JP2001119262A - Piezoelectric resonator - Google Patents

Piezoelectric resonator

Info

Publication number
JP2001119262A
JP2001119262A JP29449199A JP29449199A JP2001119262A JP 2001119262 A JP2001119262 A JP 2001119262A JP 29449199 A JP29449199 A JP 29449199A JP 29449199 A JP29449199 A JP 29449199A JP 2001119262 A JP2001119262 A JP 2001119262A
Authority
JP
Japan
Prior art keywords
piezoelectric
resonator
electrodes
layers
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29449199A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29449199A priority Critical patent/JP2001119262A/en
Priority to DE2000150058 priority patent/DE10050058A1/en
Priority to CNB001317679A priority patent/CN1164032C/en
Priority to KR1020000060527A priority patent/KR20010040089A/en
Publication of JP2001119262A publication Critical patent/JP2001119262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/178Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of a laminated structure of multiple piezoelectric layers with inner electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric resonator which is made smaller for its resonance frequency and has large terminal-to-terminal capacitance. SOLUTION: Two layers of internal electrodes 12 and 14 are formed among three layers of ceramic piezoelectric substrates 11, 13 and 15, ad the surface electrodes 10 and 16 are formed on both main surface of the laminated substrates 11, 13 and 15 and electrodes 12 and 14, respectively. The center substrate 13 is not polarized and both side electrodes 11 and 15 are polarized in the direction vertical to each principal surface and with their polarizing directions set opposite to each other. Then a connecting electrode 18 is added the side face of the laminated substrates to secure electrical conduction between the electrodes 10 and 14 (the electrode 18 is insulated from the electrode 12 via an insulating material 17). The other connecting electrode 20 secures electrical conduction between the electrodes 16 and 14 and is insulated form the intermediate electrode 12 via an insulating material 19 that is formed on the side face of the laminated substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電発振素子やラ
ダーフィルタ等に用いられる圧電共振子に関し、具体的
にいうと、端子間容量の大きな屈曲振動による圧電共振
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric resonator used for a piezoelectric oscillation element, a ladder filter, and the like, and more specifically, to a piezoelectric resonator using a bending vibration having a large capacitance between terminals.

【0002】[0002]

【従来の技術】300〜800kHz帯の共振子として
は、従来はセラミック圧電体の拡がり振動を利用してい
た。図1(a)は拡がり共振子1の構造を示す斜視図、
図1(b)はその分極軸及び電界軸の構成を示す側面図
である。この拡がり共振子1は、正方形状をした1層の
圧電基板2の表裏両主面に表面電極3を設け、圧電基板
2全体を両主面と垂直な方向に分極処理したものであ
る。従って、表面電極3間に印加される電界の方向(電
界軸)も両主面と垂直で分極軸と平行となっている。こ
のような拡がり振動子1では、両表面電極3間に信号を
印加すると、両主面と平行な面内において圧電基板2が
その外周方向に向けて伸縮変形する。
2. Description of the Related Art Conventionally, as a resonator in the 300 to 800 kHz band, spread vibration of a ceramic piezoelectric body has been used. FIG. 1A is a perspective view showing the structure of the spreading resonator 1,
FIG. 1B is a side view showing the configuration of the polarization axis and the electric field axis. The extended resonator 1 has a single-layer square-shaped piezoelectric substrate 2 having surface electrodes 3 provided on both front and rear main surfaces thereof, and polarization processing of the entire piezoelectric substrate 2 in a direction perpendicular to both main surfaces. Therefore, the direction of the electric field applied between the surface electrodes 3 (electric field axis) is also perpendicular to both main surfaces and parallel to the polarization axis. In such a spreading vibrator 1, when a signal is applied between both surface electrodes 3, the piezoelectric substrate 2 expands and contracts in the direction parallel to both main surfaces in the outer peripheral direction.

【0003】この拡がり共振子1では、その一辺の長さ
Lsと共振周波数frとの積は概ね一定であり、 Ls×fr=As … となる。ここで、Asは定数(周波数定数)であって、
As≒2100mmkHzである。例えば、共振周波数
がfr=450kHzの共振子を得ようとすれば、その
1辺の長さは、Ls=4.67mmとなる。
In this extended resonator 1, the product of the length Ls of one side and the resonance frequency fr is substantially constant, and Ls × fr = As. Here, As is a constant (frequency constant),
As ≒ 2100 mmkHz. For example, to obtain a resonator having a resonance frequency fr = 450 kHz, the length of one side is Ls = 4.67 mm.

【0004】電子部品の世界においては、ますます軽薄
短小化が進んでいるので、このような拡がり共振子で
は、その小型化、軽量化のみならず低コスト化の要求に
も応じ難く、このような寸法は到底許容し得ないサイズ
であった。
[0004] In the world of electronic components, the lightening, thinning, and miniaturization of the electronic components have been more and more advanced. Therefore, it is difficult to reduce the size and weight of such extended resonators, as well as to reduce the cost. The critical dimensions were unacceptable.

【0005】また、図2は、直列共振子7a、7bと並
列共振子8a、8bからなる2段構成のラダーフィルタ
6を示し、図3はその減衰量特性を示している。このよ
うなラダーフィルタ6の特性としては、図3に示す保証
減衰量Att.をできるだけ大きくする必要がある。直列共
振子7a、7bの端子間容量をC1とし、並列共振子8
a、8bの端子間容量をC2とするとき、2段構成のラ
ダーフィルタ6の保証減衰量Att.は、 Att.=2×20log(C2/C1) … で表されるから、保証減衰量Att.を大きくするために
は、並列共振子8a、8bの端子間容量C2を大きく
し、直列共振子7a、7bの端子間容量C1を小さくす
る必要がある。しかし、並列共振子8a、8bとして上
記のような拡がり共振子1を用いた場合には、以下に述
べるような理由から、端子間容量C2を大きくすること
は困難であった。
FIG. 2 shows a two-stage ladder filter 6 composed of series resonators 7a and 7b and parallel resonators 8a and 8b, and FIG. 3 shows its attenuation characteristics. As a characteristic of such a ladder filter 6, the guaranteed attenuation Att. Shown in FIG. The capacitance between the terminals of the series resonators 7a and 7b is C1, and the parallel resonator 8
Assuming that the capacitance between the terminals a and 8b is C2, the guaranteed attenuation amount Att. of the two-stage ladder filter 6 is represented by Att. = 2 × 20log (C2 / C1). In order to increase the capacitance, it is necessary to increase the inter-terminal capacitance C2 of the parallel resonators 8a and 8b and to decrease the inter-terminal capacitance C1 of the series resonators 7a and 7b. However, when the above-described extended resonator 1 is used as the parallel resonators 8a and 8b, it is difficult to increase the inter-terminal capacitance C2 for the following reasons.

【0006】図1(a)に示したような拡がり共振子1
の端子間容量Csは、その一辺の長さをLs、圧電基板の
比誘電率をε、厚みをtとすると、 Cs=(ε・ε・Ls)/t … で表される。ここで、εは真空中の誘電率であって、
ε=8.854×10 −12である。
[0006] The spreading resonator 1 as shown in FIG.
The terminal-to-terminal capacitance Cs of the piezoelectric substrate
Assuming that the relative permittivity is ε and the thickness is t, Cs = (ε · ε0・ Ls2) / T... Where ε0Is the dielectric constant in vacuum,
ε0= 8.854 × 10 -12It is.

【0007】拡がり共振子1の共振周波数frが決まる
と、その拡がり共振子1の一辺の長さLsが決まる(前
記式参照)から、端子間容量Csは圧電基板2の厚み
tと比誘電率εだけで決まることになる。
When the resonance frequency fr of the spreading resonator 1 is determined, the length Ls of one side of the spreading resonator 1 is determined (see the above equation). Therefore, the terminal capacitance Cs is determined by the thickness t of the piezoelectric substrate 2 and the relative permittivity. It is determined only by ε.

【0008】拡がり共振子1の端子間容量Csを大きく
するためには、圧電基板2の比誘電率εを大きくする
か、その厚みtを薄くする必要がある。ところが、圧電
基板2の比誘電率εは、圧電基板2の材料に固有の定数
であって、任意に選択できるものでなく、また圧電基板
材料を変えると他の特性にも影響が生じる。また、圧電
基板2の厚みtを薄くすると、破壊強度が小さくなり、
拡がり共振子1が破損し易くなるので、その選択範囲に
は限界があった。
In order to increase the inter-terminal capacitance Cs of the spreading resonator 1, it is necessary to increase the relative permittivity ε of the piezoelectric substrate 2 or to reduce its thickness t. However, the relative permittivity ε of the piezoelectric substrate 2 is a constant unique to the material of the piezoelectric substrate 2 and cannot be arbitrarily selected. Changing the material of the piezoelectric substrate also affects other characteristics. Further, when the thickness t of the piezoelectric substrate 2 is reduced, the breaking strength decreases,
Since the expansion resonator 1 is easily damaged, there is a limit to the selection range.

【0009】従って、ラダーフィルタの並列共振子とし
ては、端子間容量の大きな共振子が求められているにも
拘わらず、端子間容量の大きな拡がり共振子を得ること
が困難であった。それどころか、上記定数Csに相当す
る定数の小さな圧電共振子が開発され、圧電共振子の小
型化が可能になったとすると、その結果端子間容量が小
さくなるので、並列共振子として用いた場合には、ラダ
ーフィルタの保証減衰量は悪くなってしまう。
Accordingly, it has been difficult to obtain a wide-spread resonator having a large capacitance between terminals, although a resonator having a large capacitance between terminals is required as a parallel resonator of a ladder filter. On the contrary, if a piezoelectric resonator having a small constant corresponding to the above-described constant Cs is developed and the piezoelectric resonator can be miniaturized, the capacitance between terminals becomes small as a result. As a result, the guaranteed attenuation of the ladder filter becomes worse.

【0010】[0010]

【発明が解決しようとする課題】本発明は上述の技術的
問題点を解決するためになされたものであり、その目的
とするところは、同じ共振周波数であれば、より寸法を
小さくでき、しかも、端子間容量の大きな圧電共振子を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned technical problems, and an object of the present invention is to reduce the size if the same resonance frequency is used. Another object of the present invention is to provide a piezoelectric resonator having a large terminal capacitance.

【0011】[0011]

【課題を解決するための手段】請求項1に記載の圧電共
振子は、4層以上の電極と3層以上の圧電体層とを積層
し、該圧電体層のうち少なくとも2層を前記電極と垂直
な方向に分極させた圧電共振子であって、一部の圧電体
層においては該圧電体層の分極方向と同じ向きに電界が
発生し、他の一部の圧電体層においては該圧電体層の分
極方向と異なる向きに電界が発生するにように前記電極
どうしを接続したことを特徴としている。
According to a first aspect of the present invention, there is provided a piezoelectric resonator in which at least four layers of electrodes and three or more layers of piezoelectric material are laminated, and at least two of the piezoelectric layers are formed of the electrodes. The piezoelectric resonator is polarized in a direction perpendicular to the direction, an electric field is generated in some piezoelectric layers in the same direction as the polarization direction of the piezoelectric layers, and the electric field is generated in other piezoelectric layers. The electrodes are connected so that an electric field is generated in a direction different from the polarization direction of the piezoelectric layer.

【0012】請求項2に記載の圧電共振子は、請求項1
に記載した圧電共振子において、偶数層の電極と奇数層
の圧電体層が積層され、中央の圧電体層は分極しておら
ず、その片側で分極方向と電界の向きとが同じ向きとな
り、もう一方の片側で分極方向と電界の向きとが反対向
きとなるように前記電極どうしを接続したことを特徴と
している。
[0012] The piezoelectric resonator according to the second aspect is the first aspect.
In the piezoelectric resonator described in the above, the even number of electrodes and the odd number of piezoelectric layers are stacked, the central piezoelectric layer is not polarized, and the polarization direction and the direction of the electric field are the same on one side, The invention is characterized in that the electrodes are connected to each other so that the polarization direction and the direction of the electric field are opposite to each other.

【0013】[0013]

【作用】請求項1に記載した圧電共振子にあっては、分
極方向と電界方向とが同じ向きの圧電体層は中心方向に
縮まり、分極方向と電界方向とが異なる向きの圧電体層
では外縁方向に拡がるので、圧電共振子全体としては屈
曲振動する。このような屈曲振動の圧電共振子にあって
は、その1辺の長さと共振周波数との積が拡がり共振子
と比較して小さくなるので、同じ周波数帯域の圧電共振
子であれば、圧電共振子の寸法を小さくすることができ
る。しかも、この圧電共振子にあっては、4層以上の電
極を有しているので、これらの各電極間に端子間容量を
形成することができ、端子間容量を大きくすることがで
きる。しかも、各圧電体層は積層されているので、強度
を低下させることなく各圧電体層の厚みを薄くすること
ができ、より一層圧電共振子の端子間容量を大きくでき
る。
In the piezoelectric resonator according to the first aspect, the piezoelectric layer in which the polarization direction and the electric field direction are in the same direction shrinks in the center direction, and the piezoelectric layer in which the polarization direction and the electric field direction are different from each other. Since the piezoelectric resonator expands in the outer edge direction, the piezoelectric resonator as a whole undergoes bending vibration. In such a bending vibration piezoelectric resonator, the product of the length of one side and the resonance frequency expands and becomes smaller as compared with the resonator. The size of the child can be reduced. In addition, since this piezoelectric resonator has four or more layers of electrodes, a terminal capacitance can be formed between these electrodes, and the terminal capacitance can be increased. In addition, since the piezoelectric layers are stacked, the thickness of each piezoelectric layer can be reduced without lowering the strength, and the capacitance between terminals of the piezoelectric resonator can be further increased.

【0014】請求項2に記載の圧電共振子にあっては、
中央の圧電体層を分極させず、その片側で分極方向と電
界の向きとが同じ向きとなり、もう一方の片側で分極方
向と電界の向きとが反対向きとなっているから、大きな
屈曲振動を得ることができる。また、分極していない圧
電体層を挿入することによって強度を低下させることな
く他の圧電体層を薄くでき、より端子間容量を大きくで
きる。
In the piezoelectric resonator according to the second aspect,
Since the central piezoelectric layer is not polarized, the polarization direction and the direction of the electric field are the same on one side, and the polarization direction and the direction of the electric field are opposite on the other side. Obtainable. Further, by inserting a non-polarized piezoelectric layer, the other piezoelectric layers can be thinned without lowering the strength, and the capacitance between terminals can be further increased.

【0015】[0015]

【発明の実施の形態】(第1の実施形態)図4は本発明
の一実施形態による圧電共振子9を示す斜視図、図5は
その断面図であって、この圧電共振子9は例えば300
kHz〜800kHzの周波数帯域においてセラミック
発振子として用いられるものである。この圧電共振子9
は、正方形状をした3層のセラミック圧電体層11、1
3、15の間に2層の内部電極12、14を挟み込み、
積層された圧電体層11、13、15及び内部電極1
2、14の表裏両主面にそれぞれ表面電極10、16を
形成したものである。中央の圧電体層13は分極してお
らず、その両側の圧電体層11、15は主面と垂直な方
向で、かつ分極方向が互いに反対向きとなるようにに分
極処理を施されている。なお、分極方向は、図5におい
て実線矢符で示すように、中央の圧電体層13を挟んで
内向きになっていてもよく、中央の圧電体層13を挟ん
で外向きになっていてもよい。
(First Embodiment) FIG. 4 is a perspective view showing a piezoelectric resonator 9 according to an embodiment of the present invention, and FIG. 5 is a cross-sectional view thereof. 300
It is used as a ceramic oscillator in a frequency band of kHz to 800 kHz. This piezoelectric resonator 9
Are three square ceramic piezoelectric layers 11, 1
Sandwiching two layers of internal electrodes 12 and 14 between 3 and 15;
The laminated piezoelectric layers 11, 13, 15 and the internal electrode 1
Surface electrodes 10 and 16 are formed on both the front and back main surfaces of Nos. 2 and 14, respectively. The central piezoelectric layer 13 is not polarized, and the piezoelectric layers 11 and 15 on both sides thereof are subjected to polarization processing in a direction perpendicular to the main surface and in directions opposite to each other. . Note that the polarization direction may be inward with the center piezoelectric layer 13 interposed therebetween, or may be outward with the center piezoelectric layer 13 interposed therebetween, as indicated by solid arrows in FIG. Is also good.

【0016】さらに、この圧電共振子9においては、両
側面に接続用電極18、20が設けられている。一方の
接続用電極18は1層おきの表面電極10及び内部電極
14と電気的に導通しており、側面に形成された絶縁材
料17によって中間の内部電極12とは絶縁されてい
る。また、他方の接続用電極20は一層おきの表面電極
16及び内部電極12と電気的に導通しており、側面に
形成された絶縁材料19によって中間の内部電極14と
絶縁されている。
Further, in the piezoelectric resonator 9, connection electrodes 18 and 20 are provided on both side surfaces. The connection electrode 18 is electrically connected to the surface electrode 10 and the internal electrode 14 in every other layer, and is insulated from the intermediate internal electrode 12 by the insulating material 17 formed on the side surface. The other connection electrode 20 is electrically connected to the other surface electrode 16 and the internal electrode 12 and is insulated from the intermediate internal electrode 14 by an insulating material 19 formed on the side surface.

【0017】従って、両表面電極10、16に図5に波
線矢符で示すような向きに電圧を印加すると、一方の圧
電体層11内部では電界方向と分極方向とが同じ向きと
なって圧電体層11は中心方向へ縮み、他方の圧電体層
15内部では電界方向と分極方向とが反対向きとなって
圧電体層15は外縁方向に拡がる。その結果、両表面電
極10、16間に信号(高周波電界)を印加すると、両
圧電体層11、15はいずれも拡がり振動して外縁方向
と中心方向に伸縮しようとするが、その伸張と収縮の位
相が反転しているので、全体としては圧電共振子9が湾
曲して両主面が交互に凹凸を繰り返すように変形する
(以下、これを屈曲振動といい、本発明の圧電共振子9
を屈曲共振子という)。
Therefore, when a voltage is applied to both the surface electrodes 10 and 16 in the directions indicated by the dashed arrows in FIG. The body layer 11 contracts toward the center, and the electric field direction and the polarization direction are opposite to each other inside the other piezoelectric layer 15, and the piezoelectric layer 15 expands toward the outer edge. As a result, when a signal (high-frequency electric field) is applied between both the surface electrodes 10 and 16, both the piezoelectric layers 11 and 15 expand and vibrate and try to expand and contract in the outer edge direction and the center direction. Are inverted, so that the piezoelectric resonator 9 as a whole is curved and deformed such that both main surfaces alternately repeat irregularities (hereinafter referred to as bending vibration, and the piezoelectric resonator 9 according to the present invention).
Is called a bending resonator).

【0018】このように3層構造の屈曲共振子9では、
その1辺の長さをLb、圧電体層11、13、15の比
誘電率をε、各圧電体層11、13、15の厚みをt
1、t2、t3とすると、その端子間容量Cbは次の式で
表される。 Cb=(ε・ε・Lb)(1/ta+1/tb+1/tc) … で表される。ここで、εは真空中の誘電率である。
As described above, in the bending resonator 9 having the three-layer structure,
The length of one side is Lb, the relative permittivity of the piezoelectric layers 11, 13, 15 is ε, and the thickness of each of the piezoelectric layers 11, 13, 15 is t.
Assuming that 1, t2 and t3, the inter-terminal capacitance Cb is represented by the following equation. Cb = (ε · ε 0 · Lb 2) (1 / ta + 1 / tb + 1 / tc) ... represented by. Here, ε 0 is a dielectric constant in a vacuum.

【0019】いま、同じ圧電材料(εの値が同じ)で、
寸法が等しく(Lb=Ls)、厚みも等しい(ta+tb+
tc=t)拡がり共振子1とこの屈曲共振子9とを比較
すると、拡がり共振子1の端子間容量は式で表され
る。これに対し、屈曲共振子9の各圧電体層11、1
3、15の厚みが等しいとすると(ta=tb=tc=t
/3)、その端子間容量は次の′式となる。 よって、本発明の屈曲共振子9では、同じ大きさ、同じ
厚みの拡がり共振子1と比較して9倍の端子間容量を得
ることができる。また、圧電体層11、13、15の厚
みを薄くしても、これらが積層されて全体の厚みに変わ
りがないので、強度も変わりがない。
Now, for the same piezoelectric material (having the same value of ε),
The dimensions are equal (Lb = Ls) and the thickness is equal (ta + tb +
tc = t) When the expansion resonator 1 is compared with the bending resonator 9, the capacitance between terminals of the expansion resonator 1 is expressed by the following equation. On the other hand, each piezoelectric layer 11, 1
Assuming that the thicknesses 3 and 15 are equal (ta = tb = tc = t
/ 3), and the inter-terminal capacitance is given by the following equation. Therefore, in the bending resonator 9 of the present invention, nine times the inter-terminal capacitance can be obtained as compared with the spreading resonator 1 having the same size and the same thickness. Further, even if the thickness of the piezoelectric layers 11, 13, 15 is reduced, they are laminated and the overall thickness does not change, so that the strength does not change.

【0020】したがって、図2に示したようなラダーフ
ィルタに用いられている並列共振子8a、8bを拡がり
共振子1から3層構造の屈曲共振子9に交換すると、ラ
ダーフィルタの保証減衰量は次の式で表されるよう
に、38.2dBだけ大きくなる。 ΔAtt.=2×20log(Cb/Cs)=38.2[dB] … なお、従来の手法である誘電率εの異なる材料を選んだ
り、直列共振子と並列共振子の厚みを変えるなどの方法
を組み合わせれば、より広範に容量比や保証減衰量を設
計することが可能になる。
Therefore, when the parallel resonators 8a and 8b used in the ladder filter as shown in FIG. 2 are expanded and replaced with the bent resonator 9 having a three-layer structure, the guaranteed attenuation of the ladder filter becomes It is increased by 38.2 dB as expressed by the following equation. ΔAtt. = 2 × 20 log (Cb / Cs) = 38.2 [dB]... A method of selecting a material having a different dielectric constant ε or changing the thickness of the series resonator and the parallel resonator, which is a conventional technique. By combining the above, it becomes possible to design the capacity ratio and the guaranteed attenuation more widely.

【0021】また、この屈曲共振子9でも、1辺の長さ
Lbと共振周波数frとの積は概ね一定であって、 Lb×fr=Ab となる。ここで、この周波数常数は、 Ab≒430mmkHz である。
Also in this bending resonator 9, the product of the length Lb of one side and the resonance frequency fr is substantially constant, and Lb × fr = Ab. Here, this frequency constant is Ab ≒ 430 mmkHz.

【0022】この屈曲共振子9の周波数定数Abは、拡
がり共振子1の周波数定数Asに比べて約0.3倍(=A
b/As)であるから、同じ共振周波数frに対しては、
屈曲共振子9の1辺の長さLbは拡がり共振子1の1辺
の長さLsの約0.3倍となる。従って、この屈曲共振子
9と拡がり共振子1を比較すると、1辺の長さで屈曲共
振子9は拡がり共振子1の約1/3.3以下となり、面
積で約1/10となる。よって、同一共振周波数frで
あれば、屈曲共振子9を用いることにより、拡がり共振
子1に比べて共振子サイズを大幅に小さくすることがで
きる。
The frequency constant Ab of the bent resonator 9 is about 0.3 times (= A) the frequency constant As of the extended resonator 1.
b / As), for the same resonance frequency fr,
The length Lb of one side of the bending resonator 9 is about 0.3 times the length Ls of one side of the expanding resonator 1. Therefore, when the bending resonator 9 is compared with the expanding resonator 1, the bending resonator 9 is about 1 / 3.3 or less of the expanding resonator 1 by one side length, and is about 1/10 in area. Therefore, if the resonance frequency fr is the same, the size of the resonator can be significantly reduced by using the bending resonator 9 as compared with the expansion resonator 1.

【0023】また、上記のように同じ共振周波数frの
拡がり共振子1と屈曲共振子9を比較すると、屈曲共振
子9では面積が約1/10倍(Lb=Ls/10)と
なり、各圧電体層11、13、15の厚みが1/3(t
a=tb=tc=t/3)であるとすると、屈曲共振子9
の端子間容量Cbは拡がり共振子1の端子間容量Csの約
9/10倍となり、サイズが約1/10になったにも拘
わらず、ほぼ同等な端子間容量が得られる。さらに、厚
みが同じでも寸法が小さくなった分だけ、強度は向上す
る。
Further, when comparing the spread resonator 1 and the bending resonator 9 of the same resonance frequency fr, as described above, an area of about one-tenth the flexural resonator 9 (Lb 2 = Ls 2/ 10) , and the The thickness of each of the piezoelectric layers 11, 13, 15 is 1/3 (t
a = tb = tc = t / 3), the bending resonator 9
Is about 9/10 times as large as the inter-terminal capacitance Cs of the expanded resonator 1, and although the size is reduced to about 1/10, almost the same inter-terminal capacitance can be obtained. Further, even if the thickness is the same, the strength is improved by the reduced size.

【0024】つぎに、上記屈曲共振子9の製造方法を説
明する。まず、導電ペーストの厚膜印刷による内部電極
12a、14aと圧電材料からなるグリーンシート11
a、13a、15aを積層して焼成した後、その両面に
外部電極10a、16aを形成することによって図6
(a)に示すような親基板21を形成し、その端面に内
部電極12a、14aと導通した端子電極22を形成す
る。この状態で両外部電極10a、16aと端子電極2
2の間に電界を加えることにより、図6(a)に矢印で
示すような向きに分極処理を施す。ついで、図6(b)
に示す矢印線に沿って親基板21を短冊状にカットして
図6(c)に示すような短冊状の親基板23を得る。つ
いで、この短冊状の親基板23を図6(d)に示す矢印
線に沿ってカットし、図6(e)に示すような単体の圧
電共振子24を得る。ついで、この圧電共振子24の端
面において、図5に示すように絶縁材料17、19で内
部電極12又は14の端を覆い、絶縁材料17、19の
上から圧電共振子9の端面に接続用電極18、20を形
成する。これによって図4に示すような屈曲共振子9が
多数個一度に生産される。
Next, a method of manufacturing the bending resonator 9 will be described. First, a green sheet 11 made of a piezoelectric material and internal electrodes 12a and 14a formed by thick-film printing of a conductive paste is used.
a, 13a, and 15a are laminated and fired, and then external electrodes 10a and 16a are formed on both surfaces thereof, whereby FIG.
1A, a parent substrate 21 as shown in FIG. 1A is formed, and a terminal electrode 22 electrically connected to the internal electrodes 12a and 14a is formed on an end surface thereof. In this state, the external electrodes 10a and 16a and the terminal electrode 2
By applying an electric field between the two, the polarization process is performed in the direction shown by the arrow in FIG. Next, FIG.
Then, the master substrate 21 is cut into a strip shape along the arrow line shown in FIG. 6 to obtain a strip-shaped master substrate 23 as shown in FIG. Next, the strip-shaped parent substrate 23 is cut along the arrow line shown in FIG. 6D to obtain a single piezoelectric resonator 24 as shown in FIG. 6E. Next, on the end face of the piezoelectric resonator 24, the ends of the internal electrodes 12 and 14 are covered with insulating materials 17 and 19 as shown in FIG. The electrodes 18 and 20 are formed. Thereby, a large number of bending resonators 9 as shown in FIG. 4 are produced at one time.

【0025】(第2の実施形態)図7(a)は本発明の
別な実施形態による圧電共振子31の分極処理工程を示
す図、図7(b)はその駆動状態を示す図である。この
圧電共振子31にあっては、5層(7層以上の奇数層で
もよい)の圧電体層33、35、37、39、41と4
層(6層以上の偶数層でもよい)の内部電極34、3
6、38、40を積層し、その両面に表面電極32、4
2を形成している。分極処理工程においては、図7
(a)に示すように、表面電極32、42及び内部電極
36、38を電気的に接続し、また内部電極34、40
を電気的に接続し、両者の間に電圧を印加することによ
り、中央の圧電体層37は分極させず、その上下の圧電
体層33、35、39、41を分極処理している。この
後、図7(b)に示すように、表面電極32及び内部電
極36、40を接続用電極で電気的に接続し、また内部
電極34、38及び表面電極42を接続用電極で電気的
に接続すれば、中央の圧電体層37よりも上の圧電体層
33、35では分極軸と電界軸が同じ向きとなり、中央
の圧電体層37よりも下の圧電体層39、41では分極
軸と電界軸が異なる向きとなるので、圧電共振子31は
屈曲振動することになる。このような構造によれば、表
面電極32、42と内部電極34、40の間、内部電極
34、36、38、40どうしの間に端子間容量が生じ
るので、より一層大きな端子間容量を得ることができ
る。
(Second Embodiment) FIG. 7A is a diagram showing a polarization process of a piezoelectric resonator 31 according to another embodiment of the present invention, and FIG. 7B is a diagram showing a driving state thereof. . In this piezoelectric resonator 31, five (even seven or more odd layers) piezoelectric layers 33, 35, 37, 39, 41, and 4 are provided.
Internal electrodes 34, 3 (even more than six layers)
6, 38 and 40 are laminated, and the surface electrodes 32, 4
2 are formed. In the polarization process, FIG.
As shown in (a), the surface electrodes 32, 42 and the internal electrodes 36, 38 are electrically connected, and the internal electrodes 34, 40
Are electrically connected to each other, and a voltage is applied between them, so that the central piezoelectric layer 37 is not polarized, and the upper and lower piezoelectric layers 33, 35, 39, and 41 are polarized. Thereafter, as shown in FIG. 7B, the surface electrode 32 and the internal electrodes 36 and 40 are electrically connected by the connection electrode, and the internal electrodes 34 and 38 and the surface electrode 42 are electrically connected by the connection electrode. In the piezoelectric layers 33 and 35 above the central piezoelectric layer 37, the polarization axis and the electric field axis are in the same direction, and in the piezoelectric layers 39 and 41 below the central piezoelectric layer 37, the polarization axes are the same. Since the axis and the electric field axis are in different directions, the piezoelectric resonator 31 bends and vibrates. According to such a structure, an inter-terminal capacitance is generated between the surface electrodes 32, 42 and the internal electrodes 34, 40 and between the internal electrodes 34, 36, 38, 40, so that a larger inter-terminal capacitance is obtained. be able to.

【0026】(第3の実施形態)図8(a)は本発明の
別な実施形態による圧電共振子51の分極処理工程を示
す図、図8(b)はその駆動状態を示す図である。この
圧電共振子51にあっては、偶数層(例えば、4層)の
圧電体層53、55、57、59と奇数層(例えば、3
層)の内部電極54、56、58を積層し、その両面に
表面電極52、60を形成している。分極処理工程にお
いては、図8(a)に示すように、表面電極52、60
及び内部電極56を電気的に接続し、また内部電極5
4、58を電気的に接続し、両者の間に電圧を印加する
ことにより、すべての圧電体層53、55、57、59
を分極処理している。この後、図8(b)に示すよう
に、表面電極52及び内部電極56、58を接続用電極
で電気的に接続し、また内部電極54及び表面電極60
を接続用電極で電気的に接続すれば、上半分の圧電体層
53、55では分極軸と電界軸が同じ向きとなり、一番
下層の圧電体層59では分極軸と電界軸が異なる向きと
なるので、圧電共振子51は屈曲振動することになる。
このような構造にしても表面電極52、60と内部電極
54、58の間、内部電極54、56、58どうしの間に
端子間容量が生じるので、大きな端子間容量を得ること
ができる。
(Third Embodiment) FIG. 8A is a diagram showing a polarization processing step of a piezoelectric resonator 51 according to another embodiment of the present invention, and FIG. 8B is a diagram showing a driving state thereof. . In this piezoelectric resonator 51, even-numbered (for example, four) piezoelectric layers 53, 55, 57, and 59 and odd-numbered (for example, three)
The internal electrodes 54, 56, 58 are laminated, and surface electrodes 52, 60 are formed on both surfaces thereof. In the polarization process, as shown in FIG.
And the internal electrodes 56 are electrically connected.
4 and 58 are electrically connected to each other, and a voltage is applied between them, so that all the piezoelectric layers 53, 55, 57 and 59
Is polarized. Thereafter, as shown in FIG. 8B, the surface electrode 52 and the internal electrodes 56 and 58 are electrically connected by connection electrodes, and the internal electrode 54 and the surface electrode 60 are connected.
Are electrically connected by a connection electrode, the polarization axis and the electric field axis are in the same direction in the upper half piezoelectric layers 53 and 55, and the polarization axis and the electric field axis are different in the lowermost piezoelectric layer 59. Therefore, the piezoelectric resonator 51 undergoes bending vibration.
Even with such a structure, inter-terminal capacitance is generated between the surface electrodes 52, 60 and the internal electrodes 54, 58 and between the internal electrodes 54, 56, 58, so that a large inter-terminal capacitance can be obtained.

【0027】なお、図7又は図8の実施形態において
は、分極処理時の配線と駆動時の配線を逆にしてもよ
い。しかし、図示のような配線とすれば、駆動時に両表
面電極に信号を印加できるので、圧電共振子を納めるケ
ースやパッケージの構造を簡単にすることができる。
In the embodiment shown in FIG. 7 or FIG. 8, the wiring during the polarization processing and the wiring during the driving may be reversed. However, if the wiring is as shown in the figure, a signal can be applied to both surface electrodes at the time of driving, so that the structure of the case or package in which the piezoelectric resonator is housed can be simplified.

【0028】また、図9は2層の圧電体層63、65の
間に内部電極64を挟んで積層し、その両表面に外部電
極62、66を形成した屈曲振動の圧電共振子61であ
る。この圧電共振子61は本発明の圧電共振子と同様、
拡がり振動による圧電共振子に比べて寸法を大幅に小さ
くできるが、同じ大きさ、同じ厚み、同じ圧電材料であ
れば、本発明の圧電共振子に比べて端子間容量が小さ
い。したがって、この圧電共振子61を直列共振子と
し、本発明の圧電共振子を並列共振子として図2のよう
なラダーフィルタ(3段以上でもよい)を構成すれば、
保証減衰量が大きくて小さなラダーフィルタを製作する
ことができる。
FIG. 9 shows a flexural vibration piezoelectric resonator 61 in which internal electrodes 64 are laminated between two piezoelectric layers 63 and 65, and external electrodes 62 and 66 are formed on both surfaces thereof. . This piezoelectric resonator 61 is similar to the piezoelectric resonator of the present invention.
Although the size can be significantly reduced as compared with the piezoelectric resonator due to the spread vibration, the capacitance between terminals is smaller than the piezoelectric resonator of the present invention if the same size, the same thickness, and the same piezoelectric material are used. Therefore, if the piezoelectric resonator 61 is a series resonator and the piezoelectric resonator of the present invention is a parallel resonator to form a ladder filter (three or more stages) as shown in FIG.
A small ladder filter with a large guaranteed attenuation can be manufactured.

【0029】[0029]

【発明の効果】請求項1に記載した圧電共振子によれ
ば、端子間容量の大きな屈曲振動の圧電共振子を製作す
ることができ、小形で端子間容量の大きな圧電共振子を
得ることができる。よって、ラダーフィルタの並列共振
子に用いれば、保証減衰量を大きくできる。
According to the first aspect of the present invention, it is possible to manufacture a piezoelectric resonator having a large inter-terminal capacitance and a bending vibration, and to obtain a small-sized piezoelectric resonator having a large inter-terminal capacitance. it can. Therefore, if it is used for a parallel resonator of a ladder filter, the guaranteed attenuation can be increased.

【0030】また、請求項2に記載の圧電共振子によれ
ば、中央の圧電体層を分極させず、その片側で分極方向
と電界の向きとが同じ向きとなり、もう一方の片側で分
極方向と電界の向きとが反対向きとなっているから、大
きな屈曲振動を得ることができる。
According to the piezoelectric resonator of the second aspect, the central piezoelectric layer is not polarized, and the polarization direction and the direction of the electric field are the same on one side and the polarization direction on the other side. And the direction of the electric field are opposite, a large bending vibration can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は従来の拡がり共振子の構造を示す斜視
図、(b)はその分極軸と電界軸の方向を示す側面図で
ある。
FIG. 1A is a perspective view showing a structure of a conventional spread resonator, and FIG. 1B is a side view showing directions of a polarization axis and an electric field axis thereof.

【図2】ラダーフィルタの回路構成を示す図である。FIG. 2 is a diagram illustrating a circuit configuration of a ladder filter.

【図3】同上のラダーフィルタの特性を示す図である。FIG. 3 is a diagram showing characteristics of the ladder filter according to the first embodiment;

【図4】本発明の一実施形態による圧電共振子の斜視図
である。
FIG. 4 is a perspective view of a piezoelectric resonator according to an embodiment of the present invention.

【図5】同上の圧電共振子の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the above piezoelectric resonator.

【図6】(a)は親基板の分極処理工程を示す斜視図及
び断面図、(b)は親基板の第1のカッティング工程を
示す斜視図、(c)はカットされた親基板を示す斜視
図、(d)は親基板の第2のカッティング工程を示す斜
視図、(e)は得られた圧電共振子を示す斜視図であ
る。
6A is a perspective view and a cross-sectional view showing a polarization processing step of a parent substrate, FIG. 6B is a perspective view showing a first cutting step of the parent substrate, and FIG. 6C is a cut parent substrate. FIG. 9D is a perspective view, (d) is a perspective view showing a second cutting step of the parent substrate, and (e) is a perspective view showing the obtained piezoelectric resonator.

【図7】(a)は本発明の別な実施形態による圧電共振
子の分極処理方法を説明する図、(b)は該圧電共振子
の駆動方法を説明する図である。
FIG. 7A is a diagram illustrating a polarization processing method of a piezoelectric resonator according to another embodiment of the present invention, and FIG. 7B is a diagram illustrating a driving method of the piezoelectric resonator.

【図8】(a)は本発明のさらに別な実施形態による圧
電共振子の分極処理方法を説明する図、(b)は該圧電
共振子の駆動方法を説明する図である。
FIG. 8A is a diagram illustrating a polarization processing method of a piezoelectric resonator according to still another embodiment of the present invention, and FIG. 8B is a diagram illustrating a driving method of the piezoelectric resonator.

【図9】2層構造の屈曲振動の圧電共振子を示す斜視図
である。
FIG. 9 is a perspective view showing a bending vibration piezoelectric resonator having a two-layer structure.

【符号の説明】[Explanation of symbols]

10、16 表面電極 11、13、15 圧電体層 12、14 内部電極 17、19 絶縁材料 18、20 接続用電極 10, 16 Surface electrode 11, 13, 15 Piezoelectric layer 12, 14 Internal electrode 17, 19 Insulating material 18, 20 Connection electrode

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年11月5日(1999.11.
5)
[Submission Date] November 5, 1999 (1999.11.
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】(第3の実施形態)図8(a)は本発明の
別な実施形態による圧電共振子51の分極処理工程を示
す図、図8(b)はその駆動状態を示す図である。この
圧電共振子51にあっては、偶数層(例えば、4層)の
圧電体層53、55、57、59と奇数層(例えば、3
層)の内部電極54、56、58を積層し、その両面に
表面電極52、60を形成している。分極処理工程にお
いては、図8(a)に示すように、表面電極52、60
及び内部電極56を電気的に接続し、また内部電極5
4、58を電気的に接続し、両者の間に電圧を印加する
ことにより、すべての圧電体層53、55、57、59
を分極処理している。この後、図8(b)に示すよう
に、表面電極52及び内部電極56、58を接続用電極
で電気的に接続し、また内部電極54及び表面電極60
を接続用電極で電気的に接続すれば、上半分の圧電体層
53、55では分極軸と電界軸が同じ向きとなり、一番
下層の圧電体層59では分極軸と電界軸が異なる向きと
なるので、圧電共振子51は屈曲振動することになる。
このような構造にしても表面電極52、60と内部電極
54、58の間、内部電極54と56の間に端子間容量
が生じるので、大きな端子間容量を得ることができる。
(Third Embodiment) FIG. 8A is a diagram showing a polarization processing step of a piezoelectric resonator 51 according to another embodiment of the present invention, and FIG. 8B is a diagram showing a driving state thereof. . In this piezoelectric resonator 51, even-numbered (for example, four) piezoelectric layers 53, 55, 57, and 59 and odd-numbered (for example, three)
The internal electrodes 54, 56, 58 are laminated, and surface electrodes 52, 60 are formed on both surfaces thereof. In the polarization process, as shown in FIG.
And the internal electrodes 56 are electrically connected.
4 and 58 are electrically connected to each other, and a voltage is applied between them, so that all the piezoelectric layers 53, 55, 57 and 59
Is polarized. Thereafter, as shown in FIG. 8B, the surface electrode 52 and the internal electrodes 56 and 58 are electrically connected by connection electrodes, and the internal electrode 54 and the surface electrode 60 are connected.
Are electrically connected by a connection electrode, the polarization axis and the electric field axis are in the same direction in the upper half piezoelectric layers 53 and 55, and the polarization axis and the electric field axis are different in the lowermost piezoelectric layer 59. Therefore, the piezoelectric resonator 51 undergoes bending vibration.
Even with such a structure, inter- terminal capacitance is generated between the surface electrodes 52 and 60 and the internal electrodes 54 and 58 and between the internal electrodes 54 and 56, so that a large inter-terminal capacitance can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 4層以上の電極と3層以上の圧電体層と
を積層し、該圧電体層のうち少なくとも2層を前記電極
と垂直な方向に分極させた圧電共振子であって、 一部の圧電体層においては該圧電体層の分極方向と同じ
向きに電界が発生し、他の一部の圧電体層においては該
圧電体層の分極方向と異なる向きに電界が発生するによ
うに前記電極どうしを接続したことを特徴とする圧電共
振子。
1. A piezoelectric resonator in which four or more electrodes and three or more piezoelectric layers are stacked, and at least two of the piezoelectric layers are polarized in a direction perpendicular to the electrodes. In some piezoelectric layers, an electric field is generated in the same direction as the polarization direction of the piezoelectric layer, and in some other piezoelectric layers, an electric field is generated in a direction different from the polarization direction of the piezoelectric layer. A piezoelectric resonator characterized in that the electrodes are connected to each other as described above.
【請求項2】 偶数層の電極と奇数層の圧電体層が積層
され、中央の圧電体層は分極しておらず、その片側で分
極方向と電界の向きとが同じ向きとなり、もう一方の片
側で分極方向と電界の向きとが反対向きとなるように前
記電極どうしを接続したことを特徴とする、請求項1に
記載の圧電共振子。
2. An even-numbered electrode layer and an odd-numbered piezoelectric layer are laminated, and a central piezoelectric layer is not polarized. On one side, the polarization direction and the direction of the electric field are the same. The piezoelectric resonator according to claim 1, wherein the electrodes are connected to each other such that the polarization direction and the direction of the electric field are opposite on one side.
JP29449199A 1999-10-15 1999-10-15 Piezoelectric resonator Pending JP2001119262A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29449199A JP2001119262A (en) 1999-10-15 1999-10-15 Piezoelectric resonator
DE2000150058 DE10050058A1 (en) 1999-10-15 2000-10-10 Piezoresonator for piezoelectric ladder filter, has electrodes which applies electric field to pair of piezoelectric layer in mutually opposite direction
CNB001317679A CN1164032C (en) 1999-10-15 2000-10-13 Piezoelectric resonantor
KR1020000060527A KR20010040089A (en) 1999-10-15 2000-10-14 Piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29449199A JP2001119262A (en) 1999-10-15 1999-10-15 Piezoelectric resonator

Publications (1)

Publication Number Publication Date
JP2001119262A true JP2001119262A (en) 2001-04-27

Family

ID=17808460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29449199A Pending JP2001119262A (en) 1999-10-15 1999-10-15 Piezoelectric resonator

Country Status (4)

Country Link
JP (1) JP2001119262A (en)
KR (1) KR20010040089A (en)
CN (1) CN1164032C (en)
DE (1) DE10050058A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563400B2 (en) 2000-10-30 2003-05-13 Murata Manufacturing Co., Ltd. Piezoelectric resonator utilizing bending vibrations and ladder-type filter including the same
US6664716B2 (en) * 2000-06-07 2003-12-16 Purdue Research Foundation Piezoelectric transducer
US6700314B2 (en) 2001-06-07 2004-03-02 Purdue Research Foundation Piezoelectric transducer
JP2014170863A (en) * 2013-03-05 2014-09-18 Sekisui Chem Co Ltd Piezoelectric sensor manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485596B1 (en) * 2002-06-04 2005-04-27 한국과학기술연구원 Bender typed multilayer actuator
JP5036435B2 (en) * 2006-09-01 2012-09-26 太陽誘電株式会社 Elastic wave device, filter and duplexer
KR101771717B1 (en) * 2011-03-31 2017-08-25 삼성전기주식회사 Crystal oscillator and electrode structure thereof
CN105900253B (en) * 2012-12-26 2020-03-10 应用空化有限公司 Piezoelectric device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664716B2 (en) * 2000-06-07 2003-12-16 Purdue Research Foundation Piezoelectric transducer
US6563400B2 (en) 2000-10-30 2003-05-13 Murata Manufacturing Co., Ltd. Piezoelectric resonator utilizing bending vibrations and ladder-type filter including the same
US6700314B2 (en) 2001-06-07 2004-03-02 Purdue Research Foundation Piezoelectric transducer
JP2014170863A (en) * 2013-03-05 2014-09-18 Sekisui Chem Co Ltd Piezoelectric sensor manufacturing method

Also Published As

Publication number Publication date
DE10050058A1 (en) 2001-05-31
CN1293486A (en) 2001-05-02
CN1164032C (en) 2004-08-25
KR20010040089A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP3262048B2 (en) Piezoelectric resonator and electronic component using the same
JP2001119262A (en) Piezoelectric resonator
JP3267171B2 (en) Piezoelectric resonator and electronic component using the same
US6563400B2 (en) Piezoelectric resonator utilizing bending vibrations and ladder-type filter including the same
EP0907240B1 (en) Method of manufacturing piezoelectric resonator
EP0838897B1 (en) Piezoelectric resonator and electronic component comprising the piezoelectric resonator
WO2004100367A1 (en) Piezoelectric vibrator unit
JP2002198770A (en) Piezoelectric resonator
JP3271538B2 (en) Piezoelectric resonator and electronic component using the same
JP2001102892A (en) Piezoelectric resonant component and production thereof
JPH05259805A (en) Piezoelectric resonator
JPS63107307A (en) Chip-shape piezoelectric component and its manufacture
JPH1093380A (en) Piezoelectric resonator and electronic component using it
JP3282473B2 (en) Piezoelectric component and method of manufacturing the same
JP2000315932A (en) Laminated type piezoelectric resonator, its characteristic adjustment method and ladder type filter using it
JP2001189237A (en) Capacitor element
JP2000307382A (en) Ladder filter
JPH03165613A (en) Piezoelectric component
JP2001168679A (en) Ladder filter
JP2001127585A (en) Ladder filter
JP3368213B2 (en) Piezoelectric resonators, electronic components and communication equipment
JPH0964433A (en) Piezoelectric ceramic transformer and its manufacture
JPH0389708A (en) Piezoelectric resonator
JP2001168678A (en) Ladder filter
JPH11112280A (en) Electronic component and ladder filter