JP2001120949A - Hydrogen sulfide removing method - Google Patents
Hydrogen sulfide removing methodInfo
- Publication number
- JP2001120949A JP2001120949A JP30691599A JP30691599A JP2001120949A JP 2001120949 A JP2001120949 A JP 2001120949A JP 30691599 A JP30691599 A JP 30691599A JP 30691599 A JP30691599 A JP 30691599A JP 2001120949 A JP2001120949 A JP 2001120949A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen sulfide
- absorption tower
- oxidizing agent
- waste water
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、地熱発電所で外部
に排出する不凝縮ガスから硫化水素を取除く硫化水素除
去方法で、特に除去設備の設置・運用が低コストで行え
る硫化水素除去方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing hydrogen sulfide from uncondensed gas discharged to the outside in a geothermal power plant, and more particularly to a method for removing and installing hydrogen sulfide at low cost. About.
【0002】[0002]
【従来の技術】地熱発電所では、地下から採取した地熱
蒸気で発電用タービンを回し、発電機を駆動して発電を
行っているが、この地熱蒸気中には復水器で凝縮しない
不凝縮ガスが含まれている。従来、不凝縮ガスは復水器
で凝縮水と分れ、さらにガス抽出器で凝縮可能な蒸気と
分離され、凝縮水冷却用の冷却塔の頂部(冷却用空気排
出側)に送られて排出される。冷却塔では冷却のために
大量の空気を使用し、使用後の空気を頂部から大気中に
排出するため、不凝縮ガスは冷却塔からの排気により希
釈され、濃度が著しく低下した状態で排気と共に大気中
に拡散する。この不凝縮ガスには硫化水素が含まれてい
るが、この硫化水素が、近年、悪臭の原因として問題と
なっているため、硫化水素を除去する方法が種々提案さ
れている。こうした従来の硫化水素除去方法を適用した
地熱発電所の一例を図3に示す。図3は従来の硫化水素
除去方法を用いる地熱発電所の概略構成図である。2. Description of the Related Art In a geothermal power plant, a power generation turbine is driven by geothermal steam collected from underground to drive a generator to generate power. In this geothermal steam, non-condensation which is not condensed by a condenser is used. Contains gas. Conventionally, non-condensable gas is separated from condensed water by a condenser, separated from condensable vapor by a gas extractor, and sent to the top of the cooling tower for cooling condensed water (cooling air discharge side) and discharged. Is done. In the cooling tower, a large amount of air is used for cooling, and the used air is discharged into the atmosphere from the top, so the non-condensable gas is diluted by the exhaust from the cooling tower, and together with the exhaust in a state where the concentration is significantly reduced. Diffuses into the atmosphere. This non-condensable gas contains hydrogen sulfide, and since hydrogen sulfide has recently become a problem as a cause of offensive odor, various methods for removing hydrogen sulfide have been proposed. FIG. 3 shows an example of a geothermal power plant to which such a conventional hydrogen sulfide removal method is applied. FIG. 3 is a schematic configuration diagram of a geothermal power plant using a conventional hydrogen sulfide removal method.
【0003】前記図3に示すように、従来の硫化水素除
去方法を用いる地熱発電所100は、地下から地熱流体
を取出す生産井101と、地熱流体を蒸気と熱水に分離
するセパレータ102と、生産井101からの噴気によ
る騒音を低下させるサイレンサー103と、蒸気を一旦
貯留する蒸気溜104と、セパレータ102で分離され
た熱水を地下に排出する還元井105と、蒸気により発
電用の動力を得る蒸気タービン106と、蒸気タービン
106により回転して電力を発生させる発電機107
と、蒸気を凝縮させる復水器108と、復水器108を
出た凝縮水を冷却する冷却塔109と、復水器108で
凝縮水と分れた気体から不凝縮ガスを抽出するガス抽出
器110と、不凝縮ガスに含まれる硫化水素を選択的に
除去する硫化水素除去装置111とを備える構成であ
る。As shown in FIG. 3, a geothermal power plant 100 using a conventional hydrogen sulfide removing method includes a production well 101 for extracting a geothermal fluid from underground, a separator 102 for separating the geothermal fluid into steam and hot water, A silencer 103 for reducing noise caused by a blast from the production well 101, a steam reservoir 104 for temporarily storing steam, a reduction well 105 for discharging hot water separated by the separator 102 to the underground, and power for power generation by the steam. Steam turbine 106 to be obtained, and generator 107 rotated by steam turbine 106 to generate electric power
A condenser 108 for condensing the steam, a cooling tower 109 for cooling the condensed water exiting the condenser 108, and a gas extraction for extracting non-condensable gas from the gas separated from the condensed water in the condenser 108. The apparatus includes a vessel 110 and a hydrogen sulfide removing device 111 for selectively removing hydrogen sulfide contained in non-condensable gas.
【0004】このような地熱発電所100の硫化水素除
去装置111における従来の硫化水素除去方法として
は、ローキャット法、ストレットフォード法等の湿式法
が一般的に用いられている。この湿式法のうち、ローキ
ャット法は、鉄触媒溶液中で硫化水素を酸化させ、生じ
た固体硫黄を集めて集合状態で回収するものである。ま
た、ストレットフォード法は、バナジウム触媒溶液中で
硫化水素を酸化させ、生じた固体硫黄を集めて集合状態
で回収するものである。As a conventional hydrogen sulfide removing method in the hydrogen sulfide removing device 111 of the geothermal power plant 100, a wet method such as a low-cat method or a Stretford method is generally used. Among these wet methods, the low-cat method oxidizes hydrogen sulfide in an iron catalyst solution and collects and collects the generated solid sulfur in an aggregated state. In the Stretford method, hydrogen sulfide is oxidized in a vanadium catalyst solution, and the resulting solid sulfur is collected and collected in an aggregated state.
【0005】さらに、別の硫化水素除去方法として、乾
式法も一部用いられている。これは、アルミナ及びシリ
カベース固体触媒により硫化水素を直接酸化して硫黄蒸
気に変え、最終的に溶融硫黄として回収するというもの
で、乾式のため操作及び保守が簡単であり、触媒寿命が
長く、運転経費は他装置と比べ安価にでき、設置のため
のスペースも少なくて済むという特長を有する。[0005] Further, as another method for removing hydrogen sulfide, a dry method is partially used. In this method, hydrogen sulfide is directly oxidized by an alumina and silica-based solid catalyst and converted into sulfur vapor, and finally recovered as molten sulfur.Since it is a dry system, operation and maintenance are simple, and the catalyst life is long, The operation cost can be reduced compared to other devices, and the space for installation can be reduced.
【0006】また、地熱発電以外で用いられる硫化水素
除去方法として、石油精製で用いられるアミンクラウス
法と、火力発電で用いられる石灰石−石膏法等がある。
前者は、硫化水素の一部をアルミナ系触媒(固体)を用
いて酸化して亜硫酸ガス(SO2)に変え、クラウス反
応(2H2S+SO2→S+H2O)によって溶融硫黄と
して回収するものである。後者は、硫化水素を燃焼によ
り硫黄酸化物に変換後、石灰石スラリーへ吸収させ、さ
らにスラリーごと酸化させて石膏として回収するもので
ある。[0006] As a method for removing hydrogen sulfide used other than geothermal power generation, there are an amine claus method used in petroleum refining and a limestone-gypsum method used in thermal power generation.
In the former, a part of hydrogen sulfide is oxidized by using an alumina-based catalyst (solid) to be converted into sulfurous acid gas (SO2), and is recovered as molten sulfur by a Claus reaction (2H2S + SO2 → S + H2O). In the latter, hydrogen sulfide is converted into sulfur oxide by combustion, absorbed in limestone slurry, and further oxidized with the slurry to be recovered as gypsum.
【0007】[0007]
【発明が解決しようとする課題】従来の硫化水素除去方
法は以上のように構成されており、湿式法のうち、ロー
キャット法では、排出硫化水素が多い場合には、触媒の
消耗が激しく、触媒の連続的補給もしくは再生が必要と
なり、運転経費が膨大となるという課題を有した。ま
た、ストレットフォード法は、生成される硫黄の純度が
低く、再利用しにくいため、産業廃棄物として処理する
場合が多いが、その廃棄処理費用が高コストとなってし
まうという課題を有していた。The conventional method for removing hydrogen sulfide is constituted as described above. In the low-cat method of the wet method, when the amount of discharged hydrogen sulfide is large, the consumption of the catalyst is severe, There is a problem that continuous replenishment or regeneration of the catalyst is required, and the operation cost becomes enormous. In addition, the Stretford method is often treated as industrial waste because the purity of the generated sulfur is low and it is difficult to reuse the sulfur, but there is a problem that the disposal cost is high. Was.
【0008】さらに、前記した乾式法では、運転経費に
関しては低コスト化できるものの、設備費が比較的高く
なるという課題を有していた。加えて、石油精製のアミ
ンクラウス法や、火力発電の石灰石−石膏法では、設備
が大規模になると共に、処理システムが複雑で無人運転
に適さない等、立地・運用面の制約及び経済的観点から
地熱発電所には導入が難しいという課題を有していた。Further, the above-mentioned dry method has a problem that the operating cost can be reduced, but the equipment cost is relatively high. In addition, the Amine Claus method of petroleum refining and the limestone-gypsum method of thermal power generation require large-scale facilities, complicated processing systems, and are not suitable for unmanned operation. Therefore, there was a problem that introduction into a geothermal power plant was difficult.
【0009】本発明は前記課題を解消するためになされ
たもので、硫化水素の除去工程を簡略化し、設備の初期
費用や運用コストの低減が図れる硫化水素除去方法を提
供することを目的とする。The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method for removing hydrogen sulfide, which simplifies a process for removing hydrogen sulfide and reduces initial costs and operation costs of equipment. .
【0010】[0010]
【課題を解決するための手段】本発明に係る硫化水素除
去方法は、発電用エネルギとして地熱流体を用いる地熱
発電所で、当該地熱発電所の復水器における地熱流体中
からガス抽出器により抽出された不凝縮ガスに含まれる
硫化水素を除去する硫化水素除去方法において、前記復
水器で凝縮された凝縮水を冷却する冷却塔におけるオー
バーフロー排水を所定の吸収塔上部から流下させ、前記
排水に所定の酸化処理剤を供給すると共に、吸収塔下部
から前記不凝縮ガスを吹込み、吸収塔内部で排水と不凝
縮ガス中の硫化水素とを接触させ、硫化水素を前記酸化
処理剤による酸化で硫黄に変え、当該硫黄を含む排水を
吸収塔から取出して還元井を通じ地下に排出するもので
ある。このように本発明においては、冷却塔のオーバー
フロー排水を吸収液として吸収塔に用い、さらに酸化処
理剤を排水に付加し、吸収塔で不凝縮ガス中の硫化水素
を排水中で酸化させ、生成する硫黄を含んだ排水を取出
して熱水と共に還元井を通じ地下に戻し、硫化水素の大
気中への排出を防ぐことにより、硫化水素を分解した後
の硫黄回収や排水再処理等の手間が省け、設備も簡略化
できることとなり、大気中に硫化水素を放出せず周囲環
境に悪影響を与えない状態をより低コストで実現でき
る。According to the present invention, there is provided a method for removing hydrogen sulfide, comprising the steps of extracting a geothermal fluid from a geothermal fluid in a condenser of the geothermal power plant using a geothermal fluid as energy for power generation. In the hydrogen sulfide removal method for removing hydrogen sulfide contained in the non-condensed gas, the overflow wastewater in a cooling tower that cools the condensed water condensed in the condenser is allowed to flow down from a predetermined absorption tower upper part, and the wastewater is discharged to the wastewater. While supplying a predetermined oxidizing agent, the non-condensable gas is blown from the lower part of the absorption tower, and the drainage and the hydrogen sulfide in the non-condensable gas are brought into contact inside the absorption tower, and the hydrogen sulfide is oxidized by the oxidizing agent. It converts sulfur into sulfur, extracts wastewater containing the sulfur from the absorption tower, and discharges it underground through a reduction well. As described above, in the present invention, the overflow wastewater of the cooling tower is used in the absorption tower as an absorbing solution, an oxidizing agent is further added to the wastewater, and the hydrogen sulfide in the non-condensable gas is oxidized in the wastewater by the absorption tower to produce Sulfur-containing wastewater is taken out and returned to the basement through a reducing well together with hot water to prevent the emission of hydrogen sulfide into the atmosphere, eliminating the need for sulfur recovery after decomposing hydrogen sulfide and reprocessing wastewater. In addition, the equipment can be simplified, and a state in which hydrogen sulfide is not released into the atmosphere and the surrounding environment is not adversely affected can be realized at lower cost.
【0011】また、本発明に係る硫化水素除去方法は必
要に応じて、前記酸化処理剤が、鉄(III)イオンであ
るものである。このように本発明においては、酸化処理
剤として、屑鉄や鉄を含む土壌などを酸処理して生成さ
れる鉄(III)イオンを用いることにより、硫化水素に
対する酸化力に優れる酸化処理剤が低コストで得られる
こととなり、硫化水素除去処理の運用のコストを大幅に
低減できる。In the method for removing hydrogen sulfide according to the present invention, if necessary, the oxidizing agent is iron (III) ion. As described above, in the present invention, by using iron (III) ions generated by acid-treating scrap iron and soil containing iron as the oxidizing agent, the oxidizing agent having excellent oxidizing power to hydrogen sulfide can be reduced. The cost can be obtained, and the operation cost of the hydrogen sulfide removal treatment can be significantly reduced.
【0012】また、本発明に係る硫化水素除去方法は必
要に応じて、前記酸化処理剤が、次亜塩素酸であるもの
である。このように本発明においては、酸化処理剤とし
て、地熱蒸気と共に得られる熱水を電気分解して生成可
能な次亜塩素酸を用いることにより、硫化水素に対する
酸化力に優れる酸化処理剤が低コストで得られることと
なり、硫化水素除去処理の運用のコストを大幅に低減で
きる。In the method for removing hydrogen sulfide according to the present invention, if necessary, the oxidizing agent is hypochlorous acid. As described above, in the present invention, by using hypochlorous acid, which can be generated by electrolyzing hot water obtained together with geothermal steam, as an oxidizing agent, an oxidizing agent having excellent oxidizing power to hydrogen sulfide can be produced at low cost. Thus, the operation cost of the hydrogen sulfide removal treatment can be significantly reduced.
【0013】また、本発明に係る硫化水素除去方法は必
要に応じて、前記酸化処理剤が、空気の微細気泡である
ものである。このように本発明においては、酸化処理剤
として、硫化水素に対する酸化力を有する空気の微細気
泡を発生させ、吸収塔内で硫化水素と接触させることに
より、吸収塔に対し別途特殊な酸化処理剤の生成・供給
設備が不要となり、酸化処理剤がより一層低コストで得
られることとなり、硫化水素除去処理の運用のコストを
大幅に低減できる。In the method for removing hydrogen sulfide according to the present invention, the oxidizing agent is, if necessary, fine air bubbles. As described above, in the present invention, as an oxidizing agent, a special oxidizing agent is separately applied to the absorption tower by generating microbubbles of air having an oxidizing power for hydrogen sulfide and bringing the air into contact with hydrogen sulfide in the absorption tower. This eliminates the need for a facility for producing and supplying the oxidizing agent, so that the oxidizing agent can be obtained at a lower cost, and the operating cost of the hydrogen sulfide removing treatment can be greatly reduced.
【0014】[0014]
【発明の実施の形態】以下、本発明の一実施の形態につ
いて、図1及び図2を参照しながら説明する。図1は本
実施形態に係る硫化水素除去方法を用いる地熱発電所の
概略構成図、図2は本実施形態に係る硫化水素除去方法
を用いる地熱発電所における吸収塔の概略構成図であ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic configuration diagram of a geothermal power plant using the hydrogen sulfide removal method according to the present embodiment, and FIG. 2 is a schematic configuration diagram of an absorption tower in the geothermal power plant using the hydrogen sulfide removal method according to the present embodiment.
【0015】前記各図に示すように、本実施形態に係る
硫化水素除去方法を用いる地熱発電所100は、前記従
来同様の構成において、硫化水素除去装置111の代り
に、硫化水素除去用の吸収塔112を備える構成とし、
冷却塔109におけるオーバーフロー排水を吸収塔11
2に供給すると共に、吸収塔112からの排水を還元井
105に送る仕組みを有するものである。As shown in the figures, a geothermal power plant 100 using the method for removing hydrogen sulfide according to the present embodiment has a configuration similar to that of the prior art. It is configured to have a tower 112,
The overflow wastewater in the cooling tower 109 is absorbed by the absorption tower 11
2 and a mechanism for sending the wastewater from the absorption tower 112 to the reduction well 105.
【0016】そして、本実施形態に係る硫化水素除去方
法は、ガス抽出器110により分離された前記不凝縮ガ
スを前記吸収塔112下部から吹込み、冷却塔109の
オーバーフロー排水を吸収塔112上部から流下させる
と共に、前記排水に所定の酸化処理剤を混合し、吸収塔
112内部において酸化処理剤で不凝縮ガスに含まれる
硫化水素を酸化させ、硫化水素の酸化により前記排水中
に硫黄を生じさせ、吸収塔112から排出される前記硫
黄を含む排水を、熱水と共に還元井105を通じて地下
に戻すものである。In the method for removing hydrogen sulfide according to the present embodiment, the non-condensable gas separated by the gas extractor 110 is blown from the lower part of the absorption tower 112, and the overflow wastewater of the cooling tower 109 is discharged from the upper part of the absorption tower 112. At the same time, the effluent is mixed with a predetermined oxidizing agent and the oxidizing agent is used to oxidize hydrogen sulfide contained in the noncondensable gas inside the absorption tower 112. The wastewater containing sulfur discharged from the absorption tower 112 is returned to the underground through the reduction well 105 together with the hot water.
【0017】前記吸収塔112は、スプレー式の公知の
ものであり、上方から冷却塔排水を、下方から不凝縮ガ
スをそれぞれ供給され、不凝縮ガスに含まれる硫化水素
を冷却塔排水に吸収させると共に排水中で硫化水素を酸
化させて固体硫黄を得る仕組みである。前記酸化処理剤
は、冷却塔排水に混合され、吸収塔112内で冷却塔排
水に接触した硫化水素を酸化して(水素を奪って)固体
硫黄とするものである。この酸化処理剤として、次亜塩
素酸と、鉄(III)イオンと、空気の微細気泡の三種類
を用いる。The absorption tower 112 is a spray type well-known type, and is supplied with cooling tower wastewater from above and an uncondensable gas from below, and absorbs hydrogen sulfide contained in the noncondensable gas into the cooling tower wastewater. At the same time, hydrogen sulfide is oxidized in wastewater to obtain solid sulfur. The oxidizing agent is mixed with the cooling tower effluent, and oxidizes (takes hydrogen) from the hydrogen sulfide in contact with the cooling tower effluent in the absorption tower 112 to form solid sulfur. As the oxidizing agent, three types of hypochlorous acid, iron (III) ions, and fine air bubbles are used.
【0018】次亜塩素酸は、生産井101から蒸気に付
随して得られる熱水の塩素イオン濃度が高くなっている
特徴を生かして、この熱水の電解により水溶液として生
成されるものである。また、鉄(III)イオンは、屑鉄
又は鉄分を含む土壌等を酸処理することで水溶液に含ま
れる状態で生成されるものである。これらはいずれも吸
収塔112に入る直前の冷却塔排水に添加される。一
方、空気の微細気泡は、エアアトマイザーで生成されて
吸収塔112下部から送込まれる。Hypochlorous acid is produced as an aqueous solution by electrolysis of hot water, taking advantage of the high chlorine ion concentration of hot water obtained from the production well 101 accompanying the steam. . Further, iron (III) ions are generated in a state of being contained in an aqueous solution by subjecting soil or the like containing scrap iron or iron to acid treatment. These are all added to the cooling tower drainage just before entering the absorption tower 112. On the other hand, fine air bubbles are generated by an air atomizer and sent from the lower part of the absorption tower 112.
【0019】次に、本実施の形態に係る硫化水素除去方
法による不凝縮ガスからの硫化水素除去動作について説
明する。吸収塔112には、冷却塔109におけるオー
バフロー排水を導入し、上方から流下させる。この冷却
塔排水には、あらかじめ熱水を電解して得た次亜塩素酸
及び屑鉄又は鉄を含む土壌等を酸処理して得た鉄(II
I)イオンの各水溶液を混合している。そして、吸収塔
112の下部からガス抽出器110で分離した不凝縮ガ
スを吹込み、同時に、エアアトマイザーで発生させた空
気の微細気泡を吹込む。Next, the operation of removing hydrogen sulfide from non-condensable gas by the method for removing hydrogen sulfide according to the present embodiment will be described. The overflow wastewater in the cooling tower 109 is introduced into the absorption tower 112, and flows down from above. This cooling tower drainage contains iron (II) obtained by acid-treating soil containing hypochlorous acid and scrap iron or iron obtained by electrolyzing hot water in advance.
I) Each aqueous solution of ions is mixed. Then, the non-condensable gas separated by the gas extractor 110 is blown from the lower part of the absorption tower 112, and at the same time, the fine bubbles of air generated by the air atomizer are blown.
【0020】冷却塔排水が吸収塔112内部の充填層の
表面に沿って流下する間、不凝縮ガス中の硫化水素が冷
却塔排水中の次亜塩素酸又は鉄(III)イオンと接触し
て酸化され、コロイド状固体の硫黄となる。また、不凝
縮ガス中の硫化水素は冷却塔排水中に取込まれている空
気の微細気泡とも接触して酸化され、コロイド状固体の
硫黄となり、冷却塔排水は硫黄の懸濁液となる。必要に
応じて、吸収塔112下部に達した冷却塔排水はポンプ
により再び吸収塔112上部に送られて内部に供給さ
れ、酸化処理剤の有効利用を図る仕組みとなっている。While the cooling tower effluent flows down along the surface of the packed bed inside the absorption tower 112, hydrogen sulfide in the non-condensable gas contacts hypochlorous acid or iron (III) ions in the cooling tower effluent. Oxidized to form colloidal solid sulfur. Further, the hydrogen sulfide in the non-condensable gas is also oxidized by contacting with fine bubbles of air taken into the cooling tower drainage, and becomes colloidal solid sulfur, and the cooling tower drainage becomes a sulfur suspension. If necessary, the cooling tower drainage that has reached the lower part of the absorption tower 112 is again sent to the upper part of the absorption tower 112 by a pump and supplied to the inside, so that the oxidizing agent is effectively used.
【0021】こうして、硫化水素がコロイド状となって
含まれ、懸濁液となった冷却塔排水は、吸収塔112の
下部から排出され、地下に還元する熱水と混合され、熱
水と共に還元井105を通じて地下に排出される。一
方、硫化水素を硫黄として排水に吸収された後の残りの
不凝縮ガス(ほとんど炭酸ガス)は、吸収塔112上部
からそのまま大気中に放出される。The cooling tower wastewater, which contains hydrogen sulfide in a colloidal form and becomes a suspension, is discharged from the lower part of the absorption tower 112 and mixed with hot water to be reduced underground, and is reduced together with the hot water. It is discharged underground through the well 105. On the other hand, the remaining non-condensable gas (almost carbon dioxide gas) after the hydrogen sulfide has been absorbed into the wastewater as sulfur is discharged to the atmosphere from the upper part of the absorption tower 112 as it is.
【0022】このように、本実施形態に係る硫化水素除
去方法においては、吸収塔112の吸収液として冷却塔
109のオーバーフロー排水を用い、吸収塔112内で
不凝縮ガス中の硫化水素を酸化処理剤としての次亜塩素
酸、鉄(III)イオン及び空気の微細気泡により酸化さ
せ、生成した硫黄を取込んだ冷却塔排水を還元井105
を通じ地下に戻すことから、硫化水素除去に伴う硫黄回
収や排水再処理等の手間が省け、処理設備も簡略化で
き、大気中に放出される不凝縮ガスからの硫化水素の除
去処理全体について大幅なコストダウンが図れる。As described above, in the method for removing hydrogen sulfide according to the present embodiment, the overflow effluent of the cooling tower 109 is used as the absorbing solution of the absorption tower 112, and the hydrogen sulfide in the non-condensable gas is oxidized in the absorption tower 112. The cooling tower wastewater, which has been oxidized by hypochlorous acid, iron (III) ions as an agent and fine bubbles of air, and has taken in the generated sulfur, is reduced to a reduction well 105
Return to the basement, eliminating the need for sulfur recovery and wastewater reprocessing associated with the removal of hydrogen sulfide, simplifying the processing equipment, and significantly reducing the overall removal of hydrogen sulfide from uncondensed gas released into the atmosphere. Cost can be reduced.
【0023】なお、前記実施形態に係る硫化水素除去方
法においては、酸化処理剤として次亜塩素酸、鉄(II
I)イオン、及び空気の微細気泡をそれぞれ用いる構成
としているが、これに限らず、前記三つのうち、低コス
トで脱硫効率の高いものをいずれか二つ、もしくは一つ
だけ用いる構成とすることもでき、設備及び処理工程を
より一層簡略化できる。In the method for removing hydrogen sulfide according to the embodiment, hypochlorous acid, iron (II)
I) Ion and air microbubbles are used, respectively, but the configuration is not limited to this. Of the above three, one that uses low cost and high desulfurization efficiency is used. And the equipment and processing steps can be further simplified.
【0024】[0024]
【発明の効果】以上のように本発明によれば、冷却塔の
オーバーフロー排水を吸収液として吸収塔に用い、さら
に酸化処理剤を排水に付加し、吸収塔で不凝縮ガス中の
硫化水素を排水中で酸化させ、生成する硫黄を含んだ排
水を取出して熱水と共に還元井を通じ地下に戻し、硫化
水素の大気中への排出を防ぐことにより、硫化水素を分
解した後の硫黄回収や排水再処理等の手間が省け、設備
も簡略化できることとなり、大気中に硫化水素を放出せ
ず周囲環境に悪影響を与えない状態をより低コストで実
現できるという効果を奏する。As described above, according to the present invention, the overflow wastewater of the cooling tower is used as the absorbent in the absorption tower, and an oxidizing agent is added to the wastewater, and the hydrogen sulfide in the non-condensable gas is removed by the absorption tower. It oxidizes in the wastewater, takes out the wastewater containing the generated sulfur, returns it to the basement through a reduction well together with hot water, and prevents the discharge of hydrogen sulfide into the atmosphere. This eliminates the need for reprocessing and the like, simplifies the equipment, and has the effect of reducing the cost of achieving a state in which hydrogen sulfide is not released into the atmosphere and does not adversely affect the surrounding environment.
【0025】また、本発明によれば、酸化処理剤とし
て、屑鉄や鉄を含む土壌などを酸処理して生成される鉄
(III)イオンを用いることにより、硫化水素に対する
酸化力に優れる酸化処理剤が低コストで得られることと
なり、硫化水素除去処理の運用のコストを大幅に低減で
きるという効果を有する。また、本発明によれば、酸化
処理剤として、地熱蒸気と共に得られる熱水を電気分解
して生成可能な次亜塩素酸を用いることにより、硫化水
素に対する酸化力に優れる酸化処理剤が低コストで得ら
れることとなり、硫化水素除去処理の運用のコストを大
幅に低減できるという効果を有する。Further, according to the present invention, by using an iron (III) ion generated by acid-treating soil containing scrap iron or iron as an oxidizing agent, an oxidizing agent having an excellent oxidizing power to hydrogen sulfide can be obtained. The agent can be obtained at low cost, and there is an effect that the operation cost of the hydrogen sulfide removal treatment can be significantly reduced. Further, according to the present invention, by using hypochlorous acid that can be generated by electrolyzing hot water obtained together with geothermal steam as an oxidizing agent, an oxidizing agent excellent in oxidizing power to hydrogen sulfide can be produced at low cost. Thus, the operation cost of the hydrogen sulfide removal treatment can be significantly reduced.
【0026】また、本発明によれば、酸化処理剤とし
て、硫化水素に対する酸化力を有する空気の微細気泡を
発生させ、吸収塔内で硫化水素と接触させることによ
り、吸収塔に対し別途特殊な酸化処理剤の生成・供給設
備が不要となり、酸化処理剤がより一層低コストで得ら
れることとなり、硫化水素除去処理の運用のコストを大
幅に低減できるという効果を有する。Further, according to the present invention, as an oxidizing agent, fine bubbles of air having an oxidizing power for hydrogen sulfide are generated and brought into contact with hydrogen sulfide in the absorption tower, so that a special special treatment is applied to the absorption tower. This eliminates the need for an oxidizing agent generating / supplying facility, allows the oxidizing agent to be obtained at a lower cost, and has the effect of greatly reducing the operating cost of the hydrogen sulfide removal treatment.
【図1】本発明の一実施の形態に係る硫化水素除去方法
を用いる地熱発電所の概略構成図である。FIG. 1 is a schematic configuration diagram of a geothermal power plant using a hydrogen sulfide removal method according to an embodiment of the present invention.
【図2】本発明の一実施の形態に係る硫化水素除去方法
を用いる地熱発電所における吸収塔の概略構成図であ
る。FIG. 2 is a schematic configuration diagram of an absorption tower in a geothermal power plant using the hydrogen sulfide removal method according to one embodiment of the present invention.
【図3】従来の硫化水素除去方法を用いる地熱発電所の
概略構成図である。FIG. 3 is a schematic configuration diagram of a geothermal power plant using a conventional hydrogen sulfide removal method.
100 地熱発電所 101 生産井 102 セパレータ 103 サイレンサー 104 蒸気溜 105 還元井 106 蒸気タービン 107 発電機 108 復水器 109 冷却塔 110 ガス抽出器 111 硫化水素除去装置 112 吸収塔 REFERENCE SIGNS LIST 100 Geothermal power plant 101 Production well 102 Separator 103 Silencer 104 Steam reservoir 105 Reduction well 106 Steam turbine 107 Generator 108 Condenser 109 Cooling tower 110 Gas extractor 111 Hydrogen sulfide removal device 112 Absorption tower
Claims (4)
地熱発電所で、当該地熱発電所の復水器における地熱流
体中からガス抽出器により抽出された不凝縮ガスに含ま
れる硫化水素を除去する硫化水素除去方法において、 前記復水器で凝縮された凝縮水を冷却する冷却塔におけ
るオーバーフロー排水を所定の吸収塔上部から流下さ
せ、前記排水に所定の酸化処理剤を供給すると共に、吸
収塔下部から前記不凝縮ガスを吹込み、吸収塔内部で排
水と不凝縮ガス中の硫化水素とを接触させ、硫化水素を
前記酸化処理剤による酸化で硫黄に変え、当該硫黄を含
む排水を吸収塔から取出して還元井を通じ地下に排出す
ることを特徴とする硫化水素除去方法。1. A geothermal power plant that uses a geothermal fluid as energy for power generation, and removes hydrogen sulfide contained in an uncondensable gas extracted from a geothermal fluid in a condenser of the geothermal power plant by a gas extractor. In the hydrogen removal method, the overflow wastewater in the cooling tower that cools the condensed water condensed in the condenser flows down from the upper part of the predetermined absorption tower, and supplies a predetermined oxidizing agent to the wastewater, and from the lower part of the absorption tower. The non-condensable gas is blown, the waste water and the hydrogen sulfide in the non-condensable gas are brought into contact inside the absorption tower, and the hydrogen sulfide is converted into sulfur by oxidation with the oxidizing agent, and the waste water containing the sulfur is taken out of the absorption tower. A method for removing hydrogen sulfide, which is discharged underground through a reducing well.
において、 前記酸化処理剤が、鉄(III)イオンであることを特徴
とする硫化水素除去方法。2. The hydrogen sulfide removing method according to claim 1, wherein the oxidizing agent is iron (III) ion.
去方法において、 前記酸化処理剤が、次亜塩素酸であることを特徴とする
硫化水素除去方法。3. The method for removing hydrogen sulfide according to claim 1, wherein the oxidizing agent is hypochlorous acid.
の硫化水素除去方法において、 前記酸化処理剤が、空気の微細気泡であることを特徴と
する硫化水素除去方法。4. The method for removing hydrogen sulfide according to claim 1, wherein the oxidizing agent is fine air bubbles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30691599A JP2001120949A (en) | 1999-10-28 | 1999-10-28 | Hydrogen sulfide removing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30691599A JP2001120949A (en) | 1999-10-28 | 1999-10-28 | Hydrogen sulfide removing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001120949A true JP2001120949A (en) | 2001-05-08 |
Family
ID=17962814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30691599A Pending JP2001120949A (en) | 1999-10-28 | 1999-10-28 | Hydrogen sulfide removing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001120949A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012207605A (en) * | 2011-03-30 | 2012-10-25 | Jfe Engineering Corp | Noncondensable gas processing device |
CN113738460A (en) * | 2021-07-16 | 2021-12-03 | 惠州学院 | Comprehensive geothermal utilization system based on absorption and detection of non-condensable gas |
-
1999
- 1999-10-28 JP JP30691599A patent/JP2001120949A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012207605A (en) * | 2011-03-30 | 2012-10-25 | Jfe Engineering Corp | Noncondensable gas processing device |
CN113738460A (en) * | 2021-07-16 | 2021-12-03 | 惠州学院 | Comprehensive geothermal utilization system based on absorption and detection of non-condensable gas |
CN113738460B (en) * | 2021-07-16 | 2023-08-18 | 惠州学院 | Comprehensive geothermal utilization system based on non-condensable gas absorption and detection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4928786B2 (en) | Mercury fixing method and gypsum production method using the same, mercury fixing device and flue gas desulfurization system using the same | |
JPS60172335A (en) | Wet type stack gas desulfurization apparatus | |
JP2009220021A (en) | Wet-type flue gas desulfurization apparatus | |
WO2004016717A1 (en) | Wet gas purification method and system for practicing the same | |
US6759019B1 (en) | Process for desulfurization of exhaust gas with seawater | |
CA2445139A1 (en) | Method for treating hydrogen sulfide-containing waste gases | |
CN105132040A (en) | Yellow phosphorus tail gas purification method and system | |
JP2001120949A (en) | Hydrogen sulfide removing method | |
JP7196575B2 (en) | Method for detoxifying exhaust gas containing sulfur dioxide | |
JP4146042B2 (en) | Flue gas treatment method | |
US6068822A (en) | Desulforization method and desulfurization apparatus in geothermal power plant | |
JP3700843B2 (en) | Methane fermentation method and apparatus | |
JP2013220376A (en) | Apparatus and method for seawater desulfurization | |
JP2001348346A (en) | Method for purifying methane fermentation gas | |
JP4901193B2 (en) | Pyrolysis gas purification method and apparatus | |
JP2001079339A (en) | Method and device for separating solid content of wet stack gas desulfurization device | |
JPH09124309A (en) | Treatment of sulfur pit-extracted gas | |
JP4341104B2 (en) | Wet flue gas desulfurization equipment | |
JP2002336642A (en) | Wet type waste gas desulfurizing method and apparatus | |
JP3085271B2 (en) | Method and apparatus for treating wastewater containing hydrogen peroxide | |
JPH1190495A (en) | Method for supercritical hydroxylation of organic sludge | |
CN213803276U (en) | Leachate DTRO membrane produced water retreatment system | |
JP2001347133A (en) | Wet process flue gas desulfurizing equipment | |
JPS60197224A (en) | Wet waste gas desulfurization | |
JP4152296B2 (en) | Method and apparatus for recovering odor components from organic waste water or sludge and method and apparatus for generating hydrogen |