JPH023284B2 - - Google Patents

Info

Publication number
JPH023284B2
JPH023284B2 JP7951983A JP7951983A JPH023284B2 JP H023284 B2 JPH023284 B2 JP H023284B2 JP 7951983 A JP7951983 A JP 7951983A JP 7951983 A JP7951983 A JP 7951983A JP H023284 B2 JPH023284 B2 JP H023284B2
Authority
JP
Japan
Prior art keywords
vacuum valve
cam
torque
switching
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7951983A
Other languages
Japanese (ja)
Other versions
JPS59204224A (en
Inventor
Isao Onodera
Takeo Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Hokuriku Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Hokuriku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Hokuriku Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7951983A priority Critical patent/JPS59204224A/en
Publication of JPS59204224A publication Critical patent/JPS59204224A/en
Publication of JPH023284B2 publication Critical patent/JPH023284B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0038Tap change devices making use of vacuum switches

Description

【発明の詳細な説明】 この発明は真空バルブ式負荷時タツプ切換器に
関し、特に各真空バルブ間の開閉タイミングを正
確に保つ方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum valve type on-load tap changer, and particularly to a method for maintaining accurate opening/closing timing between vacuum valves.

第1図は一般に行なわれている真空バルブ式負
荷時タツプ切換器の一相分の主回路例図で、一つ
の抵抗rとその抵抗用真空バルブRと二つの主真
空バルブA,Bをもつた1抵抗3真空バルブ式負
荷時タツプ切換器の切換順序を示す。これらの真
空バルブの一方の端子は一括して中性点に接続さ
れ、主真空バルブA,Bの他方の端子はそれぞれ
変圧器の巻線1の隣接した異なるタツプT1,T2
を選択する選択器2a,2bに接続され、残る真
空バルブRの他方の端子は限流抵抗rを介してタ
ツプ選択器2a,2bのいずれか一方に接続され
る(図では2bに接続)。
Figure 1 is an example of the main circuit for one phase of a commonly used vacuum valve type on-load tap changer, which has one resistor r, a vacuum valve R for the resistor, and two main vacuum valves A and B. The following shows the switching order of a one-resistance, three-vacuum-valve type on-load tap changer. One terminal of these vacuum valves is connected collectively to the neutral point, and the other terminals of the main vacuum valves A, B are connected to different adjacent taps T 1 , T 2 of winding 1 of the transformer, respectively.
The other terminal of the remaining vacuum valve R is connected to one of the tap selectors 2a and 2b via a current limiting resistor r (connected to 2b in the figure).

巻線1のタツプT1からT2への切り換えは図の
1,2,3,4の順に真空バルブが開閉し、タツ
プT2からT1への切り換えは逆に4から1への順
に真空バルブが開閉する。図においてハツチング
は閉状態を示す。主真空バルブBの通電状態にお
いては抵抗用真空バルブRは開となつてももちろ
んよい訳であるが、抵抗rのために流れる電流が
微少なために閉として主真空バルブBと並列に通
電しても差し支えなく、この方が機構的にも有利
なため、タツプ切り換え動作を第1図1→4また
は4→1の間で行なうのが一般的である。
When switching from tap T 1 to T 2 of winding 1, the vacuum valve opens and closes in the order of 1, 2, 3, and 4 in the diagram, and when switching from tap T 2 to T 1 , the vacuum valve opens and closes in the order from 4 to 1. The valve opens and closes. In the figure, hatching indicates a closed state. While the main vacuum valve B is energized, the resistance vacuum valve R can of course be open, but because the current flowing due to the resistance r is small, it is closed and energized in parallel with the main vacuum valve B. However, since this is mechanically advantageous, the tap switching operation is generally performed between 1 and 4 or 4 and 1 in FIG.

第2図はクランク21、連結棒22、揺動レバ
23、切換レバ24、引張りばね25、ストツパ
26とからなる速動機構27を含む切換機構図
で、O1,O2,O3は固定された駆動軸を示す。ク
ランク21が駆動軸O3を中心に時計方向に回転
することにより、連結棒22を連結させた揺動レ
バ23が軸O1を回動の中心として揺動運動を行
なう。揺動レバ23の先端に設けられた支点P
と、駆動軸O2に固定された切換レバ24の先端
に設けられた支点Q間には引張りばね25が取り
付けられ、このばねは揺動レバ23の動作に応じ
て蓄勢され、Q,Q2,Pが同一直線上に並ぶ点
(死点)を越した時に蓄勢されたエネルギーを急
激に放出し、切り換えレバ24をストツパ26で
止められるまで動かすことにより駆動軸O2を回
転させる。
Figure 2 is a diagram of the switching mechanism including the quick-acting mechanism 27 consisting of the crank 21, connecting rod 22, swing lever 23, switching lever 24, tension spring 25, and stopper 26, in which O 1 , O 2 , and O 3 are fixed. The drive shaft is shown. As the crank 21 rotates clockwise about the drive shaft O3 , the swing lever 23 to which the connecting rod 22 is connected performs a swing motion about the shaft O1 . A fulcrum P provided at the tip of the swing lever 23
A tension spring 25 is attached between the fulcrum Q provided at the tip of the switching lever 24 fixed to the drive shaft O 2 , and this spring is charged with energy according to the operation of the swing lever 23 . 2 and P pass the point (dead center) where they are aligned on the same straight line, the stored energy is suddenly released and the switching lever 24 is moved until it is stopped by the stopper 26, thereby rotating the drive shaft O2 .

駆動軸O2には真空バルブA,B,R開閉用の
開閉装置28が設けられ、この動作により真空バ
ルブB,R,Aを開閉する。この動作図と真空バ
ルブの開閉順序を示したのが第3図で、タツプ
T1からT2への切り換え順序を示し、1→2→3
でPQ間に点線で示す引張りばね25が畜勢され、
4→7で蓄勢されたエネルギーを放出することに
より各真空バルブが開閉されてタツプの切り換え
が完了する。第4図はタツプT2からT1への切り
換え順序を示し、1→2で支点P,Q間の引張り
ばね25が蓄勢され、3→6でそのエネルギーを
放出することにより切り換えが完了する。なお、
第3,4図は第2図に対応する。
A switching device 28 for opening and closing vacuum valves A, B, and R is provided on the drive shaft O2 , and the vacuum valves B, R, and A are opened and closed by this operation. Figure 3 shows this operation diagram and the opening/closing sequence of the vacuum valve.
Indicates the switching order from T 1 to T 2 , 1 → 2 → 3
The tension spring 25 shown by the dotted line is activated between PQ and
By releasing the stored energy in step 4→7, each vacuum valve is opened and closed, and the tap switching is completed. Fig. 4 shows the switching order from tap T 2 to T 1 , in which the tension spring 25 between the supports P and Q stores energy in steps 1 to 2, and the switching is completed by releasing the energy in steps 3 to 6. . In addition,
3 and 4 correspond to FIG. 2.

第5図は駆動軸64(O2)に取り付けられた
開閉装置28と真空バルブ操作機構54を示し1
は真空バルブの閉状態、2は真空バルブの開状態
を示す。図において真空バルブ51はその真空と
なつた内部に固定ロツド52と該ロツドの軸方向
に固定ロツド端と接触して閉路し、離れて開路す
る可動ロツド53とを備える。そして真空バルブ
操作機構54としてはいずれも前記両ロツド5
2,53の軸の延長上に設けられた加圧ばね5
5、加圧ばね55を収容しその一端が可動ロツド
53の空中に突出した先端と係合して固定ロツド
52と離れるように引張るかご56、かご56の
他端に固定され支持物57に案内されるガイドロ
ツド58、ガイドロツド58の先端に取り付けら
れる肩59、肩59と支持物57との間にガイド
ロツド58を囲んで配された加圧ばね60、およ
び肩59に回転自在に支持されたカムローラ61
を備える。カムローラ61は開閉装置28により
可動ロツド53の軸方向に変位された真空バルブ
51を開閉する。開閉装置28はカムローラ61
を押し上げるカム62とこのカム62をその円周
上に支持する回転円板63とよりなり、駆動軸6
4(O2)に固定されている。
FIG. 5 shows the opening/closing device 28 and vacuum valve operating mechanism 54 attached to the drive shaft 64 (O 2 ).
2 indicates the closed state of the vacuum valve, and 2 indicates the open state of the vacuum valve. In the figure, a vacuum valve 51 has a fixed rod 52 in its vacuumed interior and a movable rod 53 that contacts the end of the fixed rod in the axial direction to close a circuit, and separates to open a circuit. Both rods 5 serve as the vacuum valve operation mechanism 54.
Pressure spring 5 provided on the extension of the shaft of 2,53
5. A cage 56 which houses a pressure spring 55 and whose one end engages with the tip of the movable rod 53 protruding into the air and pulls it away from the fixed rod 52, which is fixed to the other end of the cage 56 and guided to a support 57; a shoulder 59 attached to the tip of the guide rod 58; a pressure spring 60 surrounding the guide rod 58 between the shoulder 59 and the support 57; and a cam roller 61 rotatably supported by the shoulder 59.
Equipped with. The cam roller 61 opens and closes the vacuum valve 51, which is displaced in the axial direction of the movable rod 53 by the opening/closing device 28. The opening/closing device 28 is a cam roller 61
It consists of a cam 62 that pushes up the cam 62 and a rotating disk 63 that supports the cam 62 on its circumference.
4 (O 2 ).

第6図は駆動軸64(O2)が角度θ=φ1+α
+β+γ+φ2だけ回転することによるカムロー
ラ61の動きを略示したもので、各回転角に合わ
せて中心O2とカムローラ61の中心とを結ぶ距
離が変化する図であるが、わかり易くするために
カムローラ61がカム62の周上を動くように描
いてある。駆動軸64が反時計方向に角度φ1
α+β+γ(φ1は動作当初の遊び回転である)回
転すればカム62上をカムローラ61が動き、真
空バルブが閉となり、その後に角度φ2の遊び回
転をしてカムは停止する。この状態から駆動軸6
4が時計方向に角度φ2+γ+β+α回転すれば
真空バルブは完全に開となり、その後φ1の遊び
回転をしカムは停止する。なおθは駆動軸64の
全回転角である。
In Figure 6, the drive shaft 64 (O 2 ) is at an angle θ = φ 1 + α
This diagram schematically shows the movement of the cam roller 61 due to rotation by +β+γ+ φ2 , and the distance connecting the center O2 and the center of the cam roller 61 changes depending on each rotation angle. is drawn to move around the circumference of the cam 62. The drive shaft 64 rotates counterclockwise at an angle φ 1 +
When the cam roller 61 rotates α+β+γ (φ 1 is the idle rotation at the beginning of operation), the cam roller 61 moves on the cam 62, the vacuum valve closes, and then the cam rotates at an angle φ 2 and then stops. From this state, drive shaft 6
4 rotates clockwise by an angle of φ 2 +γ+β+α, the vacuum valve is completely opened, and then rotates with an idle angle of φ 1 and the cam stops. Note that θ is the total rotation angle of the drive shaft 64.

第7図は真空バルブが開閉するために必要な駆
動軸(第5図のO2,64)のトルクをカムの回
転に合わせて描いたトルク線図で、カム回転角
α,β,γは第6図の回転角に合致する。第7図
の1は真空バルブが閉する場合のもので、第6図
でカム62が反時計方向に動くわけであるから、
軸トルクは零から第5図で示す引外しばね60を
圧縮しながら次第に増加し、角度α動いた時点で
可動ロツド53が固定ロツド52に接触し、その
あと加圧ばね55を押し込む行程に入る。そこで
軸トルクが急激に増大し、カム62の外周円65
にカムローラ61が接する角度β動いた点で最大
トルクとなり、そのあと次第に小さくなり真空バ
ルブが所定の外部加圧力を与えられた角度γで軸
トルクは零となる。真空バルブを開く場合は上述
と全く逆の動作となり、駆動軸に対するトルクも
負として働き第7図2のようになる。すなわち、
真空バルブ投入時には正方向、開極時には負方向
のトルクが駆動軸64にかかる。
Figure 7 is a torque diagram showing the torque of the drive shaft (O 2 , 64 in Figure 5) required for opening and closing the vacuum valve in accordance with the rotation of the cam, and the cam rotation angles α, β, and γ are This corresponds to the rotation angle shown in Figure 6. 1 in Fig. 7 is when the vacuum valve is closed, and the cam 62 moves counterclockwise in Fig. 6, so
The shaft torque gradually increases from zero while compressing the tripping spring 60 shown in FIG. . At this point, the shaft torque increases rapidly, and the outer circumference 65 of the cam 62 increases.
The shaft torque reaches its maximum torque at the point where the cam roller 61 comes into contact with the angle β, and then gradually decreases to zero at the angle γ when the vacuum valve is applied with a predetermined external pressing force. When opening the vacuum valve, the operation is completely opposite to that described above, and the torque on the drive shaft also acts as negative, as shown in FIG. 7-2. That is,
Torque is applied to the drive shaft 64 in the positive direction when the vacuum valve is closed, and in the negative direction when the vacuum valve is opened.

第8図は三相の同一作用をする真空バルブR,
A,Bがそれぞれ同時に開閉する場合の開閉タイ
ムチヤートで斜線部は開状態を示す。このタイム
チヤート通りに三相すべての真空バルブが動作す
るように、カムを回動円板上に配置し駆動させる
場合の合成トルク線図を第9図および第10図に
示す。これらの図は第7図1,2で示された単体
真空バルブのトルク線図の合成で点線は三相分の
合成トルクである。なお、三相の場合には駆動軸
上には回動円板を3個配置し、各回動円板にはそ
れぞれ3個のカムを配置し、これらの動作により
9個の真空バルブが開閉される。
Figure 8 shows a three-phase vacuum valve R that has the same effect.
In the opening/closing time chart when A and B open and close at the same time, the shaded area indicates the open state. FIGS. 9 and 10 show composite torque diagrams when the cam is placed on a rotating disk and driven so that all three-phase vacuum valves operate according to this time chart. These figures are a composite of the torque diagrams of the single vacuum valve shown in Figures 1 and 2, and the dotted line is the composite torque of the three phases. In the case of three-phase, three rotating disks are placed on the drive shaft, and three cams are placed on each rotating disk, and nine vacuum valves are opened and closed by these operations. Ru.

第9図は単独の主真空バルブAで通電している
タツプT2から主真空バルブBと抵抗用真空バル
ブRとで並列通電するタツプT1への切り換え時
の合成トルク線図で、第8図のタイムチヤート通
り各相の真空バルブRの閉で始まり、真空バルブ
Bの閉で終わる。この場合、駆動当初においては
合成トルクが正となり抗力として作用する。引張
りばね(第2図25)による駆動トルクは常に前
記合成トルクを上まわるので図示しない。
Figure 9 is a composite torque diagram when switching from tap T2 , which is energized by a single main vacuum valve A, to tap T1 , which is energized in parallel with main vacuum valve B and resistance vacuum valve R; As shown in the time chart in the figure, the process starts with the closing of the vacuum valve R of each phase and ends with the closing of the vacuum valve B. In this case, at the beginning of driving, the resultant torque becomes positive and acts as a drag force. The driving torque by the tension spring (FIG. 2, 25) is not shown because it always exceeds the resultant torque.

第10図はタツプT1からT2への切り換え時の
駆動軸の合成トルク線図で各相の真空バルブBの
開で始まり真空バルブRの開で終わる。この場
合、駆動当初においては合成トルクは抗力として
は作用せず、負の力、すなわちカムを回転させる
力として作用する。
FIG. 10 is a composite torque diagram of the drive shaft when switching from tap T1 to T2 , starting with the opening of the vacuum valve B of each phase and ending with the opening of the vacuum valve R. In this case, at the beginning of driving, the resultant torque does not act as a drag force, but acts as a negative force, that is, a force that rotates the cam.

引張りばね(第2図25)に蓄積されたエネル
ギを急激に放出する機構はタツプT1→T2切換時
は第3図3、タツプT2→T1時は第4図2で示さ
れるような死点を越すことが条件となつている。
しかし死点位置は揺動レバ(第2図の23)に与
えるトルクが小さく、機械的摩擦力で動作が左右
されるため非常に不安定であるのでタツプT1
T2方向切換時のような駆動当初に抗力がない場
合には、引張りばねによるトルクが規定値になら
ないうちに真空バルブが動き出すことがあり、正
確な開閉速度やタイミングが得られない欠点があ
る。
The mechanism for rapidly releasing the energy stored in the tension spring (Fig. 2, 25) is as shown in Fig. 3 (3) when switching from tap T 1 → T 2 and as shown in Fig. 4 (2) when switching from tap T 2 → T 1 . The condition is to pass the dead point.
However, at the dead center position, the torque applied to the swing lever (23 in Figure 2) is small, and the operation is influenced by mechanical frictional force, making it extremely unstable, so tap T 1
T If there is no resistance at the beginning of driving, such as when switching between two directions, the vacuum valve may start moving before the torque from the tension spring reaches the specified value, which has the disadvantage that accurate opening/closing speed and timing cannot be obtained. .

この発明は前述のような従来の欠点を改め、特
に高価にせずに各真空バルブ間の開閉タイミング
や開閉速度を正確に保つことを目的とする。この
目的はこの発明によれば次のように構成すること
により達成される。すなわち、複数個の真空バル
ブと、このそれぞれの真空バルブの可動ロツドに
所定の加圧力を与えて前記真空バルブを閉成させ
るばねを有する操作機構と、前記ばねを伸縮させ
て真空バルブを開閉するカムを有する開閉機構
と、速動機構に連結されて回動されるとともにそ
れぞれの真空バルブを所定の順序で開閉可能に前
記開閉機構が取り付けられた駆動軸とを備えたも
のにおいて、負荷時タツプ切換器の真空バルブ駆
動機構の前記駆動軸の回動によつて前記真空バル
ブを開閉動作させる最初のカムであつてかつ真空
バルブを開動作させるカムに前記ばねの加圧力を
駆動軸の回動初期に増大させる突出したカム面を
付加させる。
The present invention aims to correct the above-mentioned conventional drawbacks and to accurately maintain the opening/closing timing and opening/closing speed between each vacuum valve without increasing the cost. According to the present invention, this object is achieved by the following configuration. That is, a plurality of vacuum valves, an operating mechanism having a spring that applies a predetermined pressure to a movable rod of each vacuum valve to close the vacuum valve, and an operating mechanism that expands and contracts the spring to open and close the vacuum valve. A device comprising an opening/closing mechanism having a cam, and a drive shaft connected to a speed mechanism to be rotated and to which the opening/closing mechanism is attached so as to be able to open and close each vacuum valve in a predetermined order. This is the first cam that opens and closes the vacuum valve by the rotation of the drive shaft of the vacuum valve drive mechanism of the switching device, and the pressing force of the spring is applied to the cam that opens and closes the vacuum valve by the rotation of the drive shaft. Add a protruding cam surface that increases initially.

この発明にかかわる負荷時タツプ切換器の構造
は既に述べたものと開閉装置および真空バルブ操
作機構の一部を除いて従来のものと同一であり、
以下同一符号は前出と同一作用をするものを示
す。
The structure of the on-load tap changer according to the present invention is the same as that of the conventional one except for a part of the opening/closing device and the vacuum valve operating mechanism as described above.
Hereinafter, the same reference numerals indicate those having the same function as those described above.

第11図はこの発明実施例の真空バルブ操作機
構70と開閉装置71で前述した1抵抗3真空バ
ルブ式三相負荷時タツプ切換器の抵抗用真空バル
ブと並列通電される(第1図では真空バルブB)
1個の主真空バルブを作動させるものである。第
11図においてカム72と加圧ばね73以外は前
述の第5図と同様であるので重複部の説明を省略
する。カム72はカム62の正常な真空バルブ閉
時のカムローラ61との当接位置を避けて外周円
65上に突出したカム面66を設けたものであ
る。すなわち、カムローラ61が突出したカム面
66上に乗つた場合はカムローラ61は真空バル
ブの正常な閉時より一層固定ロツド52方向に押
し上げられる。換言すれば加圧ばね73は一層圧
縮され、さらにいいかえれば固定ロツド52と可
動ロツド53との接触圧力は一層大きくなる。し
かしこれは加圧ばね73のばね常数を従来より小
さく選択することにより何等差し支えない。
FIG. 11 shows a vacuum valve operating mechanism 70 and a switching device 71 according to an embodiment of the present invention, which are energized in parallel with the resistor vacuum valve of the one-resistance, three-vacuum-valve type three-phase load tap changer described above (in FIG. Valve B)
It operates one main vacuum valve. In FIG. 11, the components other than the cam 72 and the pressure spring 73 are the same as those in FIG. 5 described above, so the explanation of the overlapping parts will be omitted. The cam 72 is provided with a cam surface 66 that protrudes onto the outer circumferential circle 65, avoiding the contact position of the cam 62 with the cam roller 61 when the vacuum valve is normally closed. That is, when the cam roller 61 rides on the protruding cam surface 66, the cam roller 61 is pushed up further toward the fixed rod 52 than when the vacuum valve is normally closed. In other words, the pressure spring 73 is further compressed, and in other words, the contact pressure between the fixed rod 52 and the movable rod 53 is further increased. However, this problem can be overcome by selecting the spring constant of the pressure spring 73 to be smaller than the conventional one.

第12図はカム72の拡大図であり、駆動軸6
4(O2)が角度θ=φ1+α+β+γ+δ1+δ2
φ2だけ往復回転することにより真空バルブが開
閉する。第6図とはカムローラ61が突出したカ
ム面66上を動くことだけが違つている。
FIG. 12 is an enlarged view of the cam 72, and the drive shaft 6
4(O 2 ) is the angle θ = φ 1 + α + β + γ + δ 1 + δ 2 +
The vacuum valve opens and closes by reciprocating rotation by φ2 . The only difference from FIG. 6 is that the cam roller 61 moves on a protruding cam surface 66.

第13図1,2はこの発明のカムにより真空バ
ルブを開閉するために必要な駆動軸のトルクをカ
ムの回転角に合わせて描いたトルク線図で、カム
回転角α,β,γ,δ1,δ2は第12図の回転角に
合致する。1は真空バルブ閉動作、2は真空バル
ブ開動作の線図である。
Figures 13 and 13 are torque diagrams depicting the torque of the drive shaft required to open and close the vacuum valve using the cam of the present invention according to the rotation angle of the cam, and the cam rotation angles α, β, γ, δ. 1 and δ 2 match the rotation angles shown in FIG. 1 is a diagram of a vacuum valve closing operation, and 2 is a diagram of a vacuum valve opening operation.

この発明によるカムの動作は、真空バルブ開か
ら閉への方向へは第12図でカム72が反時計方
向に動くから遊び回転角φ1の後軸トルクは零か
ら第11図で示す引はずしばね58を押しながら
次第に増加し、α角動いた時点で可動ロツド53
が固定ロツド52に接触する。以後加圧ばね73
を押し込む行程に入り、トルクが急激に増大しカ
ム72の突出したカム面66の頂部に接する角度
β動いた点で最大トルクとなる。その後次第に小
さくなり角度δ1の遊び回転を経て角度δ2動作した
点で真空バルブ所定正常の外部圧力になり、トル
クは零となる。その後角度φ2の遊び回転をして
停止し、駆動軸のトルク線図は第13図の1とな
る。真空バルブ閉から開への方向は駆動軸を逆回
転させると上述と全く反対の動作となり、第13
図2のようになる。
The operation of the cam according to the present invention is that in the direction from opening to closing the vacuum valve, the cam 72 moves counterclockwise as shown in FIG. 12, so the rear shaft torque changes from zero to tripping as shown in FIG. While pressing the spring 58, the movable rod 53 gradually increases, and when it moves by α angle, the movable rod 53
contacts the fixed rod 52. From now on, the pressure spring 73
As the cam 72 enters the pushing stroke, the torque increases rapidly and reaches its maximum torque at the point where the cam 72 moves by an angle β and touches the top of the protruding cam surface 66. Thereafter, the pressure gradually decreases, and after passing through idle rotation at an angle of δ 1 , the vacuum valve reaches a predetermined normal external pressure at the point where it moves at an angle of δ 2 , and the torque becomes zero. Thereafter, it rotates with an idle angle of φ 2 and stops, and the torque diagram of the drive shaft becomes 1 in FIG. 13. If the drive shaft is rotated in the opposite direction from closing to opening the vacuum valve, the operation will be completely opposite to that described above, and the 13th
It will look like Figure 2.

第14図および第15図は三相の、同様な作用
をする各真空バルブが第8図のタイムチヤートの
ように同時に開閉される場合のトルク線図で実線
は一相分で点線は三相分の合成トルクである。そ
して第14図はタツプT1→T2方向切り換え時、
すなわち限流抵抗用真空バルブRと並列通電中の
主真空バルブBから主真空バルブAへの切り換え
時のものである。この場合は合成トルクがカム7
2の突出したカム面66により切り換え当初に正
となり抗力として作用するので従来のように引張
りばねによるトルクが規定値にならないうちに真
空バルブが動きだすことがない。第15図はタツ
プT2→T1方向切り換え時のトルク線図でこの場
合は合成トルクが切り換え当初から大きな抗力と
なり、突出したカム面66は切り換えの終りに負
のトルクとして作用するので何等差し支えない。
この三相同時切り換えの場合は任意の相の真空バ
ルブBをこの発明のカム72で開閉させてもよ
い。
Figures 14 and 15 are torque diagrams when three-phase vacuum valves with similar actions are opened and closed simultaneously as shown in the time chart in Figure 8. The solid line is for one phase, and the dotted line is for three phases. The resultant torque is Figure 14 shows when switching from tap T 1 to T 2 directions,
That is, this is when switching from main vacuum valve B to main vacuum valve A, which is energized in parallel with vacuum valve R for current limiting resistor. In this case, the resultant torque is cam 7
Since the protruding cam surface 66 of No. 2 becomes positive at the beginning of switching and acts as a drag, the vacuum valve does not start moving before the torque generated by the tension spring reaches a specified value, unlike in the conventional case. Figure 15 is a torque diagram when switching from tap T 2 to T 1 in the direction. In this case, the resultant torque becomes a large resistance from the beginning of switching, and the protruding cam surface 66 acts as a negative torque at the end of switching, so there is no problem. do not have.
In the case of simultaneous three-phase switching, the vacuum valve B of any phase may be opened and closed by the cam 72 of the present invention.

真空バルブを使用した三相負荷時タツプ切換器
においては合成トルクを小さくするために第16
図に示すように許す限り各真空バルブの開閉タイ
ミングをずらすことがある。この場合に所定のタ
ツプ切り換えが抵抗用真空バルブと並列通電され
る主真空バルブの開路からはじまる場合は少なく
とも最初に開路する主真空バルブにこの発明のカ
ム72を使用することによりカム72の突出した
カム面66によるトルクは抗力として働き従来の
欠点が改められる。上記と逆の切り換えの場合は
突出したカム面66によるトルクは負として働く
が第15図の場合と同様なんら差し支えない。
In a three-phase load tap changer using a vacuum valve, the 16th tap switch is used to reduce the composite torque.
As shown in the figure, the opening and closing timing of each vacuum valve may be shifted as much as possible. In this case, if the predetermined tap switching starts with the opening of the main vacuum valve that is energized in parallel with the resistance vacuum valve, the cam 72 of the present invention can be used at least for the main vacuum valve that is opened first, so that the protrusion of the cam 72 can be reduced. The torque exerted by the cam surface 66 acts as a drag force, overcoming the drawbacks of the prior art. In the case of switching opposite to the above, the torque due to the protruding cam surface 66 acts as negative, but there is no problem as in the case of FIG. 15.

同様に三相各バルブの開閉タイミングを少しだ
けずらしたときはどの相の真空バルブBのカムに
突出したカム面66を設けてもよい。
Similarly, when the opening and closing timings of the three-phase valves are slightly shifted, the protruding cam surface 66 may be provided on the cam of the vacuum valve B of any phase.

以上の説明においては主として三相の負荷時タ
ツプ切換器について述べたが、この発明はこれに
とどまらず1相用又は2相以上の多相用にもその
まま適用し得る。
In the above description, a three-phase on-load tap changer was mainly described, but the present invention is not limited to this and can be applied as is to a one-phase or a multi-phase device having two or more phases.

以上の説明で明らかなように、1抵抗3真空バ
ルブ式負荷時タツプ切換器を速度機構により操作
するものにおいて、抵抗用真空バルブと並列通電
される少なくとも1個の主真空バルブをその切り
換え中に固定ロツドと可動ロツドの接触圧力を正
常時の接触圧力より一層増加させる突出したカム
面を備えたカムにより操作することにより、各真
空バルブの正確な開閉速度やタイミングを確保す
ることができる。
As is clear from the above explanation, in a one-resistance, three-vacuum-valve on-load tap changer that is operated by a speed mechanism, at least one main vacuum valve that is energized in parallel with the resistance vacuum valve is operated during switching. Accurate opening/closing speed and timing of each vacuum valve can be ensured by operating a cam with a protruding cam surface that increases the contact pressure between the fixed rod and the movable rod even more than the normal contact pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1抵抗3真空バルブ式負荷時タツプ切
換器の1相分の切り換え順序を示す図、第2図は
タツプ切り換え機構説明図、第3図、第4図はそ
れぞれタツプ切り換え動作図、第5図は真空バル
ブ操作機構と開閉装置構造図、第6図はカムおよ
びカムローラ動作図、第7図は真空バルブを開閉
するための駆動軸のトルク線図、第8図は三相負
荷時タツプ切換器の開閉チヤート図、第9図は三
相同時開閉時のタツプT2→T1方向切換時のトル
ク線図、第10図は三相同時開閉時タツプT1
T2方向切換時のトルク線図、第11図はこの発
明実施例の真空バルブ操作機構と開閉装置構造
図、第12図はこの発明実施例のカムおよびカム
ローラ動作図、第13図、第14図、第15図、
第17図はこの発明実施例の三相負荷時タツプ切
換器の切り換え時のトルク線図、第16図は許す
限り各真空バルブの開閉タイミングをずらした時
の三相負荷時タツプ切換器の開閉チヤートであ
る。 2a,2b:タツプ選択器、27:速動機構、
52:固定ロツド、53:可動ロツド、64:駆
動軸、66:突出したカム面、71:開閉装置、
73:加圧ばね、A,B:主真空バルブ、:抵抗
用真空バルブ、r=限流抵抗、T1,T2:タツプ、
O2:駆動軸。
Fig. 1 is a diagram showing the switching order for one phase of a one-resistance, three-vacuum-valve type on-load tap changer, Fig. 2 is an explanatory diagram of the tap switching mechanism, and Figs. 3 and 4 are diagrams of the tap switching operation, respectively. Figure 5 is a structural diagram of the vacuum valve operating mechanism and opening/closing device, Figure 6 is a diagram of the cam and cam roller operation, Figure 7 is a torque diagram of the drive shaft for opening and closing the vacuum valve, and Figure 8 is under three-phase load. Opening/closing chart of the tap changer. Figure 9 is the torque diagram when switching in one direction when three phases are opened and closed simultaneously. Figure 10 is the tap T 1 → when three phases are opened and closed simultaneously.
T Torque diagram when switching between two directions; FIG. 11 is a structural diagram of the vacuum valve operating mechanism and opening/closing device according to the embodiment of the present invention; FIG. 12 is a diagram of the cam and cam roller operation of the embodiment of the present invention; FIGS. 13 and 14 Figure, Figure 15,
Fig. 17 is a torque diagram when switching the three-phase load tap changer according to the embodiment of this invention, and Fig. 16 shows the opening/closing of the three-phase load tap changer when the opening/closing timing of each vacuum valve is shifted as much as possible. It's a chat. 2a, 2b: Tap selector, 27: Rapid movement mechanism,
52: fixed rod, 53: movable rod, 64: drive shaft, 66: protruding cam surface, 71: opening/closing device,
73: Pressure spring, A, B: Main vacuum valve,: Vacuum valve for resistance, r = current limiting resistor, T 1 , T 2 : Tap,
O2 : Drive shaft.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の真空バルブと、このそれぞれの真空
バルブの可動ロツドに所定の加圧力を与えて前記
真空バルブを閉成させるばねを有する操作機構
と、前記ばねを伸縮させて真空バルブを開閉する
カムを有する開閉機構と、速動機構に連結されて
回動されるとともにそれぞれの真空バルブを所定
の順序で開閉可能に前記開閉機構が取り付けられ
た駆動軸とを備えたものにおいて、前記駆動軸の
回動によつて前記真空バルブを開閉動作させる最
初のカムであつてかつ真空バルブを開動させるカ
ムに付加され、前記ばねの加圧力を駆動軸の回動
初期に増大させる突出したカム面を有してなるこ
とを特徴とする負荷時タツプ切換器の真空バルブ
操作機構。
1. A plurality of vacuum valves, an operating mechanism having a spring that applies a predetermined pressure to a movable rod of each vacuum valve to close the vacuum valve, and a cam that expands and contracts the spring to open and close the vacuum valve. and a drive shaft to which the opening and closing mechanism is connected and rotated by a quick-acting mechanism and capable of opening and closing each vacuum valve in a predetermined order. The cam is the first cam that opens and closes the vacuum valve by rotation, and has a protruding cam surface that is added to the cam that opens and closes the vacuum valve and increases the pressing force of the spring at the beginning of rotation of the drive shaft. A vacuum valve operating mechanism for a tap changer on load, characterized by:
JP7951983A 1983-05-07 1983-05-07 Vaccum valve operating mechanism of-load tap changer Granted JPS59204224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7951983A JPS59204224A (en) 1983-05-07 1983-05-07 Vaccum valve operating mechanism of-load tap changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7951983A JPS59204224A (en) 1983-05-07 1983-05-07 Vaccum valve operating mechanism of-load tap changer

Publications (2)

Publication Number Publication Date
JPS59204224A JPS59204224A (en) 1984-11-19
JPH023284B2 true JPH023284B2 (en) 1990-01-23

Family

ID=13692224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7951983A Granted JPS59204224A (en) 1983-05-07 1983-05-07 Vaccum valve operating mechanism of-load tap changer

Country Status (1)

Country Link
JP (1) JPS59204224A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE529735C2 (en) * 2006-03-28 2007-11-06 Abb Technology Ltd Method and apparatus for transmitting rotational motion
DE202012101475U1 (en) * 2012-04-20 2013-07-23 Maschinenfabrik Reinhausen Gmbh OLTC
DE102012103490B4 (en) * 2012-04-20 2015-11-12 Maschinenfabrik Reinhausen Gmbh Distribution transformer for voltage regulation of local networks
DE202012101477U1 (en) * 2012-04-20 2013-07-23 Maschinenfabrik Reinhausen Gmbh OLTC
DE102012103489B4 (en) 2012-04-20 2015-11-12 Maschinenfabrik Reinhausen Gmbh On-load tap-changer and its use for voltage regulation in a distribution transformer
JP6023739B2 (en) * 2014-03-25 2016-11-09 北陸電機製造株式会社 Rotating mechanism of driven shaft
JP7242038B2 (en) * 2019-02-22 2023-03-20 北陸電機製造株式会社 Transformer equipment including diverting switches and on-load tap changers with diverting switches

Also Published As

Publication number Publication date
JPS59204224A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
SE9100938D0 (en) LOAD SWITCHES FOR WINDING SWITCHES FOR ADJUSTABLE TRANSFORMERS
JP5286610B2 (en) Tap changer
JPH023284B2 (en)
US3124694A (en) Combustion engines
US5488212A (en) Switching device for an on-load tap changer
JPH0425688B2 (en)
JPH05135679A (en) Resetting mechanism for circuit-breaker small-force tripping device
JPH0254611B2 (en)
US2788410A (en) Snap acting mechanism
EP2584576B1 (en) A pre-selector actuating device for a pre-selector in a tap changer
JP3446336B2 (en) Energy-saving quick-disconnect device for tap changer under load
JP3777844B2 (en) Vacuum valve type load tap changer
JPH0581957A (en) Operating device of switch
JPS6047405A (en) On-load tap changer
JP6165473B2 (en) Switch operating device for switch
JPS635387Y2 (en)
JP2506667Y2 (en) Three-phase switchgear for static condenser equipment
JP2000306748A (en) Switch for changing tap on loading
JP2517180B2 (en) Switching switch operation mechanism
JPS6259404B2 (en)
JP2581622Y2 (en) Manual operation mechanism of switch
JPH07320609A (en) Vacuum interrupting device
JPH0817066B2 (en) Circuit breaker operating device
JPS6228531B2 (en)
JP2003217408A (en) Breaker