JP2001116677A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP2001116677A
JP2001116677A JP29908499A JP29908499A JP2001116677A JP 2001116677 A JP2001116677 A JP 2001116677A JP 29908499 A JP29908499 A JP 29908499A JP 29908499 A JP29908499 A JP 29908499A JP 2001116677 A JP2001116677 A JP 2001116677A
Authority
JP
Japan
Prior art keywords
fine movement
scanning
cantilever
sample
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29908499A
Other languages
Japanese (ja)
Other versions
JP3892184B2 (en
Inventor
Masato Iyogi
誠人 伊與木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP29908499A priority Critical patent/JP3892184B2/en
Publication of JP2001116677A publication Critical patent/JP2001116677A/en
Application granted granted Critical
Publication of JP3892184B2 publication Critical patent/JP3892184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance rigidity of XY slow motion mechanisms, to improve a scanning speed, and to miniaturize a device without narrowing a scanning area in a scanning probe microscope. SOLUTION: XY slow motion mechanisms 6, 12 of a scanning probe microscope are arranged on both the sample side and the cantilever side, both XY slow motion mechanisms 6, 12 are independently operated, and a probe 1a and a sample 2 are releatively scanned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サンプルの表面の
凹凸情報や物理特性を測定するための走査型プローブ顕
微鏡に関する。ここで、走査型プローブ顕微鏡とは、サ
ンプル表面上をプローブで走査して、プローブとサンプ
ル相互間に働く物理情報を検出する装置の総称であり、
代表的な走査型プローブ顕微鏡としては原子間力顕微
鏡、走査型トンネル顕微鏡、走査型磁気力顕微鏡、走査
型近接場顕微鏡などがある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope for measuring unevenness information and physical characteristics of a sample surface. Here, the scanning probe microscope is a general term for an apparatus that scans a sample surface with a probe and detects physical information that acts between the probe and the sample.
Typical scanning probe microscopes include an atomic force microscope, a scanning tunneling microscope, a scanning magnetic force microscope, a scanning near-field microscope, and the like.

【0002】[0002]

【従来の技術】図6に基づき、走査型プローブ顕微鏡の
一種であるコンタクト型の原子間力顕微鏡の従来の構造
と動作原理を説明する。尚、以降の説明ではサンプル表
面の2次元平面内の互いに直交する方向にX軸、Y軸を取
り、XY平面と直交する方向にZ軸を取る。
2. Description of the Related Art A conventional structure and operation principle of a contact type atomic force microscope which is a kind of a scanning probe microscope will be described with reference to FIG. In the following description, an X axis and a Y axis are set in directions orthogonal to each other in a two-dimensional plane of the sample surface, and a Z axis is set in a direction orthogonal to the XY plane.

【0003】先端に微小な探針101aを有するカンチレバ
ー101をカンチレバーホルダ102に設置し、カンチレバー
ホルダ102を円筒型圧電素子から構成される3軸微動機構
103の先端部に取付け、該3軸微動機構を中心軸方向に駆
動させるZ粗動機構104に取付け、カンチレバー101と対
向する側に測定箇所の位置決め用のXY粗動ステージ105
を設け、該ステージ上設けられたサンプルホルダ部106
にサンプル107を載置し、カンチレバー101をサンプル10
7に近接させて、XY微動機構103aによりXY平面内で走査
しながら、探針101aとサンプル107の表面間に働く原子
間力によるカンチレバー101の撓み量を、光てこなどを
用いた変位検出手段108により検出し、撓み量が常に一
定になるようにサンプル表面と探針間の距離をZ微動機
構103bにより制御を行い、Z微動機構103bへの電圧の印
加量からサンプルの凹凸情報を得て、サンプル表面の凹
凸像の測定を行っている。
A cantilever 101 having a small probe 101a at its tip is installed on a cantilever holder 102, and the cantilever holder 102 is a three-axis fine movement mechanism composed of a cylindrical piezoelectric element.
Attached to the tip of 103, attached to a Z coarse movement mechanism 104 that drives the three-axis fine movement mechanism in the center axis direction, and an XY coarse movement stage 105 for positioning a measurement point on the side facing the cantilever 101
And a sample holder section 106 provided on the stage.
Sample 107 is placed on cantilever 101 and sample 10
7, while scanning in the XY plane by the XY fine movement mechanism 103a, the amount of bending of the cantilever 101 due to the atomic force acting between the probe 101a and the surface of the sample 107 is detected by a displacement detecting means using an optical lever or the like. 108, the distance between the sample surface and the probe is controlled by the Z fine movement mechanism 103b so that the amount of deflection is always constant, and the unevenness information of the sample is obtained from the amount of voltage applied to the Z fine movement mechanism 103b. The measurement of the uneven image of the sample surface is performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
走査型プローブ顕微鏡では、カンチレバーの走査速度が
遅く測定に時間がかかるという問題点があった。走査速
度を支配する要因は機械的な要因と電気的な制御系に関
するものが考えられる。
However, the conventional scanning probe microscope has a problem that the scanning speed of the cantilever is slow and the measurement takes a long time. Factors governing the scanning speed may be related to mechanical factors and electrical control systems.

【0005】このうち機械的要因を考えると、カンチレ
バーの走査中にはXY微動機構とZ微動機構およびカンチ
レバーの間で相対運動が行われるため、これらの要素の
剛性が走査速度に大きく影響を与える。一般的な走査型
プローブ顕微鏡において、カンチレバーの共振周波数は
数百kHz程度であり、また最も一般的に用いられている
数μmオーダの移動距離を持つ円筒型圧電素子から構成
されるZ微動機構の共振周波数は数十kHzと比較的高い
が、XY微動機構は円筒型圧電素子を用いた数十μmの変
位量のアクチュエータでさえも、数百Hzからせいぜい数
kHzのオーダであり、他の2つの要素に比べて剛性が低
く、走査速度低下の要因となる。
Considering the mechanical factors, relative movement is performed between the XY fine movement mechanism, the Z fine movement mechanism and the cantilever during the scanning of the cantilever. Therefore, the rigidity of these elements greatly affects the scanning speed. . In a general scanning probe microscope, the resonance frequency of the cantilever is about several hundred kHz, and the most commonly used Z fine movement mechanism consisting of a cylindrical piezoelectric element with a moving distance on the order of several μm is used. Although the resonance frequency is relatively high at several tens of kHz, the XY fine movement mechanism can operate at a few hundred Hz at most even for an actuator with a displacement of several tens μm using a cylindrical piezoelectric element.
It is on the order of kHz and has lower rigidity than the other two factors, causing a reduction in scanning speed.

【0006】現在の走査型プローブ顕微鏡の走査領域は
一般には数十μm程度であるが、大型サンプルの測定な
どを目的として走査領域を大きくしたいという要求が多
い。しかしながら走査領域を増加することにより更にXY
微動機構の共振周波数が低下するため、ますます走査速
度が遅くなってしまう。また、走査領域を大きくすると
一般にXY微動機構が大型化して、要求されるスペースに
収まりきれない場合が多く装置が大型化する傾向にあ
る。
The scanning area of the current scanning probe microscope is generally about several tens of μm, but there are many demands to enlarge the scanning area for the purpose of measuring a large sample or the like. However, by increasing the scanning area,
Since the resonance frequency of the fine movement mechanism is lowered, the scanning speed is further reduced. Further, when the scanning area is enlarged, the XY fine movement mechanism generally becomes large, and in many cases, the XY fine movement mechanism cannot fit in the required space, and the apparatus tends to be large.

【0007】したがって、本発明では、走査領域を狭め
ることなく、XY微動機構の剛性を高め、走査速度の向上
と装置の小型化をはかることを目的とする。
Accordingly, an object of the present invention is to increase the rigidity of the XY fine movement mechanism without narrowing the scanning area, improve the scanning speed, and reduce the size of the apparatus.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の走査型プローブ顕微鏡では、先端に微小な
探針を有するカンチレバーと、カンチレバーを保持する
カンチレバーホルダと、カンチレバーの変位量を検出す
るための変位検出手段と、サンプルを載置するためのサ
ンプルホルダ部と、探針とサンプル間の相対的な距離を
変化させるZ微動機構と、サンプルとカンチレバーを相
対的に2次元平面内で走査を行うXY微動機構から装置を
構成し、XY微動機構をサンプル側とカンチレバー側の双
方に設けた。これら2つのXY微動機構において、双方の
XY微動機構を独立に動作させて、探針とサンプルを相対
的に走査させた。
In order to solve the above problems, a scanning probe microscope according to the present invention uses a cantilever having a fine probe at the tip, a cantilever holder for holding the cantilever, and a displacement amount of the cantilever. A displacement detecting means for detecting, a sample holder part for mounting the sample, a Z fine movement mechanism for changing a relative distance between the probe and the sample, and the sample and the cantilever in a two-dimensional plane relatively. The apparatus was composed of an XY fine movement mechanism that performs scanning by using the XY fine movement mechanism, and was provided on both the sample side and the cantilever side. In these two XY fine movement mechanisms,
The probe and sample were scanned relatively by independently operating the XY fine movement mechanism.

【0009】さらに、カンチレバーとサンプルの相対位
置をより高精度に検出するために、サンプル側とカンチ
レバー側の双方に設けたXY微動機構の少なくとも一方の
XY微動機構に2軸以上の変位検出器を設け、変位量をモ
ニタし、微動機構の駆動信号に対して変位量が線形性を
維持するように制御を行う制御装置を設けた。
Further, in order to detect the relative position of the cantilever and the sample with higher accuracy, at least one of the XY fine movement mechanisms provided on both the sample side and the cantilever side.
The XY fine movement mechanism is equipped with a displacement detector with two or more axes, monitors the amount of displacement, and has a control device that controls the amount of displacement to maintain linearity with respect to the drive signal of the fine movement mechanism.

【0010】[0010]

【発明の実施の形態】上記のように構成された走査型プ
ローブ顕微鏡において、図7に基づき走査の動作を説明
する。図7においてサンプル71の表面を含む平面内の互
いに直交する方向にX軸、Y軸をとり、XY平面と直交する
方向にZ軸をとる。走査領域の中心に原点0をとり、サン
プル表面上のA点から矢印のように一辺の長さがaの領域
を走査する場合を考える。なお、XYZ座標は空間中に設
定された絶対座標であり、サンプルやカンチレバーを走
査させた場合にも座標原点は変わらないものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The scanning operation of the scanning probe microscope configured as described above will be described with reference to FIG. In FIG. 7, an X axis and a Y axis are set in directions orthogonal to each other in a plane including the surface of the sample 71, and a Z axis is set in a direction orthogonal to the XY plane. Consider a case where an origin 0 is set at the center of the scanning area, and an area having a side length a as shown by an arrow is scanned from point A on the sample surface. Note that the XYZ coordinates are absolute coordinates set in the space, and the coordinate origin does not change even when the sample or the cantilever is scanned.

【0011】まず、走査開始時にはカンチレバー72側の
XY微動機構73により探針72aをX=-a/2、Y=a/2に移動さ
せ、サンプル71側のXY微動機構74によりサンプル71をX=
a/2、Y=-a/2に移動させる。1ライン目の走査は、カン
チレバー側のX座標を-a/2〜0まで連続的に移動させ、サ
ンプル側のX座標をa/2〜0までカンチレバー側と反対方
向に連続的に移動させる。この走査によりサンプル表面
上の長さaのラインが走査される。X方向の1ラインの走
査が終了すると、次にカンチレバー72側のXY微動機構73
を-Y方向に、サンプル71側のXY微動機構74を+Y方向にそ
れぞれ移動させ、次のラインのスキャンを行う。このよ
うな動作を繰り返し、カンチレバー側のY座標が0、サン
プル側のY座標が0まで走査を繰り返すことにより、サン
プル表面上のa×aの領域が走査される。
First, at the start of scanning, the cantilever 72 side
The probe 72a is moved to X = −a / 2 and Y = a / 2 by the XY fine movement mechanism 73, and the sample 71 is moved to X = −a / 2 by the XY fine movement mechanism 74 on the sample 71 side.
Move to a / 2, Y = -a / 2. In the scanning of the first line, the X coordinate on the cantilever side is continuously moved from -a / 2 to 0, and the X coordinate on the sample side is continuously moved from a / 2 to 0 in the opposite direction to the cantilever side. This scanning scans a line of length a on the sample surface. When scanning of one line in the X direction is completed, the XY fine movement mechanism 73 on the cantilever 72 side is next.
Are moved in the −Y direction, and the XY fine movement mechanism 74 on the sample 71 side is moved in the + Y direction, and scanning of the next line is performed. By repeating such an operation and repeating scanning until the Y coordinate on the cantilever side is 0 and the Y coordinate on the sample side is 0, an a × a region on the sample surface is scanned.

【0012】図8を用いてY軸方向の動作をさらに詳細に
説明する。図8中の番号は走査ラインの順番を示し、実
線上の黒丸はサンプルのY軸断面における走査済のライ
ンを、白丸は走査中のラインを示す。従来のXY微動機構
を1つしか備えてない場合には、破線で示した探針まで
走査を行わないと所定の走査領域aは走査できなかった
が、サンプル側とカンチレバー側を図の矢印で示したよ
うに反対方向に移動させることで、各々の微動機構をa/
2変位させることによりサンプル表面上の領域aが走査さ
れることになる。ただし、Y軸方向のスキャンに関し
て、従来行われていたようにXY微動機構をカンチレバー
側またはサンプル側どちらか一方のみに取り付けてスキ
ャンさせる場合と同一のピッチ間隔で走査させた場合、
解像度すなわち走査ライン数は1/2となるため、従来と
同様の解像度を得るためにはピッチを半分にする必要が
ある。したがって、Y軸方向の、微動機構に要求される
移動量は従来の半分でよいが、従来と同一の解像度を得
るためには倍のライン走査が必要となるためY軸方向の
走査時間は従来と同じである。
The operation in the Y-axis direction will be described in more detail with reference to FIG. The numbers in FIG. 8 indicate the order of the scanning lines, the black circle on the solid line indicates the scanned line in the Y-axis cross section of the sample, and the white circle indicates the line being scanned. When only one conventional XY fine movement mechanism was provided, the scanning area a could not be scanned unless the probe indicated by the broken line was scanned, but the sample side and the cantilever side were indicated by arrows in the figure. By moving in the opposite direction as shown, each fine movement mechanism
By displacing by two, the area a on the sample surface is scanned. However, with regard to scanning in the Y-axis direction, when scanning is performed at the same pitch interval as when scanning by attaching the XY fine movement mechanism only to either the cantilever side or the sample side as conventionally performed,
Since the resolution, that is, the number of scanning lines is halved, the pitch needs to be halved to obtain the same resolution as in the past. Therefore, the amount of movement required for the fine movement mechanism in the Y-axis direction may be half that of the conventional, but double line scanning is required to obtain the same resolution as in the past. Is the same as

【0013】このような走査方式を用いて、カンチレバ
ーの変位をモニターし、変位が一定になるようにZ微動
機構をZ方向にサーボ動作させながら、各々のXY微動機
構をラスタスキャンすることによりサンプル表面の凹凸
像得られる。本発明では、以上のような方式により以下
のような効果が得られる。 各々の微動機構に要求される移動量が従来の半分とな
り、XY微動機構が小型化され、剛性が高くなる。
Using such a scanning method, the displacement of the cantilever is monitored, and the XY fine movement mechanism is raster-scanned while the Z fine movement mechanism is servo-operated in the Z direction so that the displacement becomes constant. An uneven image of the surface is obtained. In the present invention, the following effects can be obtained by the above-described method. The amount of movement required for each fine movement mechanism is reduced to half of the conventional one, and the XY fine movement mechanism is reduced in size and rigidity is increased.

【0014】剛性が高くなったことにより、X方向の
走査速度を速めることが可能となり走 査時間が短縮さ
れる。 各々の微動機構のX方向の走査距離が1/2となるため、
走査時間が1/2になる。
Since the rigidity is increased, the scanning speed in the X direction can be increased, and the scanning time can be shortened. Since the scanning distance in the X direction of each fine movement mechanism is halved,
The scanning time is halved.

【0015】[0015]

【実施例】以下に、この発明の実施例を図面に基づいて
説明する。 (1)第一実施例 図1は、本発明の走査型プローブ顕微鏡の第一の実施例
の概略図であり、図2は図1の走査型プローブ顕微鏡の
動作方法を示したブロック図である。本実施例は走査型
プローブ顕微鏡の一種であるコンタクト型の原子間力顕
微鏡に関するものである。
Embodiments of the present invention will be described below with reference to the drawings. (1) First Embodiment FIG. 1 is a schematic diagram of a first embodiment of the scanning probe microscope of the present invention, and FIG. 2 is a block diagram showing an operation method of the scanning probe microscope of FIG. . This embodiment relates to a contact type atomic force microscope which is a kind of a scanning probe microscope.

【0016】図1において、探針1aとサンプル2を近接
させる方向にZ軸を、サンプル表面の面内で互いに直交
する方向にX軸、Y軸をとる。ボールネジ3とステッピン
グモータ4より構成されたZ粗動ステージ5上に円筒型圧
電素子によりXY微動機構6とZ微動機構7が一体成形され
たXYZ微動機構8を固定する。XYZ微動機構8の先端に、カ
ンチレバーホルダ9を取り付け、カンチレバーホルダ9に
カンチレバー1を固定する。カンチレバー1の変位は、カ
ンチレバーホルダ9に内蔵した小型の光てこ光学系10に
より検出する。光てこ光学系は半導体レーザ10aからの
レーザ光をビームスプリッター10bにより曲げてカンチ
レバー1の背面に当て、反射光をミラー10cを経由してデ
ィテクタ10dにより変位が検出される方式である。
In FIG. 1, the Z axis is taken in a direction in which the probe 1a and the sample 2 are brought close to each other, and the X axis and the Y axis are taken in directions orthogonal to each other in the plane of the sample surface. An XYZ fine movement mechanism 8 in which an XY fine movement mechanism 6 and a Z fine movement mechanism 7 are integrally formed by a cylindrical piezoelectric element is fixed on a Z coarse movement stage 5 composed of a ball screw 3 and a stepping motor 4. The cantilever holder 9 is attached to the tip of the XYZ fine movement mechanism 8, and the cantilever 1 is fixed to the cantilever holder 9. The displacement of the cantilever 1 is detected by a small optical lever optical system 10 built in the cantilever holder 9. The optical lever optical system is a system in which laser light from a semiconductor laser 10a is bent by a beam splitter 10b and applied to the back of the cantilever 1, and reflected light is detected by a detector 10d via a mirror 10c.

【0017】一方、カンチレバー1と対向する側に、サ
ンプル位置の粗動用のXYステージ11を配置し、XYステー
ジ11上にXY微動機構12を固定し、XY微動機構12上に設け
たサンプルホルダ13にサンプル2を載置した。XY微動機
構12は、ステンレス板を加工して弾性ヒンジによる変位
拡大機構を構成し、該変位拡大機構を積層型圧電素子に
より駆動する方式とした。
On the other hand, an XY stage 11 for coarse movement of a sample position is arranged on the side opposite to the cantilever 1, a XY fine movement mechanism 12 is fixed on the XY stage 11, and a sample holder 13 provided on the XY fine movement mechanism 12 is provided. The sample 2 was placed on the sample. The XY fine movement mechanism 12 is configured such that a stainless steel plate is processed to constitute a displacement magnifying mechanism using an elastic hinge, and the displacement magnifying mechanism is driven by a laminated piezoelectric element.

【0018】以上のように構成された走査型プローブ顕
微鏡において、Z粗動ステージ5によりカンチレバー1を
原子間力が作用する領域までサンプル2に近接させる。
次に、X軸方向において、2つのX微動機構6a,12aを互い
に反対方向にスキャンさせ、1ラインの測定が終わった
後、Y軸方向において、Y微動機構6b,12bを互いに反対方
向に移動させ隣のラインに移した後、再びX軸方向に対
して、2つのX微動機構6a.12aを互いに反対方向にスキャ
ンさせる動作を繰り返しながら、探針1aをサンプル表面
上でラスタスキャンさせる。このとき、光てこ光学系10
によりカンチレバー1の変位を検出し、変位量が一定と
なるようにZ微動機構7に電圧を印加して制御を行う。カ
ンチレバー1の変位量は探針1aとサンプル2間に働く原子
間力に依存し、この原子間力は探針とサンプル表面間の
距離に依存するため、Z微動機構7に印加する電圧から、
サンプル表面の凹凸情報が得られる。
In the scanning probe microscope configured as described above, the cantilever 1 is brought close to the sample 2 by the Z coarse movement stage 5 to the region where the atomic force acts.
Next, in the X-axis direction, the two X fine movement mechanisms 6a and 12a are scanned in opposite directions, and after the measurement of one line is completed, the Y fine movement mechanisms 6b and 12b are moved in the opposite direction in the Y-axis direction. After moving to the next line, the probe 1a is raster-scanned on the sample surface while repeating the operation of scanning the two X fine movement mechanisms 6a and 12a in directions opposite to each other again in the X-axis direction. At this time, the optical lever optical system 10
, The displacement of the cantilever 1 is detected, and control is performed by applying a voltage to the Z fine movement mechanism 7 so that the displacement amount becomes constant. The amount of displacement of the cantilever 1 depends on the interatomic force acting between the probe 1a and the sample 2, and since this interatomic force depends on the distance between the probe and the sample surface, from the voltage applied to the Z fine movement mechanism 7,
Asperity information of the sample surface can be obtained.

【0019】一方、XY微動機構6,12は、各々の微動機構
に印加される電圧信号より絶対座標に対する変位量が求
められる。この変位量をコンピュータに入力しサンプル
2と探針1aとの相対的な座標が求められる。この相対座
標と、Z微動機構7へ印加される電圧信号をコンピュータ
に記憶させ、3次元の座標上にマッピングすることによ
りサンプル表面の凹凸情報が得られる。
On the other hand, in the XY fine movement mechanisms 6, 12, the displacement amount with respect to the absolute coordinates is obtained from the voltage signal applied to each fine movement mechanism. This displacement amount is input to a computer and sampled.
The relative coordinates between 2 and the probe 1a are obtained. The relative coordinates and the voltage signal applied to the Z fine movement mechanism 7 are stored in a computer, and the unevenness information on the sample surface is obtained by mapping on the three-dimensional coordinates.

【0020】ここで、XY微動機構6,12の変位量とZ微動
機構7の変位量は測定に先立ち、各々のアクチュエータ
に印加される電圧信号と変位との関係を求め較正を行っ
た。したがって、各々の微動機構の変位量はアクチュエ
ータに印加する電圧信号から求めることができる。この
走査型プローブ顕微鏡において、必要とする走査領域に
対して、各々のXY微動機構6,12に要求される走査領域は
半分でよいため、XY微動機構6,12が小型化され、剛性が
向上した。その結果、走査速度を高めることが可能とな
った。また、X方向に1ラインスキャンする場合の各々の
XY微動機構の変位量が1/2となるため、走査に要する時
間も短縮された。 (2)第二実施例 図3は、本発明の走査型プローブ顕微鏡の第二の実施例
の概略図であり、図4は図3の走査型プローブ顕微鏡の
動作方法を示したブロック図である。
Prior to the measurement, the displacement amounts of the XY fine movement mechanisms 6 and 12 and the Z fine movement mechanism 7 were calibrated by obtaining the relationship between the voltage signal applied to each actuator and the displacement. Therefore, the amount of displacement of each fine movement mechanism can be obtained from the voltage signal applied to the actuator. In this scanning probe microscope, the scanning area required for each of the XY fine movement mechanisms 6 and 12 can be half the required scanning area, so the XY fine movement mechanisms 6 and 12 are downsized and the rigidity is improved. did. As a result, the scanning speed can be increased. Also, when scanning one line in the X direction,
Since the displacement of the XY fine movement mechanism is halved, the time required for scanning has also been reduced. (2) Second Embodiment FIG. 3 is a schematic diagram of a second embodiment of the scanning probe microscope of the present invention, and FIG. 4 is a block diagram showing an operation method of the scanning probe microscope of FIG. .

【0021】本実施例では第一の実施例において、カン
チレバー1側のXY微動機構6の2軸と、サンプル2側のXY微
動機構12の2軸に、静電容量方式による変位センサ14,1
5(サンプル側、カンチレバー側ともY軸方向の変位セン
サは図示せず)を組み込み、各々のXY微動機構の変位を
検出して、コンピュータにより指示された変位量に対し
てクローズドループで制御を掛けた。そのときの各々の
変位量からコンピュータにより探針1とサンプル2の相対
的な位置関係を計算し、サンプルの凹凸形状を測定する
方式とした。さらにカンチレバー側のZ軸についても静
電容量式の変位センサ16を組み込み実測された変位量を
コンピュータに入力した。これらの位置情報からサンプ
ル表面の凹凸像を求めることができる。
In this embodiment, in the first embodiment, two axes of the XY fine movement mechanism 6 on the cantilever 1 side and two axes of the XY fine movement mechanism 12 on the sample 2 side are provided with displacement sensors 14 and 1 of the capacitance type.
5 (Displacement sensors in the Y-axis direction are not shown for both the sample side and cantilever side) are incorporated to detect the displacement of each XY fine movement mechanism and control the displacement amount specified by the computer in a closed loop. Was. The relative positional relationship between the probe 1 and the sample 2 was calculated by a computer from the respective displacement amounts at that time, and a method of measuring the uneven shape of the sample was adopted. In addition, the capacitance-based displacement sensor 16 was also incorporated into the Z-axis on the cantilever side, and the measured displacement was input to the computer. An uneven image of the sample surface can be obtained from these positional information.

【0022】一般に圧電素子を用いた微動機構はヒステ
リシスやクリープなどに起因する誤差が生じるが、以上
のように構成した走査型プローブ顕微鏡により、第一の
実施例の場合よりもXYZのリニアリティが向上した。 (3)第三実施例 図5は、本発明の走査型プローブ顕微鏡の第三の実施例
の概略図である。
In general, a fine movement mechanism using a piezoelectric element causes an error due to hysteresis or creep. However, the scanning probe microscope configured as described above has improved the XYZ linearity compared to the first embodiment. did. (3) Third Embodiment FIG. 5 is a schematic diagram of a third embodiment of the scanning probe microscope of the present invention.

【0023】本実施例では、市販の倒立顕微鏡51のステ
ージ52上にサンプル53用のXY微動機構54を配置し、さら
にその上にスタンドアロンタイプの走査型プローブ顕微
鏡55を載せ、倒立顕微鏡一体型の走査型プローブ顕微鏡
を構成した。サンプル用のXY微動機構54は第一の実施例
と同様に弾性ヒンジ機構と積層型圧電素子により構成さ
れる。
In this embodiment, an XY fine movement mechanism 54 for a sample 53 is arranged on a stage 52 of a commercially available inverted microscope 51, and a stand-alone scanning probe microscope 55 is mounted thereon. A scanning probe microscope was configured. The XY fine movement mechanism 54 for the sample is constituted by an elastic hinge mechanism and a laminated piezoelectric element as in the first embodiment.

【0024】また、スタンドアロンタイプの走査型プロ
ーブ顕微鏡は、ベースプレート56に円筒型圧電素子より
構成された3軸微動機構57を設置し、3軸微動機構57の先
端部にカンチレバーホルダ58を取付けベースプレート56
を3本の支柱59で支え、そのうち1本の支柱59aをステ
ッピングモータ60により伸縮させ、テコ運動によりカン
チレバー61をサンプル53に近づける。カンチレバー61の
変位は第一実施例と同じく、光てこ系を利用した小形の
光学ヘッド62を3軸微動機構57の先端に取り付けた。3
軸微動機構は内部が中空で、照明63の光をサンプルに照
射することが可能であり、光学顕微鏡像の観察が可能な
構成となっている。
In the stand-alone scanning probe microscope, a three-axis fine movement mechanism 57 composed of a cylindrical piezoelectric element is installed on a base plate 56, and a cantilever holder 58 is attached to the tip of the three-axis fine movement mechanism 57.
Is supported by three columns 59, and one column 59a is extended and contracted by a stepping motor 60, and the cantilever 61 is brought closer to the sample 53 by leverage. The displacement of the cantilever 61 is the same as in the first embodiment. A small optical head 62 using an optical lever system is attached to the tip of a three-axis fine movement mechanism 57. Three
The shaft fine movement mechanism has a hollow interior, can irradiate the sample with the light of the illumination 63, and has a configuration capable of observing an optical microscope image.

【0025】本実施例の走査型プローブ顕微鏡は主とし
て、細胞などの生体サンプル観察用に用いられ、一般的
な蛍光顕微鏡像と、蛍光顕微鏡像よりも更に分解能が高
い原子間力顕微鏡像が同一の装置で観察可能な装置であ
る。生体サンプル用の走査型プローブ顕微鏡は、他の用
途に比べて広い領域の走査が要求されるため、XY微動機
構が大型化し、剛性が低く、走査速度が遅くなりがちで
あった。また、倒立顕微鏡のステージ上という限られた
領域に走査型プローブ顕微鏡を構成するあるため、XY微
動機構の大きさに制限が生じ、できるだけ小型にする必
要があった。
The scanning probe microscope of this embodiment is mainly used for observing a biological sample such as a cell, and a general fluorescence microscope image and an atomic force microscope image having a higher resolution than the fluorescence microscope image are identical. It is a device that can be observed with the device. Scanning probe microscopes for biological samples are required to scan a wider area than other uses, so that the XY fine movement mechanism becomes large, rigidity is low, and the scanning speed tends to be low. Further, since the scanning probe microscope is configured in a limited area on the stage of the inverted microscope, the size of the XY fine movement mechanism is limited, and it is necessary to reduce the size as much as possible.

【0026】前記のように倒立顕微鏡上に走査型プロー
ブ顕微鏡を構成することにより、これらの問題が改善さ
れた。 (4)その他の実施例 以上述べてきたような実施例のほかにも、カンチレバー
を共振周波数近傍で加振しながら、探針をサンプル表面
に近づけ、探針とサンプル表面との相互作用による振幅
の減衰量をモニターし、常に一定の振幅を保つようにサ
ンプルと探針間の距離の制御を行い、サンプル表面の凹
凸像やその他の物理特性を測定する方式の振動モード原
子間力顕微鏡や、導電性の探針を利用してサンプルと探
針間にバイアス電圧を掛け、探針をサンプルに近接させ
た際のトンネル電流をモニターしてサンプルと探針間の
距離制御を行い、サンプル表面の凹凸像やその他の物理
特性を測定する走査型トンネル顕微鏡、あるいは、光フ
ァイバーの先端を探針状に加工し、先端に波長以下の径
を持つ開口を形成したプローブを用いた走査型近接場顕
微鏡など、一般に走査型プローブ顕微鏡と総称されるす
べての顕微鏡に本発明は適用できる。
By constructing the scanning probe microscope on the inverted microscope as described above, these problems have been improved. (4) Other Examples In addition to the examples described above, the probe is brought close to the sample surface while the cantilever is vibrated near the resonance frequency, and the amplitude due to the interaction between the probe and the sample surface is obtained. Vibration mode atomic force microscope that monitors the amount of attenuation of the sample, controls the distance between the sample and the probe so as to always maintain a constant amplitude, and measures the uneven image and other physical characteristics of the sample surface, A bias voltage is applied between the sample and the probe using a conductive probe, the tunnel current when the probe is brought close to the sample is monitored, and the distance between the sample and the probe is controlled. A scanning tunneling microscope for measuring uneven images and other physical characteristics, or a scanning proximity using a probe whose optical fiber tip is processed into a probe shape and an opening with a diameter smaller than the wavelength is formed at the tip. The present invention is applicable to all microscopes generally called scanning probe microscopes, such as field microscopes.

【0027】また、微動機構の構造は、前記の実施例で
説明した円筒型圧電素子や、弾性ヒンジ機構と積層型圧
電素子を組み合わせた方式の他にも、ボイスコイルを用
いた微動機構や、電動モータ駆動のメカニカルステージ
など、XY平面内での微動という目的に使用される微動機
構はすべて含まれ、また、これらの組み合わせも任意で
ある。
The structure of the fine movement mechanism is not limited to the cylindrical type piezoelectric element described in the above embodiment, the system combining the elastic hinge mechanism and the laminated piezoelectric element, or the fine movement mechanism using a voice coil. All fine movement mechanisms used for the purpose of fine movement in the XY plane, such as a mechanical stage driven by an electric motor, are included, and a combination of these is also optional.

【0028】更に、微動機構に組み込まれる変位センサ
も歪ゲージやレーザ変位計など任意の変位計が使用可能
である。更に、カンチレバーあるいはプローブの変位検
出方式としては、前記実施例で述べた光てこ方式に限定
されず、レーザ光をカンチレバーやプローブに照射し入
射光とその戻り光との干渉波形から変位の検出を行う光
干渉方式や、カンチレバーやプローブに圧電体を張り付
け、物理的な特性によりカンチレバーまたはプローブに
撓みを生じさせ、圧電体からの電荷量に変換して電気的
に変位を検出する圧電方式なども本発明に含まれる。
Further, any displacement sensor such as a strain gauge or a laser displacement meter can be used as the displacement sensor incorporated in the fine movement mechanism. Further, the displacement detection method of the cantilever or the probe is not limited to the optical lever method described in the above embodiment, and the displacement can be detected from the interference waveform between the incident light and the return light by irradiating the cantilever or the probe with laser light. An optical interference method, or a piezoelectric method in which a piezoelectric body is attached to a cantilever or probe, causing the cantilever or probe to bend due to physical characteristics, converting the amount of electric charge from the piezoelectric body to electrically detect displacement, etc. Included in the present invention.

【0029】また、本発明のスキャン方法はラスタスキ
ャンに限定されず、カンチレバー側のXY微動機構とサン
プル側のXY微動機構を各々任意の速度で任意の軌跡を独
立に動作させることも可能である。このような任意動作
をさせる場合には、あらかじめ与えられたサンプルと探
針の相対的な軌跡から、最適な動作方法をコンピュータ
に計算させて各々のXY微動機構が制御される。
The scanning method of the present invention is not limited to the raster scan, and the XY fine movement mechanism on the cantilever side and the XY fine movement mechanism on the sample side can be operated independently at an arbitrary speed on an arbitrary trajectory. . When such an arbitrary operation is performed, the XY fine movement mechanism is controlled by causing a computer to calculate an optimal operation method from a relative trajectory of the sample and the probe provided in advance.

【0030】[0030]

【発明の効果】以上説明したように、本発明では、先端
に微小な探針を有するカンチレバーと、カンチレバーを
保持するカンチレバーホルダと、カンチレバーの変位量
を検出するための変位検出手段と、サンプルを載置する
ためのサンプルホルダ部と、探針とサンプル間の相対的
な距離を変化させるZ微動機構と、サンプルとカンチレ
バーを相対的に2次元平面内で走査を行うXY微動機構か
ら構成される走査型プローブ顕微鏡において、XY微動機
構をサンプル側とカンチレバー側の双方に設けた。これ
ら2つのXY微動機構において、双方のXY微動機構を独立
に動作させて、探針とサンプルを相対的に走査させた。
As described above, according to the present invention, a cantilever having a small probe at the tip, a cantilever holder for holding the cantilever, displacement detecting means for detecting the amount of displacement of the cantilever, and a sample are provided. Consists of a sample holder part for mounting, a Z fine movement mechanism that changes the relative distance between the probe and the sample, and an XY fine movement mechanism that relatively scans the sample and the cantilever in a two-dimensional plane. In the scanning probe microscope, the XY fine movement mechanism was provided on both the sample side and the cantilever side. In these two XY fine movement mechanisms, both the XY fine movement mechanisms were operated independently, and the probe and the sample were relatively scanned.

【0031】このように走査型プローブ顕微鏡を構成す
ることにより、各々のXY微動機構に要求される移動量が
従来の半分となり、XY微動機構が小型化され、剛性を高
くすることが可能となった。 この結果、走査速度を速
めることが可能となり走査時間が短縮された。さらに、
各々のXY微動機構の移動量は2つのXY微動機構の走査速
度が等しい場合には必要とする移動量の1/2であり、ま
た速度が異なる場合でも、2つのXY微動機構を同時に走
査するため、1つXY微動機構の場合よりも移動量が小さ
くなり、その結果、走査時間が短縮された。
By configuring the scanning probe microscope in this manner, the amount of movement required for each XY fine movement mechanism is reduced by half, and the XY fine movement mechanism can be reduced in size and increased in rigidity. Was. As a result, the scanning speed can be increased, and the scanning time is shortened. further,
The movement amount of each XY fine movement mechanism is 1/2 of the required movement amount when the scanning speed of the two XY fine movement mechanisms is equal, and even when the speeds are different, the two XY fine movement mechanisms are scanned simultaneously. Therefore, the moving amount is smaller than in the case of one XY fine movement mechanism, and as a result, the scanning time is shortened.

【0032】また、要求される移動量が1つの微動機構
の場合よりも少なくなるためXY微動機構が小型化され、
限られた空間でも走査型プローブ顕微鏡が設置可能とな
った。
Further, since the required movement amount is smaller than in the case of one fine movement mechanism, the XY fine movement mechanism is downsized,
Scanning probe microscopes can be installed even in limited spaces.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の走査型プローブ顕微鏡の第一実施例の
概略図である。
FIG. 1 is a schematic view of a scanning probe microscope according to a first embodiment of the present invention.

【図2】図1の走査型プローブ顕微鏡の動作方法を示す
ブロック図である。
FIG. 2 is a block diagram showing an operation method of the scanning probe microscope of FIG.

【図3】本発明の走査型プローブ顕微鏡の第二実施例の
概略図である。
FIG. 3 is a schematic view of a second embodiment of the scanning probe microscope of the present invention.

【図4】図3の走査型プローブ顕微鏡の動作方法を示す
ブロック図である。
FIG. 4 is a block diagram showing an operation method of the scanning probe microscope of FIG.

【図5】本発明の走査型プローブ顕微鏡の第三実施例の
概略図である。
FIG. 5 is a schematic view of a scanning probe microscope according to a third embodiment of the present invention.

【図6】従来型の走査型プローブ顕微鏡の概略図であ
る。
FIG. 6 is a schematic diagram of a conventional scanning probe microscope.

【図7】本発明の走査型プローブ顕微鏡の走査方法を説
明する説明図である。
FIG. 7 is an explanatory diagram illustrating a scanning method of the scanning probe microscope of the present invention.

【図8】Y軸方向の走査方法を説明する説明図である。FIG. 8 is an explanatory diagram illustrating a scanning method in the Y-axis direction.

【符号の説明】[Explanation of symbols]

1 カンチレバー 2 サンプル 5 Z粗動ステージ 6 XY微動機構 7 Z微動機構 9 カンチレバーホルダ 10 光てこ光学系 12 XY微動機構 13 サンプルホルダ 14 X軸変位センサ 15 X軸変位センサ 16 Z軸変位センサ 53 サンプル 54 XY微動機構 57 XYZ微動機構 58 カンチレバーホルダ 61 カンチレバー 62 光てこ光学系 64 サンプルホルダ 71 サンプル 72 カンチレバー 73 XY微動機構 74 XY微動機構 75 サンプルホルダ 101 カンチレバー 102 カンチレバーホルダ 103a XY微動機構 103b Z微動機構 104 Z粗動ステージ 106 サンプルホルダ 107 サンプル 108 光てこ光学系 Reference Signs List 1 cantilever 2 sample 5 Z coarse movement stage 6 XY fine movement mechanism 7 Z fine movement mechanism 9 cantilever holder 10 optical lever optical system 12 XY fine movement mechanism 13 sample holder 14 X-axis displacement sensor 15 X-axis displacement sensor 16 Z-axis displacement sensor 53 sample 54 XY fine movement mechanism 57 XYZ fine movement mechanism 58 cantilever holder 61 cantilever 62 optical lever optical system 64 sample holder 71 sample 72 cantilever 73 XY fine movement mechanism 74 XY fine movement mechanism 75 sample holder 101 cantilever 102 cantilever holder 103a XY fine movement mechanism 103b Z fine movement mechanism 104 Z Coarse movement stage 106 Sample holder 107 Sample 108 Optical lever optical system

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 先端に微小な探針を有するカンチレバー
と、カンチレバーを保持するカンチレバーホルダと、カ
ンチレバーの変位量を検出するための変位検出手段と、
サンプルを載置するためのサンプルホルダ部と、探針と
サンプル間の相対的な距離を変化させるZ微動機構と、
サンプルとカンチレバーを相対的に2次元平面内で走査
を行うXY微動機構から構成される走査型プローブ顕微鏡
において、XY微動機構をサンプル側とカンチレバー側の
双方に設けたことを特徴とする走査型プローブ顕微鏡。
1. A cantilever having a minute probe at a tip thereof, a cantilever holder for holding the cantilever, a displacement detecting means for detecting a displacement amount of the cantilever,
A sample holder section for mounting the sample, a Z fine movement mechanism for changing a relative distance between the probe and the sample,
A scanning probe microscope comprising an XY fine movement mechanism that relatively scans a sample and a cantilever in a two-dimensional plane, wherein the XY fine movement mechanism is provided on both the sample side and the cantilever side. microscope.
【請求項2】 前記2つのXY微動機構において、双方の
XY微動機構を独立した軌跡で、かつ独立した速度で動作
させて、探針とサンプルを相対的に走査させることを特
徴とする請求項1に記載の走査型プローブ顕微鏡。
2. In the two XY fine movement mechanisms,
2. The scanning probe microscope according to claim 1, wherein the probe and the sample are relatively scanned by operating the XY fine movement mechanism at independent trajectories and at independent speeds.
【請求項3】 2次元平面内において互いに直交する方
向にX軸、Y軸を設定し、X軸方向において、2つのX微動
機構を互いに反対方向にスキャンさせ、1ライ ンの測定
が終わった後、Y軸方向において、Y微動機構を互いに反
対方向に移動させ隣のラインに移し、再びX軸方向に対
して、2つのX微動機構を互いに反対方向 にスキャンさ
せる動作を繰り返しながら、サンプル表面上で探針をラ
スタスキャンさせることを特徴とする請求項1又は請求
項2に記載の走査型プローブ顕微鏡。
3. An X-axis and a Y-axis are set in directions orthogonal to each other in a two-dimensional plane, and two X fine movement mechanisms are scanned in directions opposite to each other in the X-axis direction, thereby completing the measurement of one line. Then, in the Y-axis direction, the Y fine movement mechanism is moved in the opposite direction to the next line, and the operation of scanning the two X fine movement mechanisms in the X-axis direction in the opposite direction is repeated. The scanning probe microscope according to claim 1 or 2, wherein the probe is raster-scanned on the probe.
【請求項4】 サンプル側とカンチレバー側の双方に設
けたXY微動機構の少なくとも一方のXY微動機構に2軸以
上の変位検出器を設け、変位量をモニタし、微 動機構
の駆動信号に対して変位量が線形性を維持するように制
御を行う制御装置を設けたことを特徴とする請求項1か
ら請求項3のいずれかに記載の走査型プローブ顕微鏡
4. A displacement detector having two or more axes is provided for at least one of the XY fine movement mechanisms provided on both the sample side and the cantilever side to monitor the amount of displacement, and to respond to a drive signal of the fine movement mechanism. The scanning probe microscope according to any one of claims 1 to 3, further comprising a control device that controls the displacement amount so as to maintain linearity.
【請求項5】 前記カンチレバーの代わりに、金属性の
探針を用いて走査型トンネル顕微鏡として動作させる、
請求項1から請求項4のいずれかに記載の走査型プロー
ブ顕微鏡。
5. Operating as a scanning tunneling microscope using a metallic probe instead of the cantilever,
The scanning probe microscope according to claim 1.
【請求項6】 金属性探針または光ファイバーを用いた
導波路付プローブ、または導波路付カンチレバーを用い
て、走査型近接場顕微鏡として動作させる請求項1から
請求項4のいずれかに記載の走査型プローブ顕微鏡。
6. The scanning according to claim 1, wherein the scanning probe is operated as a scanning near-field microscope using a probe with a waveguide using a metallic probe or an optical fiber, or a cantilever with a waveguide. Probe microscope.
JP29908499A 1999-10-21 1999-10-21 Scanning probe microscope Expired - Fee Related JP3892184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29908499A JP3892184B2 (en) 1999-10-21 1999-10-21 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29908499A JP3892184B2 (en) 1999-10-21 1999-10-21 Scanning probe microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006304678A Division JP4448508B2 (en) 2006-11-10 2006-11-10 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2001116677A true JP2001116677A (en) 2001-04-27
JP3892184B2 JP3892184B2 (en) 2007-03-14

Family

ID=17867979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29908499A Expired - Fee Related JP3892184B2 (en) 1999-10-21 1999-10-21 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3892184B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108089030A (en) * 2017-11-14 2018-05-29 合肥中科微力科技有限公司 Double piezo tube nesting mechanical parallel high stable scanners and scanning probe microscopy
EP3444619A1 (en) * 2017-08-17 2019-02-20 Institute of Physics, The Chinese Academy of Sciences Scanning head of scanning probe microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3444619A1 (en) * 2017-08-17 2019-02-20 Institute of Physics, The Chinese Academy of Sciences Scanning head of scanning probe microscope
CN109406829A (en) * 2017-08-17 2019-03-01 中国科学院物理研究所 The probe of scanning probe microscopy
CN108089030A (en) * 2017-11-14 2018-05-29 合肥中科微力科技有限公司 Double piezo tube nesting mechanical parallel high stable scanners and scanning probe microscopy

Also Published As

Publication number Publication date
JP3892184B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US6861649B2 (en) Balanced momentum probe holder
US8443459B2 (en) Fast-scanning SPM scanner and method of operating same
US7631547B2 (en) Scanning probe apparatus and drive stage therefor
EP0746857A1 (en) Scanning probe microscope
JP2004523748A5 (en)
KR20060016118A (en) Scanning probe microscope using a surface drive actuator to position the scanning probe tip
JP5111102B2 (en) Fine movement mechanism for scanning probe microscope and scanning probe microscope using the same
US6437343B1 (en) Scanner system and piezoelectric micro-inching mechansim used in scanning probe microscope
JP2001033373A (en) Scanning probe microscope
US20090032705A1 (en) Fast Tip Scanning For Scanning Probe Microscope
JP3892184B2 (en) Scanning probe microscope
JPH1062158A (en) Atomic force microscope-type surface roughness gage
JP4448508B2 (en) Scanning probe microscope
JP2005147979A (en) Scanning probe microscope
JPH08226928A (en) Interatomic force microscope with optical microscope
EP1436636B1 (en) Method and apparatus for sub-micron imaging and probing on probe station
JP3536193B2 (en) Scanning probe microscope
EP3570045B1 (en) Scanner and scanning probe microscope
JP2003215017A (en) Scanning probe microscope
JPH0868799A (en) Scanning type probe microscope
JP3512259B2 (en) Scanning probe microscope
JP2002350319A (en) Scanning probe microscope
JP4131806B2 (en) Measuring method of scanning probe microscope
JP2001033374A (en) Scanning probe microscope and its scanning method
JPH09105754A (en) Scanning type probe microscope

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061206

R150 Certificate of patent or registration of utility model

Ref document number: 3892184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees