JP2001118475A - Vacuum valve-type switching apparatus for making tapping when loaded - Google Patents

Vacuum valve-type switching apparatus for making tapping when loaded

Info

Publication number
JP2001118475A
JP2001118475A JP29278599A JP29278599A JP2001118475A JP 2001118475 A JP2001118475 A JP 2001118475A JP 29278599 A JP29278599 A JP 29278599A JP 29278599 A JP29278599 A JP 29278599A JP 2001118475 A JP2001118475 A JP 2001118475A
Authority
JP
Japan
Prior art keywords
drive shaft
vacuum valve
control cam
roller
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29278599A
Other languages
Japanese (ja)
Other versions
JP3391748B2 (en
Inventor
Hiroshi Tajima
博 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAJIMA SEISAKUSHO KK
Original Assignee
TAJIMA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAJIMA SEISAKUSHO KK filed Critical TAJIMA SEISAKUSHO KK
Priority to JP29278599A priority Critical patent/JP3391748B2/en
Publication of JP2001118475A publication Critical patent/JP2001118475A/en
Application granted granted Critical
Publication of JP3391748B2 publication Critical patent/JP3391748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum valve-type switching apparatus for making a tapping when loaded whose size is considerably reduced by reducing both a resistor and energy storage device. SOLUTION: A drive shaft 2 is disconnected from or reversely connected to a power by means of the energy storage device. The rotation of the drive shaft drives three vacuum valve control mechanisms 7 per one phase. The sum of the torques delivered by all the vacuum valve control mechanisms accelerates the rotational speed of the drive shaft. A control cam 8 is fixedly attached to the drive shaft while an arm 9 with a roller 11 is arranged in the outside of the control cam. The control spring 10 pushes the arm to continuously contact the roller with the control cam, so that the loading torque transferred from the control spring through the roller to the control cam to the drive shaft smoothes the sum of the torques, reversed from the positive.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧器や電圧調整器
の一部品である負荷時タップ切換器の真空バルブ式切換
開閉器に関する。さらに詳しく言えば、1抵抗式で単一
回路歩進方式の負荷時タップ切換器の真空バルブ式切換
開閉器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve type switching switch of a tap changer under load which is a part of a transformer or a voltage regulator. More specifically, the present invention relates to a vacuum valve type switching switch of a one-resistance type, single-circuit stepping type on-load tap changer.

【0002】[0002]

【従来の技術】負荷時タップ切換器の真空バルブ式切換
開閉器において、1抵抗式で単一回路歩進方式のもの
は、図5および図6にしめすように、U、V、W各相当
たり三個の真空バルブA,B,Cを順次開閉してタップ
を切換えるものである。
2. Description of the Related Art In a vacuum valve type switching switch of a tap changer under load, a one-resistance type, single-circuit stepping-type switching switch is equivalent to U, V, and W as shown in FIGS. The taps are switched by sequentially opening and closing three vacuum valves A, B, and C.

【0003】各相(図面ではU相)の三個の真空バルブ
A,B,Cの開閉動作を詳しく説明すれば、タップが奇
数側から偶数側(以下、奇から偶と略する)へ切換わる
際には、奇数側の真空バルブAが閉じたまま真空バルブ
Bが開から閉になり、その後、奇数側の真空バルブAが
閉から開になり、最後に、偶数側の真空バルブCが開か
ら閉になる。また、偶から奇へ切換わる際には、真空バ
ルブBが閉じたまま偶数側の真空バルブCが閉から開に
なり、その後、奇数側の真空バルブAが開から閉にな
り、最後に、真空バルブBが閉から開になる。従って、
開閉シーケンスが左右非対称であった。
The opening / closing operation of the three vacuum valves A, B, and C of each phase (U phase in the drawing) will be described in detail. Taps are switched from an odd number side to an even number side (hereinafter abbreviated as odd to even). At the time of switching, the vacuum valve A on the odd side is closed and the vacuum valve B is closed from open, then the vacuum valve A on the odd side is closed from open, and finally, the vacuum valve C on the even side is closed. Open to closed. Further, when switching from even to odd, the vacuum valve C on the even-numbered side is changed from closed to open while the vacuum valve B is closed, and then the vacuum valve A on the odd-numbered side is changed from open to closed. The vacuum valve B changes from closed to open. Therefore,
The opening and closing sequence was asymmetrical.

【0004】上述した開閉動作をする従来の負荷時タッ
プ切換器の真空バルブ式切換開閉器の構造は、図8及び
図9に示すように、タップが切換わる際には、蓄勢機構
の出力軸91を急速に回転させることによって、三個の
駆動カム92を固着した駆動軸93を所定角度正転又は
反転させ、各駆動カム92によって真空バルブ操作機構
94を作動するものである。
As shown in FIGS. 8 and 9, the structure of the vacuum valve type switching switch of the conventional on-load tap switching device which performs the above-described opening and closing operation is such that when the tap is switched, the output of the energy storage mechanism is changed. By rapidly rotating the shaft 91, the drive shaft 93 to which the three drive cams 92 are fixed is rotated forward or backward by a predetermined angle, and the drive valve 92 operates the vacuum valve operating mechanism 94.

【0005】各駆動カムには、真空バルブ操作機構の捩
じりコイルバネ95の押圧力がローラから常に加わって
おり、この押圧力は駆動軸の正転または反転によって、
駆動軸の回転速度を加速または減速する負荷トルクとな
る。つまり、真空バルブが開から閉になるときは、捩じ
りコイルバネの押圧力に反してローラが駆動カムの傾斜
部を登るため、駆動軸が減速される。一方、閉から開の
ときは、カムの傾斜部をローラが捩じりコイルバネの押
圧力を利用して下るため、加速されるのである。
A pressing force of a torsion coil spring 95 of a vacuum valve operating mechanism is constantly applied to each drive cam from a roller, and this pressing force is caused by forward or reverse rotation of the drive shaft.
The load torque increases or decreases the rotation speed of the drive shaft. That is, when the vacuum valve changes from open to closed, the roller climbs the inclined portion of the drive cam against the pressing force of the torsion coil spring, so that the drive shaft is decelerated. On the other hand, during the period from the closed state to the open state, the roller is torsionally moved down the inclined portion of the cam by using the pressing force of the coil spring, and is accelerated.

【0006】ところで、タップが切り換わる際には真空
バルブBに直列接続した抵抗器Rに、一時的に電流が流
れることとなる。そのため抵抗器Rは、通電による温度
上昇で溶断しないように、通電時間tに対応した容量が
必要とされる。抵抗器を小容量にするには、通電時間t
を短くすれば良いが、通電時間tは、真空バルブA、C
のアークが完全に消滅するための時間が最低限必要なの
で、消滅時間よりも短縮できないものである。
By the way, when the tap is switched, a current temporarily flows through the resistor R connected in series to the vacuum valve B. Therefore, the resistor R needs a capacity corresponding to the energization time t so that the resistor R does not melt due to a rise in temperature due to energization. To reduce the resistance of the resistor, the energization time t
Can be shortened, but the energization time t is reduced by the vacuum valves A and C
Since the minimum time required for the arc to completely extinguish is required, the arc cannot be shortened more than the extinguishing time.

【0007】従来の負荷時タップ切換器の真空バルブ式
切換開閉器は、奇から偶へ切換わる場合と、偶から奇へ
切換わる場合とでは、抵抗器Rへの通電時間tに極端に
差があった。なぜなら、図4(イ)に示すように奇から
偶へ切り換わる場合には、三つの真空バルブ操作機構か
ら駆動軸に減速、加速、減速の負荷トルクが順次与えら
れるので、この場合の通電時間tは減速された駆動軸を
加速した後から、減速が終わるまでの所要時間となる。
一方、偶から奇へ切り換わる場合には、駆動軸に加速、
減速、加速の負荷トルクが順次与えられるので、この場
合の通電時間tは、駆動軸を加速させた後から、減速が
終わるまでの所要時間となる。結果、通電時間が始まる
時の駆動軸の回転速度に差ができることになるからであ
る。
[0007] The conventional vacuum valve type switching switch of the on-load tap changer has an extremely large difference in the energizing time t to the resistor R between switching from odd to even and switching from even to odd. was there. This is because, when switching from odd to even as shown in FIG. 4A, load torques of deceleration, acceleration, and deceleration are sequentially applied to the drive shaft from the three vacuum valve operating mechanisms. t is the time required from the acceleration of the decelerated drive shaft to the end of the deceleration.
On the other hand, when switching from even to odd, the drive shaft accelerates,
Since load torques for deceleration and acceleration are sequentially applied, the energization time t in this case is a time required after the drive shaft is accelerated until deceleration ends. As a result, there is a difference in the rotation speed of the drive shaft at the start of the energization time.

【0008】従って、アークの消滅時間を確保するに
は、短いほうの通電時間、つまり図面では奇から偶へ切
換わる場合での通電時間tを消滅時間に合わせる必要が
あり、それ故、偶から奇へ切換わる場合での通電時間t
は、消滅時間よりも大幅に長くなった。溶断を防ぐには
抵抗器の容量を、長い方の通電時間tに合わせて設定す
る必要があるので、通電時間に極端に差があることは、
抵抗器を小型化できない要因となっていた。
Therefore, in order to ensure the arc extinguishing time, it is necessary to match the shorter energizing time, that is, the energizing time t in the case of switching from odd to even in the drawing, to the extinguishing time. Energization time t when switching to odd
Became much longer than the extinction time. To prevent fusing, it is necessary to set the capacity of the resistor in accordance with the longer energization time t.
This was a factor that made it impossible to downsize the resistor.

【0009】そこで、通電時間tを等しくして抵抗器R
を小型化する従来の手段として、図7に示すように、真
空バルブBをタップ切り換え時に閉、開、閉となるよう
にして、開閉シーケンスを左右対称にすることが考えら
れた。ところが、この場合、真空バルブBの開閉動作が
増えて機械的寿命が半減するという不都合があった。ま
た、上述した手法では、負荷トルクのピーク値を下げる
ことはできないため、蓄勢機構を小型化することはでき
なかった。
Therefore, the energizing time t is made equal and the resistor R
As a conventional means for reducing the size of the opening / closing sequence, as shown in FIG. 7, it has been considered that the opening / closing sequence is made symmetrical so that the vacuum valve B is closed, opened and closed when the tap is switched. However, in this case, there is a disadvantage that the opening and closing operations of the vacuum valve B increase and the mechanical life is reduced by half. Further, according to the above-described method, the peak value of the load torque cannot be reduced, so that the energy storage mechanism cannot be downsized.

【00010】[00010]

【発明が解決しようとする課題】本発明は上記実情に鑑
みて成されたものであり、その目的は、真空バルブの機
械的寿命を維持しつつ抵抗器と蓄勢機構の小型化を一挙
に図ることにより、全体として大幅に小型にできる負荷
時タップ切換器の真空バルブ式切換開閉器を提供するこ
とである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to reduce the size of a resistor and an energy storage mechanism while maintaining the mechanical life of a vacuum valve. Accordingly, an object of the present invention is to provide a vacuum valve type switching switch of a load tap changer which can be significantly reduced in size as a whole.

【00011】[00011]

【課題を解決するための手段】本発明は、駆動軸を蓄勢
機構によって正転又は反転させ、駆動軸の回転によって
一相当たり三個の真空バルブ操作機構を作動し、全ての
真空バルブ操作機構から伝わる合成トルクが駆動軸の回
転速度を加速または減速する負荷時タップ切換器の真空
バルブ式切換開閉器において、駆動軸に制御カムを固着
すると共に、ローラを有するアームを制御カムの外側に
配置し、アームを制御バネで押し込んでローラを制御カ
ムに常に接触させ、ローラから制御カムを経て駆動軸に
伝わる制御バネの負荷トルクが、前記した合成トルクを
平滑化し且つ正負を反転したものであることを特徴とす
る。
According to the present invention, a drive shaft is rotated forward or backward by an energy storage mechanism, and three vacuum valve operating mechanisms are operated per phase by rotation of the drive shaft. In a vacuum valve type switching switch of a load tap changer in which the combined torque transmitted from the mechanism accelerates or decelerates the rotation speed of the drive shaft, a control cam is fixed to the drive shaft and an arm having rollers is provided outside the control cam. The roller is always in contact with the control cam by pushing the arm with the control spring, and the load torque of the control spring transmitted from the roller to the drive shaft via the control cam is a smoothed version of the above-described combined torque, and the sign is reversed. There is a feature.

【0012】駆動軸は蓄勢機構の出力軸に対して偏心し
ている場合と、出力軸の軸線方向と同一直線上に配置し
てある場合とがある。前者の場合は、駆動軸と出力軸を
連杆で連結して、出力軸の回転角度を駆動軸で必要な回
転角度に変更するために利用する。また、後者の場合
は、駆動軸と出力軸を直結するか、駆動軸と出力軸を同
一軸で形成するものである。
The drive shaft may be eccentric with respect to the output shaft of the energy storage mechanism, or may be arranged on the same straight line as the axis of the output shaft. In the former case, the drive shaft and the output shaft are connected by a connecting rod, and used to change the rotation angle of the output shaft to a required rotation angle of the drive shaft. In the latter case, the drive shaft and the output shaft are directly connected, or the drive shaft and the output shaft are formed by the same shaft.

【0013】一相当たり三個の真空バルブ操作機構と
は、一抵抗式で単一回路歩進方式であることを意味す
る。国内では通常、三相三線式の送電方式が採られてい
るので、この場合に用いる真空バルブ操作機構の全ての
個数は、九個となる。
[0013] Three vacuum valve operating mechanisms per phase means a one-resistance, single-circuit incremental system. In Japan, a three-phase three-wire power transmission system is usually employed, and thus the total number of vacuum valve operating mechanisms used in this case is nine.

【0014】[0014]

【発明の実施の形態】本発明の負荷時タップ切換器の真
空バルブ式切換開閉器を、図1〜図3に基づいて説明す
る。図3に示すように蓄勢機構(図示省略)の出力軸1
に対して駆動軸2を偏心して配置し、出力軸1の端部に
第一連杆3を固着すると共に駆動軸2の端部に第二連杆
4を固着し、第一連杆3と第二連杆4を連結ピン5によ
って連結して出力軸1よりも駆動軸2の回転角度を大き
くし、駆動軸1には三つの駆動カム6を間隔を開けて固
着してあり、図1及び図2に示すように各駆動カム6に
対して三個の真空バルブ操作機構7を駆動カム6の外周
方向に間隔を開けて配置してある。図1では、三個の真
空バルブ操作機構7が駆動軸2の軸線方向に並列してあ
るが、これはU相用のもので、V,W相用のものは、便
宜上、省略してある。また、第二連杆4に制御カム8を
固着し、制御カム8の外側にアーム9を揺動可能に支持
すると共に、アーム9の外側に制御バネ10を配置し、
制御バネ10でアーム9の揺動する先部を押し込むこと
によって、アーム9の先に有するローラ11を制御カム
8に常に接触させてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A vacuum valve switching switch of a tap changer under load according to the present invention will be described with reference to FIGS. As shown in FIG. 3, the output shaft 1 of the energy storage mechanism (not shown)
, The drive shaft 2 is eccentrically disposed, and the first series rod 3 is fixed to the end of the output shaft 1 and the second connecting rod 4 is fixed to the end of the drive shaft 2. The second connecting rod 4 is connected by a connecting pin 5 to make the rotation angle of the drive shaft 2 larger than that of the output shaft 1, and three drive cams 6 are fixed to the drive shaft 1 at intervals. As shown in FIG. 2, three vacuum valve operating mechanisms 7 are arranged at intervals in the outer peripheral direction of the driving cam 6 for each driving cam 6. In FIG. 1, three vacuum valve operating mechanisms 7 are arranged in parallel in the axial direction of the drive shaft 2, but these are for the U phase, and those for the V and W phases are omitted for convenience. . Further, a control cam 8 is fixed to the second connecting rod 4, the arm 9 is swingably supported outside the control cam 8, and a control spring 10 is arranged outside the arm 9,
By pushing the swinging tip of the arm 9 by the control spring 10, the roller 11 provided at the tip of the arm 9 is always in contact with the control cam 8.

【0015】上述した本発明は、出力軸1の正転又は反
転によって駆動軸2をα角度回転し、駆動カム6によっ
て駆動軸2の回転運動を真空バルブ操作機構7の揺動運
動に変え、真空バルブ操作機構7の揺動運動を真空バル
ブ12の開閉運動に変えてある。また、駆動軸2の回転
運動によって、三相全部で九個の真空バルブ操作機構7
からの合成トルクと、制御バネ10からの負荷トルクと
が駆動軸2に伝わり、該負荷トルクが合成トルクの大部
分を打ち消すものである。
According to the present invention described above, the drive shaft 2 is rotated by an angle α by forward or reverse rotation of the output shaft 1, and the rotational motion of the drive shaft 2 is changed to the swinging motion of the vacuum valve operating mechanism 7 by the drive cam 6. The swing movement of the vacuum valve operating mechanism 7 is changed to the opening and closing movement of the vacuum valve 12. In addition, the rotational movement of the drive shaft 2 causes nine vacuum valve operating mechanisms 7 in all three phases.
And the load torque from the control spring 10 are transmitted to the drive shaft 2, and the load torque cancels out most of the resultant torque.

【0016】制御カム8にローラ11を常に接触させる
構造を、以下に詳しく説明する。フレームFには制御カ
ム8より外側に第一,第二支持ピン13,14を内外に
間隔を開けて突出し、外側の第二支持ピン14に制御バ
ネ10の巻筒部を通して保持し、第一支持ピン13でア
ーム9を揺動可能に支え、制御バネ10の一端部をフレ
ームFから突出した第一係止ピン15に引っ掛けると共
に他端部をアーム9の先部から突出した第二係止ピン1
6に引っ掛けて、両係止ピン15,16で制御バネ10
を押し開く状態で保持し、アーム9の先部を制御カム8
側に押し込み、それによってローラ11を制御カム8に
常に接触させてある。
The structure in which the roller 11 is always in contact with the control cam 8 will be described in detail below. The first and second support pins 13 and 14 protrude outward from the control cam 8 at an interval inside and outside the frame F, and are held by the outer second support pins 14 through the cylindrical portion of the control spring 10. The arm 9 is swingably supported by the support pin 13, one end of the control spring 10 is hooked on a first locking pin 15 protruding from the frame F, and the other end is protruded from the tip of the arm 9. Pin 1
6 and the control spring 10 is
Is held in the open state, and the tip of the arm 9 is
Side so that the roller 11 is always in contact with the control cam 8.

【0017】各真空バルブ操作機構7は、駆動カム6の
回転運動を真空バルブ12の可動電極棒17の直線往復
動に変えて真空バルブ12を開閉する役割を果たすもの
である。より詳しく言えば、駆動カム6の回転運動を、
レバー18の揺動運動に変え、その揺動運動を可動電極
棒17の上下動に変えるものである。構造は通常通り
で、フレームFから突出した第三支持ピン19でレバー
18の中央部を揺動可能に支え、レバー18の側面に捩
じりコイルバネ20を沿わせ、捩じりコイルバネ20の
一端部をレバー18自体から突出した第三係止ピン21
に、他端部をフレームFから突出した第四係止ピン22
にそれぞれ引っ掛けて、捩じりコイルバネ20を押し開
く力を保有した状態で保持し、レバー18の一端部に有
するローラ23を駆動カム6に常に接触させ、レバー1
8の他端部に接触圧供給バネ24を内蔵したケース25
を第五係止ピン26で連結し、可動電極棒17に連続し
て延長する絶縁棒27をケース25に固着してある。
Each vacuum valve operating mechanism 7 serves to open and close the vacuum valve 12 by changing the rotational movement of the driving cam 6 into a linear reciprocating movement of the movable electrode rod 17 of the vacuum valve 12. More specifically, the rotational movement of the drive cam 6 is
The swing motion of the lever 18 is changed to the swing motion of the movable electrode bar 17. The structure is as usual, and the third support pin 19 protruding from the frame F swingably supports the central portion of the lever 18, and the torsion coil spring 20 is arranged along the side surface of the lever 18. One end of the torsion coil spring 20 A third locking pin 21 whose part projects from the lever 18 itself
A fourth locking pin 22 having the other end protruding from the frame F.
To hold the torsion coil spring 20 in a state of holding the force to open it, and to bring the roller 23 at one end of the lever 18 into contact with the driving cam 6 at all times.
A case 25 having a contact pressure supply spring 24 built in at the other end of the case 8
Are connected by a fifth locking pin 26, and an insulating bar 27 extending continuously from the movable electrode bar 17 is fixed to the case 25.

【0018】各相の三個の真空バルブA,B,Cの開閉
手順は、従来の技術の欄で説明した通りであるので説明
を省略するが、図4(イ)(ロ)(ハ)に示すように、
駆動軸2の回転に伴って各相の三個の真空バルブ操作機
構7から捩じりコイルバネ20の負荷トルクが駆動軸2
に与えられ、駆動軸2の回転速度を加速または減速させ
ることになる。駆動軸2の回転速度をできるだけ一定に
保つためにU,V,W各相の真空バルブの開閉タイミン
グをずらして駆動軸2にそれぞれ伝わる負荷トルクを最
大限に相殺し、図4(ニ)に示すように九個の真空バル
ブ操作機構7の合成トルクのピーク値をできる限り抑え
てある。合成トルクは振幅の激しいカーブとなり、合成
トルクと全く同じ負荷トルクを一個のカムで実現するこ
とは極めて困難であるので、カーブの大筋を把握して図
4(ホ)に示すように平滑化トルクを想定し、さらに図
4(ヘ)に示すように、平滑化トルクの正負を反転した
ものを、制御バネ10の負荷トルクとして駆動軸2に与
えるように、制御カム8の輪郭の設計や制御バネ10の
選定をする。このようにすれば、一個の制御カム8から
伝えられる負荷トルクによって、最終的に駆動軸2に与
えられる負荷トルクのピーク値が激減する。
The procedure for opening and closing the three vacuum valves A, B, and C for each phase is the same as that described in the section of the prior art, so that the description is omitted. As shown in
With the rotation of the drive shaft 2, the load torque of the torsion coil spring 20 is applied from the three vacuum valve operating mechanisms 7 of each phase to the drive shaft 2.
To accelerate or decelerate the rotation speed of the drive shaft 2. In order to keep the rotational speed of the drive shaft 2 as constant as possible, the opening / closing timings of the vacuum valves of the U, V, and W phases are shifted to offset the load torques transmitted to the drive shaft 2 as much as possible. As shown, the peak value of the combined torque of the nine vacuum valve operating mechanisms 7 is suppressed as much as possible. The resultant torque is a curve having a large amplitude, and it is extremely difficult to realize the same load torque as the resultant torque with one cam. Therefore, the outline of the curve is grasped and the smoothing torque is obtained as shown in FIG. In addition, as shown in FIG. 4F, the design and control of the contour of the control cam 8 are performed so that the reverse of the smoothing torque is applied to the drive shaft 2 as the load torque of the control spring 10. The spring 10 is selected. In this way, the peak value of the load torque finally given to the drive shaft 2 is drastically reduced by the load torque transmitted from one control cam 8.

【0019】なお、本発明は上記実施形態に限定される
ものではない。たとえば制御カム8は第二連杆4に固着
することなく、駆動軸2に直に固着しても良い。また、
アーム9は揺動する構造に限らず、その長手方向に沿っ
て直線往復運動する構造であっても良い。ただし、アー
ム9の先部を揺動させ、しかも、制御バネ10がアーム
9に沿わせるような並列形態の場合は、コンパクトな形
状となる。
The present invention is not limited to the above embodiment. For example, the control cam 8 may be directly fixed to the drive shaft 2 without being fixed to the second connecting rod 4. Also,
The arm 9 is not limited to the swinging structure, but may be a structure that linearly reciprocates along its longitudinal direction. However, in the case of a parallel configuration in which the tip of the arm 9 is swung and the control spring 10 follows the arm 9, a compact shape is obtained.

【0020】[0020]

【発明の効果】本発明の負荷時タップ切換器の真空バル
ブ式切換開閉器は、一相当たり三個の真空バルブ操作機
構の合成トルク以外に、合成トルクを平滑化し且つ正負
を反転した制御バネの負荷トルクが制御カムから駆動軸
には与えられるので、合成トルクが殆ど打ち消されて、
ピーク値が従来に比べて大幅に小さくなることは勿論、
駆動軸に全体として与えられる負荷トルクが0を基準に
微動するだけになり、その結果、蓄勢機構の小型化が可
能になる。また、全体として与えられる負荷トルクが0
を基準に微動するだけになることから、タップが奇数側
から偶数側に切換わる場合と、偶数側から奇数側に切換
わる場合とで、駆動軸の回転速度の均一化、ひいては抵
抗器への通電時間の均一化が図られ、通電時間をアーク
の消滅時間にできる限り近づけるように設定することが
可能となり、その結果、抵抗器を従来よりも小型にする
ことが可能となる。従って、蓄勢機構と抵抗器の小型化
を図ることよって、制御バネや制御カムなどの部品点数
の増加が全く問題にならないほど、全体として大幅に小
型にすることが可能となる。
The vacuum valve switching switch of the tap changer under load according to the present invention is a control spring that smoothes the combined torque and reverses the polarity in addition to the combined torque of three vacuum valve operating mechanisms per phase. Is applied to the drive shaft from the control cam, so that the resultant torque is almost negated,
Of course, the peak value is much smaller than before,
The load torque applied to the drive shaft as a whole is only slightly moved based on 0, and as a result, the energy storage mechanism can be downsized. Also, the load torque given as a whole is 0
The tap is switched from the odd side to the even side, and when the tap is switched from the even side to the odd side, the rotation speed of the drive shaft is made uniform, and the The energization time is made uniform, and the energization time can be set as close as possible to the arc extinction time. As a result, the resistor can be made smaller than before. Therefore, by reducing the size of the energy storage mechanism and the resistor, it is possible to significantly reduce the size as a whole such that the increase in the number of components such as the control spring and the control cam does not matter at all.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の負荷時タップ切換器の真空バルブ式切
換開閉器の概略正面図で、U,V,W各相の三個の真空
バルブのうち一個が、一つの駆動カムによってそれぞれ
作動し、しかも、真空バルブが閉じた状態を示してい
る。
FIG. 1 is a schematic front view of a vacuum valve type switching switch of a tap changer under load of the present invention, wherein one of three vacuum valves of each of U, V, and W phases is operated by one driving cam. In addition, it shows a state in which the vacuum valve is closed.

【図2】本発明の負荷時タップ切換器の真空バルブ式切
換開閉器の概略正面図で、真空バルブが開いた状態を示
している。
FIG. 2 is a schematic front view of a vacuum valve type switching switch of the on-load tap changer of the present invention, showing a state in which a vacuum valve is opened.

【図3】本発明の負荷時タップ切換器の真空バルブ式切
換開閉器の概略側面図で、一相分の三個の真空バルブ操
作機構と駆動軸との関係を示している。
FIG. 3 is a schematic side view of a vacuum valve switching switch of the on-load tap changer of the present invention, showing a relationship between three vacuum valve operating mechanisms for one phase and a drive shaft.

【図4】(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)駆動軸
の負荷トルク線図で、(イ)図から順番にU相の負荷ト
ルク、V相の負荷トルク、W相の負荷トルク、合成トル
ク、平滑化トルク、制御バネからの負荷トルクを示して
いる。
FIGS. 4 (a), (b), (c), (d), (e), and (f) are load torque diagrams of the drive shaft, and FIG. The graph shows the W-phase load torque, composite torque, smoothing torque, and load torque from the control spring.

【図5】負荷時タップ切換器の真空バルブ式切換開閉器
の一相分の回路図である。
FIG. 5 is a circuit diagram of one phase of a vacuum valve type switching switch of the on-load tap changer.

【図6】負荷時タップ切換器の真空バルブ式切換開閉器
の一相分の開閉シーケンスである。
FIG. 6 is an opening / closing sequence for one phase of a vacuum valve type switching switch of a tap changer under load.

【図7】従来の負荷時タップ切換器の真空バルブ式切換
開閉器の一相分の開閉シーケンスである。
FIG. 7 is an opening / closing sequence for one phase of a conventional vacuum valve switching switch of a tap changer under load.

【図8】従来の負荷時タップ切換器の真空バルブ式切換
開閉器を示す概略側面図である。
FIG. 8 is a schematic side view showing a conventional vacuum valve type switching switch of the on-load tap changer.

【図9】従来の負荷時タップ切換器の真空バルブ式切換
開閉器の概略正面図である。
FIG. 9 is a schematic front view of a conventional vacuum valve type switching switch of a tap changer under load.

【符号の説明】[Explanation of symbols]

2 駆動軸 7 真空バルブ操作機構 8 制御カム 9 アーム 10 制御バネ 11 ローラ 2 Drive shaft 7 Vacuum valve operating mechanism 8 Control cam 9 Arm 10 Control spring 11 Roller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 駆動軸(2)を蓄勢機構によって正転又
は反転させ、駆動軸(2)の回転によって一相当たり三
個の真空バルブ操作機構(7)を作動し、全ての真空バ
ルブ操作機構(7)から伝わる合成トルクが駆動軸
(2)の回転速度を加速または減速する負荷時タップ切
換器の真空バルブ式切換開閉器において、 駆動軸(2)に制御カム(8)を固着すると共に、ロー
ラ(11)を有するアーム(9)を制御カム(8)の外
側に配置し、アーム(9)を制御バネ(10)で押し込
んでローラ(11)を制御カム(8)に常に接触させ、
ローラ(11)から制御カム(8)を経て駆動軸(2)
に伝わる制御バネ(10)の負荷トルクが、前記した合
成トルクを平滑化し且つ正負を反転したものであること
を特徴とする負荷時タップ切換器の真空バルブ式切換開
閉器。
The drive shaft (2) is rotated forward or backward by an energy storage mechanism, and three vacuum valve operating mechanisms (7) are operated per phase by rotation of the drive shaft (2), and all vacuum valves are operated. A control cam (8) is fixed to the drive shaft (2) in a vacuum valve type switching switch of a tap changer under load in which the combined torque transmitted from the operation mechanism (7) accelerates or decelerates the rotation speed of the drive shaft (2). At the same time, the arm (9) having the roller (11) is arranged outside the control cam (8), and the arm (9) is pushed in by the control spring (10) to always move the roller (11) to the control cam (8). Contact,
Drive shaft (2) from roller (11) via control cam (8)
Wherein the load torque of the control spring (10) transmitted to the load tap is a value obtained by smoothing the composite torque and reversing the sign.
JP29278599A 1999-10-14 1999-10-14 Vacuum valve type switching switch of tap changer under load Expired - Lifetime JP3391748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29278599A JP3391748B2 (en) 1999-10-14 1999-10-14 Vacuum valve type switching switch of tap changer under load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29278599A JP3391748B2 (en) 1999-10-14 1999-10-14 Vacuum valve type switching switch of tap changer under load

Publications (2)

Publication Number Publication Date
JP2001118475A true JP2001118475A (en) 2001-04-27
JP3391748B2 JP3391748B2 (en) 2003-03-31

Family

ID=17786317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29278599A Expired - Lifetime JP3391748B2 (en) 1999-10-14 1999-10-14 Vacuum valve type switching switch of tap changer under load

Country Status (1)

Country Link
JP (1) JP3391748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212821A (en) * 2018-06-06 2019-12-12 株式会社ダイヘン Torque adjusting device and tap switching device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212821A (en) * 2018-06-06 2019-12-12 株式会社ダイヘン Torque adjusting device and tap switching device
JP2023025140A (en) * 2018-06-06 2023-02-21 株式会社ダイヘン Torque adjuster and tap changer
JP7489446B2 (en) 2018-06-06 2024-05-23 株式会社ダイヘン Torque adjusting device and tap changer

Also Published As

Publication number Publication date
JP3391748B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JP5286610B2 (en) Tap changer
JP3613589B2 (en) Continuous rotation actuator using shape memory alloy
JP3391748B2 (en) Vacuum valve type switching switch of tap changer under load
JP2010080590A (en) Change-over switch for on-load tap changer
JP4087160B2 (en) Vacuum valve type load tap changer
EP2197011B1 (en) Drive system for operating an electric device
US11495417B2 (en) Switching apparatus
JPH0254611B2 (en)
JP4087168B2 (en) Vacuum valve type load tap changer
JP3446336B2 (en) Energy-saving quick-disconnect device for tap changer under load
JP7362914B2 (en) Energy storage mechanism of on-load tap changer and on-load tap changer
JPH1197257A (en) On-load tap changer
JPS6228531B2 (en)
JP2857623B1 (en) Energy storage mechanism used for switching switch of tap changer under load
JPH023284B2 (en)
JP6070313B2 (en) Energy storage device for tap changer when loaded
JP3598067B2 (en) Vacuum valve type switching switch
JPH1154342A (en) On-load tap changer
JP2870739B2 (en) Switching switch
CN110603619A (en) Spring energy accumulator for a power switch of an on-load tap changer
JP4364702B2 (en) Vacuum valve drive device for tap changer when loaded
EP1156502A1 (en) Actuator of power load-break switch
JPH066320Y2 (en) Actuator
JPH10116742A (en) On-load tap changer
JPS6091608A (en) One tap type on-load tap changer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3391748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190124

Year of fee payment: 16

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term