possible to reduce the influence of force and improve the follow-up characteristics with respect to the road surface. As a result, the synchronization between the wheel 2 and the road surface can be stabilized and accelerated, and as a result, the ground speed of the vehicle 3001 can be measured with high efficiency and high accuracy.
[0261] 一方、車輪 2への回転駆動力の付与を再開する場合には、 CPU71は、図 12 (b) に示す駆動復帰テーブル 72cから付与速度 (即ち、経過時間に対する回転駆動力 の変化率)を読み出し、その読み出した付与速度に基づいて、車輪駆動装置 3を制 御することで、車輪 2に付与する回転駆動力を徐々に増加させる。  [0261] On the other hand, when the application of the rotational driving force to the wheel 2 is resumed, the CPU 71 determines the applied speed (ie, the rate of change of the rotational driving force with respect to the elapsed time) from the drive return table 72c shown in Fig. 12 (b). ) And the wheel driving device 3 is controlled based on the read application speed, thereby gradually increasing the rotational driving force applied to the wheel 2.
[0262] このように、車輪 2への回転駆動力の付与を再開する場合には、かかる回転駆動力 を一気に付与するのではなぐ徐々に増加させることで、上述した場合と同様に、車 輪 2に作用する慣性力の影響を低減して、路面に対する追従特性を向上させること ができる。その結果、車両 3001の挙動の安定ィ匕を図ることができる。また、車輪駆動 装置 3に過大な回転駆動力を発揮させる必要がないので、駆動負担を抑制して、耐 久性の向上を図ることができると共に、車輪駆動装置 3の小型化を図ることもできる。 [0262] As described above, when resuming the application of the rotational driving force to the wheel 2, the rotational driving force is gradually increased rather than applied all at once, as in the case described above. Reduce the influence of inertial force acting on 2 and improve the following characteristics to the road surface Can do. As a result, the behavior of the vehicle 3001 can be stabilized. In addition, since it is not necessary for the wheel drive device 3 to exert an excessive rotational driving force, it is possible to suppress the driving load and improve durability, and to reduce the size of the wheel drive device 3. it can.
[0263] 図 10に戻って説明する。車輪駆動装置 3は、上述したように、各車輪 2 (図 9参照) を回転駆動するための装置であり、各車輪 2に回転駆動力を付与する 4個の FL〜R Rモータ 3FL〜3RRと、それら各モータ 3FL〜3RRを CPU71からの命令に基づ!/ヽ て駆動制御する駆動回路(図示せず)とを備えて 、る。  [0263] Returning to FIG. As described above, the wheel driving device 3 is a device for rotationally driving each wheel 2 (see FIG. 9), and includes four FL to RR motors 3FL to 3RR for applying a rotational driving force to each wheel 2. And a drive circuit (not shown) for driving and controlling each of the motors 3FL to 3RR based on a command from the CPU 71.
[0264] また、ァクチユエータ装置 4は、上述したように、各車輪 2を操舵駆動するための装 置であり、各車輪 2に操舵駆動力を付与する 4個の FL〜RRァクチユエータ 4FL〜4 RRと、それら各ァクチユエータ 4FL〜4RRを CPU71からの命令に基づ!/、て駆動制 御する駆動回路(図示せず)とを備えている。  Further, as described above, the actuator device 4 is a device for steering and driving each wheel 2, and the four FL to RR actuators 4FL to 4 RR for applying a steering driving force to each wheel 2 are provided. And a drive circuit (not shown) for controlling the drive of each of these actuators 4FL to 4RR based on a command from the CPU 71 !.
[0265] 舵角センサ装置 31は、各車輪 2の舵角を検出すると共に、その検出結果を CPU7 1に出力するための装置であり、各車輪 2の舵角をそれぞれ検出する 4個の FL〜RR 舵角センサ 31FL〜31RRと、それら各舵角センサ 31FL〜31RRの検出結果を処理 して CPU71に出力する処理回路(図示せず)とを備えて!/、る。  [0265] The rudder angle sensor device 31 is a device for detecting the rudder angle of each wheel 2 and outputting the detection result to the CPU 71. The four FLs for detecting the rudder angle of each wheel 2 respectively. ~ RR Rudder angle sensors 31FL ~ 31RR and a processing circuit (not shown) that processes the detection results of these rudder angle sensors 31FL ~ 31RR and outputs them to the CPU 71!
[0266] なお、本実施の形態では、各舵角センサ 31FL〜31RRが各伝達機構部 23にそれ ぞれ設けられ、その伝達機構部 23において回転運動が直線運動に変換される際の 回転数を検出する非接触式の回転角度センサとして構成されている。この回転数は 、タイロッド 22の変位量に比例するので、 CPU71は、舵角センサ装置 31から入力さ れた検出結果(回転数)に基づいて、各車輪 2の舵角を得ることができる。  [0266] In the present embodiment, each steering angle sensor 31FL to 31RR is provided in each transmission mechanism 23, and the rotational speed when the rotational motion is converted into linear motion in the transmission mechanism 23. It is comprised as a non-contact-type rotation angle sensor which detects this. Since this rotational speed is proportional to the amount of displacement of the tie rod 22, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result (rotational speed) input from the steering angle sensor device 31.
[0267] ここで、舵角センサ装置 31により検出される舵角とは、各車輪 2の中心線と車両 30 01 (車体フレーム BF)の基準線とがなす角度であり、車両 3001の進行方向とは無関 係に定まる角度である。  [0267] Here, the rudder angle detected by the rudder angle sensor device 31 is an angle formed by the center line of each wheel 2 and the reference line of the vehicle 30 01 (body frame BF), and the traveling direction of the vehicle 3001 Is an unrelated angle.
[0268] 車輪回転速度センサ装置 33は、各車輪 2の回転速度を検出すると共に、その検出 結果を CPU71に出力するための装置であり、各車輪 2の回転速度をそれぞれ検出 する 4個の FL〜RR回転速度センサ 33FL〜33RRと、それら各回転速度センサ 33F L〜33RRの検出結果を処理して CPU71に出力する処理回路(図示せず)とを備え ている。 [0269] なお、本実施の形態では、各回転センサ 33FL〜33RRが各車輪 2に設けられ、各 車輪 2の角速度を回転速度として検出する。即ち、各回転センサ 33FL〜33RRは、 各車輪 2に連動して回転する回転体と、その回転体の周方向に多数形成された歯の 有無を電磁的に検出するピックアップとを備えた電磁ピックアップ式のセンサとして構 成されている。 [0268] The wheel rotation speed sensor device 33 is a device for detecting the rotation speed of each wheel 2 and outputting the detection result to the CPU 71. The four FLs for detecting the rotation speed of each wheel 2 respectively. To RR rotational speed sensors 33FL to 33RR, and a processing circuit (not shown) for processing the detection results of the rotational speed sensors 33FL to 33RR and outputting them to the CPU 71. [0269] In the present embodiment, each rotation sensor 33FL to 33RR is provided in each wheel 2, and the angular velocity of each wheel 2 is detected as the rotation velocity. That is, each rotation sensor 33FL to 33RR is an electromagnetic pickup provided with a rotating body that rotates in conjunction with each wheel 2 and a pickup that electromagnetically detects the presence or absence of teeth formed in the circumferential direction of the rotating body. It is configured as a sensor of the type.
[0270] CPU71は、車輪回転速度センサ装置 33から入力された各車輪 2の回転速度と、 各車輪 2の外径とから、各車輪 2の周速度を得ることができる。また、本発明では、後 述するように、車輪 2の周速度に基づいて、車両 3001の対地速度が算出される。な お、車両 3001の対地速度の算出方法については、後述する。  The CPU 71 can obtain the peripheral speed of each wheel 2 from the rotational speed of each wheel 2 input from the wheel rotational speed sensor device 33 and the outer diameter of each wheel 2. In the present invention, the ground speed of the vehicle 3001 is calculated based on the peripheral speed of the wheel 2 as described later. A method for calculating the ground speed of the vehicle 3001 will be described later.
[0271] 図 10に示す他の入出力装置 35としては、例えば、ハンドル 51、ブレーキペダル 52 及びアクセルペダル 53 (V、ずれも図 9参照)の操作状態(回転角や踏み込み量、操 作速度など)を検出するための操作状態検出センサ装置(図示せず)が例示される。  [0271] As another input / output device 35 shown in FIG. 10, for example, the steering wheel 51, the brake pedal 52, and the accelerator pedal 53 (V, see also FIG. 9 for the operating state) (rotation angle, stepping amount, operating speed). For example, an operation state detection sensor device (not shown).
[0272] 例えば、アクセルペダル 53が操作された場合には、その操作状態量が操作状態検 出センサ装置により検出され、 CPU71に出力される。 CPU71は、車輪駆動装置 3を 駆動して、各車輪 2の回転速度を制御する。  [0272] For example, when the accelerator pedal 53 is operated, the operation state amount is detected by the operation state detection sensor device and output to the CPU 71. The CPU 71 drives the wheel drive device 3 to control the rotation speed of each wheel 2.
[0273] 次いで、図 13から図 15を参照して、制御装置 3100で実行される処理を説明する。  [0273] Next, processing executed by the control device 3100 will be described with reference to FIGS.
図 13は、回転制御処理を示すフローチャートである。この処理は、制御装置 3100の 電源が投入されている間、 CPU71によって繰り返し (例えば、 0. 2ms間隔で)実行さ れる処理であり、車輪 2の路面に対するすべり速度を目標すベり速度に近づけること で、車輪 2と路面との間の摩擦係数を増大させ、発進 ·制動性能や旋回性能の向上 を図る。  FIG. 13 is a flowchart showing the rotation control process. This process is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 ms) while the power of the control device 3100 is turned on, and the slip speed of the wheel 2 with respect to the road surface is brought close to the target slip speed. As a result, the coefficient of friction between the wheel 2 and the road surface is increased to improve the starting / braking performance and turning performance.
[0274] CPU71は、回転制御処理に関し、まず、車両 3001の対地速度を算出するべぐ 対地速度算出処理を実行する(S3001)。ここで、図 14を参照して、対地速度算出 処理について説明する。  [0274] Regarding the rotation control process, the CPU 71 first executes a ground speed calculation process for calculating the ground speed of the vehicle 3001 (S3001). Here, the ground speed calculation processing will be described with reference to FIG.
[0275] 図 14は、対地速度算出処理を示すフローチャートである。 CPU71は、この対地速 度算出処理 (S3001)に関し、まず、車両 3001が走行中である力否かを判断する(S 3011)。その結果、車両 3001が走行中でないと判断される場合には(S3011 :No) 、車両 3001が停車中(対地速度が 0)であり、対地速度を算出する必要がないので、 この対地速度算出処理を終了する。 FIG. 14 is a flowchart showing the ground speed calculation process. In relation to the ground speed calculation process (S3001), the CPU 71 first determines whether or not the vehicle 3001 is in power (S3011). As a result, when it is determined that the vehicle 3001 is not traveling (S3011: No), the vehicle 3001 is stopped (the ground speed is 0), and it is not necessary to calculate the ground speed. This ground speed calculation process is terminated.
[0276] 一方、 S3011の処理において、車両 3001が走行中であると判断される場合には( S3011 :Yes)、次いで、複数 (本実施の形態では 4輪)の車輪 2のうちで自由転動し ている車輪、即ち、車輪駆動装置 3から回転駆動力が付与されていない車輪 2が有 る力否かを判断する(S3012)。  [0276] On the other hand, if it is determined in step S3011 that the vehicle 3001 is traveling (S3011: Yes), then, among the plurality (four in this embodiment) of wheels 2, freewheeling is performed. It is determined whether or not there is a moving wheel, that is, a force with the wheel 2 to which no rotational driving force is applied from the wheel driving device 3 (S3012).
[0277] 即ち、本発明では、上述したように、車両 3001の走行中に、いずれかの車輪 2を自 由転動させることで、その車輪 2の周速度から車両 3001の対地速度を算出する。そ のため、 S3012の処理において、自由転動している車輪 2があると判断される場合( 例えば、左右の後輪 2RL, 2RRのみを駆動輪として走行し、左右の前輪 2FL, 2FR が自由転動して!/ヽる場合)〖こは(S3012: Yes)、この既に自由転動して ヽる車輪 2 ( 即ち、左右の前輪 2FL, 2FR)を利用して、車両 3001の対地速度を算出することが できる。  [0277] That is, in the present invention, as described above, the ground speed of the vehicle 3001 is calculated from the peripheral speed of the wheel 2 by freely rolling any of the wheels 2 while the vehicle 3001 is traveling. . Therefore, if it is determined in S3012 that there is a free-rolling wheel 2 (for example, only the left and right rear wheels 2RL and 2RR are driven as drive wheels, and the left and right front wheels 2FL and 2FR are free) When rolling! / Speaking) Soko (S3012: Yes), using the wheel 2 that has already been rolling freely (ie, the left and right front wheels 2FL, 2FR), the ground speed of the vehicle 3001 Can be calculated.
[0278] よって、この場合には(S3012 : Yes)、車輪 2を自由転動させるための処理である S 3013力も S3015の処理をスキップして、 S3016の処理へ移行する。  Therefore, in this case (S3012: Yes), the S 3013 force, which is a process for freely rolling the wheel 2, also skips the process of S3015 and proceeds to the process of S3016.
[0279] 一方、 S3012の処理において、全ての車輪 2が車輪駆動装置 3により回転駆動さ れており、自由転動している車輪 2はないと判断される場合には(S3012 :No)、まず 、各車輪 2の舵角を検出し (S3013)、次いで、その検出結果に基づいて、自由転動 させる車輪 2を決定する(S3014)。  [0279] On the other hand, in the processing of S3012, when it is determined that all the wheels 2 are rotationally driven by the wheel driving device 3 and there is no free-wheeling wheel 2 (S3012: No), First, the steering angle of each wheel 2 is detected (S3013), and then the wheel 2 to be freely rolled is determined based on the detection result (S3014).
[0280] 即ち、車両 3001が旋回中であると、各車輪 2がスリップ角を有する(路面に対して 滑動している)ため、本実施の形態では、車輪 2のスリップ角による影響を最小限に 抑制するべぐ S3013の処理の結果、舵角が付与されていない車輪 2があれば、こ の車輪 2を自由転動させる車輪に決定する(S3014)。一方、 S3013の処理の結果、 舵角が付与されていな車輪 2がない場合、即ち、全ての車輪 2が舵角を有している場 合には、付与されている舵角の絶対値が小さい車輪 2を自由転動させる車輪に決定 する(S3014)。  That is, when the vehicle 3001 is turning, each wheel 2 has a slip angle (sliding with respect to the road surface), so in this embodiment, the influence of the slip angle of the wheel 2 is minimized. If there is a wheel 2 to which no steering angle is given as a result of the processing of S3013, the wheel 2 is determined as a wheel that freely rolls (S3014). On the other hand, as a result of the processing of S3013, if there is no wheel 2 to which no steering angle is assigned, that is, if all wheels 2 have steering angles, the absolute value of the assigned steering angle is The small wheel 2 is determined as a wheel that freely rolls (S3014).
[0281] 例えば、車両 3001の旋回モード力 運転者によるハンドル 51の操作により、前輪 2 FL, 2FRのみに舵角を付与して旋回するモードであれば、これら前輪 2FL, 2FRよ りも後輪 2RL, 2RRの方がスリップ角による影響が少ないと判断し、後輪 2RL, 2RR を自由転動転させる車輪に決定する(S3014)。 [0281] For example, in the turning mode force of the vehicle 3001, if the driver turns the steering wheel 51 by turning the steering wheel 51, only the front wheels 2FL, 2FR are given a steering angle, the rear wheels are more than the front wheels 2FL, 2FR. 2RL and 2RR are judged to be less affected by slip angle, and rear wheels 2RL and 2RR Is determined as a wheel to be freely rolled (S3014).
[0282] また、車両 3001の旋回モード力 運転者によるハンドル 51の操作により、前後輪 2 FL〜2RRの全てに舵角を付与して旋回するモードであれば、これら前後輪 2FL〜2 RRの中で舵角の絶対値が小さい車輪を自由転動転させる車輪に決定する(S3014 )。これにより、車両 3001の対地速度をより高精度に算出することができる。  [0282] Further, in the turning mode force of the vehicle 3001, if the driver turns the steering wheel 51 to give a steering angle to all the front and rear wheels 2FL to 2RR, the front and rear wheels 2FL to 2RR Among them, a wheel having a small absolute value of the rudder angle is determined as a wheel to freely roll (S3014). Thereby, the ground speed of the vehicle 3001 can be calculated with higher accuracy.
[0283] なお、 S3014の処理では、自由転動させる車輪として決定される車輪 2を 2輪とし、 かつ、この 2輪は、左右の車輪 2 (左右の前輪 2FL, 2FR、又は、左右の後輪 2RL, 2 RR)とすることが好ましい。なお、全ての車輪 2に舵角が付与されている場合には、 舵角の絶対値が最も小さい車輪 2を含む左右の 2輪とすることが好ましい。  [0283] In the processing of S3014, the wheel 2 determined as the wheel to be freely rolled is assumed to be two wheels, and these two wheels are the left and right wheels 2 (the left and right front wheels 2FL, 2FR, or the left and right rear wheels). Wheels 2RL, 2RR) are preferable. When all the wheels 2 are provided with steering angles, it is preferable that the left and right wheels include the wheels 2 having the smallest absolute value of the steering angle.
[0284] 即ち、全ての車輪 2が車輪駆動装置 3により回転駆動されている場合に(S3012 :  That is, when all the wheels 2 are rotationally driven by the wheel driving device 3 (S3012:
No)、それら各車輪 2のうちの 1輪のみが自由転動される(即ち、回転駆動力が解除 される)と、車両 3001に作用する駆動力が全体として不均一となるため、バランスが 悪ィ匕し(車両 3001を回転させようとする回転モーメントが発生し)、車両 3001の挙動 の不安定ィ匕を招くところ、自由転動させる車輪を左右の 2輪とすることで、バランスを 確保して(車両 3001を回転させようとする回転モーメントの発生を抑制し)、車両 300 1の挙動を安定に保つことができる力 である。  No), if only one of the wheels 2 is freely rolled (ie, the rotational driving force is released), the driving force acting on the vehicle 3001 becomes uneven as a whole, and the balance is When the vehicle 3001 is rotated (a rotating moment is generated to cause the vehicle 3001 to rotate), the behavior of the vehicle 3001 becomes unstable. This is a force that can be secured (suppressing the generation of a rotational moment to rotate the vehicle 3001) and keep the behavior of the vehicle 3001 stable.
[0285] S3014の処理において、自由転動させる車輪を決定した後は、これら決定した車 輪 2を自由転動させるベぐ駆動解除及び復帰処理 (S3015)を実行し、車輪駆動装 置 3から付与されている回転駆動力を解除する。ここで、図 15を参照して、駆動解除 及び復帰処理にっ 、て説明する。  [0285] After the wheels to be freely rolled are determined in the processing of S3014, veg drive release and return processing (S3015) for freely rolling these determined wheels 2 is executed, and the wheel drive device 3 Release the applied rotational driving force. Here, the drive release and return processing will be described with reference to FIG.
[0286] 図 15は、駆動解除及び復帰処理を示すフローチャートである。なお、この駆動解除 及び復帰処理 (S3015)では、車輪 2に付与されている回転駆動力の解除と、車輪 2 への回転駆動力の付与の再開とが行われる。  FIG. 15 is a flowchart showing drive release and return processing. In this drive release and return processing (S3015), release of the rotational drive force applied to the wheel 2 and restart of application of the rotational drive force to the wheel 2 are performed.
[0287] CPU71は、駆動解除及び復帰処理 (S 3015)に関し、まず、駆動解除力否かを判 断する(S3021)。即ち、車輪 2に付与されている回転駆動力を解除するの力、或い は、車輪 2への回転駆動力の付与を再開するのかを判断する。  [0287] Regarding the drive release and return processing (S3015), the CPU 71 first determines whether or not the drive release force is present (S3021). That is, it is determined whether to release the rotational driving force applied to the wheel 2 or to restart the application of the rotational driving force to the wheel 2.
[0288] 今回は、 S3014の処理の後に実行される処理であり、この S3014の処理で決定さ れた車輪 2を自由転動させるベぐこの車輪 2に付与されている回転駆動力の付与を 解除するための処理であるので、駆動解除であると判断される (S3021: Yes)。 [0288] This time, the process is executed after the process of S3014, and the rotation driving force applied to the wheel 2 that freely rolls the wheel 2 determined in the process of S3014 is applied. Since this is a process for releasing, it is determined that the drive is released (S3021: Yes).
[0289] よって、この場合には(S3021 :Yes)、 S3022の処理へ移行して、まず、駆動解除 テーブル 72bから解除速度を読み出し、次いで、その読み出した解除速度で車輪 2 に付与されている回転駆動力が徐々に減少するように、車輪駆動装置 3を制御し (S 3022)、この駆動解除及び復帰処理を終了する。  [0289] Therefore, in this case (S3021: Yes), the process proceeds to S3022, and first, the release speed is read from the drive release table 72b, and then given to the wheel 2 at the read release speed. The wheel drive device 3 is controlled so that the rotational driving force gradually decreases (S 3022), and the drive release and return processing ends.
[0290] これにより、車輪 2への回転駆動力の付与が解除され、かかる車輪 2は、路面上を 滑動することなく転動(自由転動)する。なお、このように、回転駆動力を徐々に減少 させることで、上述した通り、自由転動となった車輪 2の路面に対する追従特性が向 上されるので、車輪 2と路面との同期を安定させると共に早めることができ、車両 300 1の対地速度の測定を高効率かつ高精度に行うことができる。  As a result, the application of the rotational driving force to the wheel 2 is released, and the wheel 2 rolls (free rolling) without sliding on the road surface. In addition, by gradually reducing the rotational driving force in this way, as described above, the follow-up characteristics of the free-wheeling wheel 2 with respect to the road surface are improved, so that the synchronization between the wheel 2 and the road surface is stabilized. And the ground speed of the vehicle 3001 can be measured with high efficiency and high accuracy.
[0291] 図 14に戻って説明する。駆動解除及び復帰処理 (S3015)により車輪 2を自由転 動させた後、或いは、既に自由転動する車輪 2が有った場合 (S3012 : Yes)には、ま ず、その自由転動する車輪 2の回転速度を検出し (S3016)、次いで、検出した車輪 2の回転速度に基づいて、車両 3001の対地速度を算出する(S3017)。  [0291] Returning to FIG. After free-rolling wheel 2 by drive release and return processing (S3015), or when there is already free-rolling wheel 2 (S3012: Yes), first, the free-rolling wheel 2 is detected (S3016), and then the ground speed of the vehicle 3001 is calculated based on the detected rotational speed of the wheel 2 (S3017).
[0292] 具体的には、車輪 2の回転速度を車輪回転速度センサ装置 33により検出し (S301  [0292] Specifically, the rotational speed of the wheel 2 is detected by the wheel rotational speed sensor device 33 (S301).
6)、その検出された車輪 2の回転速度と、 ROM72に予め記憶される車輪 2の外径と から、車輪 2の周速度、即ち、車両 3001の対地速度を算出する(S3017)。  6) From the detected rotational speed of the wheel 2 and the outer diameter of the wheel 2 stored in advance in the ROM 72, the peripheral speed of the wheel 2, that is, the ground speed of the vehicle 3001 is calculated (S3017).
[0293] なお、自由転動車輪が 2輪ある場合には、それら 2輪の周速度 (例えば、平均値)に 基づいて、車両 3001の対地速度を算出することが好ましい。また、自由転動される 車輪 2が舵角を有する場合には、スリップ角を推定すると共に、そのスリップ角に基づ いて車輪 2の周速度を補正して、車両 3001の対地速度を算出することが好ましい。  [0293] When there are two free rolling wheels, it is preferable to calculate the ground speed of the vehicle 3001 based on the peripheral speed (for example, an average value) of the two wheels. If the freely rolling wheel 2 has a steering angle, the slip angle is estimated and the peripheral speed of the wheel 2 is corrected based on the slip angle to calculate the ground speed of the vehicle 3001. It is preferable.
[0294] S3017の処理により、車両 3001の対地速度を算出した後は、自由転動させるため に回転駆動力の付与が解除された車輪 2に対し、回転駆動力の付与を再開するべく 、駆動解除及び復帰処理 (S3018)を実行し、この対地速度算出処理 (S3001)を終 了する。  [0294] After the ground speed of the vehicle 3001 is calculated by the processing of S3017, the vehicle 2 is driven to resume the application of the rotational driving force to the wheel 2 for which the rotational driving force is released for free rolling. The release and return processing (S3018) is executed, and the ground speed calculation processing (S3001) is terminated.
[0295] 図 15を参照して、説明する。 CPU71は、駆動解除及び復帰処理 (S 3018)に関し 、まず、駆動解除力否かを判断する(S3021)。今回は、 S3017の処理の後に実行さ れる処理であり、自由転動させるベく回転駆動力の付与が解除された車輪 2に対し、 回転駆動力の付与を再開する処理であるので、駆動解除ではないと判断される (S3 021 :No)。 [0295] This will be described with reference to FIG. Regarding the drive release and return processing (S 3018), the CPU 71 first determines whether or not the drive release force is present (S 3021). This time, it is a process executed after the process of S3017, and for the wheel 2 for which the free rotational driving force for free rolling is released, Since this is a process for restarting the application of the rotational driving force, it is determined that the driving is not released (S3 021: No).
[0296] よって、この場合には(S3021 :No)、 S3023の処理へ移行して、まず、駆動復帰 テーブル 72cから復帰速度を読み出し、次いで、その読み出した復帰速度で車輪 2 に付与される回転駆動力が徐々に増加するように、車輪駆動装置 3を制御し (S302 3)、この駆動解除及び復帰処理を終了する。  [0296] Therefore, in this case (S3021: No), the process proceeds to S3023. First, the return speed is read from the drive return table 72c, and then the rotation applied to the wheel 2 at the read return speed. The wheel drive device 3 is controlled so that the driving force gradually increases (S302 3), and this drive release and return processing is terminated.
[0297] なお、 S3015の処理により回転駆動力の解除が行われていない場合 (即ち、 S301 2 : Yesの場合)には、回転駆動力の付与を再開する処理を実行する必要はないので 、 S3023の処理をスキップして、この駆動解除及び復帰処理を終了する。  [0297] If the rotational driving force is not released by the processing of S3015 (that is, S3012: Yes), it is not necessary to execute the processing for resuming the application of the rotational driving force. The process of S3023 is skipped, and this drive release and return process ends.
[0298] S3023の処理により、車輪 2への回転駆動力の付与が再開され、かかる車輪 2は、 駆動輪として機能する。なお、このように、回転駆動力を徐々に増加させることで、上 述した通り、車両 3001の挙動の安定ィ匕を図ることができ、また、車輪駆動装置 3の駆 動負担を抑制して、耐久性の向上を図ることができると共に、車輪駆動装置 3の小型 ィ匕を図ることちでさる。  [0298] By the processing of S3023, the application of the rotational driving force to the wheel 2 is resumed, and the wheel 2 functions as a driving wheel. In this way, by gradually increasing the rotational driving force, as described above, the behavior of the vehicle 3001 can be stabilized, and the driving load of the wheel driving device 3 can be suppressed. Thus, the durability can be improved and the wheel drive device 3 can be reduced in size.
[0299] 図 13に戻って説明する。対地速度算出処理 (S3001)を実行し、車両 3001の対 地速度を算出した後は、次いで、その算出した車両 3001の対地速度に基づいて、 車輪 2のすベり速度を算出する(S3002)。  [0299] Returning to FIG. After executing the ground speed calculation process (S3001) and calculating the ground speed of the vehicle 3001, the sliding speed of the wheel 2 is then calculated based on the calculated ground speed of the vehicle 3001 (S3002). .
[0300] 具体的には、上述したように、車輪回転速度センサ装置 33により検出された車輪 2 の回転速度と ROM72に予め記憶される車輪 2の外径とから車輪 2の周速度を得るこ とができるので、その周速度と車両 3001の対地速度との差を取ることで、車輪 2のす ベり速度を算出することができる。  Specifically, as described above, the peripheral speed of the wheel 2 can be obtained from the rotational speed of the wheel 2 detected by the wheel rotational speed sensor device 33 and the outer diameter of the wheel 2 stored in the ROM 72 in advance. Therefore, by calculating the difference between the peripheral speed and the ground speed of the vehicle 3001, the sliding speed of the wheel 2 can be calculated.
[0301] 次 、で、すべり速度テーブル 72aから目標すべり速度を読み出し (S3003)、ァクセ ルペダル 53の操作状態を検出した後(S3004)、駆動輪とされている車輪 2のすベり 速度が目標すベり速度となるように、車輪駆動装置 3を制御して(S3005)、この回転 制御処理を終了する。  [0301] Next, after reading the target slip speed from the slip speed table 72a (S3003) and detecting the operation state of the accelerator pedal 53 (S3004), the slip speed of the wheel 2 that is the drive wheel is the target. The wheel drive device 3 is controlled so as to achieve the sliding speed (S3005), and this rotation control process is terminated.
[0302] これにより、車輪 2と路面との間の摩擦係数を増大させて、車両 3001の発進性能、 制動性能或いは旋回性能の向上を図ることができる。  [0302] Thus, the coefficient of friction between the wheel 2 and the road surface can be increased, and the start performance, braking performance, or turning performance of the vehicle 3001 can be improved.
[0303] なお、アクセルペダル 53の操作状態を検出した結果(S3004)、車両 3001の加速 が指示されている場合には、車輪 2の周速度が車両 3001の対地速度よりも大きくな るように、車輪駆動装置 3が制御される(S3005)。これにより、車両 3001の加速が指 示されているにも関わらず、車両 3001が減速されてしまうことを回避しつつ、路面と 車輪 2との間の摩擦係数を増大させることができる。 [0303] As a result of detecting the operating state of accelerator pedal 53 (S3004), acceleration of vehicle 3001 Is instructed, the wheel drive device 3 is controlled so that the peripheral speed of the wheel 2 is larger than the ground speed of the vehicle 3001 (S3005). Thus, it is possible to increase the coefficient of friction between the road surface and the wheel 2 while avoiding that the vehicle 3001 is decelerated even though the acceleration of the vehicle 3001 is instructed.
[0304] 一方、アクセルペダル 53の操作状態を検出した結果(S3004)、車両 3001の減速 が指示されている場合には、車輪 2の周速度が車両 3001の対地速度よりも小さくな るように、車輪駆動装置 3が制御される(S3005)。これにより、車両 3001の減速が指 示されているにも関わらず、車両 3001が加速されてしまうことを回避しつつ、路面と 車輪 2との間の摩擦係数を増大させることができる。  [0304] On the other hand, as a result of detecting the operation state of accelerator pedal 53 (S3004), when the deceleration of vehicle 3001 is instructed, the peripheral speed of wheel 2 is made smaller than the ground speed of vehicle 3001. The wheel drive device 3 is controlled (S3005). Thus, it is possible to increase the coefficient of friction between the road surface and the wheel 2 while avoiding the vehicle 3001 being accelerated despite the fact that the vehicle 3001 has been decelerated.
[0305] なお、図 14に示すフローチャート (対地速度算出処理)において、請求項 8記載の 周速度算出手段としては S3016の処理力 対地速度算出手段としては S3017の処 理カ 請求項 10記載の解除車輪選択手段としては S3014の処理力 図 15に示すフ ローチャート (駆動解除及び復帰処理)において、請求項 9記載の回転駆動力解除 手段としては S3022の処理力 それぞれ該当する。  In the flowchart shown in FIG. 14 (ground speed calculation process), the processing speed of S3016 is used as the circumferential speed calculation means according to claim 8. The processing power of S3017 is canceled as the ground speed calculation means. As wheel selection means, the processing power of S3014 In the flow chart (drive release and return processing) shown in FIG. 15, the rotational driving force release means according to claim 9 corresponds to the processing power of S3022, respectively.
[0306] 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら 限定されるものではなぐ本発明の趣旨を逸脱しない範囲内で種々の改良変形が可 能であることは容易に推察できるものである。 [0306] While the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. Something can be easily guessed.
[0307] 例えば、上記第 3実施の形態で挙げた数値は一例であり、他の数値を採用すること は当然可能である。 [0307] For example, the numerical values given in the third embodiment are merely examples, and other numerical values can naturally be adopted.
[0308] また、上記第 3実施の形態では、車両 3001の走行状態に関わらず、即ち、車両 30 01が定速走行中であっても加減速中であっても、車輪 2のすベり速度を目標すベり 速度に近づける回転制御を実行する場合を説明したが、必ずしもこれに限られるもの ではなぐ所定の条件を満たしている場合のみ、回転制御が実行されるように構成し ても良い。なお、所定の条件を満たしている場合としては、例えば、車両 3001の加 速度又は減速度が所定値以上となった場合や、車両 3001が旋回中である場合が例 示される。  [0308] Further, in the third embodiment, the slip of the wheel 2 occurs regardless of the traveling state of the vehicle 3001, that is, whether the vehicle 3001 is traveling at a constant speed or accelerating / decelerating. Although the case where the rotation control that approximates the speed to the speed is executed has been described, the rotation control may be executed only when a predetermined condition that is not necessarily limited to this is satisfied. good. Examples of the case where the predetermined condition is satisfied include a case where the acceleration or deceleration of the vehicle 3001 exceeds a predetermined value or a case where the vehicle 3001 is turning.
[0309] また、上記第 3実施の形態では、車両 3001の走行状態に関わらず、即ち、車両 30 01が直進中であっても旋回中であっても、車両 3001の対地速度を算出するように構 成したが、必ずしもこれに限られるものではなぐ例えば、車両 3001が直進中である 場合のみ対地速度を算出するように構成することは当然可能である。車両 3001が直 進中であるか否かは、上述したように、車輪 2の舵角に基づいて判断しても良ぐ或い は、加速度センサ装置 (例えば、圧電素子を利用した圧電型センサ)を利用しても良 い。 [0309] In the third embodiment, the ground speed of the vehicle 3001 is calculated regardless of the traveling state of the vehicle 3001, that is, whether the vehicle 3001 is traveling straight or turning. Ni However, the present invention is not limited to this. For example, it is naturally possible to calculate the ground speed only when the vehicle 3001 is traveling straight ahead. Whether the vehicle 3001 is traveling straight may be determined based on the steering angle of the wheel 2 as described above, or an acceleration sensor device (for example, a piezoelectric sensor using a piezoelectric element). ) May be used.
[0310] また、上記第 3実施の形態では、車両 3001の対地速度を算出するために自由転 動させる車輪 2としては左右の 2輪とすることが好ましいと説明したが、自由転動させ る車輪 2の数は必ずしもこれに限られるものではなぐ例えば、 1輪のみを、或いは、 3 輪以上を自由転動させることは当然可能である。同様に、自由転動させる車輪 2が左 右の 2輪である必要は必ずしもなぐ例えば、前後の 2輪であっても良い。  [0310] Further, in the third embodiment, it has been described that it is preferable to use two wheels on the left and right as the wheels 2 to be freely rolled in order to calculate the ground speed of the vehicle 3001, but the wheels are freely rolled. The number of wheels 2 is not necessarily limited to this. For example, it is naturally possible to freely roll only one wheel or three or more wheels. Similarly, the wheels 2 to be freely rolled are not necessarily left and right wheels. For example, the front and rear wheels may be two.
[0311] また、上記第 3実施の形態では、各車輪 2の外径が固定値データとして ROM72内 に予め記憶されている場合を説明した力 カゝかる固定値データを EEPROMなどの 書き替え可能な不揮発性のメモリに記憶させると共に、その固定値データの値を運 転者等が任意に変更可能に構成しても良 ヽ。  [0311] Further, in the third embodiment, it is possible to rewrite the fixed value data, such as EEPROM, which is hard to explain the case where the outer diameter of each wheel 2 is stored in advance in the ROM 72 as fixed value data. It may be configured so that it can be stored in a non-volatile memory and the value of the fixed value data can be arbitrarily changed by the driver.
[0312] 或いは、車輪 2の累積回転回数 (即ち、摩耗度合い)に応じて固定値データの値を 補正する (即ち、摩耗分だけ外径を小さくする)補正手段を設けても良い。これらの構 成により、車輪 2が変更 (いわゆるインチアップ)された場合や車輪 2のトレッドが摩耗 した場合などでも、車輪 2の周速度 (即ち、車両 3001の対地速度)をより高精度に算 出することができる。  [0312] Alternatively, correction means for correcting the value of the fixed value data (that is, reducing the outer diameter by the amount of wear) according to the cumulative number of rotations of the wheel 2 (that is, the degree of wear) may be provided. With these configurations, even if the wheel 2 is changed (so-called inch up) or the tread of the wheel 2 is worn, the peripheral speed of the wheel 2 (that is, the ground speed of the vehicle 3001) is calculated with higher accuracy. can do.
[0313] また、上記第 3実施の形態では、すべり速度テーブル 72aに 1種類の目標すべり速 度のみが記憶される場合を説明したが、必ずしもこれに限られるものではなぐ複数 種類の目標すベり速度を記憶させておき、車輪 2のすベり速度を制御する際には、 S 3003の処理で読み出す目標すべり速度を適宜変更するように構成しても良 ヽ。これ により、車輪 2と路面との間の摩擦係数をより高効率に増大させ、発進性能等のより 一層の向上を図ることができる。  [0313] In the third embodiment, the case where only one type of target slip speed is stored in the slip speed table 72a has been described. However, the present invention is not necessarily limited to this. It is possible to store the slip speed and control the slip speed of the wheel 2 so that the target slip speed read in the processing of S 3003 is appropriately changed. As a result, the coefficient of friction between the wheel 2 and the road surface can be increased more efficiently, and the starting performance and the like can be further improved.
[0314] 例えば、路面又は車輪 (タイヤ) 2の温度別に複数種類の目標すべり速度をすベり 速度テーブル 72aに記憶させておき、車両 3001の走行中に路面又は車輪 2の表面 温度を測定しつつ、その表面温度に対応する目標すベり速度を読み出して、車輪 2 のすベり速度を制御するように構成しても良い。表面温度は、外気温から推定しても 良ぐ或いは、非接触の温度センサ(赤外線センサなど)により計測しても良い。 [0314] For example, a plurality of types of target slip speeds are stored in the slip speed table 72a according to the temperature of the road surface or wheels (tires) 2, and the surface temperature of the road surface or wheels 2 is measured while the vehicle 3001 is traveling. While reading the target slip speed corresponding to the surface temperature, The sliding speed may be controlled. The surface temperature may be estimated from the outside air temperature, or may be measured by a non-contact temperature sensor (such as an infrared sensor).
[0315] また、降雨の有無や降雨量別に複数種類の目標すべり速度をすベり速度テーブル 72aに記憶させておき、車両 3001の走行中に降雨量を測定しつつ、その降雨の有 無や降雨量に対応する目標すベり速度を読み出して、車輪 2のすベり速度を制御す るように構成しても良い。降雨量は、公知の雨量センサにより計測することができる。  [0315] Also, multiple types of target slip speeds are stored in the slip speed table 72a according to the presence / absence of rainfall and the amount of rainfall, while measuring the amount of rainfall while the vehicle 3001 is traveling, A configuration may be adopted in which the target slip speed corresponding to the rainfall is read and the slip speed of the wheel 2 is controlled. The rainfall amount can be measured by a known rainfall sensor.
[0316] また、路面の種類別 (例えば、アスファルトの物性別)に複数種類の目標すべり速度 をすベり速度テーブル 72aに記憶させておき、車両 3001の走行中に路面の種類を 監視しつつ、その路面の種類に対応する目標すベり速度を読み出して、車輪 2のす ベり速度を制御するように構成しても良 ヽ。  [0316] Also, a plurality of types of target slip speeds are stored in the slip speed table 72a for each type of road surface (for example, asphalt physical properties), and the type of road surface is monitored while the vehicle 3001 is traveling. It is also possible to read the target slip speed corresponding to the type of road surface and control the slip speed of wheel 2.
[0317] 路面の種類は、非接触の光センサ装置を用いて推定しても良ぐ或いは、ナビゲー シヨンシステムに予め路面の種類情報を位置情報に対応付けて記憶させておき、 GP Sから得られる車両 3001の位置情報を取得し、その位置情報に対応する路面の種 類情報をナビゲーシヨンシステム力も取得するように構成しても良 、。  [0317] The road surface type may be estimated using a non-contact optical sensor device, or the road surface type information is stored in advance in the navigation system in association with the position information. It is also possible to obtain the position information of the vehicle 3001 to be obtained, and obtain the road surface type information corresponding to the position information as well as the navigation system power.
[0318] また、車輪 (タイヤ) 2の種類別(例えば、タイヤのトレッドを構成するゴム素材の物性 別)に複数種類の目標すベり速度をすベり速度テーブル 72aに記憶させておき、車 両 3001に装着されている車輪 2に対応する目標すベり速度を読み出して、車輪 2の すべり速度を制御するように構成しても良い。車輪 2の種類は、運転者により入力可 能に構成することが好まし 、。  [0318] Further, a plurality of types of target slip speeds are stored in the slip speed table 72a for each type of wheel (tire) 2 (for example, for each physical property of the rubber material constituting the tread of the tire). The target slip speed corresponding to the wheel 2 mounted on the vehicle 3001 may be read and the slip speed of the wheel 2 may be controlled. The type of wheel 2 is preferably configured to be input by the driver.
[0319] また、上述した種々の目標すベり速度を、単独で、或いは、組み合わせて、使用し ても良い。  [0319] The various target slip speeds described above may be used alone or in combination.
[0320] また、上記第 3実施の形態では、駆動解除テーブル 72b及び駆動復帰テーブル 72 cに記憶される解除速度及び復帰速度 (即ち、図 12に示す直線の傾き)が一定値とさ れる場合を説明したが、必ずしもこれに限られるものではなぐ解除速度及び復帰速 度を変化させることは当然可能である。  [0320] In the third embodiment, the release speed and the return speed (that is, the slope of the straight line shown in Fig. 12) stored in the drive release table 72b and the drive return table 72c are set to constant values. Although described above, it is naturally possible to change the release speed and the return speed, which are not necessarily limited to this.
[0321] 例えば、車両 3001の加減速度に応じて変化させる場合や路面状態に応じて変化 させる場合などが例示される。具体的には、例えば、車両 3001の加減速度が大きい ほど、回転駆動力の解除等を行う際に車輪 2へ作用する慣性力の影響が大きいため 、解除速度等を遅く設定することで、慣性力の影響を低減させる。同様に、路面の摩 擦抵抗が大きいほど、回転駆動力の解除等を行う際に車輪 2へ作用する慣性力の影 響が大きいため、解除速度等を遅く設定することで、慣性力の影響を低減させる。 [0321] Examples include a case where the vehicle 3001 is changed according to the acceleration / deceleration and a case where the vehicle 3001 is changed according to the road surface condition. Specifically, for example, the greater the acceleration / deceleration of the vehicle 3001, the greater the influence of the inertial force acting on the wheel 2 when the rotational driving force is released. By setting the release speed or the like slower, the influence of inertial force is reduced. Similarly, the greater the frictional resistance of the road surface, the greater the influence of the inertial force that acts on the wheel 2 when the rotational driving force is released, etc. Reduce.
[0322] また、上記第 3実施の形態では、車両 3001が前後輪 2FL〜2RRの 4輪を備えて構 成される場合を説明したが、車輪 2の数は必ずしもこれに限られるものではなぐ例え ば、 3輪であっても良ぐ 5輪以上であっても良い。  [0322] In the third embodiment, the case where the vehicle 3001 is configured to include four front and rear wheels 2FL to 2RR has been described. However, the number of wheels 2 is not necessarily limited to this. For example, it may be 3 wheels or 5 wheels or more.
[0323] また、上記第 3実施の形態では、ァクチユエータ装置 4を電動モータで、伝達機構 部 23をねじ機構で、それぞれ構成する場合を説明したが、必ずしもこれに限られるも のではなぐ例えば、ァクチユエータ装置 4を油圧'空圧シリンダーで構成しても良い 。これにより、伝達機構部 23を省略することができるので、構造を簡素化して、軽量 ィ匕と部品コストの削減とを図ることができる。  In the third embodiment, the case where the actuator device 4 is configured by an electric motor and the transmission mechanism unit 23 is configured by a screw mechanism has been described. However, the present invention is not necessarily limited thereto. The actuator device 4 may be composed of a hydraulic 'pneumatic cylinder. As a result, the transmission mechanism portion 23 can be omitted, so that the structure can be simplified, and the weight reduction and the part cost can be reduced.
[0324] また、上記第 3実施の形態では、ブレーキ装置 (例えば、摩擦力を利用したドラムブ レーキやディスクブレーキ)が車両 3001に設けられていない場合を説明した力 かか るブレーキ装置を車両 3001に設けることは当然可能である。  [0324] In the third embodiment, the brake device that applies force is described in the case where the vehicle 3001 is not provided with a brake device (for example, a drum brake or a disc brake that uses frictional force). Of course, it is possible to provide it.
[0325] また、車輪駆動装置 3 (FL〜RRモータ 3FL〜3RR)をいわゆる回生ブレーキとして 構成しても良い。回生ブレーキを作動させることにより発生する電力は、車輪駆動装 置 3を駆動するためのバッテリー装置(図示せず)に充填するように構成しても良い。  [0325] The wheel drive device 3 (FL to RR motors 3FL to 3RR) may be configured as a so-called regenerative brake. The electric power generated by operating the regenerative brake may be configured to be charged in a battery device (not shown) for driving the wheel drive device 3.
[0326] 次いで、第 4実施の形態について説明する。図 16は、本発明の第 4実施の形態に おける制御装置 4100が搭載される車両 4001を模式的に示した模式図である。なお 、図 16の矢印 FWDは、車両 4001の前進方向を示す。また、図 16では、全車輪 2に 所定の舵角が付与された状態が図示されて!、る。  [0326] Next, a fourth embodiment will be described. FIG. 16 is a schematic diagram schematically showing a vehicle 4001 equipped with a control device 4100 according to the fourth embodiment of the present invention. Note that arrow FWD in FIG. 16 indicates the forward direction of vehicle 4001. FIG. 16 shows a state in which a predetermined rudder angle is given to all wheels 2!
[0327] まず、車両 4001の概略構成について説明する。車両 4001は、図 16に示すように 、車体フレーム BFと、その車体フレーム BFに支持される複数 (本実施の形態では 4 輪)の車輪 2と、それら各車輪 2を独立に回転駆動する車輪駆動装置 3と、各車輪 2を 独立に操舵駆動するァクチユエータ装置 4とを主に備えている。  First, a schematic configuration of the vehicle 4001 will be described. As shown in FIG. 16, the vehicle 4001 includes a vehicle body frame BF, a plurality of (four wheels in this embodiment) wheels 2 supported by the vehicle body frame BF, and wheels that rotate and drive these wheels 2 independently. A drive device 3 and an actuator device 4 for steering and driving each wheel 2 independently are mainly provided.
[0328] 第 4実施の形態における車両 4001は、複数の車輪 2の操舵状態を図 16に示す駐 車制動配置とすることで、駐車ブレーキをかけることができるように構成されて 、る。  [0328] The vehicle 4001 according to the fourth embodiment is configured so that a parking brake can be applied by setting the steering state of the plurality of wheels 2 to the parking braking arrangement shown in FIG.
[0329] 即ち、運転者が駐車ブレーキスィッチ 4033をオンすると、ァクチユエータ装置 4が 各車輪 2を操舵駆動して、これら複数の車輪 2の操舵状態を駐車制動配置に移行さ せる。これにより、各車輪 2の接地面を含む平面上の全方向に抵抗力が発生するの で、カゝかる抵抗力を駐車ブレーキとして利用して、車両 4001を停車位置カゝら動き出 さな 、ように固定することができる。 That is, when the driver turns on the parking brake switch 4033, the actuator device 4 is The wheels 2 are steered to shift the steering state of the plurality of wheels 2 to the parking brake arrangement. As a result, a resistance force is generated in all directions on the plane including the ground contact surface of each wheel 2. Therefore, the vehicle 4001 is not moved from the stop position by using the generated resistance force as a parking brake. Can be fixed, and so on.
[0330] 次いで、各部の詳細構成について説明する。車輪 2は、図 16に示すように、車両 4 001の進行方向前方側に位置する左右の前輪 2FL, 2FRと、進行方向後方側に位 置する左右の後輪 2RL, 2RRとの 4輪を備え、これら前後輪 2FL〜2RRは、ステアリ ング装置 20, 30により操舵可能に構成されている。  [0330] Next, a detailed configuration of each unit will be described. As shown in FIG. 16, the wheel 2 includes four wheels, left and right front wheels 2FL and 2FR positioned on the front side in the traveling direction of the vehicle 4001, and left and right rear wheels 2RL and 2RR positioned on the rear side in the traveling direction. These front and rear wheels 2FL to 2RR are configured to be steerable by steering devices 20 and 30.
[0331] ステアリング装置 20, 30は、各車輪 2を操舵するための操舵装置であり、図 16に示 すように、各車輪 2を揺動可能に支持するキングピン 21と、各車輪 2のナックルアーム (図示せず)に連結されるタイロッド 22と、そのタイロッド 22にァクチユエータ装置 4の 駆動力を伝達する伝達機構部 23とを主に備えて構成されている。  [0331] Steering devices 20, 30 are steering devices for steering each wheel 2. As shown in Fig. 16, the king pin 21 that supports each wheel 2 so as to be swingable and the knuckle of each wheel 2 are provided. A tie rod 22 connected to an arm (not shown) and a transmission mechanism 23 for transmitting the driving force of the actuator device 4 to the tie rod 22 are mainly provided.
[0332] ァクチユエータ装置 4は、上述したように、各車輪 2を独立に操舵駆動するための操 舵駆動装置であり、図 16に示すように、 4個のァクチユエータ(FL〜RRァクチユエ一 タ 4FL〜4RR)を備えて構成されている。運転者がハンドル 51を操作した場合には、 ァクチユエータ装置 4の一部(例えば、前輪 2FL, 2FRのみ)又は全部が駆動され、 ハンドル 51の操作量に応じた舵角が付与される。  [0332] As described above, the actuator device 4 is a steering drive device for steering and driving each wheel 2 independently. As shown in Fig. 16, the four actuators (FL to RR actuator unit 4FL) are provided. ~ 4RR). When the driver operates the handle 51, a part of the actuator device 4 (for example, only the front wheels 2FL, 2FR) or the whole is driven, and a steering angle corresponding to the amount of operation of the handle 51 is given.
[0333] また、運転者によるハンドル操作が行われて 、な 、場合であっても、例えば、駐車 ブレーキスィッチ 4033がオンされた場合には、各車輪 2に対応するァクチユエータ装 置 4 (FL〜RRァクチユエータ 4FL〜4RR)が駆動され、車輪 2の操舵状態が駐車制 動配置に移行される。  [0333] Further, even if the steering operation by the driver is performed, for example, when the parking brake switch 4033 is turned on, the actuator device 4 (FL ~ RR actuators 4FL to 4RR) are driven, and the steering state of wheel 2 is shifted to the parking control arrangement.
[0334] このように、ァクチユエータ装置 4による車輪 2の操舵駆動は、ハンドル 51の操作に 起因し、旋回を目的として行われる場合と、ハンドル 51の操作の有無に関わらず、車 輪 2の操舵状態を駐車制動配置とする (即ち、駐車ブレーキを力 4ナる)ことを目的とし て行われる場合との 2種類があり、本実施の形態では前者を旋回制御と称し、後者を 駐車制御と称す。なお、駐車制御の詳細については、後述する(図 18参照)。  [0334] As described above, the steering drive of the wheel 2 by the actuator device 4 is caused by the operation of the handle 51, and the steering of the wheel 2 is performed regardless of whether the handle 51 is operated or not. In this embodiment, the former is referred to as turning control and the latter is referred to as parking control. Call it. Details of parking control will be described later (see FIG. 18).
[0335] ここで、本実施の形態では、 FL〜RRァクチユエータ 4FL〜4RRが電動モータで構 成されると共に、伝達機構部 23がねじ機構で構成される。電動モータが回転されると 、その回転運動が伝達機構部 23により直線運動に変換され、タイロッド 22に伝達さ れる。その結果、各車輪 2がキングピン 21を揺動中心として揺動駆動され、各車輪 2 に所定の舵角が付与される。 [0335] Here, in the present embodiment, FL to RR actuators 4FL to 4RR are constituted by electric motors, and transmission mechanism portion 23 is constituted by a screw mechanism. When the electric motor is rotated The rotational motion is converted into a linear motion by the transmission mechanism 23 and transmitted to the tie rod 22. As a result, each wheel 2 is driven to swing around the king pin 21 as a swing center, and a predetermined steering angle is given to each wheel 2.
[0336] 車輪駆動装置 3は、各車輪 2を独立に回転駆動するための回転駆動装置であり、 図 16に示すように、 4個の電動モータ(FL〜RRモータ 3FL〜3RR)を各車輪 2ごと に(即ち、インホイールモータとして)配設して構成されている。運転者がアクセルぺ ダル 53を操作した場合には、各車輪駆動装置 3から回転駆動力が各車輪 2に付与さ れ、各車輪 2がアクセルペダル 53の操作量に応じた回転速度で回転される。  [0336] The wheel drive device 3 is a rotation drive device for independently rotating and driving each wheel 2. As shown in Fig. 16, four electric motors (FL to RR motors 3FL to 3RR) are connected to each wheel. Every two (ie, as in-wheel motors) are arranged. When the driver operates the accelerator pedal 53, a rotational driving force is applied to each wheel 2 from each wheel drive device 3, and each wheel 2 is rotated at a rotational speed corresponding to the operation amount of the accelerator pedal 53. The
[0337] 制御装置 4100は、上述のように構成された車両 4001の各部を制御するための制 御装置であり、例えば、アクセルペダル 53やブレーキペダル 53が操作された場合な どには、車輪駆動装置 3の駆動制御を行う一方、ハンドル 51や駐車ブレーキスィッチ 4033が操作された場合などには、ァクチユエータ装置 4の駆動制御 (旋回制御、駐 車制御)を行う。  [0337] The control device 4100 is a control device for controlling each part of the vehicle 4001 configured as described above. For example, when the accelerator pedal 53 or the brake pedal 53 is operated, a wheel is used. While driving control of the driving device 3 is performed, driving control (turning control, parking control) of the actuator device 4 is performed when the handle 51 or the parking brake switch 4033 is operated.
[0338] 次いで、図 17を参照して、制御装置 4100の詳細構成について説明する。図 17は 、制御装置 4100の電気的構成を示したブロック図である。  [0338] Next, the detailed configuration of the control device 4100 will be described with reference to FIG. FIG. 17 is a block diagram showing an electrical configuration of control device 4100.
[0339] 制御装置 4100は、図 17に示すように、 CPU71、 ROM72及び RAM73を備え、こ れらはバスライン 74を介して入出力ポート 75に接続されている。また、入出力ポート 75には、車輪駆動装置 3等の複数の装置が接続されている。  As shown in FIG. 17, the control device 4100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to the input / output port 75 via the bus line 74. In addition, a plurality of devices such as the wheel drive device 3 are connected to the input / output port 75.
[0340] CPU71は、バスライン 74により接続された各部を制御する演算装置である。 ROM 72は、 CPU71により実行される制御プログラム(例えば、図 18に図示される駐車制 御処理のフローチャート)や固定値データ等を格納した書き換え不能な不揮発性のメ モリであり、 RAM73は、制御プログラムの実行時に各種のワークデータやフラグ等を 書き換え可能に記憶するためのメモリである。  The CPU 71 is an arithmetic device that controls each unit connected by the bus line 74. The ROM 72 is a non-rewritable nonvolatile memory storing a control program executed by the CPU 71 (for example, the flowchart of the parking control process illustrated in FIG. 18) and fixed value data, and the RAM 73 is a control memory. This memory is used to store rewritable work data and flags when the program is executed.
[0341] ここで、 ROM72には、図 17に示すように、駐車制動配置テーブル 72aが設けられ ている。駐車制動配置テーブル 72aは、駐車制動配置時の各車輪 2の操舵状態 (舵 角)を記憶したテーブルである。 CPU71は、運転者により駐車ブレーキスィッチ 403 3がオンされると、駐車制動配置テーブル 72aの内容に基づいて、各車輪 2の操舵状 態を駐車制動配置に移行させる。 [0342] 一方、 RAM73には、図 17に示すように、停車時配置メモリ 73aと、ブレーキフラグ 73bとが設けられている。停車時配置メモリ 73aは、駐車制動配置に移行される前( 即ち、駐車ブレーキがかけられる前)の各車輪 2の操舵状態 (操舵角)を停車時配置 として記憶するためのメモリである。 CPU71は、運転者により駐車ブレーキスィッチ 4 033がオフされると、停車時配置メモリ 73aから停車時配置を読み出し、各車輪 2の 操舵状態を駐車制動配置力 停車時配置に復帰させる。 Here, the ROM 72 is provided with a parking brake arrangement table 72a as shown in FIG. The parking braking arrangement table 72a is a table that stores the steering state (steering angle) of each wheel 2 at the time of parking braking arrangement. When the parking brake switch 4033 is turned on by the driver, the CPU 71 shifts the steering state of each wheel 2 to the parking brake arrangement based on the contents of the parking brake arrangement table 72a. On the other hand, as shown in FIG. 17, the RAM 73 is provided with a stop-time placement memory 73a and a brake flag 73b. The stop-time arrangement memory 73a is a memory for storing the steering state (steering angle) of each wheel 2 before the shift to the parking brake arrangement (that is, before the parking brake is applied) as the stop-time arrangement. When the parking brake switch 4033 is turned off by the driver, the CPU 71 reads out the stop-time arrangement from the stop-time arrangement memory 73a, and returns the steering state of each wheel 2 to the parking brake arrangement force stop-time arrangement.
[0343] また、ブレーキフラグ 73bは、各車輪 2の操舵状態が駐車制動配置にある力否か( 即ち、駐車ブレーキがかけられているか否力)を示すためのフラグであり、各車輪 2の 操舵状態が駐車制動配置に移行された場合には「1」に設定され (図 18S4008参照 )、駐車制動配置が解除された場合 (即ち、停車時配置に移行された場合)には「0」 に設定される(図 18S4012参照)。  [0343] The brake flag 73b is a flag for indicating whether or not the steering state of each wheel 2 is in the parking braking arrangement (that is, whether or not the parking brake is applied). It is set to “1” when the steering state is shifted to the parking brake arrangement (see FIG. 18S4008), and “0” when the parking brake arrangement is released (that is, when the movement is stopped). (Refer to Figure 18S4012).
[0344] 車輪駆動装置 3は、上述したように、各車輪 2 (図 16参照)を回転駆動するための装 置であり、各車輪 2に回転駆動力を付与する 4個の FL〜: RRモータ 3FL〜3RRと、そ れら各モータ 3FL〜3RRを CPU71からの命令に基づいて駆動制御する駆動回路( 図示せず)とを備えている。  [0344] As described above, the wheel drive device 3 is a device for rotationally driving each wheel 2 (see Fig. 16), and the four FL ~: RR for applying rotational drive force to each wheel 2 are provided. Motors 3FL to 3RR and a drive circuit (not shown) for driving and controlling the motors 3FL to 3RR based on a command from the CPU 71 are provided.
[0345] また、ァクチユエータ装置 4は、上述したように、各車輪 2を操舵駆動するための装 置であり、各車輪 2に操舵駆動力を付与する 4個の FL〜RRァクチユエータ 4FL〜4 RRと、それら各ァクチユエータ 4FL〜4RRを CPU71からの命令に基づ!/、て駆動制 御する駆動回路(図示せず)とを備えている。  Further, as described above, the actuator device 4 is a device for steering and driving each wheel 2, and the four FL to RR actuators 4FL to 4 RR for applying a steering driving force to each wheel 2 are provided. And a drive circuit (not shown) for controlling the drive of each of these actuators 4FL to 4RR based on a command from the CPU 71 !.
[0346] 舵角センサ装置 31は、各車輪 2の舵角を検出すると共に、その検出結果を CPU7 1に出力するための装置であり、各車輪 2の舵角をそれぞれ検出する 4個の FL〜RR 舵角センサ 31FL〜31RRと、それら各舵角センサ 31FL〜31RRの検出結果を処理 して CPU71に出力する処理回路(図示せず)とを備えて!/、る。  [0346] The rudder angle sensor device 31 is a device for detecting the rudder angle of each wheel 2 and outputting the detection result to the CPU 71. The four FLs for detecting the rudder angle of each wheel 2 respectively. ~ RR Rudder angle sensors 31FL ~ 31RR and a processing circuit (not shown) that processes the detection results of these rudder angle sensors 31FL ~ 31RR and outputs them to the CPU 71!
[0347] なお、本実施の形態では、各舵角センサ 31FL〜31RRが各伝達機構部 23にそれ ぞれ設けられ、その伝達機構部 23において回転運動が直線運動に変換される際の 回転数を検出する非接触式の回転角度センサとして構成されている。この回転数は 、タイロッド 22の変位量に比例するので、 CPU71は、舵角センサ装置 31から入力さ れた検出結果(回転数)に基づいて、各車輪 2の舵角を得ることができる。 [0348] ここで、舵角センサ装置 31により検出される舵角とは、各車輪 2の中心線と車両 40 01 (車体フレーム BF)の基準線 (各線ともに図示せず)とがなす角度であり、車両 40 01の進行方向とは無関係に定まる角度である。 [0347] In the present embodiment, each steering angle sensor 31FL to 31RR is provided in each transmission mechanism 23, and the rotational speed when the rotational motion is converted into linear motion in the transmission mechanism 23. It is comprised as a non-contact-type rotation angle sensor which detects this. Since this rotational speed is proportional to the amount of displacement of the tie rod 22, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result (rotational speed) input from the steering angle sensor device 31. [0348] Here, the rudder angle detected by the rudder angle sensor device 31 is an angle formed by the center line of each wheel 2 and the reference line (both lines not shown) of the vehicle 40 01 (body frame BF). Yes, the angle is determined independently of the traveling direction of the vehicle 401.
[0349] 車両速度センサ装置 32は、路面に対する車両 4001の対地速度 (絶対値及び進行 方向)を検出すると共に、その検出結果を CPU71に出力するための装置であり、前 後及び左右方向加速度センサ 32a, 32bと、それら各加速度センサ 32a, 32bの検 出結果を処理して CPU71に出力する処理回路(図示せず)とを備えて!/、る。  [0349] The vehicle speed sensor device 32 is a device for detecting the ground speed (absolute value and traveling direction) of the vehicle 4001 with respect to the road surface, and outputting the detection result to the CPU 71. 32a, 32b and a processing circuit (not shown) for processing the detection results of the respective acceleration sensors 32a, 32b and outputting them to the CPU 71! /.
[0350] 前後方向加速度センサ 32aは、車両 4001 (車体フレーム BF)の前後方向(図 16上 下方向)の加速度を検出するセンサであり、左右方向加速度センサ 32bは、車両 40 01 (車体フレーム BF)の左右方向(図 16左右方向)の加速度を検出するセンサであ る。なお、本実施の形態では、これら各加速度センサ 32a, 32bが圧電素子を利用し た圧電型センサとして構成されて!ヽる。  [0350] The longitudinal acceleration sensor 32a is a sensor that detects the acceleration in the longitudinal direction (upward and downward in Fig. 16) of the vehicle 4001 (body frame BF), and the lateral acceleration sensor 32b is the vehicle 40 01 (body frame BF). ) In the left-right direction (Fig. 16 left-right direction). In the present embodiment, each of the acceleration sensors 32a and 32b is configured as a piezoelectric sensor using a piezoelectric element.
[0351] CPU71は、車両速度センサ装置 32から入力された各加速度センサ 32a, 32bの 検出結果 (加速度値)を時間積分して、 2方向(前後及び左右方向)の速度をそれぞ れ算出すると共に、それら 2方向成分を合成することで、車両 4001の対地速度 (絶 対値及び進行方向)を得ることができる。  [0351] The CPU 71 time-integrates the detection results (acceleration values) of the acceleration sensors 32a and 32b input from the vehicle speed sensor device 32, and calculates speeds in two directions (front and rear and left and right directions), respectively. At the same time, the ground speed (absolute value and traveling direction) of the vehicle 4001 can be obtained by synthesizing these two direction components.
[0352] 駐車ブレーキスィッチ 4033は、駐車制動配置への移行とその解除とを指示するた めのスィッチであり、 CPU71は、駐車ブレーキスィッチ 4033が運転者によりオンされ た場合に駐車制動配置への移行 (駐車ブレーキによる制動)が指示されたと判断す る一方、オフされた場合に駐車制動配置の解除が指示されたと判断する(図 18S40 02参照)。  [0352] The parking brake switch 4033 is a switch for instructing the transition to the parking brake arrangement and the release thereof, and the CPU 71 switches to the parking brake arrangement when the parking brake switch 4033 is turned on by the driver. While it is determined that the shift (braking by the parking brake) has been instructed, it is determined that the release of the parking brake arrangement has been instructed when the switch is turned off (see FIG. 18S402).
[0353] なお、駐車ブレーキスィッチ 4033は、オン及びオフの状態をそれぞれ維持可能な ロックタイプスィッチにより構成されている。例えば、運転者によってオフからオンの状 態へ切り替えられると、次にオフへ切り替えられるまで、オンの状態が維持され、入出 力ポート 75には、オンの入力状態が維持される。  [0353] Parking brake switch 4033 is configured by a lock-type switch that can maintain the on and off states. For example, when the driver switches from the off state to the on state, the on state is maintained until the next switching to the off state, and the input / output port 75 maintains the on state.
[0354] 図 17に示す他の入出力装置 35としては、例えば、ハンドル 51、ブレーキペダル 52 及びアクセルペダル 53 (V、ずれも図 16参照)の操作状態(回転角や踏み込み量、操 作速度など)を検出するための操作状態検出センサ装置(図示せず)が例示される。 [0355] 次いで、図 18を参照して、本発明の駐車制御について説明する。なお、駐車制御 とは、上述した通り、車両 4001が停車場所力も動き出さないように、車輪 2の操舵状 態を駐車制動配置とする (即ち、駐車ブレーキをかける)ことを目的として、車輪 2を操 舵駆動するための制御であり、車両 4001の旋回を目的とする上述した旋回制御と区 別される。 [0354] Other input / output devices 35 shown in FIG. 17 include, for example, the operating state (rotation angle, stepping amount, operating speed) of the handle 51, the brake pedal 52, and the accelerator pedal 53 (see FIG. 16 for V and displacement). For example, an operation state detection sensor device (not shown). [0355] Next, parking control according to the present invention will be described with reference to FIG. As described above, the parking control means that the vehicle 2 is placed in the parking braking arrangement (that is, the parking brake is applied) so that the vehicle 4001 does not move even when the vehicle is stopped. This control is for steering driving, and is distinguished from the turning control described above for the purpose of turning the vehicle 4001.
[0356] 図 18は、駐車制御処理を示すフローチャートである。この処理は、制御装置 4100 の電源が投入されている間、 CPU71によって繰り返し (例えば、 0. 5秒間隔で)実行 される処理である。  FIG. 18 is a flowchart showing the parking control process. This process is a process repeatedly executed by the CPU 71 (for example, at intervals of 0.5 seconds) while the control device 4100 is powered on.
[0357] CPU71は、駐車制御処理に関し、まず、車両 4001が停車中であるか否かを判断 する(S4001)。その結果、停車中ではないと判断される場合には(S4001 : No)、車 両 4001が走行状態にあり、各車輪 2の操舵状態を駐車制動配置に移行させる(即ち 、駐車ブレーキをかける)ことができないので、この駐車制御処理を終了する。  [0357] Regarding the parking control process, the CPU 71 first determines whether or not the vehicle 4001 is stopped (S4001). As a result, if it is determined that the vehicle is not stopped (S4001: No), the vehicle 4001 is in a running state and the steering state of each wheel 2 is shifted to the parking brake arrangement (ie, the parking brake is applied). Since this is not possible, the parking control process is terminated.
[0358] なお、車両 4001が停車中力否かは、上述した車両速度センサ装置 32 (図 17参照 )の検出結果 (対地速度)に基づき判断することができる。  [0358] Whether the vehicle 4001 is stationary or not can be determined based on the detection result (ground speed) of the vehicle speed sensor device 32 (see Fig. 17) described above.
[0359] 一方、 S4001の処理において、車両 4001が停車中であると判断される場合には( S4001 :Yes)、次いで、駐車ブレーキスィッチ 4033がオンされているか否かを判断 する(S4002)。なお、上述したように、駐車ブレーキスィッチ 4033のオンは、運転者 が駐車制動配置への移行 (即ち、駐車ブレーキをかけること)を指示して 、ると 、うこ とであり、駐車ブレーキスィッチ 4033のオフは、運転者が駐車制動配置の解除 (即ち 、駐車ブレーキの解除)を指示して!/、ると!/、うことである。  On the other hand, if it is determined in the process of S4001 that the vehicle 4001 is stopped (S4001: Yes), it is then determined whether the parking brake switch 4033 is turned on (S4002). As described above, the parking brake switch 4033 is turned on when the driver instructs to shift to the parking brake arrangement (that is, to apply the parking brake). When the driver is off, the driver gives an instruction to release the parking brake arrangement (that is, release the parking brake)! /, And! /.
[0360] S4002の処理にお!、て、駐車ブレーキスィッチ 4033がオンされて!、ると判断され る場合には(S4002 :Yes)、次いで、ブレーキフラグ 73bの値が「0」であるか否かを 判断する(S4003)。なお、上述したように、ブレーキフラグ 73bが「1」である場合に は、各車輪 2の操舵状態が駐車制動配置に移行されていることを意味し、「0」である 場合には、駐車制動配置が既に解除されている (即ち、停車時配置に復帰されてい る)ことを意味する。  [0360] If it is determined that the parking brake switch 4033 is turned on during the processing of S4002 (S4002: Yes), then the value of the brake flag 73b is "0"? It is determined whether or not (S4003). As described above, when the brake flag 73b is “1”, it means that the steering state of each wheel 2 is shifted to the parking brake arrangement, and when it is “0”, the parking flag 73b is parked. This means that the braking arrangement has already been released (that is, the braking arrangement has been restored).
[0361] 従って、 S4002及び S4003の処理において、駐車ブレーキスィッチ 4033がオンさ れ、かつ、ブレーキフラグ 73bが「0」ではない(即ち、「1」である)と判断される場合に は(S4002 :Yes、 S4003 : No)、運転者により駐車制動配置への移行(即ち、駐車 ブレーキをかけること)が指示されているが、その駐車制動配置への移行が既に完了 している(即ち、駐車ブレーキが既にかけられている)ということなので、この駐車制御 処理を終了する。 [0361] Therefore, in the processing of S4002 and S4003, when it is determined that the parking brake switch 4033 is turned on and the brake flag 73b is not "0" (that is, "1"). (S4002: Yes, S4003: No), the driver is instructed to shift to the parking brake arrangement (that is, to apply the parking brake), but the transition to the parking brake arrangement has already been completed ( That is, the parking brake is already applied), and the parking control process is terminated.
[0362] これに対し、 S4002及び S4003の処理において、駐車ブレーキスィッチ 4033がォ ンされ、かつ、ブレーキフラグ 73bが「0」であると判断される場合には(S4002 :Yes、 S4003 : Yes)、運転者により駐車制動配置への移行(即ち、駐車ブレーキをかけるこ と)が指示されている力 その駐車制動配置への移行が未だ完了していない (即ち、 駐車ブレーキが未だかけられていない)ということなので、駐車制動配置への移行を 行うベぐ S4004以降の処理を実行する。  [0362] On the other hand, when the parking brake switch 4033 is turned on and the brake flag 73b is determined to be "0" in the processing of S4002 and S4003 (S4002: Yes, S4003: Yes) The driver is instructed to shift to the parking brake arrangement (ie to apply the parking brake) The transition to the parking brake arrangement has not yet been completed (that is, the parking brake has not yet been applied) Therefore, execute the processing from S4004 onwards to shift to parking braking arrangement.
[0363] なお、この場合には(S4002 :Yes、 S4003 :Yes)、駐車制動配置への移行を行う 前に、まず、現在の各車輪 2の舵角を検出し (S4004)、その検出した現在の各車輪 2の舵角(操舵状態)を停車時配置として停車時配置メモリ 73aに記憶する(S4005)  [0363] In this case (S4002: Yes, S4003: Yes), the current steering angle of each wheel 2 is first detected (S4004) before the transition to the parking braking arrangement. The current steering angle (steering state) of each wheel 2 is stored in the stop-time placement memory 73a as the stop-time placement (S4005).
[0364] これにより、後述するように、駐車制動配置の解除 (即ち、駐車ブレーキの解除)が 運転者に指示された場合には、停車時配置メモリ 73aの内容に基づいて、駐車制動 配置へ移行する前の状態 (停車時配置)へ各車輪 2の操舵状態を復帰させることが できる(S4010及び S4011参照)。 [0364] Thus, as will be described later, when the driver is instructed to cancel the parking brake arrangement (that is, release the parking brake), the parking brake arrangement is changed based on the contents of the stop-time arrangement memory 73a. The steering state of each wheel 2 can be returned to the state before shifting (arranged when the vehicle is stopped) (see S4010 and S4011).
[0365] S4005の処理を実行した後は、次!、で、駐車制動配置テーブル 72aから駐車制動 配置 (即ち、各車輪 2の操舵状態)を読み出して、その読み出した内容に基づき、各 車輪 2の操舵状態 (舵角)を決定する(S4006)。そして、 S4006の処理において決 定した舵角を目標値として、ァクチユエータ装置 4を制御することで、各車輪 2の操舵 状態を駐車制動配置へ移行させる(S4007)。  [0365] After the processing of S4005 is executed, the parking brake arrangement (that is, the steering state of each wheel 2) is read from the parking brake arrangement table 72a in the next !, and each wheel 2 is read based on the read contents. The steering state (steering angle) is determined (S4006). Then, by controlling the actuator device 4 using the rudder angle determined in the processing of S4006 as a target value, the steering state of each wheel 2 is shifted to the parking brake arrangement (S4007).
[0366] ここで、本実施の形態における駐車制動配置は、図 16に示すように、前輪 2FL, 2 FRがトーアウト傾向となる一方、後輪 2RL, 2RRがトーイン傾向となるように設定され ている。なお、本実施の形態では、各車輪 2の舵角の絶対値が全て同じ角度 (例えば 、45度)とされている。  Here, as shown in FIG. 16, the parking braking arrangement in the present embodiment is set so that the front wheels 2FL, 2 FR tend to toe out, while the rear wheels 2RL, 2RR tend to toe in. Yes. In the present embodiment, the absolute values of the steering angles of the wheels 2 are all the same angle (for example, 45 degrees).
[0367] これにより、例えば、車両 4001に前後方向又は左右方向(図 16上下方向又は左 右方向)への外力が作用した場合には、左右の前輪 2FL, 2FRのトーアウト傾向と、 左右の後輪 2RL, 2RRのトーイン傾向とにより、これら各車輪 2が非自由転動状態と なることで、前記外力に対する抵抗力を発生させることができる。 [0367] Thus, for example, the vehicle 4001 has a front-rear direction or a left-right direction (FIG. When an external force is applied in the right direction), the left and right front wheels 2FL and 2FR tend to toe out, and the left and right rear wheels 2RL and 2RR have a toe-in tendency. Thus, a resistance force against the external force can be generated.
[0368] また、例えば、車両 4001に斜め方向(例えば、左側の前輪 2FLと右側の後輪 2RR とを結ぶ方向)への外力が作用した場合には、右側の前輪 2fRと左側の後輪 2RLと が非自由転動状態となることで、前記外力に対する抵抗力を発生させることができる [0368] For example, when an external force is applied to the vehicle 4001 in an oblique direction (for example, a direction connecting the left front wheel 2FL and the right rear wheel 2RR), the right front wheel 2fR and the left rear wheel 2RL When and are in a non-free rolling state, resistance to the external force can be generated.
[0369] このように、本発明によれば、各車輪 2の操舵状態を駐車制動配置とすることで、車 輪 2の接地面を含む平面上の全方向へ抵抗力を発生させることができるので、かかる 抵抗力をいわゆる駐車ブレーキとして利用して、車両 4001を停車位置に確実に固 定する(動き出さな 、ようにする)ことができる。 Thus, according to the present invention, by setting the steering state of each wheel 2 to the parking braking arrangement, it is possible to generate a resistance force in all directions on a plane including the ground contact surface of the wheel 2. Therefore, the resistance force can be used as a so-called parking brake to securely fix the vehicle 4001 at the stop position (do not start moving).
[0370] その結果、従来の駐車ブレーキでは、ワイヤーの伸びに起因して発生するブレーキ レバー等の遊びを定期的に調整する必要があつたのに対し、本発明では、かかる調 整作業を不要として、メンテナンス性の向上を図ることができる。  [0370] As a result, in the conventional parking brake, it is necessary to periodically adjust the play of the brake lever or the like caused by the elongation of the wire, whereas the present invention does not require such adjustment work. As a result, it is possible to improve maintainability.
[0371] また、従来の駐車ブレーキを油圧方式で構成した場合には、ブレーキ油圧の内部リ ークに起因して、車輪への制動力を長時間にわたって保持することができな力つたの に対し、本発明では、ァクチユエータ装置 4が機械式として構成されているので、駐 車制動配置の状態、即ち、駐車ブレーキをかけた状態を長時間にわたって安定して 保持することができる。 [0371] In addition, when the conventional parking brake is configured with a hydraulic system, the braking force applied to the wheels cannot be maintained for a long time due to the internal leak of the brake hydraulic pressure. In the present invention, since the actuator device 4 is configured as a mechanical type, the state of the parking brake arrangement, that is, the state where the parking brake is applied can be stably maintained for a long time.
[0372] また、従来の駐車ブレーキでは、坂道駐車でワイヤーが切れた場合など、故障時の 安全性を保っためのフェールセーフ機能を設けることが困難で信頼性に欠けるという 問題点があつたのに対し、本発明では、駐車ブレーキ (駐車制動配置)とは別に各車 輪 2にブレーキ装置 (例えば、ディスクブレーキやドラムブレーキなどの摩擦力を利用 するもの)を更に設けることもできるので、例えば、駐車制動配置を維持することがで きなくなった場合にはブレーキ装置が、ブレーキ装置が破損等した場合には駐車制 動配置が、それぞれ駐車ブレーキとして機能するので、フェールセーフ機能を確保し て、信頼性の向上を図ることができる。  [0372] In addition, the conventional parking brake has a problem that it is difficult to provide a fail-safe function to maintain safety at the time of failure, such as when the wire is cut in parking on a slope, and it is not reliable. On the other hand, in the present invention, a brake device (for example, one that uses frictional force such as a disc brake or a drum brake) can be further provided on each wheel 2 separately from the parking brake (parking braking arrangement). If the parking brake arrangement cannot be maintained, the brake device functions as a parking brake. If the brake device is damaged, the parking brake arrangement functions as a parking brake. Reliability can be improved.
[0373] 更に、本発明では、各車輪 2の操舵状態を駐車制動配置とすることで、上述した通 り、平面上のいずれの方向(全方向)へも抵抗力を発生させることができるので、車両[0373] Furthermore, in the present invention, the above-described communication is performed by setting the steering state of each wheel 2 to the parking brake arrangement. Since resistance can be generated in any direction (all directions) on the plane,
4001の盗難防止効果の向上を図ることもできる。 4001 anti-theft effect can be improved.
[0374] S4007の処理において、各車輪 2の操舵状態を駐車制動配置へ移行させた後は 、この駐車制動配置への移行が既に完了している(即ち、駐車ブレーキが既にかけら れている)ことを示すために、ブレーキフラグ 73bの値を「1」に設定して(S4008)、駐 車制御処理を終了する。  [0374] In the processing of S4007, after the steering state of each wheel 2 is shifted to the parking brake arrangement, the shift to the parking brake arrangement is already completed (that is, the parking brake is already applied). In order to indicate this, the value of the brake flag 73b is set to “1” (S4008), and the parking control process is terminated.
[0375] 一方、 S4002の処理にお!、て、駐車ブレーキスィッチ 4033がオンされて!、な!/ヽ( 即ち、オフである)と判断される場合には(S4002 : No)、次いで、ブレーキフラグ 73b の値が「 1」であるか否かを判断する(S4009)。  [0375] On the other hand, if it is determined that the parking brake switch 4033 is turned on !, and !! / な (that is, off) (S4002: No), It is determined whether or not the value of the brake flag 73b is “1” (S4009).
[0376] これら S4002及び S4009の処理において、駐車ブレーキスィッチ 4033がオフされ 、かつ、ブレーキフラグ 73bが「1」ではない(即ち、「0」である)と判断される場合には (S4002 :No、 S4009 : No)、運転者により駐車制動配置の解除(即ち、駐車ブレー キの解除)が指示されているが、その駐車制動配置の解除が既に完了している(即ち 、駐車ブレーキが既に解除されている)ということなので、この駐車制御処理を終了す る。  [0376] In the processing of S4002 and S4009, when it is determined that the parking brake switch 4033 is turned off and the brake flag 73b is not "1" (that is, "0") (S4002: No S4009: No), the driver has instructed to cancel the parking brake arrangement (that is, release the parking brake), but the release of the parking brake arrangement has already been completed (that is, the parking brake has already been released). This parking control process is terminated.
[0377] これに対し、 S4002及び S4009の処理において、駐車ブレーキスィッチ 4033がォ フされ、かつ、ブレーキフラグ 73bが「1」であると判断される場合には(S4002 :No、 S4009 : Yes)、運転者により駐車制動配置の解除(即ち、駐車ブレーキの解除)が 指示されているが、その駐車制動配置の解除が未だ完了していない(即ち、駐車ブ レーキが未だ解除されていない)ということなので、駐車制動配置の解除を行うベぐ S4010以降の処理を実行する。  [0377] On the other hand, when it is determined that the parking brake switch 4033 is turned off and the brake flag 73b is "1" in the processing of S4002 and S4009 (S4002: No, S4009: Yes) The driver is instructed to release the parking brake arrangement (that is, release the parking brake), but the parking brake arrangement has not yet been released (that is, the parking brake has not yet been released). Therefore, the processing after S4010 for canceling the parking braking arrangement is executed.
[0378] なお、この場合(S4002 :No、 S4009 :Yes)、駐車制動配置の解除は、まず、 S40 04及び S4005の処理で記憶した停車時配置 (各車輪 2の舵角)を停車時配置メモリ 73aから読み出し (S4010)、その読み出した舵角を目標値として、ァクチユエータ装 置 4を制御して、各車輪 2の操舵状態を停車時配置に復帰させることにより行われる ( S40l 。  [0378] In this case (S4002: No, S4009: Yes), the parking braking arrangement is canceled by first setting the stopping arrangement (the steering angle of each wheel 2) memorized in the processing of S4004 and S4005. The data is read from the memory 73a (S4010), and the actuator device 4 is controlled using the read steering angle as a target value to return the steering state of each wheel 2 to the stop-time arrangement (S40l).
[0379] これにより、運転者は、煩雑なハンドル操作を行うことなぐ駐車後の再発進をスム ーズに行うことができる。 [0380] 例えば、前後の車両との間隔が狭いスペースに縦列駐車するような場合には、車 輪 2に大きな舵角(例えば、すえぎり状態まで)を付与して車両 4001を駐車スペース へ入り込ませるため、再発進時にも同じだけの舵角を車輪 2に付与する必要がある。 [0379] Thus, the driver can smoothly perform the restart after parking without performing a complicated steering wheel operation. [0380] For example, when parallel parking is performed in a space where the distance between the front and rear vehicles is narrow, a large rudder angle (for example, up to a full state) is given to wheel 2 and vehicle 4001 enters the parking space. Therefore, it is necessary to give the same rudder angle to wheel 2 even when restarting.
[0381] そのため、駐車制動配置の解除時に、例えば、各車輪 2が直進状態に復帰されて しまうと、運転者は、駐車スペースカゝら抜け出る際に、ハンドル 51を再度大きく操作す る必要が生じてしまう。そこで、本発明のように、各車輪 2を停車時配置に復帰させる ことができれば、運転者に再度のハンドル操作を行わせることなぐ狭い駐車スぺー スからでも車両 4001をスムーズに再発進させることができる。  [0381] Therefore, when the parking braking arrangement is released, for example, if each wheel 2 is returned to the straight traveling state, the driver needs to largely operate the handle 51 again when exiting the parking space cover. It will occur. Therefore, if each wheel 2 can be returned to the stop position as in the present invention, the vehicle 4001 can be smoothly restarted even from a narrow parking space without allowing the driver to perform the steering operation again. Can do.
[0382] S4011の処理において、駐車制動状態を解除した後は、この駐車制動配置の解 除が既に完了している(即ち、駐車ブレーキが解除されている)ことを示すために、ブ レーキフラグ 73bの値を「0」に設定して(S4012)、駐車制御処理を終了する。  [0382] In the process of S4011, after the parking brake state is released, the brake flag 73b is used to indicate that the release of the parking brake arrangement has already been completed (ie, the parking brake is released). Is set to “0” (S4012), and the parking control process is terminated.
[0383] 次いで、図 19を参照して、第 5実施の形態について説明する。図 19は、第 5実施の 形態における駐車制御処理を示すフローチャートである。  [0383] Next, a fifth embodiment will be described with reference to FIG. FIG. 19 is a flowchart showing a parking control process in the fifth embodiment.
[0384] 第 4実施の形態では、車両 4001が停車してから、駐車制動配置への移行が開始さ れたが、第 5実施の形態では、車両 4001が走行中であっても、その対地速度が基準 速度値以下であれば、例えば、対地速度の減速と共に各車輪 2の操舵状態を徐々 に変化させ、車両 4001の停車時に駐車制動配置へ完全に移行させる。なお、上記 した第 4実施の形態と同一の部分には同一の符号を付して、その説明は省略する。  [0384] In the fourth embodiment, the transition to the parking brake arrangement is started after the vehicle 4001 stops. In the fifth embodiment, even if the vehicle 4001 is running, If the speed is equal to or lower than the reference speed value, for example, the steering state of each wheel 2 is gradually changed as the ground speed is reduced, and the vehicle 4001 is completely shifted to the parking brake arrangement when the vehicle 4001 stops. The same parts as those in the above-described fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0385] CPU71は、駐車制御処理に関し、まず、駐車ブレーキモードがオンであるか否か を判断する(S5021)。ここで、駐車ブレーキモードのオン'オフとは、各車輪 2の操舵 状態を駐車制動配置へ移行させる駐車制御を行うか否かを示すものであり、オン (ォ フ)であれば、駐車制御を行う(行わな!/ヽ)ことを意味する。  [0385] Regarding the parking control process, the CPU 71 first determines whether or not the parking brake mode is on (S5021). Here, on / off of the parking brake mode indicates whether or not to perform the parking control for shifting the steering state of each wheel 2 to the parking brake arrangement. If it is on (off), the parking control is performed. Means to do (don't do! / ヽ).
[0386] なお、本実施の形態では、駐車ブレーキモードのオン'オフが運転者により任意に 選択可能とされている。車両 4001には、駐車ブレーキモードのオン'オフを設定する ためのロックタイプスィッチ(図示せず)が設けられており、そのロックタイプスィッチを 運転者がオン'オフすると、その操作状態が CPU71により検出され、駐車ブレーキモ ードのオン'オフが判断される。  [0386] In the present embodiment, on / off of the parking brake mode can be arbitrarily selected by the driver. The vehicle 4001 is provided with a lock type switch (not shown) for setting the parking brake mode on / off. When the driver turns on / off the lock type switch, the operation state is changed by the CPU 71. It is detected and it is judged whether the parking brake mode is on or off.
[0387] S5021の処理において、駐車ブレーキモードがオンではない(即ち、オフである)と 判断される場合には(S5021 :NO)、駐車制御を行わないモードを運転者が選択し て!、ると!/、うことなので、この駐車制御処理を終了する。 [0387] In the processing of S5021, if the parking brake mode is not on (ie, off) If it is determined (S5021: NO), the driver selects a mode in which parking control is not performed!
[0388] 一方、 S5021の処理において、駐車ブレーキモードがオンであると判断される場合 には(S5021: Yes)、駐車制御を行うモードを運転者が選択しているということなので[0388] On the other hand, if it is determined in step S5021 that the parking brake mode is on (S5021: Yes), it means that the driver has selected the mode for parking control.
、駐車制御を行うベぐ S5022以降の処理を実行する。 The parking control is performed. The processing after S5022 is executed.
[0389] まず、車両 4001の対地速度を検出し (S5022)、その検出した対地速度が基準速 度 (本実施の形態では、時速 5km)以下である力否かを判断する(S5023)。その結 果、検出した対地速度が基準速度値よりも大きな値である場合には(S5023 : No)、 駐車制御を行うことができる速度まで車両 4001が減速されていないか、車両 4001 が基準速度値を越える速度まで既に加速されており、駐車制御を行う必要がないと いうことであるので、この駐車制御処理を終了する。 [0389] First, the ground speed of the vehicle 4001 is detected (S5022), and it is determined whether or not the detected ground speed is below a reference speed (5 km / h in this embodiment) (S5023). As a result, if the detected ground speed is larger than the reference speed value (S5023: No), vehicle 4001 has not been decelerated to a speed at which parking control can be performed, or vehicle 4001 has Since this means that the vehicle has already been accelerated to a speed exceeding the value and it is not necessary to perform parking control, this parking control process is terminated.
[0390] なお、車両 4001の対地速度は、上述したように、車両速度センサ装置 32 (図 17参 照)により検出することができる。また、基準速度値は、 ROM72内に固定値データと して予め記憶されている。 Note that the ground speed of the vehicle 4001 can be detected by the vehicle speed sensor device 32 (see FIG. 17) as described above. The reference speed value is stored in advance in ROM 72 as fixed value data.
[0391] 一方、 S5023の処理において、車両 4001の対地速度が基準速度以下であると判 断される場合には(S5023: Yes)、駐車制御を行うことができる速度まで車両 4001 が減速されたか、車両 4001が基準速度値を越える速度まで未だ達しておらず、駐 車制御を行う必要があると 、うことである。 [0391] On the other hand, if it is determined in S5023 that the ground speed of vehicle 4001 is below the reference speed (S5023: Yes), has vehicle 4001 been decelerated to a speed at which parking control can be performed? The vehicle 4001 has not yet reached a speed exceeding the reference speed value, and it is necessary to perform parking control.
[0392] よって、この場合には(S5023 :Yes)、まず、検出した対地速度に基づいて各車輪[0392] Therefore, in this case (S5023: Yes), first, each wheel is based on the detected ground speed.
2の舵角を決定し (S5024)、次いで、その決定された舵角を目標値として、ァクチュ エータ装置 4を制御することで、各車輪 2の操舵状態を変化させ (S5025)、この駐車 制御処理を終了する。 2 is determined (S5024), and then the steering device of each wheel 2 is changed by controlling the actuator device 4 using the determined steering angle as a target value (S5025). The process ends.
[0393] ここで、 S5024の処理では、車両 4001が減速状態にあれば、車両 4001の対地速 度の値が小さくなるに従って、各車輪 2の操舵状態 (舵角)を現在の操舵状態から駐 車制動配置に近づけると共に、対地速度が 0となった (即ち、車両 4001が停車した) 時点で各車輪 2の操舵状態が駐車制動配置に一致するように、各車輪 2の舵角が決 定される。  [0393] Here, in the processing of S5024, if the vehicle 4001 is in a deceleration state, the steering state (steering angle) of each wheel 2 is parked from the current steering state as the value of the ground speed of the vehicle 4001 decreases. The steering angle of each wheel 2 is determined so that the steering state of each wheel 2 coincides with the parking braking arrangement when the ground speed becomes 0 (that is, when the vehicle 4001 stops) while approaching the vehicle braking arrangement. Is done.
[0394] また、車両 4001が加速状態にあれば、車両 4001の対地速度の値が大きくなるに 従って、各車輪 2の操舵状態を現在の操舵状態からハンドル 51の操作状態に応じた 操舵位置に近づけると共に、対地速度が基準速度値に達した時点で各車輪 2の操 舵状態がハンドル 51の操作状態に応じた操舵位置に一致するように、各車輪 2の舵 角が決定される。 [0394] If the vehicle 4001 is in an accelerated state, the ground speed value of the vehicle 4001 increases. Therefore, the steering state of each wheel 2 is brought closer to the steering position corresponding to the operation state of the handle 51 from the current steering state, and the steering state of each wheel 2 is changed to the steering position of the handle 51 when the ground speed reaches the reference speed value. The steering angle of each wheel 2 is determined so as to coincide with the steering position according to the operation state.
[0395] これにより、例えば、車両 4001が下り坂で停車する場合には、各車輪 2の操舵状態 を、車両 4001の対地速度に応じて、徐々に駐車制動配置に近づけることができるの で、車両 4001の停車をスムーズに行うことができる。同時に、各車輪 2が停車制動配 置となることで(図 16参照)、停車平面上の全方向に抵抗力を発生させることができる ので、車両 4001を停車位置に安全に停車させることができる。  [0395] Thus, for example, when the vehicle 4001 stops on a downhill, the steering state of each wheel 2 can be gradually brought closer to the parking brake arrangement according to the ground speed of the vehicle 4001. The vehicle 4001 can be stopped smoothly. At the same time, since each wheel 2 is in a stop braking arrangement (see Fig. 16), resistance force can be generated in all directions on the stop plane, so that the vehicle 4001 can be safely stopped at the stop position. .
[0396] 更に、この場合には、運転者は、減速操作 (例えば、アクセルペダル 53を戻す操作 や、ブレーキペダル 52を踏み込む操作)を行うだけで、車両 4001を停車させ、かつ 、駐車ブレーキをかけるという 2動作を一度に行うことができる。即ち、車両 4001の停 車後にブレーキレバーを引き上げる等といった操作を別途行うことが不要となり、運 転者の操作負担の軽減を図ることができる。  [0396] Further, in this case, the driver simply stops the vehicle 4001 and applies the parking brake only by performing a deceleration operation (for example, an operation of returning the accelerator pedal 53 or an operation of depressing the brake pedal 52). You can do two actions at once. That is, it is not necessary to perform a separate operation such as lifting the brake lever after the vehicle 4001 stops, and the operation burden on the driver can be reduced.
[0397] 一方、例えば、車両 4001を上り坂で停車させた後に再度発進させる坂道発進では 、各車輪の操舵状態を、車両 4001の対地速度に応じて、ハンドル 51の操作状態に 応じた操舵位置 (例えば、ハンドル 51が直進を指示する操作状態にあれば、各車輪 2を直進状態)に近づけることができるので、坂道発進をスムーズに行うことができる。  [0397] On the other hand, for example, in a slope start where the vehicle 4001 is stopped on an uphill and then started again, the steering state of each wheel is determined according to the ground speed of the vehicle 4001 and the steering position according to the operation state of the handle 51. (For example, if the steering wheel 51 is in an operation state instructing straight travel, each wheel 2 can be moved straight), so that the hill can be started smoothly.
[0398] 即ち、従来品、特にマニュアル車においては、アクセルペダルとクラッチペダルとの 操作と連動して、駐車ブレーキの解除操作 (ブレーキレバーを戻す操作)を更に行う 必要があつたため、高度な操作技術が必要とされた。これに対し、本発明によれば、 そのような高度な操作技術が不要となるので、初心者であっても、坂道発進時を、ェ ンストや車両 4001の後方への後退、或いは、唐突な発進といった不具合を起こすこ となぐスムーズに行うことができる。  [0398] In other words, with conventional products, especially manual vehicles, it is necessary to further perform the parking brake release operation (operation to return the brake lever) in conjunction with the operation of the accelerator pedal and clutch pedal. Technology was needed. On the other hand, according to the present invention, since such an advanced operation technique is not required, even a beginner can start a slope on the back or back of the vehicle 4001 or suddenly start. This can be done smoothly without causing problems.
[0399] また、従来品では、ブレーキレバー等を戻さないまま走行すると、いわゆるブレーキ の弓 Iきずりが発生し、摩擦熱でブレーキ装置を破損してしまうと 、う問題点があった。 これに対し、本発明では、例えば、アクセルペダル 53を踏み込み、車両 4001の走行 を開始するだけで、駐車ブレーキを解除する(即ち、車輪 2を駐車制動配置力もハン ドル 51の操作状態に応じた操舵位置に近づかせる)ことができる。 [0399] In addition, the conventional product has a problem in that if the vehicle is driven without the brake lever or the like being returned, a so-called brake bow I is generated and the brake device is damaged by frictional heat. On the other hand, in the present invention, for example, the parking brake is released by simply depressing the accelerator pedal 53 and starting the vehicle 4001 (that is, the parking brake disposition force of the wheel 2 is also increased). The steering position according to the operating state of the dollar 51).
[0400] よって、運転者の操作負担を軽減すると同時に、ブレーキ装置の破損を未然に回 避することができる。更に、従来品で必要とされたブレーキレバー等が戻っていない ことを報知するための報知機構を車両 4001に装着することが不要となり、その分、製 品コストの軽減を図ることができる。  [0400] Therefore, it is possible to reduce the operation burden on the driver and to avoid breakage of the brake device. Furthermore, it is not necessary to attach a notification mechanism to the vehicle 4001 to notify that the brake lever or the like required for the conventional product has not returned, and the product cost can be reduced accordingly.
[0401] 次いで、図 20を参照して、第 6から第 8実施の形態について説明する。図 20 (a)か ら図 20 (c)は、それぞれ第 6から第 8実施の形態における駐車制動配置を説明する ための模式図であり、上述した図 16に対応する。  [0401] Next, sixth to eighth embodiments will be described with reference to FIG. FIGS. 20 (a) to 20 (c) are schematic diagrams for explaining the parking brake arrangements in the sixth to eighth embodiments, respectively, and correspond to FIG. 16 described above.
[0402] 第 6及び第 7実施の形態における駐車制動配置は、上述した第 4実施の形態にお ける駐車制動配置と同様の技術的思想に基づくものであり、図 20 (a)及び図 20 (b) に示すように、車両 4001の上下方向及び左右方向に隣接する車輪 2同士の中心線 方向が互いに直行するように設定されている。例えば、左側の前輪 2FLであれば、 車両 4001の上下方向に隣接する左側の後輪 2RLと、車両 4001の左右方向に隣接 する右側の前輪 2FRとに対して、その中心線方向が直行している。  [0402] The parking brake arrangements in the sixth and seventh embodiments are based on the same technical idea as the parking brake arrangement in the fourth embodiment described above. As shown in (b), the center line directions of the wheels 2 adjacent to each other in the vertical direction and the horizontal direction of the vehicle 4001 are set so as to be orthogonal to each other. For example, in the case of the left front wheel 2FL, the center line direction is perpendicular to the left rear wheel 2RL adjacent in the vertical direction of the vehicle 4001 and the right front wheel 2FR adjacent in the horizontal direction of the vehicle 4001. Yes.
[0403] 一方、第 8実施の形態における駐車制動配置は、図 20 (c)に示すように、車両 400 1の斜め方向に隣接する車輪 2同士の中心線方向が互いに直行するように設定され ている。例えば、左側の前輪 2FLであれば、車両 4001の斜め方向に隣接する右側 の後輪 2RRに対して、その中心線方向が直行している。  [0403] On the other hand, the parking brake arrangement in the eighth embodiment is set so that the center line directions of the wheels 2 adjacent to each other in the diagonal direction of the vehicle 4001 are orthogonal to each other, as shown in FIG. 20 (c). ing. For example, in the case of the left front wheel 2FL, the center line direction is perpendicular to the right rear wheel 2RR adjacent to the vehicle 4001 in the oblique direction.
[0404] これにより、各車輪 2の接地面を含む平面上のいずれの方向へ向けて車両 4001に 外力が作用した場合でも、各車輪 2の内の少なくとも 1の車輪 2が非自由転動状態と なるため、前記外力に対する抵抗力を発生させることができる。よって、かかる抵抗力 を駐車ブレーキとして利用することで、車両 4001が停車位置力も動き出さないように 確実に固定することができる。  [0404] Thus, even when an external force is applied to the vehicle 4001 in any direction on the plane including the ground contact surface of each wheel 2, at least one of the wheels 2 is in a non-free rolling state. Therefore, a resistance force against the external force can be generated. Therefore, by using this resistance force as a parking brake, the vehicle 4001 can be reliably fixed so that the stopping position force does not start to move.
[0405] なお、これら各駐車制動配置は、車両 4001に配設される車輪 2の数力 輪である 場合の最も好ましい形態を例示したものである。よって、車両 4001に配設される車輪 2の数に応じて、異なる配置を採用することは当然可能である。また、車両 4001に配 設される車輪 2の数が 4輪であつても、これらと異なる配置を採用することは当然可能 である。 [0406] 即ち、各車輪 2の接地面を含む平面上のいずれの方向へ向けて車両 4001に外力 が作用した場合でも、各車輪 2の内の少なくとも 1の車輪 2が非自由転動状態となつ て、前記外力に対する抵抗力を発生させることができる配置であれば足りる趣旨であ る。 [0405] Each of these parking braking arrangements is an example of the most preferable form in the case of a few power wheels of wheels 2 arranged in vehicle 4001. Therefore, it is naturally possible to adopt different arrangements depending on the number of wheels 2 arranged in the vehicle 4001. Further, even if the number of wheels 2 arranged on the vehicle 4001 is four, it is naturally possible to adopt an arrangement different from these. That is, even when an external force is applied to the vehicle 4001 in any direction on the plane including the ground contact surface of each wheel 2, at least one of the wheels 2 is in a non-free rolling state. That is, any arrangement that can generate a resistance force to the external force is sufficient.
[0407] 但し、駐車制動配置は、各車輪 2の舵角は問わな 、が、第 6及び第 7実施の形態に おける駐車制動配置のように、前輪 2FL, 2FRがトーイン傾向となり、かつ、後輪 2R L, 2RRがトーアウト傾向となる配置、又は、前輪 2FL, 2FRがトーアウト傾向となり、 かつ、後輪 2RL, 2RRがトーイン傾向となる配置とすることが好ましい。前記外力に 対する抵抗力をより確実に発生させることができるからである。  [0407] However, the parking brake arrangement does not matter the steering angle of each wheel 2, but the front wheels 2FL, 2FR tend to toe in like the parking brake arrangement in the sixth and seventh embodiments, and It is preferable that the rear wheels 2R L and 2RR have a toe-out tendency, or the front wheels 2FL and 2FR have a toe-out tendency and the rear wheels 2RL and 2RR have a toe-in tendency. This is because the resistance force against the external force can be generated more reliably.
[0408] 同様の理由により、駐車制動配置は、各車輪 2の舵角は問わないが、第 8実施の形 態における駐車制動配置のように、前輪 2FL, 2FRがトーイン傾向となり、かつ、後 輪 2RL, 2RRもトーイン傾向となる配置、又は、前輪 2FL, 2FRがトーアウト傾向とな り、かつ、後輪 2RL, 2RRもトーアウト傾向となる配置とすることが好ましい。  [0408] For the same reason, the parking braking arrangement does not matter the steering angle of each wheel 2, but the front wheels 2FL, 2FR tend to toe-in and the rear braking arrangement is similar to the parking braking arrangement in the eighth embodiment. It is preferable that the wheels 2RL and 2RR have a toe-in tendency, or the front wheels 2FL and 2FR have a toe-out tendency, and the rear wheels 2RL and 2RR also have a toe-out tendency.
[0409] 次いで、図 21から図 24を参照して、第 9実施の形態について説明する。図 21は、 第 9実施の形態における制御装置 9600の電気的構成を示したブロック図である。  [0409] Next, a ninth embodiment will be described with reference to FIGS. 21 to 24. FIG. FIG. 21 is a block diagram showing an electrical configuration of a control device 9600 according to the ninth embodiment.
[0410] 第 4及び第 5実施の形態では、路面の傾斜状態に関わらず、駐車制動配置への移 行を実行した。なお、上記した各実施の形態と同一の部分には同一の符号を付して 、その説明は省略する。  [0410] In the fourth and fifth embodiments, the transition to the parking brake arrangement is executed regardless of the slope state of the road surface. In addition, the same code | symbol is attached | subjected to the part same as each above-mentioned embodiment, and the description is abbreviate | omitted.
[0411] 第 9実施の形態における制御装置 9600は、第 4実施の形態の場合と同様に、 CP U71、 ROM72及び RAM73を備え、これらはバスライン 74を介して入出力ポート 75 に接続されている。また、入出力ポート 75には、車輪駆動装置 3等の複数の装置が 接続されている。  [0411] As in the case of the fourth embodiment, the control device 9600 in the ninth embodiment includes a CPU 71, a ROM 72, and a RAM 73, which are connected to the input / output port 75 via the bus line 74. Yes. In addition, a plurality of devices such as the wheel drive device 3 are connected to the input / output port 75.
[0412] ROM72には、図 21に示すように、駐車制動配置テーブル 172aが設けられている 。駐車制動配置テーブル 172aは、第 4実施の形態の場合と同様に、駐車制動配置 時の各車輪 2の操舵状態 (舵角)を記憶したテーブルである。  [0412] The ROM 72 is provided with a parking brake arrangement table 172a as shown in FIG. The parking brake arrangement table 172a is a table that stores the steering state (steering angle) of each wheel 2 at the time of parking brake arrangement, as in the case of the fourth embodiment.
[0413] 但し、本実施の形態の駐車制動配置テーブル 172aには、路面の傾斜状態をパラ メータとして、各車輪 2の操舵状態 (舵角)が複数記憶されている。 CPU71は、後述 する車両傾斜センサ装置 134の検出結果力も路面の傾斜状態を判断すると共に、そ の路面の傾斜状態と、駐車制動配置テーブル 172aの内容とに基づいて、各車輪 2 の操舵状態を決定する(図 23及び図 24参照)。 [0413] However, the parking braking arrangement table 172a of the present embodiment stores a plurality of steering states (steering angles) of each wheel 2 using the road surface inclination state as a parameter. The CPU 71 determines the inclination of the road surface as well as the detection result force of the vehicle inclination sensor device 134 described later. The steering state of each wheel 2 is determined based on the inclination state of the road surface and the contents of the parking brake arrangement table 172a (see FIGS. 23 and 24).
[0414] 車両傾斜センサ装置 134は、路面の傾斜状態を検出すると共に、その検出結果を CPU71に出力するためのセンサ装置であり、車両 4001前後方向の路面の傾斜を 検出する前後方向傾斜センサ 134aと、車両 4001左右方向の路面の傾斜を検出す る左右方向傾斜センサ 134bと、それら各傾斜センサ 134a, 134bの検出結果を処 理して CPU71に出力する処理回路(図示せず)とを備えて!/、る。  [0414] The vehicle inclination sensor device 134 is a sensor device for detecting the inclination state of the road surface and outputting the detection result to the CPU 71. The vehicle inclination sensor 134a detects the inclination of the road surface in the longitudinal direction of the vehicle 4001. And a left and right direction inclination sensor 134b that detects the inclination of the road surface in the left and right direction of the vehicle 4001, and a processing circuit (not shown) that processes the detection results of the respective inclination sensors 134a and 134b and outputs the result to the CPU 71. /!
[0415] ここで、本実施の形態では、各傾斜センサ 134a, 134bが封入された液体の傾斜 に伴う静電容量の変化を角度変化として検出する液封入容量式傾斜角センサにより 構成されている。各傾斜センサ 134a, 134bは、傾斜を有さない平坦な路面上に車 両 4001が配置された状態が初期レベルに設定されており、 CPU71は、各傾斜セン サ 134a, 134bの初期レベルからの増減値を路面の傾斜角と推定する。  [0415] Here, in the present embodiment, each of the tilt sensors 134a and 134b is configured by a liquid-filled capacitance-type tilt angle sensor that detects a change in electrostatic capacitance accompanying a tilt of the sealed liquid as an angle change. . Each inclination sensor 134a, 134b is set to the initial level when the vehicle 4001 is arranged on a flat road surface without inclination, and the CPU 71 is set from the initial level of each inclination sensor 134a, 134b. The increase / decrease value is estimated as the slope of the road surface.
[0416] なお、上述した車両 4001前後方向の傾斜とは、車両 4001の前方が後方に対して 持ち上がる(又はその逆)方向の傾斜を意味する(図 23参照)。一方、車両 4001左 右方向の傾斜とは、車両 4001の左側が右側に対して持ち上がる(又はその逆)方向 の傾斜を意味する。  [0416] Note that the vehicle 4001 front-rear direction inclination described above refers to an inclination in a direction in which the front of the vehicle 4001 is lifted with respect to the rear (or vice versa) (see FIG. 23). On the other hand, the left-right inclination of the vehicle 4001 means an inclination in a direction in which the left side of the vehicle 4001 is lifted with respect to the right side (or vice versa).
[0417] 図 22は、駐車制御処理を示すフローチャートである。なお、駐車制御処理の説明 においては、図 23及び図 24を適宜参照する。図 23 (a)は、車両 4001の上面図であ り、図 23 (b)は、車両 4001の側面図である。また、図 24 (a)は、車両 4001の上面図 であり、図 24 (b)は、車両 4001の背面図である。  [0417] FIG. 22 is a flowchart showing the parking control process. In the description of the parking control process, refer to FIGS. 23 and 24 as appropriate. FIG. 23 (a) is a top view of the vehicle 4001, and FIG. 23 (b) is a side view of the vehicle 4001. FIG. FIG. 24 (a) is a top view of the vehicle 4001, and FIG. 24 (b) is a rear view of the vehicle 4001.
[0418] この処理は、制御装置 4100の電源が投入されている間、 CPU71によって繰り返し  [0418] This process is repeated by the CPU 71 while the control device 4100 is powered on.
(例えば、 0. 5秒間隔で)実行される処理である。  A process to be executed (for example, at intervals of 0.5 seconds).
[0419] CPU71は、第 9実施の形態における駐車制御処理に関し、まず、車両 4001の対 地速度を検出し (S5022)、その検出した対地速度が基準速度 (本実施の形態では 、時速 5km)以下である力否かを判断する(S5023)。その結果、検出した対地速度 が基準速度値よりも大きな値である場合には(S5023 :No)、駐車制御を行うことがで きる速度まで車両 4001が減速されていないか、車両 4001が基準速度値を越える速 度まで既に加速されており、駐車制御を行う必要がないということであるので、この駐 車制御処理を終了する。 [0419] Regarding the parking control process in the ninth embodiment, the CPU 71 first detects the ground speed of the vehicle 4001 (S5022), and the detected ground speed is the reference speed (in this embodiment, 5 km / h). It is determined whether or not the force is the following (S5023). As a result, if the detected ground speed is larger than the reference speed value (S5023: No), the vehicle 4001 has not been decelerated to a speed at which parking control can be performed, or the vehicle 4001 has This means that the vehicle has already been accelerated to a speed exceeding the value and there is no need to perform parking control. The vehicle control process is terminated.
[0420] 一方、 S5023の処理において、車両 4001の対地速度が基準速度以下であると判 断される場合には(S5023: Yes)、駐車制御を行うことができる速度まで車両 4001 が減速されたか、車両 4001が基準速度値を越える速度まで未だ達して 、な 、と 、う ことである。  [0420] On the other hand, if it is determined in S5023 that the ground speed of vehicle 4001 is below the reference speed (S5023: Yes), is vehicle 4001 decelerated to a speed at which parking control can be performed? The vehicle 4001 still reaches the speed exceeding the reference speed value.
[0421] よって、この場合(S5023 : Yes)には、更に、現在の車両 4001の傾斜状態、即ち、 路面の傾斜状態 (傾斜方向及び傾斜角度)を車両傾斜センサ装置 134 (図 21参照) によって検出し (S9063)、その検出した傾斜角度が基準角度値 (本実施の形態で は、 3度)以上である力否かを判断する(S9064)。なお、基準角度値は、 ROM72 ( 図 21参照)に予め記憶されている。  [0421] Therefore, in this case (S5023: Yes), the current inclination state of the vehicle 4001, that is, the inclination state (inclination direction and inclination angle) of the road surface is further detected by the vehicle inclination sensor device 134 (see FIG. 21). It is detected (S9063), and it is determined whether or not the detected inclination angle is greater than or equal to a reference angle value (3 degrees in the present embodiment) (S9064). The reference angle value is stored in advance in the ROM 72 (see FIG. 21).
[0422] その結果、検出した傾斜角度が基準角度値に達していない場合には(S9064 :No )、路面の傾斜が十分に緩やかであるか平坦であり、駐車制御を行う必要がないとい うことであるので、 S9066の処理を実行した後、この駐車制御処理を終了する。  [0422] As a result, when the detected inclination angle does not reach the reference angle value (S9064: No), it is said that the inclination of the road surface is sufficiently gentle or flat and it is not necessary to perform parking control. Therefore, after executing the processing of S9066, the parking control processing is terminated.
[0423] なお、 S9066の処理では、ノ、ンドル 51 (図 16参照)の操作状態に応じた舵角を目 標値として、ァクチユエータ装置 4を制御することで、各車輪 2の操舵状態を現在の操 舵状態カゝらハンドル 51の操作状態に応じた操舵位置に復帰させる。  [0423] In the process of S9066, the steering device of each wheel 2 is currently controlled by controlling the actuator device 4 using the steering angle according to the operating state of the node 51 (see Fig. 16) as a target value. The steering position is returned to the steering position corresponding to the operating state of the handle 51.
[0424] 一方、 S9064の処理において、検出した傾斜角度が基準角度値以上である場合 には(S9064 : Yes)、路面の傾斜角度が大きぐ駐車制御を行う必要があるということ である。よって、この場合 (S9064 : Yes)には、検出した対地速度及び傾斜角度に基 づいて各車輪 2の舵角を決定し (S9065)、次いで、その決定された舵角を目標値と して、ァクチユエータ装置 4を制御することで、各車輪 2の操舵状態を変化させ (S 50 25)、この駐車制御処理を終了する。  [0424] On the other hand, in the processing of S9064, if the detected inclination angle is greater than or equal to the reference angle value (S9064: Yes), it is necessary to perform parking control in which the inclination angle of the road surface is large. Therefore, in this case (S9064: Yes), the steering angle of each wheel 2 is determined based on the detected ground speed and inclination angle (S9065), and then the determined steering angle is set as the target value. Then, by controlling the actuator device 4, the steering state of each wheel 2 is changed (S5025), and this parking control process is terminated.
[0425] このように、本実施の形態では、路面が所定の傾斜角度を有している場合、即ち、 駐車制動配置への移行が特に有効となる場合にのみ駐車制動配置への移行を行う ように構成されて ヽるので、路面の傾斜角度が小さ 、場合 (基準角度値に達して 、な い場合)、即ち、駐車制動配置への移行が比較的不要とされる平坦な路面上で駐停 車する場合には、駐車制動配置への移行を制限 (禁止)することができる。よって、車 輪 2の不必要な操舵動作を抑制して、その分、車輪 2の摩耗の進行を抑制することが できる。 [0425] Thus, in this embodiment, the transition to the parking brake arrangement is performed only when the road surface has a predetermined inclination angle, that is, when the transition to the parking brake arrangement is particularly effective. Therefore, when the road surface has a small inclination angle (when the reference angle value is not reached), that is, on a flat road surface where the transition to the parking brake arrangement is relatively unnecessary. When parking and stopping, the transition to parking brake arrangement can be restricted (prohibited). Therefore, it is possible to suppress the unnecessary steering operation of the wheel 2 and to suppress the progress of wear of the wheel 2 correspondingly. it can.
[0426] 更に、本実施の形態では、対地速度の減速と共に駐車制動配置への移行を自動 的に行うように構成されているので、運転者の操作負担を軽減することができると共 に、車両 4001を安全確実に駐停車させることができる。  [0426] Furthermore, in the present embodiment, since the shift to the parking brake arrangement is automatically performed together with the deceleration of the ground speed, the operation burden on the driver can be reduced, and The vehicle 4001 can be parked and stopped safely and securely.
[0427] 例えば、従来品では、坂道において、運転者が不注意により駐車ブレーキをかけな いまま車両力 離れてしまった場合には、車両が自重で走行してしまい、極めて危険 であるところ、本実施の形態における車両 4001によれば、運転者が駐車ブレーキを 作動させるための動作を別途行うことが不要となるので、その分、運転者の負担を軽 減すると共に、坂道でも車両 4001を駐停車位置に確実に固定しておくことができる。  [0427] For example, in the conventional product, when the driver inadvertently leaves the vehicle without inadvertently applying the parking brake, the vehicle runs under its own weight, which is extremely dangerous. According to the vehicle 4001 in the present embodiment, it is not necessary for the driver to separately perform an operation for operating the parking brake. Therefore, the burden on the driver is reduced correspondingly, and the vehicle 4001 is also mounted on a slope. It can be securely fixed at the parking / stopping position.
[0428] ここで、 S9065の処理では、車両 4001が減速状態にあれば、車両 4001の対地速 度の値が小さくなるに従って、各車輪 2の操舵状態 (舵角)を現在の操舵状態から駐 車制動配置に近づけると共に、対地速度が 0となった (即ち、車両 4001が停車した) 時点で各車輪 2の操舵状態が駐車制動配置に一致するように、各車輪 2の舵角が決 定される。  Here, in the processing of S9065, if the vehicle 4001 is in a deceleration state, the steering state (steering angle) of each wheel 2 is parked from the current steering state as the value of the ground speed of the vehicle 4001 decreases. The steering angle of each wheel 2 is determined so that the steering state of each wheel 2 coincides with the parking braking arrangement when the ground speed becomes 0 (that is, when the vehicle 4001 stops) while approaching the vehicle braking arrangement. Is done.
[0429] 一方、車両 4001が加速状態にあれば、車両 4001の対地速度の値が大きくなるに 従って、各車輪 2の操舵状態を現在の操舵状態からハンドル 51の操作状態に応じた 操舵位置に近づけると共に、対地速度が基準速度値に達した時点で各車輪 2の操 舵状態がハンドル 51の操作状態に応じた操舵位置に一致するように、各車輪 2の舵 角が決定される。  [0429] On the other hand, if the vehicle 4001 is in the acceleration state, the ground speed value of the vehicle 4001 increases, so that the steering state of each wheel 2 is changed from the current steering state to the steering position corresponding to the operation state of the handle 51. At the same time, the steering angle of each wheel 2 is determined so that the steering state of each wheel 2 coincides with the steering position corresponding to the operation state of the handle 51 when the ground speed reaches the reference speed value.
[0430] また、上述したように、駐車制動配置には、駐車制動配置テーブル 172aに複数の パターンが記憶されており、 S9065の処理では、路面の傾斜状態に応じた駐車制動 配置が選択される。  [0430] Further, as described above, in the parking braking arrangement, a plurality of patterns are stored in the parking braking arrangement table 172a, and in the processing of S9065, the parking braking arrangement corresponding to the inclination state of the road surface is selected. .
[0431] 例えば、路面の傾斜状態が、図 23 (b)に示すように、車両 4001前後方向の傾斜で ある場合には、図 23 (a)に示すように、路面の下降傾斜側となる車輪 2 (後輪 2RR, 2 RL)の舵角が上昇傾斜側となる車輪 2 (前輪 2FR, 2FL)の舵角よりも大きくされる。 一方、路面の傾斜状態が、図 24 (b)に示すように、車両 4001左右方向の傾斜であ る場合には、図 24 (a)に示すように、路面の下降傾斜側となる車輪 2 (右側の前後輪 2FR, 2RR)の舵角が上昇傾斜側となる車輪 2 (左側の前後輪 2FL, 2RL)の舵角よ りも大きくされる。 [0431] For example, when the road surface is inclined in the front-rear direction of the vehicle 4001 as shown in FIG. 23 (b), the road surface is inclined downward as shown in FIG. 23 (a). The rudder angle of wheel 2 (rear wheels 2RR, 2RL) is made larger than the rudder angle of wheel 2 (front wheels 2FR, 2FL) on the rising slope side. On the other hand, when the road surface is inclined in the left-right direction as shown in FIG. 24 (b), the wheel 2 on the downward slope side of the road surface as shown in FIG. 24 (a). It is the rudder angle of wheel 2 (left front and rear wheels 2FL, 2RL) where the rudder angle of the right front wheels (2FR, 2RR) is on the rising slope side It will be bigger.
[0432] また、下降傾斜側となる車輪 2 (例えば、図 23では後輪 2RL, 2RR)の舵角と上昇 傾斜側となる車輪 2 (図 23では前輪 2FL, 2FR)の舵角との差は、路面の傾斜角度 の値に比例し、路面の傾斜角度が大きいほど舵角の差が大きくなると共に (例えば、 路面の傾斜角度が 60度で舵角の差が 45度)、路面の傾斜角度が小さいほど舵角の 差が小さくなり、路面の傾斜角度が基準角度値となった時点で舵角の差がゼロとなる (図 23 (a)及び図 24 (a)では舵角の差がゼロの状態を 2点鎖線で模式的に図示する )ように規定されている。  [0432] In addition, the difference between the steering angle of wheel 2 on the downward slope side (for example, rear wheels 2RL and 2RR in Fig. 23) and the steering angle of wheel 2 on the upward slope side (front wheels 2FL and 2FR in Fig. 23) Is proportional to the value of the road surface inclination angle. The larger the road surface inclination angle, the larger the difference in rudder angle (for example, the road surface inclination angle is 60 degrees and the rudder angle difference is 45 degrees). The smaller the angle, the smaller the difference in rudder angle, and the difference in rudder angle becomes zero when the road inclination angle reaches the reference angle value (Fig. 23 (a) and Fig. 24 (a) show the difference in rudder angle). The state of zero is schematically shown by a two-dot chain line).
[0433] このように、本実施の形態では、傾斜を有する路面上で駐停車する場合には、平坦 な路面で駐停車する場合の駐車制動配置と異なる形態の駐車制動配置に車輪 2の 操舵状態を移行させることができるので、車両 4001を駐停車位置に確実に固定する ことができると共に、車輪 2の摩耗を抑制することができる。  [0433] Thus, in the present embodiment, when parking on a sloped road surface, the wheel 2 is steered to a parking brake arrangement of a different form from the parking brake arrangement when parking on a flat road surface. Since the state can be shifted, the vehicle 4001 can be reliably fixed at the parking / stopping position, and wear of the wheels 2 can be suppressed.
[0434] 即ち、坂道で駐停車する場合には、平坦な路面上に駐停車する場合と比較して、 重力の影響が大きくなる。よって、上述のように、重力方向への抵抗力がより大きくな る駐車制動配置を採用することで、車両 4001を駐停車位置へより確実に固定するこ とがでさる。  [0434] That is, when parked on a slope, the influence of gravity is greater than when parked on a flat road. Therefore, as described above, it is possible to more securely fix the vehicle 4001 to the parking / stopping position by adopting the parking braking arrangement in which the resistance force in the direction of gravity is greater.
[0435] 具体的には、図 23及び図 24に示すように、下降傾斜側の車輪 2の舵角をより大きく する(下降傾斜側の車輪 2の中心線と下降傾斜方向(図 23 (a)及び図 24 (a)左右方 向)とが下降傾斜側でなす角をより大きくする)ことで、車両 4001が重力により下降傾 斜方向へ移動しょうとする場合には、下降傾斜側の車輪 2を下降傾斜方向へより転 動し難くする (即ち、駐車ブレーキとしての抵抗力をより大きく発揮する)ことができ、 その分、車両 4001を駐停車位置に確実に固定することができる。  Specifically, as shown in FIG. 23 and FIG. 24, the steering angle of the wheel 2 on the downward inclination side is increased (the center line of the wheel 2 on the downward inclination side and the downward inclination direction (FIG. 23 (a ) And Fig. 24 (a) (left and right direction)), and the vehicle 4001 tries to move in the downward inclination direction due to gravity, the wheel on the downward inclination side 2 can be made more difficult to roll in the downward inclination direction (that is, the resistance force as a parking brake is exerted more), and accordingly, the vehicle 4001 can be securely fixed at the parking / stopping position.
[0436] また、図 23及び図 24に示すように、下降傾斜側の車輪 2のみの舵角を大きくするこ とで、車輪 2全体としての不必要な操舵駆動を排除することができ、その分、車輪 2の 摩耗を抑制することができる。  Further, as shown in FIG. 23 and FIG. 24, by increasing the rudder angle of only the wheel 2 on the descending slope side, unnecessary steering drive as the wheel 2 as a whole can be eliminated. The wear of wheel 2 can be suppressed.
[0437] 次いで、図 25を参照して、第 10実施の形態について説明する。図 25は、第 10実 施の形態における制御装置 10700の電気的構成を示したブロック図である。  [0437] Next, a tenth embodiment will be described with reference to FIG. FIG. 25 is a block diagram showing an electrical configuration of control apparatus 10700 in the tenth embodiment.
[0438] 第 9実施の形態では、車両 4001の対地速度に基づいて、駐車制動配置への移行 が実行される場合を説明したが、第 10実施の形態では、運転者により所定の操作が 行われた場合に、駐車制動配置への移行が実行される。なお、上記した各実施の形 態と同一の部分には同一の符号を付して、その説明は省略する。 [0438] In the ninth embodiment, based on the ground speed of the vehicle 4001, the transition to the parking braking arrangement is performed. In the tenth embodiment, when the driver performs a predetermined operation, the transition to the parking brake arrangement is executed. In addition, the same code | symbol is attached | subjected to the part same as each embodiment mentioned above, and the description is abbreviate | omitted.
[0439] 第 10実施の形態における制御装置 10700は、第 9実施の形態の場合と同様に、 C PU71、 ROM72及び RAM73を備え、これらはバスライン 74を介して入出力ポート 75に接続されている。また、入出力ポート 75には、車輪駆動装置 3等の複数の装置 が接続されている。  As in the case of the ninth embodiment, the control device 10700 in the tenth embodiment includes a CPU 71, a ROM 72, and a RAM 73, which are connected to the input / output port 75 via the bus line 74. Yes. In addition, a plurality of devices such as the wheel drive device 3 are connected to the input / output port 75.
[0440] 運転モード選択手段 133は、車輪駆動装置 3と車輪 2との連結状態を選択するため の装置であり(いずれも図 16参照)、運転者により操作される操作レバーと、その操作 レバーの操作位置を検出するための位置センサと、その位置センサの検出結果を処 理して CPU71に出力する処理回路 ( 、ずれも図示せず)とを主に備えて 、る。 に操作可能に構成されており、 CPU71は、操作レバーの操作位置に応じて、車輪 駆動装置 3と車輪 2との連結状態を制御する。  [0440] The operation mode selection means 133 is a device for selecting the connection state between the wheel drive device 3 and the wheel 2 (both see Fig. 16), an operation lever operated by the driver, and its operation lever. Mainly includes a position sensor for detecting the operation position and a processing circuit (not shown) for processing the detection result of the position sensor and outputting the result to the CPU 71. The CPU 71 controls the connection state between the wheel driving device 3 and the wheel 2 in accordance with the operation position of the operation lever.
[0442] ここで、ドライブレンジは、車輪駆動装置 3と車輪 2とが連結された状態を選択するレ ンジであり、このレンジでは、車輪駆動装置 3から車輪 2への回転駆動力の伝達が可 能とされる。よって、運転者は、車両 4001を走行させる場合には、操作レバーをドラ イブレンジに位置させた上で、アクセルペダル 53 (図 16参照)を踏み込み操作するこ とで、車両 4001を走行させることができる。 [0442] Here, the drive range is a range for selecting a state in which the wheel driving device 3 and the wheel 2 are connected. In this range, the rotational driving force is transmitted from the wheel driving device 3 to the wheel 2. It is possible. Therefore, when the vehicle 4001 is driven, the driver can drive the vehicle 4001 by depressing the accelerator pedal 53 (see FIG. 16) after placing the operation lever in the drive range. it can.
[0443] 一方、パーキングブレンジは、車輪駆動装置 3と車輪 2との連結が解除された状態 を選択するレンジであり、このレンジでは、車輪駆動装置 3から車輪 2への回転駆動 力の伝達が禁止とされる。 [0443] On the other hand, the parking range is a range for selecting a state in which the connection between the wheel driving device 3 and the wheel 2 is released. In this range, the rotational driving force is transmitted from the wheel driving device 3 to the wheel 2. Is prohibited.
[0444] なお、本実施の形態では、パーキングレンジに操作された場合には、駐車制動配 置への移行が実行され、ドライブレンジに操作された場合には、駐車制動配置の解 除が実行される。 [0444] In the present embodiment, when the parking range is operated, the shift to the parking brake arrangement is executed, and when the drive range is operated, the parking brake arrangement is released. Is done.
[0445] また、本実施の形態では、パーキングレンジでのみ、車輪駆動装置 3を起動停止さ せるためのメインキーの挿抜が可能となるように構成されている。よって、運転者は、 車両 4001から離れる場合には、操作レバーをパーキングレンジに位置させることで 、メインキーを抜き取り、車両 4001から離れることができる。 [0445] Also, the present embodiment is configured such that the main key for starting and stopping the wheel drive device 3 can be inserted and removed only in the parking range. Therefore, when the driver is away from the vehicle 4001, the operation lever is positioned in the parking range. The main key can be removed and the vehicle 4001 can be removed.
[0446] 図 26は、駐車制御処理を示すフローチャートである。この処理は、制御装置 1070 0の電源が投入されている間、 CPU71によって繰り返し (例えば、 0. 5秒間隔で)実 行される処理である。なお、上記した各実施の形態と同一の部分には同一の符号を 付して、その説明は省略する。  FIG. 26 is a flowchart showing the parking control process. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.5 seconds) while the control device 10700 is powered on. In addition, the same code | symbol is attached | subjected to the part same as each embodiment mentioned above, and the description is abbreviate | omitted.
[0447] S4001の処理において、車両 4001が停車中であると判断される場合には(S400 1: Yes)、運転モード選択装置 133がパーキングレンジにある力否かを判断し(S100 71)、次いで、運転モード選択装置 133がオンされていると判断される場合には(S1 0071: Yes)、ブレーキフラグ 73bの値が「0」であるか否かを判断する(S4003)。  [0447] In the processing of S4001, when it is determined that the vehicle 4001 is stopped (S400 1: Yes), it is determined whether or not the driving mode selection device 133 is within the parking range (S100 71), Next, when it is determined that the operation mode selection device 133 is turned on (S1 0071: Yes), it is determined whether or not the value of the brake flag 73b is “0” (S4003).
[0448] なお、 S4003の処理において、ブレーキフラグ 73bが「1」である場合には(S4003 : No)、上述したように、駐車制動配置への移行が指示されている力 その駐車制動 配置への移行が既に完了しているということなので、この駐車制御処理を終了する。  In the process of S4003, when the brake flag 73b is “1” (S4003: No), as described above, the force instructed to shift to the parking brake arrangement is changed to the parking brake arrangement. This is the end of this parking control process.
[0449] これに対し、 S4003の処理にお!、て、ブレーキフラグ 73bが「0」であると判断される 場合には(S4003 : Yes)、駐車制動配置への移行が指示されている力 その駐車制 動配置への移行が未だ完了して ヽな ヽと 、うことなので、駐車制動配置への移行を 行うベぐ S4004以降の処理を実行する。  [0449] On the other hand, if it is determined that the brake flag 73b is "0" in the process of S4003 (S4003: Yes), the force instructed to shift to the parking brake arrangement? Since the transition to the parking control arrangement has not yet been completed, the process after S4004 for executing the transition to the parking brake arrangement is executed.
[0450] S4004及び S4005の処理では、上述したように、現在の各車輪 2の舵角を検出し( S4004)、その検出した現在の各車輪 2の舵角(操舵状態)を停車時配置として停車 時配置メモリ 73aに記憶する(S4005)。  [0450] In the processing of S4004 and S4005, as described above, the current steering angle of each wheel 2 is detected (S4004), and the detected steering angle of each wheel 2 (steering state) is set as a stop-time arrangement. Stored in stop memory 73a (S4005).
[0451] S4005の処理を実行した後は、次いで、現在の車両 4001の傾斜状態、即ち、路 面の傾斜状態 (傾斜方向及び傾斜角度)を車両傾斜センサ装置 134 (図 25参照)に よって検出し (S10072)、その検出した傾斜状態に対応する駐車制動配置を駐車制 動配置テーブル 172a (図 25参照)から読み出し、その読み出した内容に基づき、各 車輪 2の操舵状態 (舵角)を決定する(S 10073)。  [0451] After the processing of S4005 is executed, the current inclination state of the vehicle 4001, that is, the inclination state (inclination direction and inclination angle) of the road surface is detected by the vehicle inclination sensor device 134 (see FIG. 25). (S10072), the parking braking arrangement corresponding to the detected inclination state is read from the parking braking arrangement table 172a (see FIG. 25), and the steering state (steering angle) of each wheel 2 is determined based on the read contents. (S 10073).
[0452] そして、 S 10073の処理において決定した舵角を目標値として、ァクチユエータ装 置 4を制御することで、各車輪 2の操舵状態を駐車制動配置へ移行させる(S4007) 。なお、本実施の形態における駐車制動配置は、上述した第 9実施の形態の場合と 同様であるので、その説明は省略する。 [0453] このように、本実施の形態では、運転モード選択装置 133をパーキングレンジに操 作することで、駐車制動配置への移行が自動的に行わせることができる。即ち、メイン キーを脱抜する際に必要な操作を行うことで、同時に、駐車制動配置への移行も実 行させることができる。これにより、運転者が不注意により駐車ブレーキをかけないま ま車両力も離れてしまうなどの不具合を回避することができると共に、運転者の負担 を軽減することができる。 [0452] Then, by controlling the actuator device 4 with the rudder angle determined in the processing of S10073 as a target value, the steering state of each wheel 2 is shifted to the parking brake arrangement (S4007). Since the parking brake arrangement in the present embodiment is the same as that in the ninth embodiment described above, description thereof is omitted. [0453] As described above, in the present embodiment, by operating the operation mode selection device 133 to the parking range, the transition to the parking brake arrangement can be automatically performed. In other words, by performing the necessary operations when removing the main key, it is possible to simultaneously shift to the parking brake arrangement. As a result, it is possible to avoid problems such as leaving the vehicle force without the driver inadvertently applying the parking brake and reducing the burden on the driver.
[0454] なお、図 18に示すフローチャート (駐車制御処理)において、請求項 13記載のァク チユエータ作動手段としては S4006及び S4007の処理力 請求項 14記載の作動判 断手段としては S4002及び S4003の処理力 配置記憶手段としては S4004及び S 4005の処理力 復帰判断手段としては S4002及び S4009の処理力 復帰手段とし ては S4010及び S4011の処理が、それぞれ対応する。  In the flowchart shown in FIG. 18 (parking control process), the actuator operating means according to claim 13 has the processing power of S4006 and S4007. The operation determining means according to claim 14 has the operating power of S4002 and S4003. The processing power arrangement storage means corresponds to the processing power return of S4004 and S4005. The processing power recovery judgment means of S4002 and S4009 corresponds to the processing of S4010 and S4011, respectively.
[0455] また、図 19に示すフローチャート(駐車制御処理)において、請求項 15記載の対地 速度検出手段としては S5022の処理力 速度判断手段としては S5023の処理が、 ァクチユエータ作動手段としては S5024及び S5025の処理力 請求項 16記載のァ クチユエータ作動手段としては S5024及び S5025の処理力 それぞれ対応する。  Further, in the flowchart (parking control process) shown in FIG. 19, the processing speed of S5022 is the ground speed detection means according to claim 15. The processing of S5023 is the speed judgment means, and S5024 and S5025 are the actuator operation means. The processing power of S5024 and S5025 corresponds to the actuator actuating means described in claim 16, respectively.
[0456] また、図 22に示すフローチャート(駐車制御処理)において、請求項 17記載の角度 判断手段としては S9064の処理が対応する。  [0456] Further, in the flowchart (parking control process) shown in FIG. 22, the process of S9064 corresponds to the angle determination means according to claim 17.
[0457] 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら 限定されるものではなぐ本発明の趣旨を逸脱しない範囲内で種々の改良変形が可 能であることは容易に推察できるものである。  [0457] Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. Something can be easily guessed.
[0458] 例えば、上記第 4から第 10実施の形態で挙げた数値は一例であり、他の数値を採 用することは当然可能である。  [0458] For example, the numerical values given in the fourth to tenth embodiments are merely examples, and other numerical values can naturally be adopted.
[0459] また、上記第 4から第 10実施の形態で説明した各駐車制動配置は、他の 、ずれの 実施の形態に適用しても良 ヽ。  [0459] Further, the parking brake arrangements described in the fourth to tenth embodiments may be applied to other embodiments of deviation.
[0460] また、上記第 4実施の形態では、駐車ブレーキスィッチ 4033がオフされた場合に( S4002 :No、 S4009 :Yes)、自動的に車輪 2の操舵状態が停車時配置へ復帰され る場合を説明したが(S4010、 S4011)、必ずしもこれに限られるものではなぐ停車 時配置へ復帰させるか否かを判断する復帰判断手段を更に設け、その判断結果に 応じて、復帰可否を決定するように構成しても良い。 [0460] In the fourth embodiment, when the parking brake switch 4033 is turned off (S4002: No, S4009: Yes), the steering state of the wheel 2 is automatically returned to the stop-time arrangement. (S4010, S4011) However, this is not necessarily limited to this. Accordingly, it may be configured to determine whether or not to return.
[0461] 例えば、運転者に操作可能な操作子を設け、その操作子の操作状態が所定の状 態となつた場合に、車輪を停車時配置へ復帰させると復帰判断手段が判断するよう に構成することができる。これにより、復帰動作を要しない場合などに、運転者の操作 '性の向上を図ることができる。  [0461] For example, if a driver is provided with an operation element that can be operated, and the operation state of the operation element reaches a predetermined state, the return determination means determines that the wheel is returned to the stop position. Can be configured. As a result, the driver's operability can be improved when the return operation is not required.
[0462] また、上記第 5実施の形態では、駐車ブレーキモードのオン ·オフを運転者が選択 する場合を説明した力 これに代えて、又は、これに追加して、駐車ブレーキモード のオン 'オフを自動で変更するモード変更手段を設けても良!、。  [0462] Further, in the fifth embodiment, the force described when the driver selects on / off of the parking brake mode. Instead of or in addition to this, the parking brake mode is turned on. It is also possible to provide a mode change means that automatically changes OFF!
[0463] 即ち、このモード変更手段としては、例えば、第 9実施の形態で説明したように、車 両 4001の傾斜状態を検出する傾斜検出センサ装置 (車両傾斜センサ装置 134)を 設け、車両 4001が基準値以上の傾斜を有する坂道で停車する場合にのみ駐車ブ レーキモードをオンするものが例示される。これにより、上述したように、平地などでは 駐車制動配置への移行が制限されるので、その分、車輪 2の摩耗を抑制することが できる。  That is, as the mode changing means, for example, as described in the ninth embodiment, an inclination detection sensor device (vehicle inclination sensor device 134) for detecting the inclination state of the vehicle 4001 is provided, and the vehicle 4001 For example, the parking brake mode is turned on only when the vehicle stops on a slope having an inclination greater than the reference value. As a result, as described above, since the transition to the parking brake arrangement is restricted on flat ground or the like, the wear of the wheels 2 can be suppressed accordingly.
[0464] また、上記第 4から第 10実施の形態では、ァクチユエータ装置 4を電動モータで、 伝達機構部 23をねじ機構で、それぞれ構成する場合を説明したが、必ずしもこれに 限られるものではなぐ例えば、ァクチユエータ装置 4を油圧 ·空圧シリンダーで構成 しても良い。これにより、伝達機構部 23を省略することができるので、構造を簡素化し て、軽量化と部品コストの削減とを図ることができる。  [0464] In the fourth to tenth embodiments, the case where the actuator device 4 is constituted by an electric motor and the transmission mechanism portion 23 is constituted by a screw mechanism has been described. However, the invention is not necessarily limited thereto. For example, the actuator device 4 may be composed of a hydraulic / pneumatic cylinder. As a result, the transmission mechanism portion 23 can be omitted, so that the structure can be simplified, and the weight can be reduced and the parts cost can be reduced.
[0465] また、上記第 4から第 10実施の形態では、ブレーキ装置 (例えば、摩擦力を利用し たドラムブレーキやディスクブレーキ)を設けても良い旨を説明したが、これに加えて 、車輪駆動装置 3を回生ブレーキとして構成し、これをブレーキ装置として利用しても 良い。  [0465] In the above fourth to tenth embodiments, it has been described that a brake device (for example, a drum brake or a disk brake using frictional force) may be provided. The drive device 3 may be configured as a regenerative brake and used as a brake device.
[0466] また、上記第 9及び第 10実施の形態では、車両 4001の傾斜状態を検出するため のセンサ装置として、車両傾斜センサ装置 (傾斜センサ) 134を設ける場合を説明し たが、必ずしもこれに限られるものではなぐ車両速度センサ装置 (加速度センサ) 32 を動加速度に加えて静加速度も検出可能なタイプのセンサ装置により構成して、この 車両速度センサ装置 32が傾斜センサも兼用するように構成しても良い。これにより、 部品点数を減少させて、部品コストの削減を図ることができる。 [0466] In the ninth and tenth embodiments, the case where the vehicle inclination sensor device (tilt sensor) 134 is provided as the sensor device for detecting the inclination state of the vehicle 4001 has been described. The vehicle speed sensor device (acceleration sensor) 32 is not limited to the above, and is composed of a sensor device that can detect static acceleration in addition to dynamic acceleration, so that the vehicle speed sensor device 32 also functions as a tilt sensor. It may be configured. This By reducing the number of parts, the cost of parts can be reduced.
[0467] また、第 10実施の形態では、パーキングレンジ及びドライブレンジへの操作に起因 して、駐車制動配置への移行及び解除が実行される場合を説明したが、必ずしもこ れに限られるものではなぐ他の操作に起因して、駐車制動配置への移行及び解除 が実行されるよう構成することは当然可能である。他の操作としては、例えば、メイン キーの挿抜などが例示される。  [0467] In the tenth embodiment, the case where the transition to the parking braking arrangement and the release are performed due to the operation to the parking range and the drive range has been described. However, the present invention is not limited to this. However, it is of course possible to configure so that the transition to and release from the parking brake arrangement is executed due to other operations. Examples of other operations include insertion and removal of a main key.
[0468] 次いで、第 11実施の形態について説明する。図 27は、本発明の第 11実施の形態 における制御装置 11100が搭載される車両 11001を模式的に示した模式図である 。なお、図 27の矢印 FWDは、車両 11001の前進方向を示す。また、図 27では、全 車輪 2に所定の舵角が付与された状態が図示されている。  [0468] Next, an eleventh embodiment will be described. FIG. 27 is a schematic diagram schematically showing a vehicle 11001 on which a control device 11100 according to an eleventh embodiment of the present invention is mounted. Note that an arrow FWD in FIG. 27 indicates the forward direction of the vehicle 11001. FIG. 27 shows a state where a predetermined rudder angle is given to all the wheels 2.
[0469] まず、車両 11001の概略構成について説明する。車両 11001は、図 27に示すよう に、車体フレーム BFと、その車体フレーム BFに支持される複数 (本実施の形態では 4輪)の車輪 2と、それら各車輪 2を独立に回転駆動する車輪駆動装置 3と、各車輪 2 を独立に操舵駆動するァクチユエータ装置 4とを主に備え、走行時には、車輪 2の路 面に対するすべり速度を後述する制御装置 11100により制御することで、車輪 2と路 面との間の摩擦係数を増大させ、発進性能や制動性能、或いは、旋回性能の向上を 図ることができるように構成されて!、る。  First, a schematic configuration of the vehicle 11001 will be described. As shown in FIG. 27, the vehicle 11001 includes a body frame BF, a plurality of (four wheels in this embodiment) wheels 2 supported by the body frame BF, and wheels that rotate and drive these wheels 2 independently. It is mainly equipped with a drive device 3 and an actuator device 4 for steering and driving each wheel 2 independently. During traveling, the sliding speed of the wheel 2 with respect to the road surface is controlled by a control device 11100, which will be described later. It is configured to increase the coefficient of friction with the surface and improve starting performance, braking performance, or turning performance! RU
[0470] 次いで、各部の詳細構成について説明する。車輪 2は、図 27に示すように、車両 1 1001の進行方向前方側に位置する左右の前輪 2FL, 2FRと、進行方向後方側に 位置する左右の後輪 2RL, 2RRとの 4輪を備え、これら前後輪 2FL〜2RRは、ステ ァリング装置 20, 30により転舵可能に構成されている。  [0470] Next, a detailed configuration of each unit will be described. As shown in FIG. 27, the wheel 2 has four wheels: left and right front wheels 2FL and 2FR located on the front side in the traveling direction of the vehicle 1 1001, and left and right rear wheels 2RL and 2RR located on the rear side in the traveling direction. These front and rear wheels 2FL to 2RR are configured to be steerable by steering devices 20, 30.
[0471] なお、車輪 2は、ゴム材料から主に構成されるタイヤと、そのタイヤを保持すると共に スチール、アルミニウム合金或!、はマグネシウム合金などの金属材料力も構成される ホイールとを備えており、ホイールが車輪駆動装置 3の駆動軸に連結され、その駆動 軸を介して、車輪駆動装置 3からホイール (車輪 2)に回転駆動力が伝達される。  [0471] The wheel 2 includes a tire mainly composed of a rubber material, and a wheel that holds the tire and also has a metal material force such as steel, aluminum alloy, or magnesium alloy. The wheel is connected to the drive shaft of the wheel drive device 3, and the rotational drive force is transmitted from the wheel drive device 3 to the wheel (wheel 2) via the drive shaft.
[0472] ステアリング装置 20, 30は、各車輪 2を操舵するための操舵装置であり、図 27に示 すように、各車輪 2を揺動可能に支持するキングピン 21と、各車輪 2のナックルアーム (図示せず)に連結されるタイロッド 22と、そのタイロッド 22にァクチユエータ装置 4の 駆動力を伝達する伝達機構部 23とを主に備えて構成されている。 [0472] Steering devices 20 and 30 are steering devices for steering each wheel 2. As shown in Fig. 27, king pins 21 that support each wheel 2 in a swingable manner and knuckle of each wheel 2 are provided. A tie rod 22 connected to an arm (not shown), and the actuator device 4 is connected to the tie rod 22. A transmission mechanism 23 for transmitting a driving force is mainly provided.
[0473] ァクチユエータ装置 4は、上述したように、各車輪 2を独立に操舵駆動するための操 舵駆動装置であり、図 27に示すように、 4個のァクチユエータ(FL〜RRァクチユエ一 タ 4FL〜4RR)を備えて構成されている。運転者がハンドル 51を操作した場合には、 ァクチユエータ装置 4の一部(例えば、前輪 2FL, 2FRのみ)又は全部が駆動され、 ハンドル 51の操作量に応じた舵角が付与される。  [0473] As described above, the actuator device 4 is a steering drive device for independently steering driving each wheel 2. As shown in Fig. 27, the four actuators (FL to RR actuator unit 4FL) are provided. ~ 4RR). When the driver operates the handle 51, a part of the actuator device 4 (for example, only the front wheels 2FL, 2FR) or the whole is driven, and a steering angle corresponding to the amount of operation of the handle 51 is given.
[0474] ここで、本実施の形態では、 FL〜RRァクチユエータ 4FL〜4RRが電動モータで構 成されると共に、伝達機構部 23がねじ機構で構成される。電動モータが回転されると 、その回転運動が伝達機構部 23により直線運動に変換され、タイロッド 22に伝達さ れる。その結果、各車輪 2がキングピン 21を揺動中心として揺動駆動され、各車輪 2 に所定の舵角が付与される。  Here, in the present embodiment, FL to RR actuators 4FL to 4RR are constituted by electric motors, and transmission mechanism portion 23 is constituted by a screw mechanism. When the electric motor is rotated, the rotational motion is converted to a linear motion by the transmission mechanism 23 and transmitted to the tie rod 22. As a result, each wheel 2 is driven to swing around the king pin 21 as a swing center, and a predetermined steering angle is given to each wheel 2.
[0475] 車輪駆動装置 3は、各車輪 2を独立に回転駆動するための回転駆動装置であり、 図 27〖こ示すように、 4個の電動モータ(FL〜: RRモータ 3FL〜3RR)を各車輪 2ごと に(即ち、インホイールモータとして)配設して構成されている。これにより、各車輪 2 の回転速度がそれぞれ独立に制御可能とされている。  [0475] The wheel drive device 3 is a rotation drive device for driving each wheel 2 to rotate independently. As shown in Fig. 27, four electric motors (FL ~: RR motors 3FL ~ 3RR) are provided. Each wheel 2 is arranged (ie as an in-wheel motor). Thereby, the rotational speed of each wheel 2 can be controlled independently.
[0476] 運転者がアクセルペダル 53を操作した場合には、車輪駆動装置 3から回転駆動力 が各車輪 2に付与され、各車輪 2がアクセルペダル 53の操作量に応じた回転速度で 回転される。本発明では、この場合に、各車輪 2の路面に対するすべり速度を後述す る目標すベり速度と一致させる(或いは、近づける)ための回転制御が行われる。な お、回転制御の詳細については、後述する。  [0476] When the driver operates the accelerator pedal 53, a rotational driving force is applied to each wheel 2 from the wheel driving device 3, and each wheel 2 is rotated at a rotational speed corresponding to the operation amount of the accelerator pedal 53. The In the present invention, in this case, rotation control is performed so that the slip speed of each wheel 2 with respect to the road surface matches (or approaches) the target slip speed described later. Details of the rotation control will be described later.
[0477] 制御装置 11100は、上述のように構成された車両 11001の各部を制御するための 制御装置であり、例えば、車輪駆動装置 3とァクチユエータ装置 4とを作動させ、車輪 2の回転速度を制御することで、車輪 2の回転制御を行う。ここで、図 28を参照して、 制御装置 11100の詳細構成について説明する。  [0477] The control device 11100 is a control device for controlling each part of the vehicle 11001 configured as described above. For example, the wheel drive device 3 and the actuator device 4 are operated to control the rotation speed of the wheel 2. By controlling, the rotation control of the wheel 2 is performed. Here, with reference to FIG. 28, a detailed configuration of control device 11100 will be described.
[0478] 図 28は、制御装置 11100の電気的構成を示したブロック図である。制御装置 111 00は、図 28に示すように、 CPU71、 ROM72及び RAM73を備え、これらはバスラ イン 74を介して入出力ポート 75に接続されている。また、入出力ポート 75には、車輪 駆動モータ 3等の複数の装置が接続されて 、る。 [0479] CPU71は、バスライン 74により接続された各部を制御する演算装置である。 ROM 72は、 CPU71により実行される制御プログラム(例えば、図 31から図 33に図示され る各処理のフローチャート)や固定値データ等を格納した書き換え不能な不揮発性 のメモリであり、 RAM73は、制御プログラムの実行時に各種のワークデータやフラグ 等を書き換え可能に記憶するためのメモリである。 FIG. 28 is a block diagram showing an electrical configuration of control apparatus 11100. As shown in FIG. 28, the control device 11100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74. The input / output port 75 is connected to a plurality of devices such as the wheel drive motor 3. The CPU 71 is an arithmetic device that controls each unit connected by the bus line 74. The ROM 72 is a non-rewritable nonvolatile memory storing a control program executed by the CPU 71 (for example, flowcharts of processes shown in FIGS. 31 to 33) and fixed value data, and the RAM 73 is a control memory. This memory is used to store various work data and flags in a rewritable manner during program execution.
[0480] ROM72には、図 28に示すように、すべり速度テーブル 72aが設けられている。す ベり速度テーブル 72aは、目標すベり速度の値を記憶したテーブルである。なお、目 標すべり速度とは、車輪 2の回転制御を行う際の目標値であり、 CPU71は、車両 11 001の走行中、各車輪 2の路面に対するすべり速度が目標すベり速度となるように、 各車輪 2の回転速度を制御する。  [0480] As shown in Fig. 28, the ROM 72 is provided with a sliding speed table 72a. The sliding speed table 72a is a table that stores the value of the target sliding speed. The target slip speed is a target value when the rotation control of the wheel 2 is performed, and the CPU 71 determines that the slip speed with respect to the road surface of each wheel 2 becomes the target slip speed while the vehicle 11 001 is traveling. In addition, the rotational speed of each wheel 2 is controlled.
[0481] ここで、図 29を参照して、すべり速度と摩擦係数との関係について説明する。図 29 は、すべり速度と摩擦係数との関係を示す図であり、本実施の形態における車輪 2 ( タイヤ)の物性を用いて測定した結果が例示されている。なお、図 29において、横軸 は、車輪 2の路面に対するすべり速度を示し、縦軸は、車輪 2と路面との間の摩擦係 数を示している。  [0481] Here, the relationship between the sliding speed and the friction coefficient will be described with reference to FIG. FIG. 29 is a diagram showing the relationship between the sliding speed and the friction coefficient, and illustrates the result of measurement using the physical properties of the wheel 2 (tire) in the present embodiment. In FIG. 29, the horizontal axis represents the sliding speed of the wheel 2 with respect to the road surface, and the vertical axis represents the friction coefficient between the wheel 2 and the road surface.
[0482] 図 29に示すように、車輪 2と路面との間の摩擦係数は、すべり速度の値に応じて変 化し、かつ、所定のすべり速度 (本実施の形態では、 lcmZs)で最大値を有する。  [0482] As shown in FIG. 29, the coefficient of friction between the wheel 2 and the road surface varies depending on the value of the sliding speed, and is the maximum value at a predetermined sliding speed (lcmZs in the present embodiment). Have
[0483] そこで、本発明では、摩擦係数が最大となるすべり速度を予め測定すると共に、こ の測定値を目標すべり速度として ROM72 (すべり速度テーブル 72a)内に記憶して おき、車輪 2の路面に対するすべり速度が目標すベり速度の値となるように、車輪 2の 回転速度を制御する。これにより、車輪 2と路面との間の摩擦係数を増大させることが できるので、制動 ·加速性能や旋回性能の向上を図ることができる。  [0483] Therefore, in the present invention, the sliding speed at which the friction coefficient is maximized is measured in advance, and this measured value is stored in the ROM 72 (sliding speed table 72a) as the target sliding speed. The rotation speed of wheel 2 is controlled so that the slip speed with respect to becomes the value of the target slip speed. As a result, the friction coefficient between the wheel 2 and the road surface can be increased, so that the braking / acceleration performance and the turning performance can be improved.
[0484] なお、従来のアンチロック制御では、上述したように、車輪 2のスリップ率が非スリツ プ領域からスリップ領域へ移行する直前の値を取るように制御する力 この場合の目 標スリップ率は、通常、 0. 2〜0. 3程度である。これに対し、本発明の回転制御にお ける目標すベり速度は、スリップ率に換算すれば、従来の目標スリップ率の 1〜2桁小 さな値に相当する。このような領域で車輪 2の回転速度 (すべり速度)を制御して、摩 擦係数の増大を図ると 、う技術は従来にな 、新規なものである。 [0485] 図 28に戻って説明する。 ROM72には、図 28〖こ示すよう〖こ、駆動解除テーブル 72 bと駆動復帰テーブル 72cとが設けられている。 [0484] In the conventional anti-lock control, as described above, the force for controlling the slip rate of the wheel 2 to take the value immediately before the transition from the non-slip region to the slip region. In this case, the target slip rate Is usually about 0.2 to 0.3. On the other hand, the target slip speed in the rotation control of the present invention is equivalent to a value that is 1 to 2 digits smaller than the conventional target slip ratio in terms of the slip ratio. When the rotational speed (sliding speed) of the wheel 2 is controlled in such a region to increase the friction coefficient, the technique is novel. [0485] Returning to FIG. The ROM 72 is provided with a drive release table 72b and a drive return table 72c as shown in FIG.
[0486] ここで、本発明では、車両 11001の走行中、いずれかの車輪 2を自由転動させるこ とで、その車輪 2の周速度力も車両 11001の対地速度を算出する。そのため、車輪 2 を自由転動させるベぐ車輪駆動装置 3から付与される回転駆動力を解除する必要 がある。 [0486] Here, in the present invention, any wheel 2 is freely rolled while the vehicle 11001 is traveling, and the ground speed of the vehicle 11001 is also calculated for the peripheral speed force of the wheel 2. Therefore, it is necessary to release the rotational driving force applied from the wheel drive device 3 that freely rolls the wheel 2.
[0487] そこで、駆動解除テーブル 72bには、車両 11001の対地速度を計測するべぐ車 輪駆動装置 3から車輪 2に付与されている回転駆動力を解除する際の解除速度が規 定されている。一方、駆動復帰テーブル 72cには、車両 11001の対地速度の計測が 完了し、車輪駆動装置 3から車輪 2への回転駆動力の付与を再開する際の付与速度 が規定されている。  [0487] Therefore, in the drive release table 72b, a release speed for releasing the rotational driving force applied to the wheel 2 from the wheel drive device 3 that measures the ground speed of the vehicle 11001 is specified. Yes. On the other hand, the drive return table 72c defines the applied speed when the measurement of the ground speed of the vehicle 11001 is completed and the application of the rotational driving force from the wheel drive device 3 to the wheel 2 is resumed.
[0488] これら駆動解除テーブル 72b及び駆動復帰テーブル 72cの詳細について、図 30を 参照して説明する。図 30 (a)は、駆動解除テーブル 72bの内容を模式的に図示した 模式図であり、図 30 (b)は、駆動復帰テーブル 72cの内容を模式的に図示した模式 図である。  Details of the drive release table 72b and the drive return table 72c will be described with reference to FIG. FIG. 30 (a) is a schematic diagram schematically illustrating the contents of the drive release table 72b, and FIG. 30 (b) is a schematic diagram schematically illustrating the contents of the drive return table 72c.
[0489] なお、図 30 (a)及び図 30 (b)において、横軸は、回転駆動力の解除又は付与を開 始してからの経過時間を示し、縦軸は、車輪駆動装置 3から車輪 2に付与される回転 駆動力の大きさを示している。  [0489] In Fig. 30 (a) and Fig. 30 (b), the horizontal axis indicates the elapsed time from the start of the release or application of the rotational driving force, and the vertical axis indicates from the wheel driving device 3. The magnitude of the rotational driving force applied to wheel 2 is shown.
[0490] 例えば、車輪 2に付与される回転駆動力を解除する場合には、 CPU71は、図 30 ( a)に示す駆動解除テーブル 72bから解除速度 (即ち、経過時間に対する回転駆動 力の変化率)を読み出し、その読み出した解除速度に基づいて、車輪駆動装置 3を 制御することで、車輪 2に付与する回転駆動力を徐々に減少させる。  [0490] For example, when releasing the rotational driving force applied to the wheel 2, the CPU 71 determines the release speed (ie, the rate of change of the rotational driving force with respect to the elapsed time) from the drive release table 72b shown in FIG. ), And the wheel driving device 3 is controlled based on the read release speed, thereby gradually reducing the rotational driving force applied to the wheel 2.
[0491] このように、車輪 2に既に付与されている回転駆動力を解除する場合には、かかる 回転駆動力を一気に解除するのではなぐ徐々に減少させることで、車輪 2に作用す る慣性力の影響を低減して、路面に対する追従特性を向上させることができる。これ により、車輪 2と路面との同期を安定させると共に早めることができ、その結果、車両 1 1001の対地速度の測定を高効率かつ高精度に行うことができる。  [0491] As described above, when the rotational driving force already applied to the wheel 2 is released, the inertial force acting on the wheel 2 is reduced by gradually reducing the rotational driving force rather than releasing it at once. It is possible to reduce the influence of force and improve the follow-up characteristics with respect to the road surface. As a result, the synchronization between the wheel 2 and the road surface can be stabilized and accelerated, and as a result, the ground speed of the vehicle 11001 can be measured with high efficiency and high accuracy.
[0492] 一方、車輪 2への回転駆動力の付与を再開する場合には、 CPU71は、図 30 (b) に示す駆動復帰テーブル 72cから付与速度 (即ち、経過時間に対する回転駆動力 の変化率)を読み出し、その読み出した付与速度に基づいて、車輪駆動装置 3を制 御することで、車輪 2に付与する回転駆動力を徐々に増加させる。 [0492] On the other hand, when resuming the application of the rotational driving force to the wheel 2, the CPU 71 causes Is applied to the wheel 2 by controlling the wheel drive device 3 based on the read application speed (i.e., the rate of change of the rotational driving force with respect to the elapsed time). Gradually increase the rotational driving force.
[0493] このように、車輪 2への回転駆動力の付与を再開する場合には、かかる回転駆動力 を一気に付与するのではなぐ徐々に増加させることで、上述した場合と同様に、車 輪 2に作用する慣性力の影響を低減して、路面に対する追従特性を向上させること ができる。その結果、車両 11001の挙動の安定ィ匕を図ることができる。また、車輪駆 動装置 3に過大な回転駆動力を発揮させる必要がないので、駆動負担を抑制して、 耐久性の向上を図ることができると共に、車輪駆動装置 3の小型化を図ることもできる [0493] As described above, when the application of the rotational driving force to the wheel 2 is resumed, the rotational driving force is gradually increased rather than applied all at once, as in the case described above. It is possible to reduce the influence of the inertial force acting on 2 and improve the follow-up characteristics with respect to the road surface. As a result, the behavior of the vehicle 11001 can be stabilized. In addition, since it is not necessary for the wheel drive device 3 to exert an excessive rotational driving force, it is possible to suppress the driving load and improve durability, and to reduce the size of the wheel drive device 3. it can
[0494] 図 28に戻って説明する。車輪駆動装置 3は、上述したように、各車輪 2 (図 27参照) を回転駆動するための装置であり、各車輪 2に回転駆動力を付与する 4個の FL〜R Rモータ 3FL〜3RRと、それら各モータ 3FL〜3RRを CPU71からの命令に基づ!/ヽ て駆動制御する駆動回路(図示せず)とを備えて 、る。 [0494] Returning to FIG. As described above, the wheel drive device 3 is a device for rotationally driving each wheel 2 (see FIG. 27), and includes four FL to RR motors 3FL to 3RR that apply rotational driving force to each wheel 2. And a drive circuit (not shown) for driving and controlling each of the motors 3FL to 3RR based on a command from the CPU 71.
[0495] また、ァクチユエータ装置 4は、上述したように、各車輪 2を操舵駆動するための装 置であり、各車輪 2に操舵駆動力を付与する 4個の FL〜RRァクチユエータ 4FL〜4 RRと、それら各ァクチユエータ 4FL〜4RRを CPU71からの命令に基づ!/、て駆動制 御する駆動回路(図示せず)とを備えている。  [0495] Further, as described above, the actuator device 4 is a device for steering and driving each wheel 2, and the four FL to RR actuators 4FL to 4 RR for applying a steering driving force to each wheel 2 are provided. And a drive circuit (not shown) for controlling the drive of each of these actuators 4FL to 4RR based on a command from the CPU 71 !.
[0496] 舵角センサ装置 31は、各車輪 2の舵角を検出すると共に、その検出結果を CPU7 1に出力するための装置であり、各車輪 2の舵角をそれぞれ検出する 4個の FL〜RR 舵角センサ 31FL〜31RRと、それら各舵角センサ 31FL〜31RRの検出結果を処理 して CPU71に出力する処理回路(図示せず)とを備えて!/、る。  [0496] The rudder angle sensor device 31 is a device for detecting the rudder angle of each wheel 2 and outputting the detection result to the CPU 71. The four FLs for detecting the rudder angle of each wheel 2 respectively. ~ RR Rudder angle sensors 31FL ~ 31RR and a processing circuit (not shown) that processes the detection results of these rudder angle sensors 31FL ~ 31RR and outputs them to the CPU 71!
[0497] なお、本実施の形態では、各舵角センサ 31FL〜31RRが各伝達機構部 23にそれ ぞれ設けられ、その伝達機構部 23において回転運動が直線運動に変換される際の 回転数を検出する非接触式の回転角度センサとして構成されている。この回転数は 、タイロッド 22の変位量に比例するので、 CPU71は、舵角センサ装置 31から入力さ れた検出結果(回転数)に基づいて、各車輪 2の舵角を得ることができる。  [0497] In the present embodiment, each steering angle sensor 31FL to 31RR is provided in each transmission mechanism 23, and the rotational speed when the rotational motion is converted into linear motion in the transmission mechanism 23. It is comprised as a non-contact-type rotation angle sensor which detects this. Since this rotational speed is proportional to the amount of displacement of the tie rod 22, the CPU 71 can obtain the steering angle of each wheel 2 based on the detection result (rotational speed) input from the steering angle sensor device 31.
[0498] ここで、舵角センサ装置 31により検出される舵角とは、各車輪 2の中心線と車両 11 001 (車体フレーム BF)の基準線とがなす角度であり、車両 11001の進行方向とは 無関係に定まる角度である。 Here, the rudder angle detected by the rudder angle sensor device 31 refers to the center line of each wheel 2 and the vehicle 11. This is the angle formed by the reference line of 001 (body frame BF) and is determined independently of the traveling direction of the vehicle 11001.
[0499] 車輪回転速度センサ装置 33は、各車輪 2の回転速度を検出すると共に、その検出 結果を CPU71に出力するための装置であり、各車輪 2の回転速度をそれぞれ検出 する 4個の FL〜RR回転速度センサ 33FL〜33RRと、それら各回転速度センサ 33F L〜33RRの検出結果を処理して CPU71に出力する処理回路(図示せず)とを備え ている。 [0499] The wheel rotation speed sensor device 33 is a device for detecting the rotation speed of each wheel 2 and outputting the detection result to the CPU 71. The four FLs for detecting the rotation speed of each wheel 2 respectively. To RR rotational speed sensors 33FL to 33RR, and a processing circuit (not shown) for processing the detection results of the rotational speed sensors 33FL to 33RR and outputting them to the CPU 71.
[0500] なお、本実施の形態では、各回転センサ 33FL〜33RRが各車輪 2に設けられ、各 車輪 2の角速度を回転速度として検出する。即ち、各回転センサ 33FL〜33RRは、 各車輪 2に連動して回転する回転体と、その回転体の周方向に多数形成された歯の 有無を電磁的に検出するピックアップとを備えた電磁ピックアップ式のセンサとして構 成されている。  [0500] In the present embodiment, each rotation sensor 33FL to 33RR is provided in each wheel 2, and the angular speed of each wheel 2 is detected as the rotation speed. That is, each rotation sensor 33FL to 33RR is an electromagnetic pickup provided with a rotating body that rotates in conjunction with each wheel 2 and a pickup that electromagnetically detects the presence or absence of teeth formed in the circumferential direction of the rotating body. It is configured as a sensor of the type.
[0501] CPU71は、車輪回転速度センサ装置 33から入力された各車輪 2の回転速度と、 各車輪 2の外径とから、各車輪 2の周速度を得ることができる。また、本発明では、後 述するように、車輪 2の周速度に基づいて、車両 11001の対地速度が算出される。な お、車両 11001の対地速度の算出方法については、後述する。  The CPU 71 can obtain the peripheral speed of each wheel 2 from the rotational speed of each wheel 2 input from the wheel rotational speed sensor device 33 and the outer diameter of each wheel 2. In the present invention, the ground speed of the vehicle 11001 is calculated based on the peripheral speed of the wheel 2 as described later. A method for calculating the ground speed of the vehicle 11001 will be described later.
[0502] 図 28に示す他の入出力装置 35としては、例えば、ハンドル 51、ブレーキペダル 52 及びアクセルペダル 53 (V、ずれも図 27参照)の操作状態(回転角や踏み込み量、操 作速度など)を検出するための操作状態検出センサ装置(図示せず)が例示される。  [0502] As another input / output device 35 shown in FIG. 28, for example, the operating state (rotation angle, stepping amount, operating speed) of the handle 51, the brake pedal 52, and the accelerator pedal 53 (see FIG. 27 for V and displacement). For example, an operation state detection sensor device (not shown).
[0503] 例えば、アクセルペダル 53が操作された場合には、その操作状態量が操作状態検 出センサ装置により検出され、 CPU71に出力される。 CPU71は、車輪駆動装置 3を 駆動して、各車輪 2の回転速度を制御する。  For example, when the accelerator pedal 53 is operated, the operation state amount is detected by the operation state detection sensor device and output to the CPU 71. The CPU 71 drives the wheel drive device 3 to control the rotation speed of each wheel 2.
[0504] 次いで、図 31から図 33を参照して、制御装置 11100で実行される処理を説明する 。図 31は、回転制御処理を示すフローチャートである。この処理は、制御装置 1110 0の電源が投入されている間、 CPU71によって繰り返し (例えば、 0. 2ms間隔で)実 行される処理であり、車輪 2の路面に対するすべり速度が目標すベり速度となるように 制御することで、車輪 2と路面との間の摩擦係数を増大させ、発進'制動性能や旋回 性能の向上を図る。 [0505] CPU71は、回転制御処理に関し、まず、車両 11001の対地速度を算出するべぐ 対地速度算出処理を実行する(S11001)。ここで、図 32を参照して、対地速度算出 処理について説明する。 [0504] Next, with reference to FIG. 31 to FIG. 33, processing executed by the control device 11100 will be described. FIG. 31 is a flowchart showing the rotation control process. This process is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 ms) while the power of the control device 1110 0 is turned on. The slip speed of the wheel 2 with respect to the road surface is the target slip speed. The friction coefficient between the wheel 2 and the road surface is increased to improve the starting and braking performance and turning performance. [0505] Regarding the rotation control process, the CPU 71 first executes a ground speed calculation process for calculating the ground speed of the vehicle 11001 (S11001). Here, the ground speed calculation processing will be described with reference to FIG.
[0506] 図 32は、対地速度算出処理を示すフローチャートである。 CPU71は、この対地速 度算出処理 (S11001)に関し、まず、車両 11001が走行中である力否かを判断する (S11011)。その結果、車両 11001が走行中でないと判断される場合には(S1101 l :No)、車両 11001が停車中(対地速度が 0)であり、対地速度を算出する必要がな いので、この対地速度算出処理を終了する。  FIG. 32 is a flowchart showing the ground speed calculation process. In relation to the ground speed calculation process (S11001), the CPU 71 first determines whether or not the vehicle 11001 is driving (S11011). As a result, when it is determined that the vehicle 11001 is not traveling (S1101 l: No), the vehicle 11001 is stopped (the ground speed is 0), and it is not necessary to calculate the ground speed. The speed calculation process ends.
[0507] 一方、 S11011の処理において、車両 11001が走行中であると判断される場合に は(S 11011: Yes)、次 、で、複数 (本実施の形態では 4輪)の車輪 2のうちで自由転 動している車輪、即ち、車輪駆動装置 3から回転駆動力が付与されていない車輪 2が 有る力否かを判断する(S11012)。  [0507] On the other hand, if it is determined in the processing of S11011 that the vehicle 11001 is traveling (S11011: Yes), then, out of a plurality of wheels 2 (four wheels in the present embodiment). Then, it is determined whether or not there is a wheel that is freely rolling, that is, a wheel 2 to which no rotational driving force is applied from the wheel driving device 3 (S11012).
[0508] 即ち、本発明では、上述したように、車両 11001の走行中に、いずれかの車輪 2を 自由転動させることで、その車輪 2の周速度から車両 11001の対地速度を算出する 。そのため、 S11012の処理において、自由転動している車輪 2があると判断される 場合 (例えば、左右の後輪 2RL, 2RRのみを駆動輪として走行し、左右の前輪 2FL , 2FRが自由転動している場合)には(S 11012 : Yes)、この既に自由転動している 車輪 2 (即ち、左右の前輪 2FL, 2FR)を利用して、車両 11001の対地速度を算出す ることがでさる。  That is, in the present invention, as described above, the ground speed of the vehicle 11001 is calculated from the peripheral speed of the wheel 2 by freely rolling any of the wheels 2 while the vehicle 11001 is traveling. Therefore, if it is determined in the processing of S11012 that there is a free-rolling wheel 2 (e.g., only the left and right rear wheels 2RL and 2RR are driven as drive wheels and the left and right front wheels 2FL and 2FR are free-rolling). (S 11012: Yes), the ground speed of the vehicle 11001 can be calculated using the already free-rolling wheel 2 (ie, the left and right front wheels 2FL, 2FR). I'll do it.
[0509] よって、この場合には(S11012 : Yes)、車輪 2を自由転動させるための処理である S11013力も S11015の処理をスキップして、 S 11016の処理へ移行する。  Therefore, in this case (S11012: Yes), the S11013 force, which is a process for freely rolling the wheel 2, also skips the process of S11015 and proceeds to the process of S11016.
[0510] 一方、 S11012の処理において、全ての車輪 2が車輪駆動装置 3により回転駆動さ れており、自由転動している車輪 2はないと判断される場合には(S11012 :No)、ま ず、各車輪 2の舵角を検出し (S11013)、次いで、その検出結果に基づいて、自由 転動させる車輪 2を決定する(S 11014)。  [0510] On the other hand, in the processing of S11012, when it is determined that all the wheels 2 are rotationally driven by the wheel driving device 3 and there is no free-wheeling wheel 2 (S11012: No), First, the steering angle of each wheel 2 is detected (S11013), and then the wheel 2 to be freely rolled is determined based on the detection result (S11014).
[0511] 即ち、車両 11001が旋回中であると、各車輪 2がスリップ角を有する(路面に対して 滑動している)ため、本実施の形態では、車輪 2のスリップ角による影響を最小限に 抑制するべぐ S11013の処理の結果、舵角が付与されていない車輪 2があれば、こ の車輪 2を自由転動させる車輪に決定する(S11014)。一方、 S11013の処理の結 果、舵角が付与されていな車輪 2がない場合、即ち、全ての車輪 2が舵角を有してい る場合には、付与されている舵角の絶対値が小さい車輪 2を自由転動させる車輪に 決定する(S11014)。 [0511] That is, when the vehicle 11001 is turning, each wheel 2 has a slip angle (sliding with respect to the road surface), so in this embodiment, the influence of the slip angle of the wheel 2 is minimized. If there is a wheel 2 that has not been given a rudder angle as a result of the processing of S11013, Wheel 2 is determined as a wheel that freely rolls (S11014). On the other hand, as a result of the processing of S11013, if there is no wheel 2 to which no steering angle is assigned, that is, if all wheels 2 have steering angles, the absolute value of the assigned steering angle is The small wheel 2 is determined as the wheel that freely rolls (S11014).
[0512] 例えば、車両 11001の旋回モード力 運転者によるハンドル 51の操作により、前輪 2FL, 2FRのみに舵角を付与して旋回するモードであれば、これら前輪 2FL, 2FR よりも後輪 2RL, 2RRの方がスリップ角による影響が少ないと判断し、後輪 2RL, 2R Rを自由転動転させる車輪に決定する(S 11014)。  [0512] For example, in the turning mode force of the vehicle 11001, if the driver turns the steering wheel 51 by turning the steering wheel 51 only to the front wheels 2FL, 2FR, the rear wheels 2RL, 2FR, It is determined that 2RR is less affected by the slip angle, and the rear wheels 2RL and 2R R are determined to be wheels that freely roll (S 11014).
[0513] また、車両 11001の旋回モード力 運転者によるハンドル 51の操作により、前後輪 2FL〜2RRの全てに舵角を付与して旋回するモードであれば、これら前後輪 2FL〜 2RRの中で舵角の絶対値が小さ 、車輪を自由転動転させる車輪に決定する(S 110 14)。これにより、車両 11001の対地速度をより高精度に算出することができる。  [0513] Also, the turning mode force of the vehicle 11001 If the driver turns the steering wheel 51 to give a steering angle to all of the front and rear wheels 2FL to 2RR, the front and rear wheels 2FL to 2RR The absolute value of the rudder angle is small, and the wheel is determined as a wheel that freely rolls (S 110 14). Thereby, the ground speed of the vehicle 11001 can be calculated with higher accuracy.
[0514] なお、 S11014の処理では、自由転動させる車輪として決定される車輪 2を 2輪とし 、かつ、この 2輪は、左右の車輪 2 (左右の前輪 2FL, 2FR、又は、左右の後輪 2RL, 2RR)とすることが好ましい。なお、全ての車輪 2に舵角が付与されている場合には、 舵角の絶対値が最も小さい車輪 2を含む左右の 2輪とすることが好ましい。  [0514] In the processing of S11014, the wheel 2 determined as the wheel to be freely rolled is assumed to be two wheels, and these two wheels are the left and right wheels 2 (the left and right front wheels 2FL, 2FR or the left and right rear wheels). Wheels 2RL, 2RR) are preferable. When all the wheels 2 are provided with steering angles, it is preferable that the left and right wheels include the wheels 2 having the smallest absolute value of the steering angle.
[0515] 即ち、全ての車輪 2が車輪駆動装置 3により回転駆動されている場合に(S11012 :  [0515] That is, when all the wheels 2 are rotationally driven by the wheel drive device 3 (S11012:
No)、それら各車輪 2のうちの 1輪のみが自由転動される(即ち、回転駆動力が解除 される)と、車両 11001に作用する駆動力が全体として不均一となるため、バランスが 悪ィ匕し(車両 11001を回転させようとする回転モーメントが発生し)、車両 11001の挙 動の不安定ィ匕を招くところ、自由転動させる車輪を左右の 2輪とすることで、バランス を確保して(車両 11001を回転させようとする回転モーメントの発生を抑制し)、車両 11001の挙動を安定に保つことができるからである。  No), if only one of these wheels 2 is freely rolled (ie, the rotational driving force is released), the driving force acting on the vehicle 11001 will become uneven as a whole, and the balance will be If the vehicle 11001 is unsteady in movement (causes a rotational moment to rotate the vehicle 11001), the balance of the free-wheeling wheels can be reduced by using two wheels on the left and right. This is because the behavior of the vehicle 11001 can be kept stable by ensuring the above (suppressing the generation of a rotational moment to rotate the vehicle 11001).
[0516] S11014の処理において、自由転動させる車輪を決定した後は、これら決定した車 輪 2を自由転動させるベぐ駆動解除及び復帰処理 (S 11015)を実行し、車輪駆動 装置 3から付与されている回転駆動力を解除する。ここで、図 33を参照して、駆動解 除及び復帰処理について説明する。  [0516] After the wheels to be freely rolled in the processing of S11014 are determined, the veg drive release and return processing (S11015) for freely rolling these determined wheels 2 is executed, and the wheel drive device 3 Release the applied rotational driving force. Here, with reference to FIG. 33, the drive release and return processing will be described.
[0517] 図 33は、駆動解除及び復帰処理を示すフローチャートである。なお、この駆動解除 及び復帰処理 (S11015)では、車輪 2に付与されている回転駆動力の解除と、車輪 2への回転駆動力の付与の再開とが行われる。 FIG. 33 is a flowchart showing drive release and return processing. This drive release In the return processing (S11015), the rotational driving force applied to the wheel 2 is released and the rotational driving force applied to the wheel 2 is restarted.
[0518] CPU71は、駆動解除及び復帰処理 (S11015)に関し、まず、駆動解除か否かを 判断する(S11021)。即ち、車輪 2に付与されている回転駆動力を解除するのか、 或いは、車輪 2への回転駆動力の付与を再開するのかを判断する。  [0518] Regarding the drive release and return processing (S11015), the CPU 71 first determines whether or not the drive is released (S11021). That is, it is determined whether to release the rotational driving force applied to the wheel 2 or to resume the application of the rotational driving force to the wheel 2.
[0519] 今回は、 S11014の処理の後に実行される処理であり、この S11014の処理で決 定された車輪 2を自由転動させるベぐこの車輪 2に付与されている回転駆動力の付 与を解除するための処理であるので、駆動解除であると判断される (S11021: Yes)  [0519] This time, the process is executed after the process of S11014, and the rotational driving force applied to the wheel 2 that freely rolls the wheel 2 determined in the process of S11014 is given. Since it is a process for canceling, it is determined that the drive is cancelled (S11021: Yes)
[0520] よって、この場合には(S11021 :Yes)、 S11022の処理へ移行して、まず、駆動解 除テーブル 72bから解除速度を読み出し、次いで、その読み出した解除速度で車輪 2に付与されている回転駆動力が徐々に減少するように、車輪駆動装置 3を制御し( S 11022)、この駆動解除及び復帰処理を終了する。 [0520] Therefore, in this case (S11021: Yes), the process proceeds to S11022. First, the release speed is read from the drive release table 72b, and then given to the wheel 2 at the read release speed. The wheel drive device 3 is controlled so that the rotational drive force that is gradually decreased (S 11022), and the drive release and return processing is terminated.
[0521] これにより、車輪 2への回転駆動力の付与が解除され、かかる車輪 2は、路面上を 滑動することなく転動(自由転動)する。なお、このように、回転駆動力を徐々に減少 させることで、上述した通り、自由転動となった車輪 2の路面に対する追従特性が向 上されるので、車輪 2と路面との同期を安定させると共に早めることができ、車両 110 01の対地速度の測定を高効率かつ高精度に行うことができる。  [0521] As a result, the application of the rotational driving force to the wheel 2 is released, and the wheel 2 rolls (free rolling) without sliding on the road surface. In addition, by gradually reducing the rotational driving force in this way, as described above, the follow-up characteristics of the free-wheeling wheel 2 with respect to the road surface are improved, so that the synchronization between the wheel 2 and the road surface is stabilized. The ground speed of the vehicle 110 01 can be measured with high efficiency and high accuracy.
[0522] 図 32に戻って説明する。駆動解除及び復帰処理 (S11015)により車輪 2を自由転 動させた後、或いは、既に自由転動する車輪 2が有った場合 (S11012 : Yes)には、 まず、その自由転動する車輪 2の回転速度を検出し (S11016)、次いで、検出した 車輪 2の回転速度に基づ!/、て、車両 11001の対地速度を算出する(S 11017)。  [0522] Returning to FIG. After free-rolling wheel 2 by drive release and return processing (S11015) or when there is already free-rolling wheel 2 (S11012: Yes), first, free-wheeling wheel 2 Is detected (S11016), and then the ground speed of the vehicle 11001 is calculated based on the detected rotation speed of the wheel 2 (S11017).
[0523] 具体的には、車輪 2の回転速度を車輪回転速度センサ装置 33により検出し (S110 16)、その検出された車輪 2の回転速度と、 ROM72に予め記憶される車輪 2の外径 とから、車輪 2の周速度、即ち、車両 11001の対地速度を算出する(S11017)。  [0523] Specifically, the rotational speed of the wheel 2 is detected by the wheel rotational speed sensor device 33 (S110 16), and the detected rotational speed of the wheel 2 and the outer diameter of the wheel 2 stored in the ROM 72 in advance. From the above, the peripheral speed of the wheel 2, that is, the ground speed of the vehicle 11001 is calculated (S11017).
[0524] なお、自由転動車輪が 2輪ある場合には、それら 2輪の周速度 (例えば、平均値)に 基づいて、車両 11001の対地速度を算出することが好ましい。また、自由転動される 車輪 2が舵角を有する場合には、スリップ角を推定すると共に、そのスリップ角に基づ 、て車輪 2の周速度を補正して、車両 11001の対地速度を算出することが好ま 、。 [0524] When there are two free rolling wheels, it is preferable to calculate the ground speed of the vehicle 11001 based on the peripheral speed (for example, the average value) of the two wheels. In addition, when the freely rolling wheel 2 has a rudder angle, the slip angle is estimated and based on the slip angle. It is preferable to calculate the ground speed of the vehicle 11001 by correcting the peripheral speed of the wheel 2.
[0525] S11017の処理により、車両 11001の対地速度を算出した後は、自由転動させる ために回転駆動力の付与が解除された車輪 2に対し、回転駆動力の付与を再開する ベぐ駆動解除及び復帰処理 (S11018)を実行し、この対地速度算出処理 (S1100 1)を終了する。 [0525] After the ground speed of the vehicle 11001 is calculated by the processing of S11017, the rotation drive force is resumed for the wheel 2 for which the rotation drive force is released for free rolling. The release and return processing (S11018) is executed, and the ground speed calculation processing (S1100 1) is terminated.
[0526] 図 33を参照して、説明する。 CPU71は、駆動解除及び復帰処理 (S 11018)に関 し、まず、駆動解除力否かを判断する(S11021)。今回は、 S11017の処理の後に 実行される処理であり、自由転動させるベく回転駆動力の付与が解除された車輪 2に 対し、回転駆動力の付与を再開する処理であるので、駆動解除ではないと判断され る(S11021 :No)。  [0526] This will be described with reference to FIG. In relation to the drive release and return processing (S11018), the CPU 71 first determines whether or not the drive release force is present (S11021). This time, the process is executed after the process of S11017, and the process of restarting the application of the rotational drive force to the wheel 2 for which the rotational drive force to be freely rolled has been released is resumed. (S11021: No).
[0527] よって、この場合には(S11021 :No)、 S11023の処理へ移行して、まず、駆動復 帰テーブル 72cから復帰速度を読み出し、次いで、その読み出した復帰速度で車輪 2に付与される回転駆動力が徐々に増加するように、車輪駆動装置 3を制御し (S 11 023)、この駆動解除及び復帰処理を終了する。  [0527] Therefore, in this case (S11021: No), the process proceeds to S11023. First, the return speed is read from the drive return table 72c, and then given to the wheel 2 at the read return speed. The wheel drive device 3 is controlled so that the rotational driving force gradually increases (S 11 023), and the drive release and return processing is terminated.
[0528] なお、 S11015の処理により回転駆動力の解除が行われていない場合 (即ち、 S11 012 :Yesの場合)には、回転駆動力の付与を再開する処理を実行する必要はない ので、 S 11023の処理をスキップして、この駆動解除及び復帰処理を終了する。  [0528] If the rotational driving force is not released by the processing of S11015 (ie, S11 012: Yes), it is not necessary to execute the processing for resuming the rotational driving force. The process of S 11023 is skipped, and this drive release and return process is terminated.
[0529] S11023の処理により、車輪 2への回転駆動力の付与が再開され、力かる車輪 2は 、駆動輪として機能する。なお、このように、回転駆動力を徐々に増加させることで、 上述した通り、車両 11001の挙動の安定ィ匕を図ることができ、また、車輪駆動装置 3 の駆動負担を抑制して、耐久性の向上を図ることができると共に、車輪駆動装置 3の 小型化を図ることもできる。  [0529] By the processing of S11023, the application of the rotational driving force to the wheels 2 is resumed, and the wheels 2 that act are functioning as driving wheels. In this way, by gradually increasing the rotational driving force, as described above, the behavior of the vehicle 11001 can be stabilized, and the driving load of the wheel driving device 3 can be suppressed to achieve durability. As a result, the wheel drive device 3 can be downsized.
[0530] 図 31に戻って説明する。対地速度算出処理 (S 11001)を実行し、車両 11001の 対地速度を算出した後は、次いで、その算出した車両 11001の対地速度に基づい て、車輪 2のすベり速度を算出する(S11002)。  [0530] Returning to FIG. After executing the ground speed calculation process (S 11001) and calculating the ground speed of the vehicle 11001, the sliding speed of the wheel 2 is then calculated based on the calculated ground speed of the vehicle 11001 (S11002). .
[0531] 具体的には、上述したように、車輪回転速度センサ装置 33により検出された車輪 2 の回転速度と ROM72に予め記憶される車輪 2の外径とから車輪 2の周速度を得るこ とができるので、その周速度と車両 11001の対地速度との差を取ることで、車輪 2の すべり速度を算出することができる。 [0531] Specifically, as described above, the peripheral speed of the wheel 2 is obtained from the rotational speed of the wheel 2 detected by the wheel rotational speed sensor device 33 and the outer diameter of the wheel 2 stored in advance in the ROM 72. The difference between the circumferential speed and the ground speed of the vehicle 11001 The sliding speed can be calculated.
[0532] 次いで、すべり速度テーブル 72aから目標すベり速度を読み出し (S11003)、ァク セルペダル 53の操作状態を検出した後(S11004)、駆動輪とされている車輪 2のす ベり速度が目標すベり速度となるように、車輪駆動装置 3を制御して(S 11005)、この 回転制御処理を終了する。  [0532] Next, the target slip speed is read from the slip speed table 72a (S11003), and after detecting the operation state of the accelerator pedal 53 (S11004), the slip speed of the wheel 2, which is the drive wheel, is determined. The wheel drive device 3 is controlled so as to achieve the target slip speed (S 11005), and this rotation control process is terminated.
[0533] これにより、車輪 2と路面との間の摩擦係数を増大させて、車両 11001の発進性能 、制動性能或いは旋回性能の向上を図ることができる。  [0533] Accordingly, the coefficient of friction between the wheel 2 and the road surface can be increased, and the start performance, braking performance, or turning performance of the vehicle 11001 can be improved.
[0534] なお、アクセルペダル 53の操作状態を検出した結果(S 11004)、車両 11001のカロ 速が指示されている場合には、車輪 2の周速度が車両 11001の対地速度よりも大き くなるように、車輪駆動装置 3が制御される(S 11005)。これ〖こより、車両 11001の加 速が指示されているにも関わらず、車両 11001が減速されてしまうことを回避しつつ 、路面と車輪 2との間の摩擦係数を増大させることができる。  [0534] As a result of detecting the operation state of accelerator pedal 53 (S 11004), when the speed of vehicle 11001 is instructed, the peripheral speed of wheel 2 is greater than the ground speed of vehicle 11001. Thus, the wheel drive device 3 is controlled (S 11005). Thus, it is possible to increase the coefficient of friction between the road surface and the wheel 2 while avoiding the vehicle 11001 being decelerated even though the acceleration of the vehicle 11001 is instructed.
[0535] 一方、アクセルペダル 53の操作状態を検出した結果(S 11004)、車両 11001の 減速が指示されている場合には、車輪 2の周速度が車両 11001の対地速度よりも小 さくなるように、車輪駆動装置 3が制御される(S11005)。これにより、車両 11001の 減速が指示されているにも関わらず、車両 11001が加速されてしまうことを回避しつ つ、路面と車輪 2との間の摩擦係数を増大させることができる。  [0535] On the other hand, as a result of detecting the operation state of the accelerator pedal 53 (S 11004), when the vehicle 11001 is instructed to decelerate, the peripheral speed of the wheel 2 is smaller than the ground speed of the vehicle 11001. Then, the wheel drive device 3 is controlled (S11005). As a result, the friction coefficient between the road surface and the wheel 2 can be increased while avoiding the acceleration of the vehicle 11001 despite the instruction to decelerate the vehicle 11001.
[0536] なお、図 31に示すフローチャート(回転制御処理)において、請求項 20記載のす ベり速度算出手段としては S11002の処理力 車輪駆動装置作動手段としては S11 005の処理が、図 32に示すフローチャート(対地速度算出処理)において、請求項 2 1記載の周速度算出手段としては S11016の処理が、対地速度算出手段としては S1 1017の処理が、それぞれ該当する。  In the flowchart shown in FIG. 31 (rotation control processing), the processing speed of S11002 is used as the slip speed calculation means according to claim 20, and the processing of S11005 is executed as the wheel drive device operating means in FIG. In the flowchart shown (ground speed calculation process), the peripheral speed calculation means according to claim 21 corresponds to the process of S11016, and the ground speed calculation means corresponds to the process of S1 1017.
[0537] 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら 限定されるものではなぐ本発明の趣旨を逸脱しない範囲内で種々の改良変形が可 能であることは容易に推察できるものである。  [0537] Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications and changes can be made without departing from the spirit of the present invention. Something can be easily guessed.
[0538] 例えば、上記第 11実施の形態で挙げた数値は一例であり、他の数値を採用するこ とは当然可能である。  [0538] For example, the numerical values given in the eleventh embodiment are merely examples, and other numerical values can naturally be adopted.
[0539] また、上記第 11実施の形態では、車両 11001の走行状態に関わらず、即ち、車両 11001が定速走行中であっても加減速中であっても、車輪 2のすベり速度を目標す ベり速度とするための回転制御が実行される場合を説明したが、必ずしもこれに限ら れるものではなぐ所定の条件を満たしている場合のみ、回転制御が実行されるよう に構成しても良い。なお、所定の条件を満たしている場合としては、例えば、車両 11 001の加速度又は減速度が所定値以上となった場合や、車両 11001が旋回中であ る場合が例示される。 [0539] In the eleventh embodiment, regardless of the traveling state of the vehicle 11001, that is, the vehicle Even if 11001 is running at constant speed or accelerating / decelerating, the case where the rotation control for setting the slip speed of the wheel 2 to the target slip speed is executed has been described. The rotation control may be executed only when a predetermined condition that is not limited is satisfied. Examples of the case where the predetermined condition is satisfied include a case where the acceleration or deceleration of the vehicle 11 001 exceeds a predetermined value or a case where the vehicle 11001 is turning.
[0540] また、上記第 11実施の形態では、車両 11001の走行状態に関わらず、即ち、車両 11001が直進中であっても旋回中であっても、車両 11001の対地速度を算出するよ うに構成した力 必ずしもこれに限られるものではなぐ例えば、車両 11001が直進 中である場合のみ対地速度を算出するように構成することは当然可能である。車両 1 1001が直進中である力否かは、上述したように、車輪 2の舵角に基づいて判断して も良ぐ或いは、加速度センサ装置 (例えば、圧電素子を利用した圧電型センサ)を 利用しても良い。  [0540] In the eleventh embodiment, the ground speed of the vehicle 11001 is calculated regardless of the traveling state of the vehicle 11001, that is, whether the vehicle 11001 is traveling straight or turning. The configured force is not necessarily limited to this. For example, it is naturally possible to configure to calculate the ground speed only when the vehicle 11001 is traveling straight ahead. Whether the vehicle 1 1001 is traveling straight or not can be determined based on the steering angle of the wheel 2 as described above, or an acceleration sensor device (for example, a piezoelectric sensor using a piezoelectric element) can be used. May be used.
[0541] また、上記第 11実施の形態では、車両 11001の対地速度を算出するために自由 転動させる車輪 2としては左右の 2輪とすることが好ましいと説明した力 自由転動さ せる車輪 2の数は必ずしもこれに限られるものではなぐ例えば、 1輪のみを、或いは 、 3輪以上を自由転動させることは当然可能である。同様に、自由転動させる車輪 2 が左右の 2輪である必要は必ずしもなぐ例えば、前後の 2輪であっても良い。  [0541] Further, in the eleventh embodiment described above, it is preferable that the left and right wheels 2 are preferably used as the wheels 2 to be freely rolled in order to calculate the ground speed of the vehicle 11001. The number of 2 is not necessarily limited to this. For example, it is naturally possible to freely roll only one wheel or three or more wheels. Similarly, it is not always necessary that the wheels 2 to be freely rolled are the left and right wheels. For example, the front and rear wheels may be two.
[0542] また、上記第 11実施の形態では、各車輪 2の外径が固定値データとして ROM72 内に予め記憶されている場合を説明した力 カゝかる固定値データを EEPROMなど の書き替え可能な不揮発性のメモリに記憶させると共に、その固定値データの値を 運転者等が任意に変更可能に構成しても良い。  [0542] Further, in the eleventh embodiment, it is possible to rewrite the fixed value data, such as EEPROM, which is hard to explain the case where the outer diameter of each wheel 2 is stored in advance in the ROM 72 as fixed value data. It is possible to store the data in a non-volatile memory and to change the value of the fixed value data arbitrarily by the driver.
[0543] 或いは、車輪 2の累積回転回数 (即ち、摩耗度合い)に応じて固定値データの値を 補正する (即ち、摩耗分だけ外径を小さくする)補正手段を設けても良い。これらの構 成により、車輪 2が変更 (いわゆるインチアップ)された場合や車輪 2のトレッドが摩耗 した場合などでも、車輪 2の周速度 (即ち、車両 11001の対地速度)をより高精度に 算出することができる。  [0543] Alternatively, correction means for correcting the value of the fixed value data according to the cumulative number of rotations of the wheel 2 (ie, the degree of wear) (ie, reducing the outer diameter by the amount of wear) may be provided. With these configurations, even if the wheel 2 is changed (so-called inch up) or the tread of the wheel 2 is worn, the peripheral speed of the wheel 2 (that is, the ground speed of the vehicle 11001) is calculated with higher accuracy. be able to.
[0544] また、上記第 11実施の形態では、すべり速度テーブル 72aに 1種類の目標すベり 速度のみが記憶される場合を説明したが、必ずしもこれに限られるものではなぐ複 数種類の目標すベり速度を記憶させておき、車輪 2のすベり速度を制御する際には 、 S11003の処理で読み出す目標すベり速度を適宜変更するように構成しても良い 。これにより、車輪 2と路面との間の摩擦係数をより高効率に増大させ、発進性能等の より一層の向上を図ることができる。 [0544] In the eleventh embodiment, one type of target slip is included in the slip speed table 72a. The case where only the speed is memorized has been explained, but it is not necessarily limited to this, and multiple types of target slip speeds are stored, and when controlling the slip speed of the wheel 2, S11003 The target slip speed read in the processing may be changed as appropriate. As a result, the coefficient of friction between the wheel 2 and the road surface can be increased more efficiently, and the starting performance and the like can be further improved.
[0545] 例えば、路面又は車輪 (タイヤ) 2の温度別に複数種類の目標すべり速度をすベり 速度テーブル 72aに記憶させておき、車両 11001の走行中に路面又は車輪 2の表 面温度を測定しつつ、その表面温度に対応する目標すベり速度を読み出して、車輪 2のすベり速度を制御するように構成しても良い。表面温度は、外気温から推定して も良ぐ或いは、非接触の温度センサ(赤外線センサなど)により計測しても良い。  [0545] For example, multiple types of target slip speeds are stored in the slip speed table 72a for each road surface or wheel (tire) 2 temperature, and the surface temperature of the road surface or wheel 2 is measured while the vehicle 11001 is traveling. However, the target slip speed corresponding to the surface temperature may be read and the slip speed of the wheel 2 may be controlled. The surface temperature may be estimated from the outside air temperature, or may be measured by a non-contact temperature sensor (such as an infrared sensor).
[0546] また、降雨の有無や降雨量別に複数種類の目標すべり速度をすベり速度テーブル 72aに記憶させておき、車両 11001の走行中に降雨量を測定しつつ、その降雨の有 無や降雨量に対応する目標すベり速度を読み出して、車輪 2のすベり速度を制御す るように構成しても良い。降雨量は、公知の雨量センサにより計測することができる。  [0546] Also, a plurality of types of target slip speeds are stored in the slip speed table 72a according to the presence or absence of rainfall and the amount of rainfall, while measuring the amount of rainfall while the vehicle 11001 is traveling, A configuration may be adopted in which the target slip speed corresponding to the rainfall is read and the slip speed of the wheel 2 is controlled. The rainfall amount can be measured by a known rainfall sensor.
[0547] また、路面の種類別 (例えば、アスファルトの物性別)に複数種類の目標すべり速度 をすベり速度テーブル 72aに記憶させておき、車両 11001の走行中に路面の種類 を監視しつつ、その路面の種類に対応する目標すベり速度を読み出して、車輪 2の すべり速度を制御するように構成しても良 ヽ。  [0547] Also, a plurality of types of target slip speeds are stored in the slip speed table 72a for each type of road surface (for example, asphalt physical properties), and the type of road surface is monitored while the vehicle 11001 is traveling. It is also possible to read the target slip speed corresponding to the type of road surface and control the slip speed of wheel 2.
[0548] 路面の種類は、非接触の光センサ装置を用いて推定しても良ぐ或いは、ナビゲー シヨンシステムに予め路面の種類情報を位置情報に対応付けて記憶させておき、 GP Sから得られる車両 11001の位置情報を取得し、その位置情報に対応する路面の種 類情報をナビゲーシヨンシステム力も取得するように構成しても良 、。  [0548] The type of the road surface may be estimated using a non-contact optical sensor device, or the road surface type information is stored in advance in the navigation system in association with the position information and obtained from the GP S. It is also possible to obtain the position information of the vehicle 11001 to be obtained, and obtain the road surface type information corresponding to the position information as well as the navigation system power.
[0549] また、車輪 (タイヤ) 2の種類別(例えば、タイヤのトレッドを構成するゴム素材の物性 別)に複数種類の目標すベり速度をすベり速度テーブル 72aに記憶させておき、車 両 11001に装着されている車輪 2に対応する目標すベり速度を読み出して、車輪 2 のすベり速度を制御するように構成しても良い。車輪 2の種類は、運転者により入力 可能に構成することが好まし 、。  [0549] In addition, a plurality of types of target slip speeds are stored in the slip speed table 72a for each type of wheels (tires) 2 (for example, for each physical property of the rubber material constituting the tire tread), The target slip speed corresponding to the wheel 2 mounted on the vehicle 11001 may be read to control the slip speed of the wheel 2. The type of wheel 2 is preferably configured so that it can be input by the driver.
[0550] また、上述した種々の目標すべり速度を、単独で、或いは、組み合わせて、使用し ても良い。 [0550] Further, the various target slip speeds described above may be used alone or in combination. May be.
[0551] また、上記第 11実施の形態では、駆動解除テーブル 72b及び駆動復帰テーブル 7 2cに記憶される解除速度及び復帰速度 (即ち、図 30に示す直線の傾き)が一定値と される場合を説明したが、必ずしもこれに限られるものではなぐ解除速度及び復帰 速度を変化させることは当然可能である。  In the eleventh embodiment, the release speed and return speed (that is, the slope of the straight line shown in FIG. 30) stored in the drive release table 72b and the drive return table 72c are constant values. However, this is not necessarily limited to this, and it is naturally possible to change the release speed and the return speed.
[0552] 例えば、車両 11001の加減速度に応じて変化させる場合や路面状態に応じて変 化させる場合などが例示される。具体的には、例えば、車両 11001の加減速度が大 きいほど、回転駆動力の解除等を行う際に車輪 2へ作用する慣性力の影響が大きい ため、解除速度等を遅く設定することで、慣性力の影響を低減させる。同様に、路面 の摩擦抵抗が大きいほど、回転駆動力の解除等を行う際に車輪 2へ作用する慣性力 の影響が大きいため、解除速度等を遅く設定することで、慣性力の影響を低減させる  [0552] For example, the case where the vehicle 11001 is changed according to the acceleration / deceleration of the vehicle 11001 or the case where the vehicle 11001 is changed according to the road surface condition is exemplified. Specifically, for example, the greater the acceleration / deceleration of the vehicle 11001, the greater the influence of the inertial force that acts on the wheel 2 when the rotational driving force is released, etc. Reduce the influence of inertial force. Similarly, the greater the frictional resistance of the road surface, the greater the influence of the inertial force acting on the wheel 2 when releasing the rotational driving force, etc., so the influence of the inertial force is reduced by setting the release speed etc. slower. Make
[0553] また、上記第 11実施の形態では、車両 11001が前後輪 2FL〜2RRの 4輪を備え て構成される場合を説明した力 車輪 2の数は必ずしもこれに限られるものではなぐ 例えば、 3輪であっても良ぐ 5輪以上であっても良い。 [0553] Further, in the eleventh embodiment, the number of power wheels 2 described in the case where the vehicle 11001 is configured to include four front and rear wheels 2FL to 2RR is not necessarily limited to this. For example, It can be 3 wheels or 5 wheels or more.
[0554] また、上記第 11実施の形態では、ァクチユエータ装置 4を電動モータで、伝達機構 部 23をねじ機構で、それぞれ構成する場合を説明したが、必ずしもこれ〖こ限られるも のではなぐ例えば、ァクチユエータ装置 4を油圧'空圧シリンダーで構成しても良い 。これにより、伝達機構部 23を省略することができるので、構造を簡素化して、軽量 ィ匕と部品コストの削減とを図ることができる。  In the eleventh embodiment, the case where the actuator device 4 is constituted by an electric motor and the transmission mechanism portion 23 is constituted by a screw mechanism has been described, but this is not necessarily limited, for example. The actuator device 4 may be constituted by a hydraulic / pneumatic cylinder. As a result, the transmission mechanism portion 23 can be omitted, so that the structure can be simplified, and the weight reduction and the part cost can be reduced.
[0555] また、上記第 11実施の形態では、ブレーキ装置 (例えば、摩擦力を利用したドラム ブレーキやディスクブレーキ)が車両 11001に設けられて!/ヽな 、場合を説明したが、 かかるブレーキ装置を車両 11001に設けることは当然可能である。  [0555] In the eleventh embodiment, a case has been described in which a brake device (for example, a drum brake or a disc brake using frictional force) is provided in the vehicle 11001! Of course, the vehicle 11001 can be provided.
[0556] また、車輪駆動装置 3 (FL〜RRモータ 3FL〜3RR)をいわゆる回生ブレーキとして 構成しても良い。回生ブレーキを作動させることにより発生する電力は、車輪駆動装 置 3を駆動するためのバッテリー装置(図示せず)に充填するように構成しても良い。  [0556] Further, the wheel drive device 3 (FL to RR motors 3FL to 3RR) may be configured as a so-called regenerative brake. The electric power generated by operating the regenerative brake may be configured to be charged in a battery device (not shown) for driving the wheel drive device 3.

Claims

請求の範囲 The scope of the claims
[1] 転舵可能に構成される車輪と、その車輪を操舵駆動するァクチユエータ装置とを有 する車両に対し、前記ァクチユエータ装置を作動させ、前記車輪の操舵動作を制御 する制御装置であって、  [1] A control device for operating the actuator device to control a steering operation of the wheel for a vehicle having a wheel configured to be steerable and an actuator device for steering and driving the wheel,
前記ァクチユエータ装置を作動させ、前記車輪を第 1の操舵方向に第 1の角度だけ 操舵する第 1の操舵動作と、その第 1の操舵動作の後に前記第 1の操舵方向とは反 対方向となる第 2の操舵方向に第 2の角度だけ操舵する第 2の操舵動作とを実行す るァクチユエータ作動手段を備えていることを特徴とする制御装置。  A first steering operation for operating the actuator device to steer the wheel in a first steering direction by a first angle, and a direction opposite to the first steering direction after the first steering operation. A control device, comprising: actuator actuating means for performing a second steering operation for steering the second steering direction by a second angle.
[2] 前記車輪が制動状態にあるか否かを判断する制動判断手段を備え、 [2] comprising a braking determination means for determining whether or not the wheel is in a braking state;
前記ァクチユエータ作動手段は、前記制動判断手段により前記車輪が制動状態に あると判断された場合に、前記ァクチユエータ装置を作動させることを特徴とする請求 項 1記載の制御装置。  2. The control device according to claim 1, wherein the actuator actuating means actuates the actuator apparatus when the braking judgment means judges that the wheel is in a braking state.
[3] 前記車両の対地速度を検出する対地速度検出手段と、 [3] Ground speed detection means for detecting the ground speed of the vehicle;
前記車輪の回転速度を検出する回転速度検出手段と、  Rotation speed detection means for detecting the rotation speed of the wheel;
それら対地速度検出手段および回転速度検出手段により検出された対地速度およ び回転速度に基づいて前記車輪のスリップ率を算出するスリップ率算出手段と、 前記車輪のスリップ領域に対応するスリップ率を記憶するスリップ領域記憶手段と、 そのスリップ領域記憶手段に記憶されたスリップ率と前記スリップ率算出手段により 算出されたスリップ率とに基づいて前記車輪がスリップ領域にある力否かを判断する 状態判断手段とを備え、  The slip ratio calculating means for calculating the slip ratio of the wheel based on the ground speed and the rotational speed detected by the ground speed detecting means and the rotational speed detecting means, and the slip ratio corresponding to the slip region of the wheel are stored. A slip area storage means that determines whether or not the wheel is in a slip area based on the slip rate stored in the slip area storage means and the slip ratio calculated by the slip ratio calculation means And
前記ァクチユエータ作動手段は、前記状態判断手段により前記車輪がスリップ領域 にあると判断された場合に前記ァクチユエータ装置を作動させることを特徴とする請 求項 1又は 2に記載の制御装置。  3. The control device according to claim 1, wherein the actuator operating means operates the actuator apparatus when the state determining means determines that the wheel is in a slip region.
[4] 前記第 1及び第 2の角度をそれぞれ決定する角度決定手段を備え、 [4] comprising angle determining means for determining the first and second angles,
その角度決定手段は、前記スリップ率算出手段により算出された前記車輪のスリツ プ率の値に基づき前記第 1及び第 2の角度を決定することを特徴とする請求項 3記載 の制御装置。  4. The control device according to claim 3, wherein the angle determining means determines the first and second angles based on a slip ratio value of the wheel calculated by the slip ratio calculating means.
[5] 前記第 1及び第 2の操舵動作に要する時間をそれぞれ決定する時間決定手段を備 え、 [5] Time determining means for determining the time required for the first and second steering operations is provided. e,
その時間決定手段は、前記対地速度検出手段により検出された前記車両の対地 速度の値または前記スリップ率算出手段により算出された前記車輪のスリップ率の値 の少なくとも一方に基づいて前記第 1及び第 2の操舵動作に要する時間を決定する ことを特徴とする請求項 3記載の制御装置。  The time determining means is based on at least one of the value of the ground speed of the vehicle detected by the ground speed detecting means or the value of the slip ratio of the wheels calculated by the slip ratio calculating means. 4. The control device according to claim 3, wherein a time required for the steering operation is determined.
[6] 前記車両が前記車輪を複数備えると共に、前記ァクチユエータ装置が前記複数の 車輪をそれぞれ独立に操舵駆動可能に構成され、 [6] The vehicle includes a plurality of the wheels, and the actuator device is configured to be capable of independently driving the plurality of wheels.
前記ァクチユエータ作動手段は、前記第 1及び第 2の操舵動作が前記複数の車輪 ごとに独立に実行されるように、前記ァクチユエータ装置を作動させるものであること を特徴とする請求項 1から 5のいずれかに記載の制御装置。  6. The actuator operating means is for operating the actuator device so that the first and second steering operations are performed independently for each of the plurality of wheels. The control apparatus in any one.
[7] 転舵可能に構成される車輪と、その車輪を操舵駆動するァクチユエータ装置とを有 する車両に対し、前記ァクチユエータ装置を作動させ、前記車輪の操舵動作を制御 する制御装置であって、 [7] A control device for operating the actuator device and controlling the steering operation of the wheel with respect to a vehicle having a wheel configured to be steerable and an actuator device for steering and driving the wheel,
前記車輪がスリップ領域にある力否かを判断する状態判断手段と、  State determination means for determining whether or not the wheel is in a slip region; and
前記状態判断手段により前記車輪がスリップ領域にあると判断された場合に、前記 車輪を操舵操作するために運転者が操作する操作部の操作状態に関わらず、前記 ァクチユエータ装置を作動させ、前記車輪を操舵させる第 1のァクチユエータ作動手 段と、  When the state determination means determines that the wheel is in the slip region, the actuator device is operated regardless of the operation state of the operation unit operated by the driver to steer the wheel, and the wheel A first actuator operating means for steering the
前記状態判断手段により前記車輪がスリップ領域にないと判断された場合に、前記 第 1のァクチユエータ作動手段により操舵された車輪が、前記操作部の操作状態に 応じた操舵位置まで操舵されるように、前記ァクチユエータ装置を作動させる第 2ァク チユエータ作動手段とを備えていることを特徴とする制御装置。  When the state determining means determines that the wheel is not in the slip region, the wheel steered by the first actuator actuating means is steered to a steering position corresponding to the operating state of the operating portion. And a second actuator actuating means for actuating the actuator device.
[8] 前記対地速度検出手段は、  [8] The ground speed detection means includes
前記車輪が自由転動する際の周速度を算出する周速度算出手段と、  A peripheral speed calculating means for calculating a peripheral speed when the wheel rolls freely;
その周速度算出手段により算出された前記自由転動する車輪の周速度に基づい て前記車両の対地速度を算出する対地速度算出手段とを備えていることを特徴とす る請求項 3記載の制御装置。  4. The control according to claim 3, further comprising a ground speed calculating means for calculating a ground speed of the vehicle based on a peripheral speed of the freely rolling wheel calculated by the peripheral speed calculating means. apparatus.
[9] 前記車輪に回転駆動力を付与している車輪駆動装置に対し、前記車輪への回転 駆動力の付与を解除させ、前記車輪を自由転動させる回転駆動力解除手段を備え その回転駆動力解除手段は、前記車輪駆動装置から前記車輪に付与されている 回転駆動力の値を徐々に減少させることを特徴とする請求項 8記載の制御装置。 [9] Rotation to the wheel with respect to the wheel driving device that applies rotational driving force to the wheel Rotation drive force release means for releasing the application of drive force and free-rolling the wheel is provided. The rotation drive force release means gradually increases the value of the rotation drive force applied to the wheel from the wheel drive device. 9. The control device according to claim 8, wherein the control device is decreased.
[10] 前記車輪が前記車両に複数設けられている場合に、前記車輪駆動装置力もの回 転駆動力の付与が前記回転駆動力解除手段によって解除される車輪を前記複数の 車輪の内から選択する解除車輪選択手段を備え、 [10] When a plurality of wheels are provided in the vehicle, a wheel from which the rotation driving force applied by the wheel driving device is released by the rotation driving force releasing means is selected from the plurality of wheels. A release wheel selection means for
その解除車輪選択手段は、前記複数の車輪の内の左右対称または対角線上の車 輪を選択することを特徴とする請求項 9記載の制御装置。  10. The control device according to claim 9, wherein the release wheel selecting means selects a left-right symmetric or diagonal wheel among the plurality of wheels.
[11] 前記周速度算出手段は、少なくとも 2輪の自由転動する車輪の周速度を算出し、 前記対地速度算出手段は、前記周速度算出手段により算出された少なくとも 2輪の 周速度に基づいて前記車両の対地速度を算出することを特徴とする請求項 8から 10 の!、ずれかに記載の制御装置。 [11] The peripheral speed calculating means calculates a peripheral speed of at least two free-rolling wheels, and the ground speed calculating means is based on the peripheral speed of at least two wheels calculated by the peripheral speed calculating means. 11. The ground speed of the vehicle is calculated by the above method. The control device according to any one of the above.
[12] 請求項 1から 11のいずれかに記載の制御装置を備えていることを特徴とする車両。 12. A vehicle comprising the control device according to any one of claims 1 to 11.
[13] 操舵可能に構成される複数の車輪と、それら複数の車輪の内の少なくとも 1の車輪 を操舵駆動するァクチユエータ装置とを有する車両に対し、前記ァクチユエータ装置 を作動させ、前記複数の車輪の操舵状態を制御する制御装置であって、 [13] For a vehicle having a plurality of wheels configured to be steerable and an actuator device for steering driving at least one of the plurality of wheels, the actuator device is operated, and the plurality of wheels are operated. A control device for controlling a steering state,
前記ァクチユエータ装置を作動させ、前記複数の車輪の内の少なくとも 1の車輪を Activating the actuator device and at least one of the plurality of wheels
、他の車輪の回転方向に対して抵抗力を発生し得る駐車制動配置に操舵駆動する ァクチユエータ作動手段を備えることを特徴とする制御装置。 A control device comprising an actuator actuating means for steering driving to a parking brake arrangement capable of generating a resistance force in the rotational direction of other wheels.
[14] 前記ァクチユエータ装置を前記ァクチユエータ作動手段により作動させる力否かを 判断する作動判断手段と、  [14] An operation determining means for determining whether or not the actuator device is actuated by the actuator operating means;
その作動判断手段により、前記ァクチユエータ装置を前記ァクチユエータ作動手段 により作動させると判断された場合に、前記作動の前の車輪の操舵状態を停車時配 置として記憶する配置記憶手段と、  An arrangement storage means for storing the steering state of the wheel before the operation as an arrangement at a stop when the operation determining means determines that the actuator device is to be operated by the actuator operating means;
前記ァクチユエータ作動手段による前記ァクチユエータ装置の作動が実行された 状態から、前記配置記憶手段により記憶された前記停車時配置に前記車輪の操舵 状態を復帰させるか否かを判断する復帰判断手段と、 その復帰判断手段により、前記車輪の操舵状態を前記停車時配置へ復帰させると 判断された場合に、前記ァクチユエータ装置を作動させ、前記停車時配置へ前記車 輪の操舵状態を復帰させる復帰手段とを備えていることを特徴とする請求項 13記載 の制御装置。 A return determination means for determining whether or not to return the steering state of the wheel to the stop-time arrangement stored by the arrangement storage means from a state in which the operation of the actuator device by the actuator operation means is executed; A return means for operating the actuator device to return the steering state of the wheel to the stop position when the return determination means determines that the steering state of the wheel is returned to the stop position; 14. The control device according to claim 13, further comprising:
[15] 前記車両の基準速度値を記憶する速度記憶手段と、  [15] Speed storage means for storing a reference speed value of the vehicle;
前記車両の対地速度を検出する対地速度検出手段と、  Ground speed detection means for detecting the ground speed of the vehicle;
その対地速度検出手段により検出された前記対地速度の値が前記基準速度値より も小さいか否かを判断する速度判断手段とを備え、  Speed judgment means for judging whether or not the value of the ground speed detected by the ground speed detection means is smaller than the reference speed value;
前記ァクチユエータ作動手段は、前記速度判断手段により前記対地速度の値が前 記基準速度値よりも小さいと判断された場合に前記ァクチユエータ装置を作動させ前 記車輪の操舵状態を前記駐車制動配置に操舵駆動することを特徴とする請求項 13 記載の制御装置。  The actuator operating means operates the actuator device when the speed determining means determines that the value of the ground speed is smaller than the reference speed value, and steers the steering state of the wheels to the parking brake arrangement. The control device according to claim 13, wherein the control device is driven.
[16] 前記ァクチユエータ作動手段は、前記対地速度の値が小さくなるに従って、前記複 数の車輪の操舵状態を前記駐車制動配置に近づける一方、前記対地速度の値が 大きくなるに従って、前記複数の車輪の操舵状態を運転者が前記車輪を操舵するた めに操作する操作部の操作状態に応じた操舵位置に近づけるように前記ァクチユエ ータ装置を作動させることを特徴とする請求項 15記載の制御装置。  [16] The actuator actuating means brings the steering state of the plurality of wheels closer to the parking brake arrangement as the value of the ground speed decreases, while the wheel speed increases as the value of the ground speed increases. 16. The control according to claim 15, wherein the actuator device is operated so that a steering state of the driver approaches a steering position corresponding to an operation state of an operation unit operated by a driver to steer the wheel. apparatus.
[17] 基準角度値を記憶する角度記憶手段と、  [17] angle storage means for storing a reference angle value;
路面の傾斜角度を検出する傾斜角度検出手段と、  An inclination angle detecting means for detecting an inclination angle of the road surface;
その傾斜角度検出手段により検出された前記傾斜角度の値が前記基準角度値より も大きいか否かを判断する角度判断手段とを備え、  Angle determination means for determining whether or not the value of the inclination angle detected by the inclination angle detection means is larger than the reference angle value;
前記ァクチユエータ作動手段は、前記角度判断手段により前記傾斜角度の値が前 記基準角度値よりも大きいと判断され、かつ、前記速度判断手段により前記対地速 度の値が前記基準速度値よりも小さいと判断された場合に前記ァクチユエータ装置 を作動させ前記車輪の操舵状態を前記駐車制動配置に操舵駆動することを特徴と する請求項 15又は 16に記載の制御装置。  The actuator actuating means determines that the value of the inclination angle is larger than the reference angle value by the angle judging means, and the value of the ground speed is smaller than the reference speed value by the speed judging means. 17. The control device according to claim 15, wherein when the determination is made, the actuator device is operated to steer and drive the steering state of the wheel to the parking brake arrangement.
[18] 基準角度値を記憶する角度記憶手段と、 [18] angle storage means for storing a reference angle value;
路面の傾斜角度を検出する傾斜角度検出手段と、 その傾斜角度検出手段により検出された前記傾斜角度の値が前記基準角度値より も大きいか否かを判断する角度判断手段とを備え、 An inclination angle detecting means for detecting an inclination angle of the road surface; Angle determination means for determining whether or not the value of the inclination angle detected by the inclination angle detection means is larger than the reference angle value;
前記ァクチユエータ作動手段は、少なくとも、前記角度判断手段により前記傾斜角 度の値が前記基準角度値よりも大きいと判断された場合と小さいと判断された場合と で、前記車輪の操舵状態を異なる駐車制動配置に操舵駆動することを特徴とする請 求項 13記載の制御装置。  The actuator actuating means is a parking system in which the steering state of the wheels differs depending on at least the case where the angle determination means determines that the value of the inclination angle is larger than the reference angle value. 14. The control device according to claim 13, wherein the control device is steered to a braking arrangement.
[19] 請求項 13から 18のいずれかに記載の制御装置を備えていることを特徴とする車両 [19] A vehicle comprising the control device according to any one of claims 13 to 18.
[20] 転動可能に構成される車輪と、その車輪を回転駆動する車輪駆動装置とを有する 車両に対し、前記車輪駆動装置を作動させ、前記車輪の回転速度を制御する制御 装置であって、 [20] A control device for operating a wheel drive device and controlling a rotation speed of the wheel with respect to a vehicle having a wheel configured to be able to roll and a wheel drive device that rotationally drives the wheel. ,
路面に対する前記車輪のすべり速度を算出するすべり速度算出手段と、 前記路面と前記車輪との間の摩擦係数を最大とするためのすべり速度を目標すべ り速度として記憶する記憶手段と、  A slip speed calculating means for calculating a slip speed of the wheel with respect to a road surface; a storage means for storing a slip speed for maximizing a friction coefficient between the road surface and the wheel as a target slip speed;
前記車輪の回転速度を制御して、前記すベり速度算出手段により算出される前記 車輪のすべり速度が前記記憶手段に記憶される目標すベり速度の値となるように、 前記車輪駆動装置を作動させる車輪駆動装置作動手段とを備えていることを特徴と する制御装置。  The wheel driving device controls the rotation speed of the wheel so that the slip speed of the wheel calculated by the slip speed calculating means becomes a value of a target slip speed stored in the storage means. And a wheel drive device actuating means for actuating the motor.
[21] 前記車両は、前記車輪駆動装置により回転駆動される前記車輪を複数備え、 前記車輪駆動装置は、電動モータにより構成されると共に、その電動モータが前記 複数の車輪毎に設けられ、  [21] The vehicle includes a plurality of the wheels that are rotationally driven by the wheel driving device, the wheel driving device is configured by an electric motor, and the electric motor is provided for each of the plurality of wheels,
前記車輪駆動装置作動手段が前記複数の電動モータをそれぞれ作動させることで The wheel drive device operating means operates each of the plurality of electric motors.
、前記複数の車輪の回転速度をそれぞれ独立に制御可能に構成されていることを特 徴とする請求項 20記載の制御装置。 21. The control device according to claim 20, characterized in that the rotation speeds of the plurality of wheels can be independently controlled.
[22] 前記車輪の周速度を算出する周速度算出手段と、 [22] a peripheral speed calculating means for calculating a peripheral speed of the wheel;
前記車両の対地速度を算出する対地速度算出手段とを備え、  Ground speed calculating means for calculating the ground speed of the vehicle,
前記すベり速度算出手段は、前記周速度算出手段により算出された前記車輪の周 速度と前記対地速度算出手段により算出された前記車両の対地速度とに基づいて、 前記車輪のすべり速度を算出するものであることを特徴とする請求項 20又は 21に記 載の制御装置。 The slip speed calculating means is based on the peripheral speed of the wheel calculated by the peripheral speed calculating means and the ground speed of the vehicle calculated by the ground speed calculating means. The control device according to claim 20 or 21, wherein the control device calculates a sliding speed of the wheel.
[23] 前記車輪駆動装置作動手段は、  [23] The wheel drive device operating means includes:
前記車両の加速が指示されている場合、前記車輪の回転速度を制御して、前記車 輪の周速度の値が前記車両の対地速度の値よりも大きくなり、かつ、前記車輪のす ベり速度が前記目標すべり速度となるように、前記車輪駆動装置を作動させる一方、 前記車両の減速が指示されている場合、前記車輪の回転速度を制御して、前記車 輪の周速度の値が前記車両の対地速度の値よりも小さくなり、かつ、前記車輪のす ベり速度が前記目標すべり速度となるように、前記車輪駆動装置を作動させるもので あることを特徴とする請求項 20から 22のいずれかに記載の制御装置。  When the acceleration of the vehicle is instructed, the rotational speed of the wheel is controlled so that the value of the peripheral speed of the wheel becomes larger than the value of the ground speed of the vehicle, and the slip of the wheel While the wheel drive device is operated so that the speed becomes the target slip speed, when the deceleration of the vehicle is instructed, the rotational speed of the wheel is controlled, and the value of the peripheral speed of the wheel is 21. The wheel driving device according to claim 20, wherein the wheel driving device is operated so that the ground speed of the vehicle becomes smaller than the value of the ground speed and the sliding speed of the wheel becomes the target sliding speed. 23. The control device according to any one of 22.
[24] 請求項 20から 23の 、ずれかに記載の制御装置を備えて 、ることを特徴とする車両  [24] A vehicle comprising the control device according to any one of claims 20 to 23.
PCT/JP2006/306580 2005-04-20 2006-03-29 Control device, ground speed measurement device, and vehicle WO2006114977A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005122879A JP2006298168A (en) 2005-04-20 2005-04-20 Control device
JP2005-122879 2005-04-20
JP2005133500 2005-04-28
JP2005-133500 2005-04-28
JP2005-149538 2005-05-23
JP2005149538A JP2006333548A (en) 2005-05-23 2005-05-23 Controller and vehicle
JP2005149539A JP4345711B2 (en) 2005-05-23 2005-05-23 Ground speed measuring device and vehicle
JP2005-149539 2005-05-23
JP2005-251763 2005-08-31
JP2005251763A JP4951901B2 (en) 2005-04-28 2005-08-31 Control device

Publications (1)

Publication Number Publication Date
WO2006114977A1 true WO2006114977A1 (en) 2006-11-02

Family

ID=37214605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306580 WO2006114977A1 (en) 2005-04-20 2006-03-29 Control device, ground speed measurement device, and vehicle

Country Status (1)

Country Link
WO (1) WO2006114977A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162860A1 (en) * 2013-04-05 2014-10-09 Ntn株式会社 Vehicle stop control device
WO2016098639A1 (en) * 2014-12-16 2016-06-23 Ntn株式会社 Vehicle control method and vehicle
US10144398B2 (en) 2011-09-20 2018-12-04 Lucas Automotive Gmbh Vehicle with an anti-lock brake system and a method for braking a vehicle
CN114423667A (en) * 2019-09-11 2022-04-29 株式会社万都 Steering control device and method, and steering system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175572A (en) * 1987-12-28 1989-07-12 Fuji Heavy Ind Ltd Steering device for automobile
JPH03121978A (en) * 1989-10-03 1991-05-23 Isuzu Motors Ltd Steering angle control mechanism
JP2003112650A (en) * 2001-10-05 2003-04-15 Nissan Motor Co Ltd Steering device
JP2003137123A (en) * 2001-10-31 2003-05-14 Nissan Motor Co Ltd Steering device for vehicle
JP2004034966A (en) * 2002-05-03 2004-02-05 Conception & Dev Michelin Sa Electric device for parking brake
JP2004042769A (en) * 2002-07-11 2004-02-12 Toyoda Mach Works Ltd Steering angle control device and steering angle control method
JP2004268858A (en) * 2003-03-11 2004-09-30 Tokico Ltd Steering device for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175572A (en) * 1987-12-28 1989-07-12 Fuji Heavy Ind Ltd Steering device for automobile
JPH03121978A (en) * 1989-10-03 1991-05-23 Isuzu Motors Ltd Steering angle control mechanism
JP2003112650A (en) * 2001-10-05 2003-04-15 Nissan Motor Co Ltd Steering device
JP2003137123A (en) * 2001-10-31 2003-05-14 Nissan Motor Co Ltd Steering device for vehicle
JP2004034966A (en) * 2002-05-03 2004-02-05 Conception & Dev Michelin Sa Electric device for parking brake
JP2004042769A (en) * 2002-07-11 2004-02-12 Toyoda Mach Works Ltd Steering angle control device and steering angle control method
JP2004268858A (en) * 2003-03-11 2004-09-30 Tokico Ltd Steering device for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144398B2 (en) 2011-09-20 2018-12-04 Lucas Automotive Gmbh Vehicle with an anti-lock brake system and a method for braking a vehicle
WO2014162860A1 (en) * 2013-04-05 2014-10-09 Ntn株式会社 Vehicle stop control device
JP2014201217A (en) * 2013-04-05 2014-10-27 Ntn株式会社 Stop control device for vehicle
CN105102305A (en) * 2013-04-05 2015-11-25 Ntn株式会社 Side reinforcing element for the front of a side of the shell of a motor vehicle
US9694852B2 (en) 2013-04-05 2017-07-04 Ntn Corporation Vehicle stop control device
WO2016098639A1 (en) * 2014-12-16 2016-06-23 Ntn株式会社 Vehicle control method and vehicle
CN114423667A (en) * 2019-09-11 2022-04-29 株式会社万都 Steering control device and method, and steering system

Similar Documents

Publication Publication Date Title
US6409287B1 (en) Yaw controlling apparatus for an automobile
JP3650714B2 (en) Vehicle steering system
JP5905955B2 (en) Brake device and saddle riding type vehicle
JP4797160B2 (en) Vehicle control system for escape and automobile having the system
JP2002127886A (en) Attitude control device of vehicle
JP2002127887A (en) Attitude control device of vehicle
WO2006114977A1 (en) Control device, ground speed measurement device, and vehicle
JP2006327566A (en) Control device
JP4389810B2 (en) Vehicle behavior control device
JP5040302B2 (en) Vehicle control device
JP2020523248A (en) Method and apparatus for operating a driver assistance system for a motorcycle
JP4345711B2 (en) Ground speed measuring device and vehicle
WO2007119298A1 (en) Control device and vehicle
WO2010110247A1 (en) Vehicle control device
JP5110055B2 (en) Vehicle control device
JP2009227204A (en) Camber angle adjusting device
JP5110290B2 (en) Vehicle control device
JP4853019B2 (en) Wheel control device
JP2009051497A5 (en)
JP2009040412A5 (en)
JP2006333548A (en) Controller and vehicle
JP2006298168A (en) Control device
JP6237444B2 (en) Industrial vehicle
JP2005041372A (en) Automatic traveling vehicle
JP4735739B2 (en) Ground speed measuring device and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP